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most relevant modifications after local optimization on the LDA level,
at standard pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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Notation

Physical Constants

Symbol Meaning Unit
c speed of light in vacuum 299792458 ms−1

ε0 permittivity of free space 8.854187817×10−12 Fm−1

e elementary charge (of proton) 1.60217733(49)×10−19 C
a0 Bohr radius 5.29177249(24)×10−11 m
kB Boltzman constant 1.380658(12)×10−23 J/K
~ = h

2π
Planck constant divided by 2π 1.054571726(47)×10−34 Js

R∞ Rydberg constant 10973731.568549(83) m−1

NA Avogadro constant 6.0221367(36)×1023 mol−1

R molar gas constant 8.314510(70) J/K mol

Energy Equivalents

Symbol Meaning Unit

Eh Hartree energy = e2

4πε0a0
= 2R∞hc 4.3597482(26)×10−18 J

2.6255000×106 J/mol
27.211652 eV
627.51×103 Calories/mol

eV electron volt 1.60217646×10−19 J
eV
kB

eV divided by Boltzman’s constant 11605 K
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Acronyms

Symbol Meaning
AO Atomic Orbital
AEBS All electron basis set
APW Augmented plane-wave method
BF Bloch Function
BSSE Basis Set Superposition Error
BZ Brillouion Zone (first)
B3LYP Becke 3-Parameter functional, with Lee-Yang-Parr correla-

tion
CMPZ ”CoMPare Zellen” (= compare cells)
DFT Density Functional Theory
DOS Density of States
ECP Effective Core Potential
GGA Generalized Gradient Approximation
EOS Equation of states
GTO Gaussian Type Orbital
KS Kohn and Sham
HF Hartree-Fock
LCAO Linear Combination of Atomic Orbitals
LDA Local Density Approximation
LYP Lee-Yang-Parr GGA
OPW Orthogonalized plane waves
PAW Projector-augmented wave
PBE Perdew-Burke-Ernzerhof exchange and correlation
PPBS Pseudopotential basis set
PW Plane Wave
PW91 Perdew-Wang functional
PWGGA Perdew-Wang GGA
PZ Perdew-Zunger correlation
QM Quantum Mechanics
RGS ”RaumGruppenSucher” (= space group searcher)
RHF Restricted HF
ROHF Restricted Open-shell HF
UHF Unrestricted HF
SCF Self-Consistent-Field
SFND ”SymmetrieFiNDer” (= symmetry finder)
STO Slater Type Orbital
VBH von Barth-Hedin
VWN Vosko-Wilk-Nusair correlation
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Abstract

In recent years, new theoretical methodologies and techniques have become
available to explore the energy landscape of chemical systems. Further-
more, experimental solid state chemistry has opened new opportunities by
advances in controlling synthesis routes, for example by low-temperature
atom beam deposition or physical vapor deposition. Furthermore, there
have been advancements in measurement techniques such as in-situ mea-
surements, scanning tunneling microscopy, scanning electron microscopy,
and transmission electron microscopy at low temperature. Still, it is quite
difficult to understand structural changes at standard and extreme con-
ditions. Often, it is impossible to understand structural changes without
assistance from theoretical simulations. Sometimes it is advantageous to
predict structures before the actual synthesis, because it can give more in-
sight for deciding upon the synthesis route, and by knowing the structure,
one can simulate its physical properties. Due to the knowledge of the system
and its interesting properties beforehand, one can synthesize the chemical
compound and validate the predictions. Crystal structure prediction re-
quires the exploration of the energy landscape of the respective system.
These prediction methods are mainly based on the fact, that stable and
metastable modifications of chemical systems correspond to locally ergodic
regions of the energy landscape. At low temperature, individual minima
can be locally ergodic, if they are separated by sufficiently high barriers.
Usually, there may exist many such locally ergodic regions encompassing
one or several local minima. The latter case is most important, if some
of the sites in the structures are only partially occupied, or occupied in a
disordered fashion.

The aim of the present research is to predict possible crystalline structures
including already observed ones as well as hypothetical new ones. The struc-
ture prediction procedure consists of two steps: the first step is the global
search for possible structure candidates at various pressures on the ab-initio
level, which is followed by the second step, a local optimization. All the en-
ergies were evaluated on the ab-initio level (i.e. during both the global and
the local optimization). Earlier, model potentials had been used, e.g. Born-
Mayer potentials. These potentials have the disadvantage of being biased
towards a certain chemical bond, e.g. an ionic bond, but have difficulties
to describe situations such as covalent or metallic bonds. Ab-initio calcu-
lations are much more general, and require less empirical input. The bond
type and the charge distribution are not predefined, but are determined in
the calculation. The disadvantage is that these calculations are by orders of
magnitude more computationally expensive than calculations with model
potentials. Up to now, only few systems have been studied by employing



ab-initio energies from e.g. the CRYSTAL code which is based on Gaussian
type orbitals. In this research work, we additionally created an interface for
the VASP code (Vienna Ab-initio Simulation Package), where the ab-initio
energy calculations are based on plane waves. With the interface to VASP,
the choice of basis sets is simplified, and convergence problems during the
self-consistent field procedure are less severe, compared to CRYSTAL.

The goal of this thesis is to use existing energy landscape algorithms and to
couple them with various ab-initio simulation methods, in order to predict
the crystal structure. When the structure of the possible (meta)stable solid
compounds is determined, then subsequently their physical and electronic
properties can be computed, under standard and high pressure conditions.
An investigation of the stability and the transition dynamics among various
crystal structures of the same chemical system is performed. The present
thesis deals with theoretical structure prediction of an elemental system,
lithium metal, and binary systems such as calcium carbide and (per)nitride
compounds using different ab-initio methods.

Although lithium is a simple metallic system, various modifications are
known, in particular both at low temperature and at high pressure. To
gain further insight into the possible metastable or thermodynamically sta-
ble modifications of lithium at standard conditions, a global exploration
of the energy landscape was performed. For the global optimization, we
used simulated annealing, to identify possible structure candidates. A lo-
cal optimization followed the global search, where the structure candidates
were refined. We have found structures with space group Im3̄m (bcc),
Fm3̄m (fcc), and P63/mmc (hcp). Apart from these known modifications,
we have predicted one interesting new structure with space group Pm3̄n,
which shows chains of lithium atoms. This newly predicted structure cor-
responds to the A15 structure type. To understand the thermodynamic
stability of this new polymorph, energy-vs-volume curves and enthalpy-vs-
pressure curves were calculated and analyzed, and in order to estimate the
dynamical stability, phonon calculations were performed.

In the past, both ionic and covalent systems had been studied with simu-
lated annealing using ab-initio energy calculations in all the steps. In this
thesis, we considered CaC2 as an example of a mixed covalent-ionic sys-
tem. Experimentally, four different modifications had been known. From
the global optimization runs at standard pressure, we obtained 10 differ-
ent structure candidates for this system. Among these, three exhibited a
particularly low energy. One of them is the experimentally found (CaC2-I)
structure, and a second one (CaC2-VI) has some similarity to the observed
structure (CaC2-III). The last one is completely new (CaC2-V), and is low-
est in energy of all the structures considered. Furthermore, at high pressure,
CaC2 is predicted to stabilize in a new structure type (CaC2-VII), analo-
gous to the CsCl-structure. Very recently, this high pressure modification
was observed in high pressure experiments on the BaC2 system.

The successful structure prediction for the CaC2 system suggested that
binary pernitride compounds could also be a highly interesting class of
systems with complex multi-minima energy landscapes. In this thesis, we



considered pernitrides MN2, where M denotes cations with different maxi-
mal valences: II (Ca, Sr, Ba), III (La), and IV (Ti), some of which have not
yet been synthesized (LaN2 and TiN2). Experimentally, CaN2 and SrN2

crystallize into a tetragonal modification (CaC2-I). BaN2 stabilizes into the
ThC2 structure type. Here, we performed the prediction of new crystal
structures with two methods: the global search as described before, and a
simple database approach. In the latter approach, we considered the well-
known AB2 structure types known from databases such as the Inorganic
Crystal Structure Database (ICSD), replaced the anions and cations with
N2 units and metal atoms, respectively, and performed a local optimization.
We found the CaC2-I, ThC2, MgC2, and CaC2-V modifications among all
pernitride systems as candidates for the stable modifications. In the case
of CaN2, the CaC2-I and MgC2 structure types are stable modifications
at standard and negative pressure, respectively. TiN2-I and CaC2-V are
possible modifications for the TiN2 system at normal and high pressure,
respectively. In the case of CaN2 and SrN2, N2 units are surrounded by
octahedrally coordinated cations, whereas a distorted octahedron is formed
by the cations in BaN2 and LaN2 at ambient conditions. Only for the TiN2

system, the N2 dumbbells are surrounded by Ti in a square pyramid. All
these pernitride modifications are metallic in nature except TiN2-I. Perni-
tride systems have a negative binding energy with respect to the metal and
elemental N2, which suggests that these systems might be synthesized e.g.
at high pressure.
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Zusammenfassung

In letzter Zeit wurden neue theoretische Methoden und Techniken entwickelt, um die
Energielandschaft chemischer Systeme zu untersuchen. Darüber hinaus hat die exper-
imentelle Festkörperchemie durch Fortschritte bei der Kontrolle von Synthesewegen,
z.B. mittels Atom abscheidungsverfahren bei niedrigen Temperaturen oder physikali-
scher Gasphasenabscheidung, neue Möglichkeiten eröffnet. Des Weiteren wurden Fort-
schritte bei der Entwicklung von Messtechniken wie in-situ Messungen, Rastertun-
nelmikroskopie, Rasterelektronenmikroskopie, und Transmissionselektronenmikrosko-
pie bei niedrigen Temperaturen erzielt. Dennoch ist es immer noch schwierig, struk-
turelle Änderungen bei Standard- und Extrembedingungen zu verstehen. Oft ist es
unmöglich, strukturelle Veränderungen ohne Hilfe von theoretischen Simulationen zu
verstehen. Manchmal kann es auch vorteilhaft sein, Strukturen vor der Synthese
vorherzusagen, um mehr Informationen für die Entscheidung für einen bestimmten
Syntheseweg zu erhalten. Außerdem können durch Kenntnis der Struktur die physikali-
schen Eigenschaften simuliert werden. Aufgrund der Kenntnisse über das System
und seine interessanten Eigenschaften im Voraus, kann man die chemische Verbindung
möglicherweise leichter synthetisieren und die Prognosen validieren. Das Voraussagen
von Kristallstrukturen bedeutet die Erkundung der Energielandschaft des jeweiligen
Systems. Diese Vorhersage-methoden basieren vor allem auf der Tatsache, dass stabile
und metastabile Modifikationen von chemischen Systemen lokal ergodischen Regionen
der Energielandschaft entsprechen. Bei niedrigen Temperaturen können individuelle
Minima lokal ergodisch sein, wenn sie durch ausreichend hohe Barrieren getrennt sind.
Normalerweise können viele solcher lokal ergodischen Regionen existieren, die eine oder
mehrere lokale Minima umgeben. Der letztere Fall ist sehr wichtig, wenn einige der
Plätze in den Strukturen nur teilweise oder ungeordnet besetzt sind.

Das Ziel der vorliegenden Arbeit ist es, mögliche Kristallstrukturen einschließlich
bereits beobachteter sowie hypothetische neue vorherzusagen. Das Struktur-vorhersage-
verfahren besteht aus zwei Schritten: Der erste Schritt ist die globale Suche nach
möglichen Strukturkandidaten bei verschiedenen Drücken auf dem ab-initio Niveau.
Bei dem folgenden zweiten Schritt handelt es sich um eine lokale Optimierung. Alle
Energien wurden auf ab-initio Niveau berechnet (d.h. sowohl während der globalen
als auch während der lokalen Optimierung). In früheren Arbeiten waren Modellpoten-
tiale wie z. B. Born-Mayer Potentiale verwendet worden. Diese Potentiale haben den
Nachteil, dass sie durch ihre Kalibrierung eine Tendenz zu einer bestimmten chemi-
schen Bindung aufweisen. Beispielsweise können sie ionische Bindungen bevorzugen
und Schwierigkeiten haben, kovalente oder metallische Bindungen zu beschreiben. Ab-
initio-Rechnungen sind viel allgemeiner, und benötigen weniger empirischen Input. Der
Bindungstyp und die Ladungsverteilung sind nicht vordefiniert, sondern werden bei
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der Berechnung bestimmt. Der Nachteil ist, dass diese Berechnungen um Größenord-
nungen rechenintensiver sind als Berechnungen mit den Modellpotentialen. Bis jetzt
wurden nur wenige Systeme mit Hilfe von ab-initio Energien unter Benutzung z. B.
des CRYSTAL-Code, der auf Gauß-Orbitalen beruht, untersucht. In dieser Arbeit
haben wir zusätzlich eine Schnittstelle für den VASP-Code (Vienna Ab-initio Simu-
lation Package) erstellt, bei dem die ab-initio Berechnungen der Energien auf ebenen
Wellen basieren. Mit der Verbindung zu VASP wird die Wahl des Basissatzes verein-
facht, und die Konvergenzprobleme während der “self-consistent field” Prozedur sind
im Vergleich zu CRYSTAL geringer.

Das Ziel dieser Arbeit ist es, bestehende Algorithmen zur Berechnung von En-
ergielandschaften zu verwenden und sie mit verschiedenen Verfahren von ab initio-
Simulationen zu koppeln, um die Kristallstruktur vorherzusagen. Nachdem die Struk-
tur der möglichen (meta)stabilen Festkörper bestimmt ist, können anschließend ihre
physikalischen und elektronischen Eigenschaften unter Standard-und Hochdruck-Bedin-
gungen berechnet werden. Eine Untersuchung der Stabilität und der Übergangs-
dynamik zwischen verschiedenen Kristallstrukturen des gleichen chemischen Systems
kann durchgeführt werden. Die vorliegende Arbeit beschäftigt sich mit der theoreti-
schen Struktur-vorhersage von einem elementaren System (metallischem Lithium) und
binären Systemen wie Calciumcarbid und (Per-)Nitrid-Verbindungen mit verschiede-
nen ab-initio-Methoden.

Obwohl Lithium ein einfaches metallischen Systems ist, sind verschiedene Modi-
fikationen bekannt, insbesondere bei niedriger Temperatur und unter hohem Druck.
Um weitere Einblicke in mögliche metastabile oder thermodynamisch stabile Mod-
ifikationen von Lithium bei Standardbedingungen zu gewinnen, wurde eine globale
Untersuchung der Energielandschaft durchgeführt. Für die globale Optimierung ver-
wendeten wir Simulated Annealing, um mögliche Strukturkandidaten zu identifizieren.
Der globalen Suche folgte eine lokale Optimierung, bei der die Strukturkandidaten
verfeinert wurden. Wir haben Strukturen mit den Raumgruppen Im3̄m (bcc), Fm3̄m
(fcc), und P63/mmc (hcp) gefunden. Abgesehen von diesen bekannten Modifikationen,
haben wir eine interessante neue Struktur mit der Raumgruppe Pm3̄n vorhergesagt,
die Ketten der Lithium-Atome zeigt. Diese neu vorhergesagte Struktur entspricht dem
A15 Struktur-Typ. Um die thermodynamische Stabilität dieses neuen Polymorphs
zu verstehen, wurden Energie und Enthalpie als Funktion vom Druck berechnet und
analysiert. Um die dynamische Stabilität abzuschätzen, wurden Phonon-Berechnungen
durchgeführt.

In letzter Zeit wurden ionische und kovalente Systeme mit Simulated Annealing
mit ab-initio Energieberechnungen in allen Schritten untersucht. In dieser Arbeit
betrachteten wir CaC2 als Beispiel für ein gemischt kovalent-ionisches System. Ex-
perimentell waren vier verschiedene Modifikationen bekannt. Aus den globalen Opti-
mierungen bei Normaldruck erhalten wir 10 verschiedene Strukturkandidaten für dieses
System. Von diesen zeigen drei eine besonders niedrige Energie. Eine von ihnen ist
die experimentell gefundene (CaC2-I)-Struktur, die zweite (CaC2-VI) hat einige Ähn-
lichkeiten mit der beobachteten (CaC2-III)-Struktur. Die dritte Struktur ist komplett
neu (CaC2-V), und ist die mit der niedrigsten Energie aller berücksichtigten Struk-
turen. Ferner wird vorhergesagt, dass sich CaC2 unter hohem Druck in einem neuen
Strukturtyp (CaC2-VII, analog zur CsCl-Struktur) stabilisiert. Diese vorhergesagte
Modifikation wurde kürzlich in Hochdruckexperimenten am BaC2-System beobachtet.
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Die erfolgreiche Struktur-Vorhersage für das CaC2-System legte nahe, dass binäre
Pernitrid-Verbindungen auch ein sehr interessantes System mit komplexen Multi-Mini-
ma-Energielandschaften sein könnten. In dieser Arbeit betrachten wir Pernitride MN2,
wobei M Kationen mit unterschiedlichen maximalen Valenzen bezeichnet: II (Ca, Sr,
Ba), III (La) und IV (Ti), von denen einige noch nicht synthetisiert wurden (LaN2

und TiN2). Experimentell kristallisieren CaN2 und SrN2 in einer tetragonalen Mod-
ifikation (CaC2-I), BaN2 im ThC2 Strukturtyp. Hierbei führten wir die Vorhersage
der neuen Kristallstrukturen mit zwei Methoden durch: der globalen Suche, wie zuvor
beschrieben, und einem einfachen Datenbankansatz.

Im letzteren Ansatz verwendeten wir die bekannten AB2 Strukturtypen, die aus
Datenbanken wie etwa der Inorganic Crystal Structure Database (ICSD) bekannt sind,
ersetzten die Anionen und Kationen mit N2-Einheiten bzw. Metallatomen, und führten
eine lokale Optimierung durch. Wir fanden die CaC2-I, ThC2, MgC2, und CaC2-V
Modifikationen unter allen Pernitridsystemen als Kandidaten für stabile Modifikatio-
nen. Bei CaN2 sind die CaC2-I und MgC2 Strukturtypen stabile Modifikationen unter
Standard- und Unterdruck. TiN2-I und CaC2-V sind mögliche Modifikationen für das
TiN2 System bei Normaldruck und bei hohem Druck. Im Fall von CaN2 und SrN2

sind die N2-Einheiten von oktaedrisch koordinierten Kationen umgeben, während bei
BaN2 und LaN2 bei Standardbedingungen durch die Kationen ein verzerrter Oktaeder
gebildet wird. Nur für das TiN2 System werden die N2-Hanteln von quadratischen
Pyramiden aus Ti umgeben. All diese Pernitridmodifikationen sind metallischer Natur
außer TiN2-I. Pernitridsysteme verfügen über eine negative Bindungsenergie in Bezug
auf elementares Metall und N2, was darauf hindeutet, dass diese Systeme unter hohem
Druck hergestellt werden könnten.
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Introduction

1.1 Introduction

Crystal structure prediction of chemical systems is very important in theoretical and
experimental solid state chemistry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Often, it is a very difficult
and time-consuming task to synthesize the chemical compounds at various conditions.
To overcome this issue, several techniques (6, 7) were used by the researchers, which
try to mimic the procedures employed for the synthesis of the chemical compounds.
The existence of a wide range of materials, such as superconductors, semiconductors,
multiferroics, alloys, catalysts, ceramics, polymers, nanomaterials, bio-materials and
many more, has motivated the development of systematic approaches for the theoret-
ical prediction of these new compounds and their physical, electronic and dynamical
properties at standard and extreme conditions (6, 11).

Along similar lines, many new experimental techniques have been used to synthesize
elemental solids, binary, ternary and many more compounds with the help of the
concept of rational synthesis of inorganic materials. There are various articles (11, 12,
13, 14) whose objective is the synthesis of predicted and not-yet synthesized materials,
with the help of chemical intuition and more rational with a priori approaches to
synthesis planning.

Our knowledge about chemical systems is mostly based on the experimentally
known structures which exist at ambient conditions. But the chemical system may
behave differently at low temperature and pressure. At these conditions, the atoms
have low coordination numbers and are relatively loosely packed. At high pressure
the system may have higher coordination numbers and the atoms are more densely
packed. This can lead to a change in the physical properties such as from insulating
to semiconducting to metallic behavior at slightly elevated pressure. Also, the system
may show superconductivity. Some systems are very sensitive to pressure, and even a
slight rise in pressure makes the whole system collapse, which becomes amorphous in
nature such as the crystalline-amorphous transition of α-NaVO3 at 60 kbar (15). Some
chemical systems can only be synthesized at high pressure and high temperature, and
not at standard conditions. Understanding chemical systems at various conditions is
extremely important.
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There is also a strong interest in structures which can be found at low temperature.
A new class of synthesis techniques is available such as sputtering deposition (physical
vapor deposition) (16, 17) or the growth of crystalline structures on amorphous mate-
rials using atom beam deposition (18, 19) at very low temperature, possibly at liquid
nitrogen or liquid helium temperature. Note that this is not possible with the well
known molecular beam epitaxy (20, 21, 22, 23), as this method requires higher tem-
peratures. In such cases (18, 19, 24, 25), the observed modifications have low densities
which are otherwise observed at high temperature or low pressure. Such a phase is
due to the formation and growth of nuclei inside the amorphous material, which is less
dense than crystalline materials. The forces acting on the interface of the amorphous
and the crystalline material result in a negative pressure which favors the low density
polymorph (25).

Synthesizing systems at high pressure (26, 27) has recently received increased at-
tention. This method led to the discovery of new phases of crystalline structures (28,
29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40). Though there is an advancement in
techniques such as in-situ measurements, it is not so simple to understand the struc-
tural transformations. With the help of theory, by computing E(V ) and H(p)-curves,
one gets deep insight into the structural modifications and phase transitions.

With this increase of newly observed modifications, there are also new challenges
for theoreticians. Basically, all plausible structures are associated with local minima
of the potential energy. For exploring all modifications of a given system, one has to
study the enthalpy surface at various pressures. This is similar to structure prediction
of solids at standard and extreme conditions by locating local minima on the potential
surface for the chemical system (6, 11, 41, 42, 43).

In the past decade, novel and advanced theoretical and computational methods for
the prediction of new materials of all kinds of systems have evolved. Furthermore, there
has been an enormous growth in computational power. There are several algorithms
such as simulated annealing (44, 45, 46, 47), genetic/evolutionary algorithms (42, 48,
49, 50, 51), or basin hopping (52, 53), threshold algorithm (54) or meta-dynamics (55,
56) which are used for structure prediction of solid compounds. Another possible
optimization technique is particle swarm optimization (57, 58), which has been applied,
e.g., to predict protein folding using a toy model (59) or to solve crystal structures
from powder diffraction (58) and elemental solids such as lithium (60). Some more
algorithms were also used for global exploration such as ab-initio random structure
searching (AIRSS) (61), or data mining.

Since structure prediction is a very time-consuming task involving many millions
of energy calculations, one usually attempts to reduce the computational effort by em-
ploying simplified energy functions, that are typically based on empirical potentials.
Such potentials are often of sufficient quality and computationally cheap as well, but
they have some in-principle shortcomings. They are system dependent, and even for
a given system, it is not guaranteed that all relevant polymorphs correspond to basins
around local minima. Furthermore, while these potentials are successful for ionic sys-
tems, they often encounter problems for systems with covalent or metallic bonds or
mixtures thereof. As a consequence, it is much better to employ ab-initio based energy
calculations already during the global search (62).

In this study, the main goal of energy landscape exploration of chemical systems is
to find experimentally observed structures and then new modifications (not-yet syn-
thesized). The next step is to find similarities between predicted and observed modi-
fications on the basis of the structural analysis and physical properties. The starting
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point of most structure prediction methods is the fact that (meta)stable modifications
of chemical systems correspond to locally ergodic regions of the energy landscape.

Several years ago, it was demonstrated that global optimization with genetic al-
gorithms (50) and simulated annealing (63) is possible, with all energy calculations
performed on the ab-initio level. For example, the ionic system lithium fluoride (LiF)
was the first system studied with simulated annealing on the ab-initio level (63), in
order to validate the methodology.

LiF had been studied with model potentials (47, 64) earlier, and it was found that
the most relevant minima were the same on the level of empirical potentials and on the
ab-initio level. Subsequently, boron nitride (BN), a covalent system, was successfully
investigated using ab-initio simulated annealing as the global exploration method (65).
The possibility to compute barriers was demonstrated for LiF (66) and subsequently
MgF2 (67) clusters. Meanwhile, further systems have been studied such as GeF2 (68)
and PbS (69). In this thesis, we go one step further and investigate metallic and mixed
covalent-ionic systems.

1.1.1 Outline

The thesis is organized in different sections which are as follows: (I) Introduction, (II)
Theoretical background, (III) Methods, (IV) Application to solid and binary
systems, (V) Summary, (VI) Appendix, and (VII) Formalia.

Part II: Theoretical background: We analyzed different energy landscape ex-
ploration methods to model solid chemical systems on ab-initio level.

Part III: Methods: In this section, we first review the method which gives more
insight into the stability of the chemical system, e.g., thermodynamic and dynamical.

In particular, we created an interface to VASP (Vienna Ab-initio Simulation Pack-
age) for ab-initio energy calculations (Chapter 5).

Part IV: Application to solid and binary systems: This part can be divided
into three sections viz. three different systems. (1)”Lithium“, (2)”Calcium carbide”,
and (3)“(Per)nitride compounds“.

Chapter 6: In this chapter, we studied elemental lithium. Here, we performed an
energy landscape exploration at standard pressure with various numbers of atoms per
unit cell. During the simulation, we found the experimentally known modifications.
Furthermore, we discovered one more modification which is usually observed in binary
systems. We studied its dynamical stability that supports that it can exist at ambient
or low temperature.

Chapter 7: Until now, ionic systems have been very well studied using global
exploration techniques which are based on simulated annealing. We went ahead and
investigated CaC2, a mixed covalent-ionic system. It is an experimentally very well
known system. We performed global optimizations at standard and high pressure. As
the outcome our search, several new structures were discovered of which one structure
should exist at ambient condition whereas another one is predicted as a high pressure
phase. For comparison, we took known AB2 structure types from a database as a
starting point for our local optimization. Among these, some show the same kind of
structure types as those that are experimentally known and theoretically predicted.

Chapter 8: We took one further step ahead in the direction of covalent-ionic
systems. We performed global explorations on (per)nitride compounds which have
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not-yet been synthesized. We took three different cations viz., calcium (Ca2+), lan-
thanum (La3+), and titanium (Ti4+) with the same anion N2

2−, and we performed
global optimizations. The result shows interesting trends as we move from the left to
the right and the top to the down in the periodic table. We compared the predicted
polymorphs with the known structures of alkali earth metals e.g., SrN2 and BaN2.

In the Supplementary material we provide information about ionic radii accord-
ing to the atomic charges for all systems. We also include the basis set for lithium and
carbon and the pseudopotential for calcium.
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2

Exploration of the Energy

Landscape for solids

In solid-state chemistry, two approaches are used to validate the existence (or non-
existence) of a chemical compound. One is the actual synthesis of the respective
chemical compound and the other is to apply some empirical rules and/or chemical
intuition. But, since about twenty years there has been a new methodology that is
used to predict the crystal structure before its synthesis without taking prior experi-
mental information into account. Similarly, the amount of information gained during
experiments is often not enough to determine the structure of the chemical system.
In the experiment, it is hard to understand the transformation dynamics while the
system goes through various (meta)stable modifications. And it is more difficult when
the possible (meta)stable modifications have not yet been synthesized. In such cases,
theory, especially mathematical modeling, gives some assistance (8, 9). From the the-
oretical point of view, the description of a chemical compound and its dynamics is
incorporated in the energy, which is a function of the position of the atoms in the
crystal structure (70).

2.1 Energy Landscape

2.1.1 Introduction

The positions of all the atoms in a solid or in a molecule can be described in the classical
limit with the position vectors in 3D of all the N atoms which are part of the chemical
system (6, 11, 41, 71, 72, 73, 74, 75, 76, 77, 78). Every configuration is represented
by a point in a 3N-dimensional Euclidean space, called configurational space. For the
first time, the energy landscape concept had been used to study the non-equilibrium
features of glasses (71, 72). The energy landscape (see Fig. 2.1) has been used to predict
new structures of crystalline compounds which can give new insight to develop different
routes to their synthesis (7, 11), whereas clusters (73, 74) and big molecules such as
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2. EXPLORATION OF THE ENERGY LANDSCAPE FOR SOLIDS

Figure 2.1: Schematic representation of the energy landscape for a simple system

with one species of atom with fictive coordinates X1 and X2.

proteins and polymers (41, 74, 79) are both studied as model systems for complex
landscapes. These models are useful to understand some of their properties, such as
the existence of magic number clusters or protein folding.

The chemical system is generally represented by position and momentum vectors.
The position of each atom can be denoted by ~xi in a 3N-dimensional vector space ~X =
(~x1,.....~xN ). Similarly, the velocity of every atom is denoted by ~vi in a 3N-dimensional

vector space ~V = (~v1,.....~vN ), or by momenta ~P = (~p1,.....~pN ), ~pi =mi~vi. This results
in a 6N-dimensional space of both the N position vectors ~xi and N velocity vectors
~vi. It is known as phase space. To simplify this, we usually replace this vector and
an infinitesimal cube in phase space around it by a state i (8, 9) and the integral over
phase space by summation over i. Using classical mechanics, the energy can be defined
as

E = E( ~X, ~P ) = Ekin(~P ) + Epot( ~X) (2.1)

10



2.1 Energy Landscape

where Ekin(~P ) =
∑

i ~pi
2/2mi is the kinetic energy and Epot( ~X) is the potential

energy. Newton’s equations give the time evolution of such a system as follows:

d~xi
dt

=
~pi
mi

= ~vi (2.2)

d~pi
dt

= ~Fi = −∂Epot( ~X)

∂~xi
(2.3)

The above set of equations can be solved and gives a unique solution (trajectories

( ~X(t), ~V (t))) for all physically valid choices of initial conditions ( ~X0, ~V0). If we have
to analyze the dynamics of the chemical system, the simplest approximation is to keep
the system at zero Kelvin. The kinetic energy of the system becomes zero. Thus, the
trajectory goes to the nearest local minimum of the potential energy surface which
is dependent on the starting point. The system will stay there for the rest of the
duration of the experiment or simulation. Hence, all minimum configurations on the
energy landscape can be explored at zero Kelvin and these structures are known as
kinetically stable structures. At zero Kelvin, the system is static. Classically, the
system can stay at a stable configuration for infinite time, but in the case of quantum
mechanics, it is not possible because of tunneling.

It is very difficult to consider the system at non-zero temperature, because it has
many degrees of freedom, that are highly likely to lead to a complicated trajectory
in configurational space. One can not get the actual essence of the system from ex-
perimental observations and not even through a molecular dynamics simulation, that
simulates how the system evolves from a gaseous state to a more ordered form, i.e. a
crystalline structure. Usually, lattice vibrations and thermal excitations are associated
with a crystal structure. The structure is called stable when the number of atoms
corresponds to some thermal (Boltzmann) average, not when a single atom or several
atoms correspond with one formula unit. When the crystal structure is thermody-
namically stable, then it should satisfy ergodicity. Ergodicity can be defined as the
equivalence of time-average (the average of the simulated trajectory over the whole
simulation time) and the ensemble average. This also holds for metastable compounds
with some constraints, because the existence of metastable compounds is limited in
time. Hence, we are interested in identifying all locally ergodic regions for metastable
compounds of a chemical system at a reasonable time scale.

In the next section, we have to translate these qualitative considerations into a
mathematical definition of an energy landscape and local ergocity. Three important
factors are required to define an energy landscape mathematically: A configuration
space of states (or solutions of an optimization problem), energy (or cost) function given
as a real function over configuration space, and a neighborhood relation (topology).
Usually, an energy landscape of an atomic arrangement has some surroundings given by
the topology of ℜ3N , but for optimization problems we have to explicitly define such a
neighborhood relation (called move-class). While performing a global energy landscape
exploration, in the present work we used ab-initio calculations for the energy calculation
which is enormously expensive as compared to empirical potentials. Initially, there is
no information provided about the cell geometry and no atom positions are given.
The configurational space that needs to be explored is greatly enlarged due to the
necessary variation of the simulation cell compared to only an adjustment of atomic
positions, which affects the speed and accuracy of the energy calculation. In such a
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2. EXPLORATION OF THE ENERGY LANDSCAPE FOR SOLIDS

case, we are interested in an approximate calculation of energy functions. The outcome
of the global optimization yields local minima, which need to be checked using the local
optimization on ab-initio level. The analysis of the thermodynamical stability of these
locally optimized structures can be investigated (6, 80, 81) employing algorithms that
provide ’topographic’ (see Fig. 2.2) facts about the structure of the energy barriers
around these minima, and the local density of states near the minimum (54, 82). In
classical mechanics, the time evolution can be decided by the positions and velocities
of all the atoms at some initial time t1. This time evolution is coupled with the laws of
motion and the energy function of the system, from which the forces on the atoms can
be calculated. A physical measurement consists of the average of some observable O,

〈O〉 = 1

tobs

∫ t2

t1

O(X(t
′

),V(t
′

) dt
′

(2.4)

over a time interval [t1,t2] of the length tobs=t2-t1 along this trajectory. Usually the
physical properties are independent of the initial point t1 of the trajectory in phase
space 〈O〉t1,t2 = 〈O〉tobs=t1−t2 . In particular, if a system can reach equilibrium, with
respect to the observable O, faster than we perform measurements, tobs > teq(O), the
so-called ensemble average,

〈O〉ens(T ) =
∫

O(X(t),V(t))e
−E(V,X)

kBT dVdX
∫

e
−E(V,X)

kBT dVdX
(2.5)

equals the time average within an accuracy am,

|〈O〉tobs − 〈O〉tens
| < am (2.6)

If this condition holds, then we can say that the system is ergodic with respect to
the observable 〈O〉 on the time scale tobs and up to accuracy am. It is not a trivial
task to prove that a system can be termed ergodic. But in many cases, the ergodicity
assumption turns out to be justified.

Apart from tobs and teq, there is another time scale, termed as the escape time tesc.
The average time spent by the system in a locally ergodic region R (81, 84) is given
by the escape time. The local ergodicity is a weaker version of the (global) ergodicity
approach which relates to the fact that only a subset of R of the energy landscape
may be ergodic. If we can get a reproducible diffractogram of a modification associ-
ated with R before the substance disintegrates or transforms to another modification,
tesc (R;O) > tobs > teq (R;O), then we are dealing with a metastable compound on
our observation scale tobs. If we are working on a system that is not an isolated solid,
but a system in contact with an external heat bath at constant temperature, then the
temperature serves as an indicator that the solid is isothermal with the surrounding.
We cannot reproduce the above experiment on a time scale that is shorter than the
equilibration time tTeq.

The equilibration time and escape time are temperature dependent. Especially, the
escape time may vary by many orders of magnitude, according to the Arrhenius law,

tesc ∝ e
Ebarrier

kBT (2.7)
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2.1 Energy Landscape

Figure 2.2: Topographical representation of 3N-dimensional landscape projected on

two dimensions (83). The blue line suggests the trajectory of time evolution of a system

on the landscape. The red and green curves show the basins and mountains on the

energy landscape, respectively. Regions enclosed by black rectangles were observed

during Monte-Carlo simulation and the dashed rectangles contain local minima but

which are not explored in this simulation run.
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2. EXPLORATION OF THE ENERGY LANDSCAPE FOR SOLIDS

As the locally ergodic regions Ri have been discovered (for a given temperature
and tobs), one can figure out the local free energy of each region (see Section 2.1.3.3).
The kinetic stability of the modification one associates with such a region is given by
the escape time tesc.

The energy landscape depends on several factors such as temperature and other

thermodynamic parameters like pressure, and external fields (electric
→

E, magnetic
→

B,
etc.). Temperature, for example, changes the dynamics of the landscape in a stochastic
fashion via the average kinetic energy (〈Ekin〉 = 3/2NkBT ). The pressure p modifies
the energy function itself:

E
(

p = 0,
→

E=
→

0 , . . .
)

= Epot → E
(

p 6= 0,
→

E 6=
→

0 , . . .
)

= Epot + pV+
→

E
→

P + . . . . (2.8)

Since these external parameters are time-independent, we are dealing with a fixed
time-independent energy landscape, and these modifications do not pose any real dif-
ficulties. We can perform the exploration of this modified landscape E (p 6= 0, . . .)
analogously to the one of the potential energy landscape E (p = 0, . . .).

The first step is the determination of the locally ergodic regions. At low tempera-
tures (usually T ≈ 0), escape times are controlled by energy barriers, and will increase
exponentially according to the Arrhenius law (Eqn. 2.7). It is observed that in many
cases these barriers are actually high enough for local ergodicity to hold even at much
higher temperatures (8, 9).

2.1.2 Algorithms for global optimization

In science and technology, there are several problems which can be systematically
specified in terms of the minimum or maximum of a cost function, over a space of
acceptable solutions. There are many methods available to (approximately) solve this
problem. For simplicity, they can be divided into global and local approaches, usually
termed as global optimization (GO) and local optimization (LO) methods.

Global optimization deals with the optimization of a function. The main goal of
global optimization is to find the best possible (or feasible) solution of (nonlinear)
models, in case of the (possible) existence of multiple local optima. Initially, optimiza-
tion techniques were used to solve real world problems such as transport management
and the organization of sales personnel. Formally, there is a simple technique to solve
these problems, by searching the minimum cost with all constraints to be satisfied.

The simplest form is the minimization of one real-valued function f
(

→
x
)

in the con-

figuration/solution space. In addition, the states
→
x may have to fulfill one or several

constraints C
(

→
x
)

= 0. In reality, the cost function of many variables may have a

large number of local minima and maxima. To locate an arbitrary local minimum
is relatively simple as compared to the global maximum or minimum of a function.
To find the global minimum is barely possible for many problems up till now. The
maximization of a real-valued function g(x) can be regarded as the minimization of
the transformed function f (x) = (−1) · g (x) (85, 86, 87). Application of the global
optimization techniques in various fields include: Structure prediction (minimize the

14



2.1 Energy Landscape

energy/free energy function), traveling salesman problem and circuit design (minimize
the path length), chemical engineering (e.g. analyzing the Gibbs free energy), calibra-
tion of radio propagation models, safety verification, safety engineering (e.g. mechani-
cal structures, buildings), worst case analysis, mathematical problems (e.g. the Kepler
conjecture), spin glasses, curve fitting (e.g. non-linear least squares) and many more.

Optimization algorithms (88) can be divided in two basic classes: deterministic
and probabilistic algorithms (see Fig. 2.3). Deterministic algorithms are most often
used if there is a clear relation between the characteristics of the possible solutions.
The search space can efficiently be explored using simple techniques such as a divide
and conquer scheme which works by iteratively breaking the problem into two or more
sub-problems of the same or related kind, until these become simple problems to be
solved directly. The solution of the original problem is the combination of solutions of
all sub-problems. If the connection between a solution candidate and solution of its
subproblems is complicated, or the search space is high-dimensional, then under these
conditions it is harder to deterministically find a solution to the problem.

If deterministic solutions are not practicable, then probabilistic algorithms come
into the picture. They contain stochastic, heuristics and metaheuristic optimization
methods. Mostly, probabilistic algorithms are based on the Monte-Carlo simulation
method. The performance of these algorithms is very good on the simulation time
scale but this does not imply that the results obtained using them are incorrect - they
may just not be the global optima. At the same time, a solution is not the best pos-
sible solution if another solution is better, even if it needs 10100 years to be found.
Several Monte-Carlo-based algorithms exist: simulated annealing (SA), direct Monte-
Carlo sampling, stochastic tunneling, parallel tempering, Monte-Carlo with minimiza-
tion, and basin hopping techniques. A heuristic algorithm (88, 89, 90) is a part of an
optimization algorithm which uses the details of a system currently gathered by the
algorithm to help to decide which solution candidate should be tested next or how the
next individual can be produced. Usually, heuristics problems are class dependent.
A metaheuristic algorithm (88, 91, 92) combines objective functions or heuristics in
an abstract and hopefully efficient way, usually without utilizing deeper insight into
their structure, i. e. by treating them as black-box-procedures. It is a method used for
solving very general classes of problems. Recent developments employ heuristic tactics
to explore the search space, including evolutionary algorithms (e.g. genetic algorithms
and evolution tactics) (44, 45, 85, 86, 87, 93, 94, 95, 96, 97, 98, 99), swarm-based
optimization algorithms (e.g., particle swarm optimization and ant colony optimiza-
tion) (57), memetic algorithms (100), and algorithms combining global and local search
tactics, reactive search optimization (i.e. integration of sub-symbolic machine learning
techniques into search heuristics) (101).

The energy landscape of a chemical system is a special case of cost functions which
requires a clever combination of GO and LO methods. The energy landscape may
possess many minima and a very complicated barrier structure (see Fig. 2.2).

2.1.2.1 Exploration of local minima

A number of methods has been developed to locate the local minima on the energy land-
scape, to solve discrete and continuous optimization problems in physics, mathematics,
biology, technology, economics, and computer science. These optimization algorithms
have been implemented and are used to find structure candidates in chemical systems,
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2. EXPLORATION OF THE ENERGY LANDSCAPE FOR SOLIDS

Figure 2.3: Classification of optimization algorithms. (88)
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as a tool for the rational planning of syntheses (6, 11). In these simulations, there are
critical issues viz. the efficiency of the search, and the effect of approximations and
modifications of the energy landscape to speed up the search. In the global exploration,
we are not only interested in the global minima but also in the minima with low en-
ergies and sufficiently high barriers surrounding them. These low-energy minima are
also important because they represent possible metastable compounds.

The global optimization/exploration methods can be split into two parts viz. stochas-
tic optimization and deterministic approaches. A random walker (or a set of such
walkers) is the fundamental concept behind stochastic methods. The trajectory of the
random walker on the landscape traces the time evolution of the chemical systems.
In the case of a Monte Carlo simulation with the Metropolis algorithm (102), one (or
many) walker at the configuration with energy Ei chooses one of the neighboring con-
figurations as test configuration with energy Ej. It is accepted if ∆E = Ej-Ei < 0 or if
exp(-∆E/T) > r for a random number 0 ≤ r < 1. The variation in the configuration can
be generated randomly and with non-physical rules. These random moves may allow
us to take large steps on the landscape. In the case of molecular dynamics simulations,
the physical trajectory reproduces the system in a deterministic way. By applying an
external heat bath to the system, a certain degree of stochasticity is imitated. On
the other hand, the classic deterministic global optimization approaches were able to
search for minima on the landscape with heuristic or exhaustive rules. These methods
are advantageous when the landscape can be divided into a hierarchy of regions each
containing several local minima, hence one employs a divide-and-conquer approach.

2.1.2.2 Simulated annealing

A Monte-Carlo method for calculating the properties of any substance which may be
considered as composed of interacting individual molecules was developed by Metropo-
lis and coworkors (102) in 1953. Using the Metropolis algorithm, the way in which
configurational atoms reconfigure and reach the equilibrium state, is simulated. This
process has been described above. Later, in early 1980, Kirkpatrick (44) developed
a simulated annealing algorithm (95, 103) for the global optimization (88, 104). V.
Černý (45) used the same approach to solve the traveling salesman problem (105, 106).
It is quite handy to use this for arbitrary search and problem spaces. Simulated an-
nealing requires a single initial individual as the starting point and a unary search
operation. The implementation of this algorithm is quite simple, and corresponds to a
lowering of temperature during the Metropolis walk.

Annealing, in metallurgy, is a process where heat is applied to the system above
a critical temperature, maintaining a suitable temperature, and then cooling. This
process can change ductility and hardness. Usually, the bulk metal materials have
small defects, such as dislocations. By heating the bulk metal, these dislocations and
defects are removed and the crystal structure is more ordered as the material cools
down. The system reaches the equilibrium state. The cooling rate is the crucial factor
in this process. If the cooling process is sufficiently slow it is avoids the system getting
stuck in a meta-stable, non-crystalline, state, which would represent a local minimum
of energy.

Sometimes simulated annealing appears to be slow. Speeding up the cooling process
will improve its performance, but on the other hand it results in difficulties to locate
the minima. Such speeded-up algorithms are called Simulated Quenching (SQ) (107,
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108, 109). Simulated annealing with ”large” moves (moves which strongly change
the configuration), combined with a quench after such a move, is termed as basin
hopping (53, 110, 111).

Besides the move-class, there are some other parameters of simulated annealing,
that have to be fine-tuned so that the efficiency of the algorithm (95, 112) can be
improved. The temperature schedule T(n) is used to keep the system at equilibrium
for some time, where n is the number of moves along the trajectory, which can be
optimized. Usually, schedules are exponentially or linearly decreasing with n. These
schedules may have temperature cycles (113, 114), where the temperature periodically
rises and then decreases again, or they may be adaptive schedules (115, 116) which
take care of how the landscape is explored up till now. Some other useful methods
are available, such as multi-walker methods (112, 117), the Demon-algorithm (118),
or methods that generate an averaged landscape (103, 119, 120, 121, 122), including
methods such as conformation-family Monte Carlo (123), the particle swarm optimiza-
tion (124), superposition state molecular dynamics (125), or multi-overlap dynam-
ics (126, 127, 128, 129), parallel tempering (130), and J-walking (131). To overcome
barriers, all walkers run at different temperatures as well as sometimes switch posi-
tions (or temperatures). Lastly, the acceptance criterion can be selected between the
classical Metropolis distribution (102), the Tsallis distribution (132, 133) or based on
a temperature dependent acceptance threshold (134). Further descriptions of these
methods are found in the literature (103, 135).

2.1.2.3 Taboo search

In mid 1980s (136), Glover (137) developed the Taboo search, based on a trajectory
optimization. Later, this method was formalized by Hansen (138), Glover (139, 140), de
Werra and Hertz (141), as well as by Battiti and Tecchiolli (142) and Cvijović (143, 144)
and Klinowski (145), independently. The meaning of the word “Taboo” is a sacred
place or object. So, things that are taboo may not be visited or touched. It is an
extension of hill climbing. The solution candidates which have already been visited
during landscape exploration, are called taboo states. Hence, they must not be visited
again and the optimization process is less likely to get stuck in a local optimum. In
this approach, one uses a taboo list which stores all the solution candidates that have
already been visited. This avoids repeatedly visiting the same solution candidate. Due
to technical reasons, the list cannot grow infinitely but has a finite maximum length n.
To overcome this issue, the n+ 1st solution candidate is added, and the first one must
be removed. Alternatively, the combination of Taboo search with the quenches and
long moves like in basin hopping can resolve the problem of memory (146). Apart from
this, there are other methods designed to gain a more efficient barrier crossing such
as locally elevating visited areas (147) (a precursor of meta-dynamics), by lowering
barriers relative to the local minima (148), stochastic tunneling (149, 150, 151, 152),
dynamic lattice searching (153), or changing the potential between the atoms (154).
We can find a close relationship of Taboo search with adaptive MC/MD simulations.

2.1.2.4 Lid-based optimization

There are some algorithms which are based on lid methods for the stochastic global
exploration of continuous energy landscapes such as the deluge algorithm (155) and
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the threshold algorithm (54). In the first algorithm, the energy lid keeps the system
below a certain value during the Monte Carlo simulation and all moves are accepted,
i.e., as if T = ∞. The system is slowly lowered from very high energy lid values. In the
threshold algorithm, the walker can make some moves below an ascending sequence
of energy lids. One keeps an eye on new local minima that have been reached by
performing quench runs from stopping points along the trajectories.

2.1.2.5 Gradient-based methods

The stochastic optimization methods are useful for the exploration of discrete and
continuous energy landscapes. These algorithms have some drawbacks, e.g., they do
not take into consideration local information such as the derivatives of the cost function.
This information is used in those algorithms which use gradients such as the gradient
descent method. Gradient descent is a first-order optimization algorithm. To find
a local minimum of a function using gradient descent, one takes steps proportional
to the negative of the gradient (or of the approximate gradient) of the function at
the current point. If one takes steps proportional to the positive of the gradient, one
approaches a local maximum of that function. This procedure is then known as gradient
ascent or steepest descent (86, 87). There are several algorithms which consider second
derivatives of the cost function such as simple conjugate gradient, biconjugate gradient,
and nonlinear conjugate gradient. The conjugate gradient method is an algorithm for
finding the nearest local minimum of a function of n variables which presuppose that
the gradient of the function can be computed. It uses conjugate directions instead of
the local gradient for going downhill. If the vicinity of the minimum has the shape
of a long, narrow valley, the minimum is reached in far fewer steps than would be
the case using the method of steepest descent. For handling large sparse systems, the
performance of an iterative method such as conjugate gradient is better than direct
methods, such as Newton-Raphson, Gauss-Newton, Quasi-Newton etc. (86, 87).

2.1.2.6 Genetic algorithms

A genetic algorithm (GA) (48, 156) is a search heuristic that imitates the process of
natural evolution. It is a search technique which is used to find approximate solutions to
optimization and search problems. These algorithms are a distinct class of evolutionary
algorithms that adopt techniques inspired by evolutionary biology such as inheritance,
mutation, natural selection, and recombination (or crossover) (157).

Genetic algorithms are implemented in a computer simulation which has its own
terminology such as population of abstract representations (known as chromosomes)
of candidate solutions (termed as individuals) to an optimization problem, and which
evolves toward better solutions. Usually, solutions are formulated in binary format as
strings of 0s and 1s, but a representation is possible in other formats as well. The system
evolves from a completely random individual to an ordered one in generations. In
every generation, the fitness of the whole population is calculated, multiple individuals
are stochastically selected from the current population (based on their fitness), and
modified (mutated or “crossed“) to form a new population, which becomes the current
in the next iteration of the algorithm (157).

When applied in the framework of the exploration of energy landscapes, this means
that an ensemble of configurations with the lowest energy survives preferentially from
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one generation to the next. The selection criteria can vary between two extremes: only
those configurations with the lowest energy survive, or all new configurations always
survive (at least for one generation). Between these two extremes one uses probabilistic
criteria analogous to the Metropolis criterion.

2.1.3 Exploration of the barrier structure

Usually, the main aim of energy landscape exploration is to find all local minima
which correspond to low-lying states. However, for structure prediction it is also very
important to know to which extent the local minima found exhibit a high degree of
stability. The knowledge of the barrier structure around minima gives some useful
information to judge the stability of the corresponding structure candidates. Using
stochastic and deterministic optimization algorithms, one can investigate the barrier
structure.

2.1.3.1 Threshold algorithm

The threshold algorithm (54, 82) is a stochastic approach for the exploration of the
barrier structure. After locating a local minimum one can choose a sequence of energy
lids Lk (Lk > Emin) where Emin is the energy which corresponds to the local minimum
structure. For a given lid Lk one performs long Monte Carlo (MC) walks, where every
move is accepted, unless it exceeds the energy of the lid. Every nq moves, one or many
quenches into the closest local minimum are performed. This procedure is repeated for
other lids as well. From the energy lids where new minima are first found during one
of the quenches, one deduces an estimate for the barrier height between the starting
minimum and other minima. From the distribution of energies encountered during the
runs at various lids, one can deduce the local density of states within the basin of the
starting minimum. Next, one can repeat the whole procedure for all other local minima
observed. With the help of all this information, we can construct a tree graph for the
energy landscape.

The transition probabilities determined by this algorithm between the local minima
include both energetic, entropic and kinetic contributions. As a result, we identify the
lowest energy lids, at which a transition between two minima can occur, yielding an
estimate of the (free)energy barrier between the minima.

2.1.3.2 Saddle point analysis

In computational physics or chemistry, there are many problems which can be described
as an optimization of a multidimensional function. With the help of the optimization
one can usually find a stationary point of a function, where the first derivative is zero.
In most of the cases the required stationary point is a minimum, i.e., all the second
derivatives should be positive. In some cases the desired point is a first-order saddle
point, i.e., the second derivative is negative in one, and positive in all other, directions
(see Fig. 2.4).

Because the gradient at a saddle point vanishes, an alternative to explore regions
around saddle points is to follow a downhill path, or to deform the landscape in such
a way as to make the detection of the saddle points easier.
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Figure 2.4: Saddle point on a cut through the configuration space.

2.1.3.3 Free energy

The most commonly observed structures in the experiments are the ones which have
the lowest free energy (Eqn. 2.9).

F (R) = −kBT lnZ (R) (2.9)

Hence, we have to perform a minimization of the local free energy over all locally
ergodic regions which correspond to metastable modifications. The configurational
space of locally ergodic regions consists of many isolated local minima, surrounded
by high energetic and entropic barriers (see Fig. 2.2). If we consider mathematically
the local free energy, it is not a continuous function of R. Consider a continuous

order parameter
→

M which describes the full solution space. Then we can calculate
the free energy as a function of the order parameter. But there is one shortcoming in
this assumption, that the region of the landscape which corresponds to a given value

of this parameter
→

M is usually not locally ergodic. In the best possible case we can
divide the coordinates into two parts: a first one which depends upon the degrees of
freedom that equilibrate very quickly, and the rest that vary more slowly (so-called
reaction coordinates). We can approximate the full free energy on short time scales,
by computing F only with respect to the fast degrees of freedom.

At very low temperatures, in the case of insulators, only the lattice vibrations
(phonons) contribute to the local free energy, whereas in metals, the electrons at the
Fermi level are more important than the phonons.
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Electronic structure calculations

In this chapter, we present a short overview on the electronic structure calculations for
the ideal crystalline solid. This is also applicable for various systems such as molecules,
glasses, and biological systems. The aim of the present research is to study the ideal
periodic solid. First, we discuss different methods used for solving the Schrödinger
equation. Later, the calculation of physical properties using ab-initio simulation meth-
ods is presented. This chapter is mainly based on the text books by Jensen (158),
Cramer (159), Chaplot (160) and resources such as Wikipedia (161), articles by C. D.
Sherrill (162), and on different methods of charge analyses (163, 164).

3.1 Quantum mechanics

3.1.1 Introduction

From the beginning to the middle of the 20th century, the foundation and development
of quantum mechanics has drastically changed the understanding of physics. Quantum
mechanics has explained occurrences of various phenomena with a high accuracy, and
the significance of quantum mechanics in the pure and applied science is evident.

For modeling real systems, one has to solve the Schrödinger equation. But the
Schrödinger equation cannot be solved analytically for all but the most trivial systems.
Out of these trivial cases, most are not applicable to realistic systems. To get more
information about a realistic system, the Schrödinger equation usually has to be solved
numerically.

For a detailed description of the electron distribution, there is no substitute for
quantum mechanics. Electrons are very light particles and they cannot be explained
correctly even qualitatively by classical mechanics. We start with the basic features
of quantum mechanics. The important thing used in electronic structure calcula-
tions (159) is the wave function, Ψ. The operators which operate on Ψ return the
observable properties of the system.

〈ϑ〉 = 〈Ψ | ϑ | Ψ〉
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ϑΨ = eΨ (3.1)

where ϑ is an operator and e is a value for some physical property of the system.
The equation 3.1 holds good if Ψ is an eigenstate of ϑ. Ψ is called an eigenfunction
and e an eigenvalue. For a bound particle, the normalized integral of | Ψ |2 over all
space must be unity which requires that Ψ is quadratically integrable.

3.1.2 Hamiltonian

The operator in Eqn. 3.1 that returns the system energy E as an eigenvalue, is called
the Hamiltonian operator, H. Thus,

HΨ = EΨ (3.2)

which is the time independent Schrödinger equation for a system of N particles.
The nonrelativistic Hamiltonian for a chemical system is as follows:

H = −
∑

i

∇2
i

2
−
∑

i

∇2
A

2MA

−
∑

A,i

ZA

rAi

+
∑

A>B

ZAZB

RAB

+
∑

i>j

1

rij
(3.3)

where i and j are associated with electrons, A and B are associated with nuclei, R
denotes the nuclear coordinates, and r denotes the electronic coordinates. The mass of
an electron, me, the charge, Plancks constant h divided by 2π, the permittivity of the
vacuum, are all set to unity.

The Schrödinger equation can be rewritten as:

H = TN (R) + Te (r) + VeN (r;R) + VNN (R) + Vee (r) (3.4)

where TN, Te, Vee, VNN, and VeN represent the nuclear and electron kinetic energy
operators and electron-electron, electron-nuclear, and nuclear-nuclear interaction po-
tential operators, respectively. Spin-orbit effects can be incorporated using a spin-orbit
operator Hso.

To solve the equation, some approximations are applied to reduce the complexity
to a manageable level. By applying the Born-Oppenheimer approximation (165), we
separate the electronic and the ionic degrees of freedom. Next, we solve the equation for
the electrons in a static lattice potential of fixed ions. A separation of the Hamiltonian
into a nuclear and an electronic part is not possible because of the potential term
which has contributions from the electrons and the nuclei (162). Hence, the molecular
wavefunction is composed of a combination of nuclear and electronic terms, Ψ (r,R) =
ψ (r;R)χ (R), where ψ (r;R) and χ (R) is the electronic and nuclear wavefunction,
respectively. By introduction of the Born-Oppenheimer approximation one can solve
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the equation 3.2. It is based on the fact that the nuclei are much heavier than the
electrons, which allows us to assume that the nuclei are nearly stationary with respect
to the electron motion. The kinetic energy of the nucleus TN(R) can be neglected as
compared to the kinetic energy of electron Te by a fraction of µe�MA, where µe and
MA is the reduced mass of an electron and mass of the nucleus, respectively. Thus,
after the Born-Oppenheimer approximation, it remains:

Hel = Te (r) + VeN (r;R) + Vee (r)

such that

Helψ (r;R) = Eelψ (r;R) (3.5)

This can be termed as the ”clamped-nuclei” Schrödinger equation (162). For solids,
VNN is infinite. This divergence is compensated by VeN and Vee. Hel cannot be written
as a sum of one electron terms due to Vee. If we neglect Vee or replace it by a function
Vee (r) which is the same for all electrons, then all electrons see the same, average,
potential. Then, we can replace the many-particle equation by N identical independent
one-particle equations, the so-called band-approximation. Under these circumstances,
the only “remnant” of the many-body nature of the problem is the Pauli-principle, i.e.
no electronic state can be occupied by two electrons.

We can additionally consider spin-orbit effects. These can be incorporated at each
nuclear configuration according to

H0 = Hel +Hso (3.6)

(3.7)

Usually, the first major approximation when dealing with the electrons is the one-
electron approximation, which leads to the Hartree- and the Hartree-Fock approxima-
tions. This results in N one-particle equations, where each electron sees a different
average potential generated by the other N − 1 electrons. We now have to solve each
one-particle equation separately, and feed the N one-particle ground state wave func-
tions back into Te, Vee and VeN, until self-consistency is reached.

3.2 Hartree-Fock method

The Hartree Fock method (159, 166, 167) is the simplest method to solve the many-
body Hamiltonian. With this method one can determine the ground-state wave func-
tion and the ground state energy of the system. The simple assumption is that the
wave-function is approximated by a Slater determinant. The variational method is
used to solve a set of N coupled equations for the N spin orbitals. The exact solution
of this set of N coupled equations gives the Hartree-Fock wave function and energy of
the system. This is a commonly used method in quantum chemistry. The Hartree-Fock
method broadly divides into two parts: Restricted Hartree-Fock (RHF) (158, 168, 169)
and Unrestricted Hartree-Fock (UHF) (170).
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3.2.1 Hartree-Fock algorithm

To solve the time-independent Schrödinger equation for the many-body Hamiltonian,
the Hartree-Fock approximation is one of the most straightforward approaches. Since
the problem is usually too difficult to be solved analytically, numerical techniques are
applied. The Hartree-Fock algorithm proceeds as follows:

1. Guess the initial spin orbitals (one electron orbitals) ψi =
∑M

k cikφk with expan-
sion coefficient cik

2. Compute the electronic density, n(r), with the recent spin orbitals.

3. Solve the single-electron equations for the spin orbitals using the electronic den-
sity from step (2)

4. If the spin orbitals are identical in step (2) and (3), then these are the solution
for the HF problem. If not, then use the orbitals from step (3) and return to step
(2).

As we have mentioned earlier, a set of approximate one-electron orbitals which is
similar to the solutions of the hydrogen atom, is used. Both for molecular or crystalline
calculations, we consider linear combinations of atomic orbitals (LCAO) (171, 172)
as guess for the initial one-electron wave functions. With the LCAO method, other
electrons are considered in an averaged manner. In the Hartree-Fock method, the effect
of the remaining electrons is taken care using mean-field theory. The optimization of
the orbitals is performed by the minimization of the expectation value of the energy of
the Slater determinant. The outcome of this variational method on the orbitals is the
Fock operator, which is a new one-electron operator. The orbitals corresponding to
the minimum energy value have energy eigenvalues with respect to the Fock operator.
The most important approximation of the Hartree-Fock method is its simplification
of the Coulombic repulsion term. The repulsion energy experienced by every electron
in the system is computed using a continuous distribution of negative charge which is
contributed by all electrons within the chemical system.

Since the Fock operator depends on the orbitals used to construct the corresponding
Fock matrix, the eigenfunctions of the Fock operator are in turn new orbitals which
can be used to construct a new Fock operator (161). In this way, the Hartree-Fock
orbitals are optimized iteratively until the change in total electronic energy falls be-
low a predefined threshold. In this way, a set of self-consistent one-electron orbitals
is calculated. The Hartree-Fock electronic wave function is then the Slater determi-
nant constructed out of these orbitals. Following the basic postulates of quantum
mechanics, the Hartree-Fock wave function can then be used to compute any desired
chemical or physical property within the framework of the Hartree-Fock method and
the approximations employed.

The flow-chart in fig. 3.1 shows that the Fock matrix is constructed from the or-
bitals. Then the eigenfunctions of the respective matrix give the new Fock operator and
this operator returns new orbitals which are used to generate once again a new Fock
operator. With this procedure, the optimization of the Hartree-Fock orbitals is per-
formed iteratively till the energy difference between subsequent iterations falls below
a minimal value. During this procedure, also the one-electron orbitals are computed
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3.2 Hartree-Fock method

Figure 3.1: Simplified Hartree-Fock procedural flowchart.
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self-consistently. With the help of the Hartree-Fock method, the Schrödinger equation
is therefore approximately solved.

One important thing one should keep in mind is the stability of this method. To
make this method stable, a mixing of the Fock matrix of subsequent iterations is useful.
While performing Fock matrix mixing, the single electron wave function is calculated
with the help of a linear combination of the present and the previous Fock operator
instead of a direct calculation of the Fock matrix with the present single electron wave
function. The above methodology is useful for molecular calculations and calculations
on solids.

In modern Hartree-Fock calculations, the one-electron wavefunctions are approx-
imated by a linear combination of atomic orbitals (LCAO) (171, 172), or so-called
Slater-type orbitals. It is very common for the atomic orbitals (AO) to be composed of
a linear combination (LC) of one or more Gaussian-type orbitals, rather than Slater-
type orbitals. Various basis sets (159, 166, 167, 173, 174, 175, 176) are used in practice,
most of which are composed of Gaussian functions.

The Hartree-Fock method is a crude approximation which often leads to large
discrepancies with the experimental results. To overcome these shortcomings, post
Hartree-Fock methods have been developed, which deal with the electron correlation
part of the multi-electron wave function. There are different methods such as con-
figurational interaction, coupled cluster, Møller-Plesset perturbation theory, quadratic
configuration interaction, and quantum chemistry composite methods.

3.3 Density Functional Theory (DFT)

Density functional theory (DFT) (166, 177, 178) is another approach to solve Schrödinger’s
wave equation, which provides good information about the ground state properties for
metals, semiconductors, and insulators. It is one more method to solve the Schrödinger
equation for a many-body system. It gives precise information about the ground-state
energy. This method is based on a functional (a function of another function). The
functional is a function which takes a value of a variable or variables and defines a sin-
gle number from those variables. Here, the function is the electron density. And thus,
the name of the method is due to functionals which depend on the electron density.
If we consider a system with N constituents, then the density depends only on three
variables, i.e., the spatial coordinates x,y,z, instead of 3*N (where every atom has three
degrees of freedom), which makes calculations easier.

In 1964, Hohenberg and Kohn published their paper on DFT (179, 180). Density
functional theory is based on two fundamental mathematical theorems proved by Ho-
henberg and Kohn and the derivation of a set of equations by Kohn and Sham. The
first theorem is: The ground-state energy of the Schrödinger equation is a unique func-
tional of the electron density. The physical interpretation of this theorem is: there
exists a one-to-one mapping between the ground-state wave function and the ground-
state electron density. The importance of this result is hidden in one term, called
functional. According to Hohenberg and Kohn’s theorem, the ground-state energy E
can be expressed as E[n (r)], where n (r) is the electron density. The electron density
n (r) corresponding to an N-electron wavefunction Ψ(N) is given by the one-electron
function:
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n (r) = 2
∑

i

Ψi (r)
∗ Ψi (r) (3.8)

.
The second theorem of Hohenberg-Kohn is: The electron density that minimizes

the energy of the overall functional is the true electron density corresponding to the
full solution of the Schrödinger equation. By knowing the true functional form, one
can vary the electron density until the energy of the functional is minimized. With the
help of the Hohenberg-Kohn theorem, the functional can be written in terms of the
single-electron wave functions, Ψi(r). The energy functional is given as

E[Ψi] = Eknown[Ψi] + EXC [Ψi] (3.9)

where Eknown[Ψi] is a simple analytical form, which is given by

Eknown[Ψi] =
∑

i

∫

Ψ∗
i∇2Ψid

3r+

∫

V (r)n (r) d3r

∫∫

n (r)n (r′)

|r− r′| d3rd3r′ + Eion (3.10)

In the above expression, the known energy is composed of the kinetic energy, the
Coulomb interaction between electrons and the nuclei, pairs of electrons, and pairs
of nuclei. EXC [Ψi] is the exchange-correlation functional. It is defined to include all
the quantum mechanical effects that are not included in the known terms. Still it is
difficult to solve the full Schrödinger equation for any wave function. This problem is
solved by Kohn and Sham, who showed that the electron density can be represented in
such a way that involves solving a set of equations in which each equation only involves
a single electron.

The KohnSham equations can be written as

[∇2 + V (r) + VH (r) + VXC (r)]Ψi (r) = εiΨi (r) (3.11)

There are three potentials, viz., V , VH , and VXC on the left-hand side of the Kohn-
Sham equations. V is the interaction between an electron and nuclei. VH is Hartree
potential, the Coulomb repulsion between the electron and the total electron density
contributed by all electrons. It is defined as

VH (r) =

∫

n (r′)

r− r′
d3 (r′) (3.12)

The Hartree potential includes the Coulomb interaction between an electron with it-
self which is unphysical. VXC includes a correction for the self-interaction, and exchange
and correlation (181, 182, 183, 184) contributions to the single electron equations.

For solving the Kohn-Sham equations, we have to specify the Hartree potential,
which depends on the electron density. But, to get the electron density, we should
know the single-electron wave functions, and to know these wave functions we must
solve the Kohn-Sham equations. For the solution of this problem, we have to solve the
Kohn-Sham equations iteratively.

The procedure is analogous to the Hartree-Fock self consistency procedure 3.2.1.
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3.3.1 Exchange-Correlation Functional

Solving the many-body problem is an extremely difficult task but the theorems given by
Kohn, Hohenberg, and Sham showed that the ground state can be found by minimizing
the energy of an energy functional (177). This can be obtained by discovering a self-
consistent solution for a set of single-particle equations. But, defining the exchange-
correlation function, EXC [Ψi] in the Kohn-Sham equations is one of the difficult tasks.
We can approximate this functional by considering the uniform electron gas (181, 182,
183, 184). In such a situation the electron density is constant at all points in space;
i.e., n (r) = constant. This situation is the simplest one whereas, in reality, it is quite
different. The definition of the chemical bond is not possible with this condition.
But, the uniform electron gas gives an easy and efficient way to solve the Kohn-Sham
equations. We can define the exchange-correlation potential at every point as the
known exchange-correlation potential from the uniform electron gas with the electron
density observed at the same position:

VXC [n (r)] = V
electron gas
XC [n (r)] (3.13)

This approximation is called the local density approximation (LDA) which takes
into consideration only the local density.

The next approach is to consider the local density and its gradient. This approach
is known as generalized gradient approximation (GGA). It includes more physical in-
formation than the LDA, so it is usually better than LDA. But, this approach is still
not always accurate.

There are different ways in which the information from the gradient of the electron
density can be inserted in a GGA functional. Out of them, two commonly used func-
tionals in ab-initio calculations are the Perdew-Wang functional (PW91) (177, 185, 186)
and the Perdew-Burke-Ernzerhof functional (PBE) (177, 187). These are usually used
for solids. Apart from these functionals, many other GGA functionals have been de-
veloped.

3.4 Basis sets

Ab-initio calculations were used to solve the Schrödinger equation without any infor-
mation from the experiments. Sometimes it is very handy to compare the results with
experiments for a specific problem, according to that one a computational model is
developed. This procedure requires less simulation time.

A finite basis set (159, 166, 167, 173, 174, 175, 176) is one of the approximations
for performing ab-initio calculations. This is the set of functions used to create the
molecular orbitals (MO). A basis set is said to be incomplete when the set of functions is
finite, or in practice, does not provide a good approximation. The full basis set (infinite
size) is computationally expensive or impossible to use. In a finite basis set, only the
MO components along the coordinate axes of the basis functions are considered. For a
smaller basis set, the representation is insufficient, because it does not provide enough
information. The accuracy depends on the type of basis functions (181, 182, 183, 184,
188) used. In the following section, some information about the different types of basis
sets is presented.
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3.4.1 Basis sets types

3.4.1.1 Slater and Gaussian Type Orbitals

There are two types of basis sets commonly used in ab-initio calculations: Slater Type
Orbitals (STO) (189, 190, 191, 192, 193) and Gaussian Type Orbitals (GTO) (194, 195,
196, 197, 198, 199). The functional form of Slater type orbitals is given in eqn. 3.14

χζ,n,l,m (r, θ, φ) = NYl,m (θ, φ) rn−1eζr (3.14)

where N is a normalization constant and Yl,m are spherical harmonic functions. r
is the distance between nucleus and electron. Usually, the radial node is not present in
the STOs, but this can be achieved by introducing linear combinations of STOs. For
a fast convergence, the exponential factor and an increasing number of basis functions
are responsible. Using analytical techniques, it is difficult to calculate three- and four-
center two-electron integrals. Initially, STOs were commonly used where a requirement
of a high accuracy existed, e.g. for atomic and diatomic systems. Also, they can
be applied in the case of semi-empirical methods where all high order integrals can
be neglected. They are useful in density functional theory, when there is no exact
exchange, for fitting the density with a set of basis functions in order to determine the
Coulomb energy.

The representation of Gaussian type orbitals in polar and Cartesian form is as in
eqn. 3.15

χζ,n,l,m (r, θ, φ) = NYl,m (θ, φ) r2n−2−leζr
2

χζ,lx,ly ,lz (x, y, z) = Nxlxylyzlzeζr
2

(3.15)

The main difference between STOs and GTOs is in the exponential factor. At the
nucleus a GTO has a zero slope, whereas a STO has a cusp (discontinuous) derivative.
The square of the radial term in the exponential part of GTOs is responsible for
representing the proper behavior near the nucleus, but falls off too rapidly far from
the nucleus as compared with an STO. And the tail of the wave function is described
poorly because of this decaying factor. From this discussion, we conclude the selection
of GTOs should be done carefully to achieve a similar accuracy compared with STOs.

The important factor is the number of functions to be used after deciding on the
type of function (STO/GTO) and the location (nuclei). A minimum basis set consists
of the smallest number of functions needed to describe all electrons. For all the electrons
of the neutral atom, there must be sufficient functions. While representing first row
elements of the periodic system, there should be two s-functions (1s and 2s) and one
set of p-functions (2px, 2py and 2pz). Similarly, for the higher elements one should use
more functions.

The next advancement in basis set size is a doubling of all the basis functions; the
Double Zeta (DZ) (200, 201) basis type. Here, Zeta (ζ) is the factor in the exponential
term of the basis functions. A DZ basis has two s-functions for hydrogen (1s and 1s’).
Valence orbitals take part in the formation of the chemical bond. A DZ basis type
doubles the number of the valence orbitals which produces a split valence basis. Only
in some special cases DZ basis sets are used in calculations. Similarly, Triple Zeta
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(TZ) (200, 201, 202, 203), Quadruple Zeta (QZ) (200) and Quintuple or Pentuple Zeta
(PZ or 5Z) for the next levels of basis sets are also used.

Further functions are the polarization and diffuse functions. The polarization func-
tions have higher values of the angular quantum number (l) than the filled atomic
orbitals of the respective atom (e.g., for sulphur, introduction of the d-functions are
considered polarization functions). The polarization functions are important for repro-
ducing the chemical bonding and performing simulations on correlated systems. Diffuse
functions are those functions which have very small exponents and decay slowly with
distance from the nucleus.

3.4.2 Plane Waves

Ideally, functions with an infinite range can be use to model periodic system. The
concept of plane-waves is influenced by the way one models valence electrons in a metal
in the free electron approximation. Hence, the solution of the Schrödinger equation for
free electron in one-dimension is given as:

φ (x) = Aeikx + Be−ikx

E =
~2k2

2m

Here, k is wave vector. Orbitals represented using plane waves characterize the
electrons in a band. It is expressed with a complex function in 3 dimensions as:

χk(r) = eik·ru(r) (3.16)

where u(r) is a periodic Bloch function. k is also considered a frequency factor
and high k values signify a rapid oscillation. Usually, plane wave basis sets are larger
than Gaussian ones. The size of the plane wave basis set depends upon the periodicity
of the system whereas Gaussian basis sets depend upon the number of atoms in the
simulation cell. With these advantages, plane wave basis sets are more applicable in
large systems. Plane wave basis functions are more useful to describe delocalized,
slowly varying electron densities, especially in the case of the valence bands in a metal.

3.4.2.1 Orthogonalized plane waves (OPW)

This method (204, 205) was developed by Herring in 1940. It considers the oscillations
of the wave functions in the atomic core and the plane-wave-like behavior outside the
core. The OPW-approximation uses a combination of localized sets taken from an
atomic-like calculation, and the non-localized states are plane-waves which are orthog-
onalized to the core states.

The OPW state can be represented as:

|φOPW
k+K

〉 = |k+K〉 −
∑

c

〈φc|k+K〉|φc〉 (3.17)
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where the sum runs over all core states with Bloch vector k. Here, the first term
and the second term on the right hand side are the localized and non-localized states,
respectively.

A Schrödinger equation 3.3 is satisfied by the orthogonalized plane waves with
change in the potential as follows:

VOPW = V +
∑

c

(ǫ− ǫc) |φc〉〈φc| (3.18)

3.4.2.2 The Muffin-tin potential

The Muffin-tin potential (206, 207) is a variable potential within a sphere of radius r0
around every atom and is constant elsewhere.

The muffin-tin potential is defined as:

Um−t (r) =

{

V (|r−R|) when |r−R| < r0
constant when |r−R| ≥ r0

where r0 is less than half the distance between nearest neighbors.

3.4.2.3 The Augmented plane-wave method (APW)

This method was developed (207, 208) by Slater in 1937 (207, 208). The effective
crystal potential is assumed to be constant between the cores. The wave function for
the wave vector k can be written as:

ψk(r) =

{

eik.r when |r−R| < r0
atomic function when |r−R| ≥ r0

where r0 is the core radius. The wave function outside the core is a plane wave
as the potential is constant, whereas the function is atom-like in the core part. Such
an atomic solution can be found by solving the Schrödinger equation inside the core
region. The full solution is chosen in such a way that it can join such two different
functions.

There is no restriction on k and ǫ for a plane-wave, as we have ǫ = ~2k2/2m. It is
the boundary conditions which connect k with a given ǫ.

There are some disadvantages of APW: in general, the wavefunction has discon-
tinuous derivatives on the boundary between the interstitial and atomic regions. The
APW method is computationally very expensive because the augmenting function Rl

corresponds to an exact muffin-tin potential eigenstate. The energy dependence of the
function Rl leads to an eigenvalue problem that will be non-linear in energy and has
to be solved iteratively.
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3.4.3 Effective Core Potentials

A system which contains atoms from the lower part of the periodic table has more core
electrons compared to a system with atoms only from the upper half of the periodic
table. There are two problems regarding these atoms, which are the very large number
of electrons and the proper description of relativistic effects. To overcome these prob-
lems, one can consider only the valence electrons, and the effects of the core electrons
are modeled by some functions. Such modeling functions are known as Effective Core
Potential (ECP) (158, 209, 210, 211) or Pseudopotential (PP). The elimination of core
electrons still gives good results, with less computational time as compared to an all
electron calculation. Considering relativistic effects (especially the scalar effects) is also
possible and advisable.

There are four important steps for designing an ECP:

• Obtain a good-quality all-electron wave function for the atom using a Hartree-
Fock, a relativistic Dirac-Hartree-Fock or a density functional calculation.

• Find the replacement of the valence orbitals by choosing an appropriate set of
node-less pseudo-orbitals.

• Find a potential for the core electrons which is parameterized by an expansion
in analytical functions of the distance between nucleus and electron.

• Look for the right parameters for the potential such that the solutions of the
Schrödinger (or Dirac) equation gives matching results for pseudo-orbitals and
the all-electron valence orbitals.

The quality of the ECP is determined by the number of valence electrons. The outer
(n + 1)s-, (n + 1)p- and (n)d-orbitals denote the set of valence electrons for transition
metals. The large-core potentials give reasonable geometries, but the energies are not
always satisfactory. Better results can be achieved by considering the orbitals in the
next lower shell in the valence space, although this comes with extra computational
cost. For example, for the lanthanum atom (atomic number 57), the ECPs (in italics)
and valence electrons (in bold) are given as follows:

• Large-core ECP: 9 electrons in valence space:
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)10(4p)6(5s)2(4d)10(5p)6(6s)2(5d)1

• Small-core ECP: 27 electrons in valence space:
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)10(4p)6(5s)2(4d)10(5p)6(6s)2(5d)1

• All-electron ECP: 57 electrons in valence space:
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)10(4p)6(5s)2(4d)10(5p)6(6s)2(5d)1

Usually, the Projector AugmentedWave (PAW) method is considered an all-electron
pseudopotential method (It is an effective potential built by replacing the all-electron
potential). The PAW is computationally expensive compared to large-core or small-
core ECP, however.
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3.5 Methods used to estimate atomic charges in

crystal structures

3.5.1 Mulliken population analysis

The charge or spin-density distribution is one of the important properties of a chemical
system. There is no unique way to choose electrons which are connected to an atom in
a molecule, based only on the electron density. The Mulliken population analysis (164,
212, 213, 214) is an easy and commonly used way to count electrons in an atom.

The number of electrons of a chemical system is related to the density matrix and
the overlap integrals. It can be defined as:

N =

∫

drρ(r)

= 2

N/2
∑

i=1

(

K
∑

µ=1

cµiφµ(r)

)(

K
∑

ν=1

cνiφν(r)

)

= 2

N/2
∑

i=1

K
∑

µ=1

cµicµiφµ(r)φµ(r) + 2

N/2
∑

i=1

K
∑

µ=1

K
∑

ν=µ+1

cµicνiφµ(r)φν(r)

(3.19)

where ρ(r) is electron density. cµi and cνi are the coefficients of the basis functions.
The density matrix can be defined as:

Pνµ = 2

N/2
∑

i=1

cµicνi (3.20)

Substitution in eqn. 3.19 gives

N =
K
∑

i=1

PµµSµµ + 2
K
∑

i=1

K
∑

ν=µ+1

PµνSµν (3.21)

where Sµν is an overlap integral.
The eqn. 3.21 shows the relation between the density matrix and the overlap

integral. The net nuclear charge can be defined as:

qA = ZA −
K
∑

µ=1;µ on A

PµµSµµ −
K
∑

µ=1;µ on A

K
∑

ν=1;ν 6=µ

PνµSµν (3.22)

(3.23)

The density matrix is available due to the self-consistent field procedure. Hence,
Mulliken population analysis is a simple and quick calculation.
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3.5.2 Bader charge analysis

This concept is used to develop an efficient way of dividing a molecule into ”atoms“
and was proposed by Bader (163, 215). According to this, the definition of an atom
depends on the charge density. Zero flux surfaces are used to separate ”atoms“ in a
molecule. A zero flux surface is the two-dimensional surface on which the gradient of
the charge density is parallel to the surface. Usually, in a molecular system the charge
density goes to a minimum value between atoms. This is an obvious and natural way
to separate atoms from each other.

Here, the algorithm (216) is briefly explained: The input data required for this
analysis is the electron density ρ associated with a rectangular volume V which contains
the whole molecule. The volume is selected such that the electron density outside of
this volume is insignificant; in mathematical terms it tends to zero. The volume is
split into M parts with δVi, where i = 1,....M. The center of each δVi is defined as

ri = l∆x~i + m∆y~j + n∆z~k where l, m, and n are the different numbers associated
with the mesh points and ∆x, ∆y, and ∆z is the differential distance between mesh
elements along the Cartesian directions. With this technique every volume element
δVi is assigned to a Bader volume and this volume is associated with the particular
nucleus. And in some case (which rarely exists), the Bader volume is related to a local
minimum of ρ, which is not a nucleus.

Using the above algorithm (217), the first nucleus is identified. Later, for locating
another nucleus, the steepest descent method is applied to find the maximum value
of the charge density. The steepest ascent trajectory is started from all grid points,
the partitioning analysis is performed, and all grid points are assigned to a respective
Bader region. Assigning the grid points to Bader regions is important because one
can perform a charge analysis and compute multi-pole moments. This analysis is also
used to define the hardness of atoms, which is useful to calculate the amount of energy
required to remove an electron from an atom.

3.6 Lattice dynamics and thermodynamic proper-

ties

3.6.1 Lattice Dynamics

The theoretical formulation of lattice dynamics is based on the Born-Oppenheimer
approximation. The assumption in this approximation is that the electronic wave-
functions change adiabatically during the nuclear motion. Electrons contribute an
additional effective potential for the nuclear motions and the lattice vibrations are as-
sociated only with the nuclear motions. The theory of lattice dynamics (160) is briefly
explained in this section.

3.6.1.1 Theoretical formulation of Lattice Dynamics

For small displacements of the atoms in the crystal structure, u
(

l
κ

)

, from their equilib-

rium positions, r
(

l
κ

)

, where l is the lth unit cell (l = 1, 2, . . . N) and k is the kth type
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of atom (k = 1,2, . . . n) in the unit cell, the crystal potential energy can be written
as a Taylor expansion. The expansion is retained only up to the second derivative in
the so-called harmonic approximation, as follows:

φ = φ0 + φ1 + φ2 (3.24)

where

φ0 = φ

(

r

(

l
κ

))

φ1 =
∑

lκα

φα

(

l
κ

)

uα

(

l
κ

)

φ2 =
1

2

∑

lκα

∑

l′κ′β

φαβ

(

l l′

κ κ′

)

uα

(

l
κ

)

uβ

(

l′

κ′

)

where α and β represent Cartesian coordinates.
At the equilibrium position, the forces on each atom vanish, which results into

φα

(

l
κ

)

= 0, for every α, κ, and l.

Hence, φ1 = 0.
The equation of motion of the (lk)th atom is described as

mκuα

(

l
κ

)

= −
∑

l′κ′β

φαβ

(

l l′

κ κ′

)

uβ

(

l′

κ′

)

(3.25)

From eqn. 3.25, it is clear that φαβ

(

l l′

κ κ′

)

uβ

(

l′

κ′

)

is the negative of the force exerted on the atom (lκ) in the α-direction because
there is a small finite displacement of the atom (l′κ′) in the β-direction. The term φαβ

is called the force constant.
Due to the periodicity of the crystal, the solution of eqn. 3.25 must obey a consis-

tency condition: the displacements of an atom in a different unit cell must be the same
apart from a phase factor. The solution of eqn. 3.25 is as follows; reminiscent of the
Bloch functions for electrons in periodic potentials:

uα

(

l
κ

)

= Uα

(

κ
∣

∣

∣
q
)

exp

[

iq.r

(

l
κ

)

− ω (q) t

]

(3.26)

where q is the wave vector and ω (q) is the angular frequency corresponding to the
wave.
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Putting epn. 3.26 into eqn. 3.25 we get,

mκω
2 (q)Uα

(

κ
∣

∣

∣
q
)

=
∑

κ′β

Dαβ

(

q
κκ′

)

Uβ

(

κ′

q

)

(3.27)

where mκ is the mass element and r

(

l
κ

)

is position coordinate of κth atom,

The dynamical matrix is given by

Dαβ

(

q
κκ′

)

=
∑

l′

φαβ

(

l l′

κ κ′

)

exp

{

i

(

q.

[

r

(

l′

κ′

)

− r

(

l
κ

)])}

(3.28)

The frequencies of the normal modes and eigenvectors are determined by diagonal-
izing the dynamical matrix through a solution of the secular equation

det
∣

∣

∣
mκω

2 (q)2 δκκ′δαβ −Dαβ

(

q
κκ′

)

∣

∣

∣
= 0 (3.29)

3n eigenvalues are obtained by solving eqn. 3.29, ω2
j (q), (j = 1, 2, ...., 3n). As the

dynamical matrix is Hermitian, the eigenfrequencies are real and its eigenvectors may
be chosen as orthonormal. The components of the eigenvectors ξj (q) decide the pro-
totype of displacement of the atoms in a particular mode of vibration.

The displacement due to the vibration can be given as

uα

(

l
κ

)

= ξα

(

κ
∣

∣

∣
qj
)

exp

{

iq.r

(

l
κ

)}

P

(

q
j

)

(3.30)

where, P

(

q
j

)

is the normal coordinate and ξα

(

κ
∣

∣

∣
qj
)

is the normalized eigenvector

of the normal mode (qj), where (j = 1, 2, .....3n) is used to distinguish between the 3n
normal modes at q. Corresponding to every direction in q-space, there are 3n curves
ω = ωj (q), (j = 1, 2, .....3n). Such curves are known as phonon dispersion relations.
In a periodic crystal, there are three zero frequency modes at q = 0, which correspond
to the acoustic branches. The rest of the (3n− 3) branches has finite frequencies at
q = 0, which are called optical branches.

3.6.2 Phonons

For the detailed information of any system at the microscopic level, it is important to
have knowledge about the crystal structure and the lattice dynamics of the atoms (218,
219, 220, 221). From the dynamical study of the atoms one can get more insight
into many important physical properties such as phase transitions, thermal expansion,
specific heat, and thermal conductivity. The dynamics of an atom depends upon the
lattice vibrations which are the combined movement of atoms in solids which creates
traveling waves. The excited lattice vibrations can often be described as harmonic
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below the Debye temperature. These vibrations can be described as linear combinations
of vibrational eigenfunctions with discrete energies also known as ”phonon”. The
phonons are described by three parameters, viz., wave vector, polarization vector, and
energy. The information about the vibration of atoms along all the three directions is
given by the polarization vector. The dispersion relation E(ω) of the phonon spectrum,
is an important quantity in the study of the physical properties of a solid system.

Above the Debye temperature, the higher order terms in the expression have to be
taken into account, and the lattice vibrations are no longer harmonic and interaction
of phonons can occur. If there is a small anharmonicity, this can be solved using
perturbation theory. But if the anharmonicity is large, other methods have to be used.
The dynamical matrix is calculated brute force in the case of molecular dynamics
calculations. With this technique, one can study thermodynamic properties and phase
transitions.

Experimentally, there are lattice vibration measurement techniques such as Raman
spectroscopy, infrared absorption, inelastic neutron scattering, inelastic X-ray scatter-
ing, and so on. But these techniques have some limitations at high pressure and temper-
ature. To overcome these problems, accurate models for various materials are used. The
performance of the models in predicting thermodynamic properties depends on their
ability to describe a variety of microscopic dynamical properties (218, 219, 220, 221).
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4

Method

4.1 Introduction

Usually, the structure candidates that should exist at low temperatures (at least), are
associated to local minima of the enthalpy hypersurface (H = Epot + pV ) of the chem-
ical system of interest. From our experience, there are many metastable modifications
of a chemical compound that can exist at different temperatures and pressures. These
modifications may not be thermodynamically stable, but they can be found as the out-
come or as an intermediary product of a particular synthesis route or natural chemical
process. Hence, one important goal in energy landscape exploration is to search for
possible low-lying local minima. By using a global optimization method, one can iden-
tify the energetically favored candidate for a given set of thermodynamic parameters
as well as find the candidates that represent metastable modifications. Here, for the
global exploration, we vary atomic positions, cell parameters, and, in principle, the
composition of material.

4.2 The modular approach

At low temperature, the structure prediction task is quite simple. One mainly has
to identify local minima on the potential energy landscape and analyze their various
properties. But, the global energy landscape exploration consists of millions of energy
calculations for different atomic configurations. It requires a lot of time to perform the
energy calculations on the ab-initio level. However, using empirical potentials has its
own disadvantages. As a comparison, we usually perform ab-initio energy evaluations
with less accuracy. Once we have found a stable structure candidate on the energy
landscape, we perform a local optimization with highest accuracy. Thus, we divide our
procedure into various sections (7, 7) (see Fig. 4.2):

• Perform global optimizations with less accuracy on the ab-initio level. The re-
sulting configuration should be in or at least very close to a local minimum on
the energy hyper-surfaces.
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• Next, we compare these predicted configurations with each other to avoid dupli-
cates.

• The distinct structure candidates are then locally optimized on ab-initio level.
Then we compute the E(V ) and H(p)-curves for all relevant structure candidates.
With this we can decide which of the possible modifications is thermodynamically
stable and which are close in energy but metastable at a given pressure.

• Finally, we perform a phonon calculation in order to understand the kinetical
stability of the structure.

• After understanding the stability (thermodynamical and kinetic), we compute
physical and electronic properties of the given structure.

4.3 Exploration procedures

4.3.1 The global landscape: Global optimization using stochas-

tic simulated annealing

The global optimization consists of simulated annealing (44, 45) and a subsequent
stochastic quench which is based on a random walk over the energy landscape. Each
step from configuration xi to a neighbor xi+1 is accepted according to the Metropolis
criterion (102), with a temperature schedule Tn = T0γ

n (γ = 0.95, ..., 0.995). During
the simulated annealing stage, the energy of a newly generated structure is computed
and compared with the previous one. If the energy of the new structure is lower, then
the new structure is accepted. If the energy of the new structure is higher, then the new
structure is accepted with a probability of exp(−∆E/kBT ) (where ∆E is the energy
difference between the two structures, T a temperature and kB the Boltzmann constant,
respectively). This corresponds to the Metropolis algorithm (102). After the simulated
annealing, a quench was applied, i.e., a simulated annealing run with the temperature
0 eV. The simulated annealing and quench moves were typically selected as follows:
movements of individual atoms, atom exchange, and change in lattice parameters were
attempted (70%), (10%), and (20%) of the time, respectively. When applying moves
that change one of the lattice constants, the probability to shrink the lattice constant
was set to 60%, in order to accelerate the shrinking of the cell.

Since the structure candidates were found using ab-initio methods with less accu-
racy, we are faced with two problems. First, we note that the structure candidates will
usually not show any obvious symmetries (they are always found in space group P1,
due to the unrestricted optimization procedure). To resolve this issue, we use algo-
rithms such as SFND (222), RGS (223) and CMPZ (224) that have been implemented
in the program KPLOT (225), where SFND (222), acronym for ”SymmetrieFiNDer”
(= symmetry finder), identifies all symmetries of a periodic structure, where only the
atomic coordinates are given as input. RGS (223), abbreviation for ”RaumGruppen-
Sucher” (= space group searcher) determines for a given set of symmetries the space
group of the structure. Finally, CMPZ (224), short for ”CoMPare Zellen” (= compare
cells), performs a comparison of a given pair of periodic structures, and determines,
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Figure 4.1: Modular approach - procedural flowchart.
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whether these structures are the same within some given set of tolerances. With the
help of these algorithms one can find the symmetries and space groups of all minimum
configurations of the enthalpy landscapes. We have identified, eliminated duplicates
and grouped these structures. For more details on the working of these algorithms,
we refer to the references given. Other important parameters are the minimum al-
lowed distance between two atoms and the reduction of the cell size. The minimum
distance between two atoms was required to be (0.5 - 0.7) times the sum of the ionic
radii, in order to avoid unphysical geometries which can cause numerical instabilities
in the ab-initio calculations. In order to estimate the atomic/ionic radii, first a Mul-
liken or Bader population analysis was performed. Then, the atomic and ionic radii
were obtained from tabulated values of the corresponding atoms/ions, as a function of
charge (226) (and employing a simple linear interpolation to obtain the radii, as the
computed Mulliken charges and Bader charges are non-integer). We note that there
is an ongoing discussion concerning the accuracy of the Mulliken population analy-
sis (166, 227, 228, 229). However, we do not expect a big impact of the accuracy of
the Mulliken population or Bader charges on the present calculations, as the derived
charges and radii are only used to eliminate very unrealistic conformations.

4.3.2 Ab-initio energy calculations

In this thesis, we performed the ab-initio energy calculation using two software packages
viz., CRYSTAL (230) and VASP (231, 232, 233, 234). CRYSTAL supports Gaussian
type functions and pseudopotentials whereas VASP is based on plane-waves. The
detailed information about these packages is as follows:

4.3.2.1 CRYSTAL

The CRYSTAL, ab-initio simulation package (230) is based on Gaussian type basis
sets. All-electron and valence-only basis sets with effective core pseudo-potentials are
allowed. CRYSTAL calculates the electronic wave function and properties of periodic
systems within Hartree-Fock, density functional or hybrid approximations (184).

This program exploits the spatial symmetry to avoid redundancy of atoms which
can be described by symmetry elements. It is consistent with all periodic systems. It
supports the 3D periodic systems with 230 space groups, for 2D films and surfaces with
80 layered groups, for 1D polymers with the symmetry of 75 rod groups and helical
symmetry, and for 0D molecules with the 32 point groups. It is possible to perform
automated geometry reduction such as going from higher dimension to lower, e.g., 3D
to 2D (a slab parallel to a given plane). Geometry manipulation is also possible e.g.,
the reduction of the symmetry, addition or deletions of atoms, and displacements.

With the CRYSTAL program, one can solve both the Hartree-Fock (see Section 3.2)
and Kohn-Sham (see Section 3.3) equations with local and hybrid functionals. With the
Hartree-Fock method, it can handle Restricted Closed Shell, Restricted Open Shell, and
Unrestricted calculations. And with DFT, it can deal with various exchange function-
als (LDA, von Barth-Hedin, Becke, PWGGA, PBE, and many more) and correlation
functionals (PZ, LYP, VWN, etc.). It is useful for hybrid HF-DFT functionals such as
B3PW, B3LYP, and user-defined hybrid functionals.

With the CRYSTAL program, various types of calculations are possible. Obvious
ones are single-point energy calculations, and geometry optimizations which includes
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full optimization (cell parameters and atom coordinates), freezing atoms during the
optimization, at constant volume or pressure and transition state search. One can
calculate harmonic frequencies at the Gamma point, phonon dispersion with an ap-
propriate super-cell, IR intensities, and reflectance spectra. With the newest version,
the calculation of the equation of state, the elastic tensor of crystalline systems, and
anharmonic frequencies for X-H bonds are also possible. Numerous physical proper-
ties are possible to calculate using this program, e.g., the band structure, density of
states, Mulliken population analysis, atomic multi-poles, structure factors, dielectric
properties, and many more.

4.3.2.2 VASP

The Vienna Ab-initio Simulation Package (VASP) (231, 232, 233, 234) is a package
for performing ab-initio quantum mechanical molecular dynamics (MD) using either
Vanderbilt pseudopotentials, or the Projector Augmented Wave Method, and a plane
wave basis set. The basic methodology is Density Functional Theory (DFT), but the
code also allows the use of post-DFT corrections such as hybrid functionals mixing
DFT and Hartree-Fock exchange, many-body perturbation theory (the GW method)
and dynamical electronic correlations within the random phase approximation.

Using VASP, one can use the approach implemented, which is based on the (finite-
temperature) local-density approximation with the free energy as variational quantity
and an exact evaluation of the instantaneous electronic ground state at each MD time
step. It has an efficient matrix diagonalization scheme and an efficient Pulay/Broyden
charge density mixing. These techniques avoid all problems possibly occurring in the
original Car-Parrinello method, which is based on the simultaneous integration of elec-
tronic and ionic equations of motion. US-PP (and the PAW method) allow for a
considerable reduction of the number of plane-waves per atom for transition metals
and first row elements. Forces and the full stress tensor can be calculated with VASP
and can be used to relax atoms into their instantaneous ground-state.

Here are some highlights of VASP (235):

• It uses some old techniques for the self-consistency cycle to calculate the electronic
ground-state. However, these techniques are robust, efficient, and constitute a
fast scheme for evaluating the self-consistent solution of the Kohn-Sham func-
tional. For iterative matrix diagonalization, RMM-DISS and blocked Davidson
are used.

• It determines the symmetry of arbitrary configurations automatically.

• For an efficient calculation of bulk materials and symmetric clusters, the symme-
try code is used to set up the Monkhorst Pack special points.

4.3.3 Properties related to the total energy

The most important properties can be deduced from the ground-state total energy
and its derivatives, where the energy calculations were performed using ab-initio quan-
tum mechanical methods on solids. Some of the observables depend upon first- and
second-order derivatives, which are displayed in Table 4.1. Many characteristics of the
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Differentiating variable Total energy derivative Observable

nuclear coordinate
(

∂E
∂ui

)

= 0 equilibrium nuclear coordinates

(

∂2E
∂ri∂rj

)

eq
= kij force constants

lattice parameter
(

∂E
∂ai

)

eq
= 0 equilibrium unit cell

(

∂2E
∂ǫi∂ǫj

)

eq
= cij elastic tensor

unit cell volume
(

∂E
∂V

)

S
= −P internal pressure

V
(

∂2E
∂V 2

)

S
= B bulk modulus

ui denotes a nuclear displacement from the equilibrium position,

ǫi is a component of the strain tensor, ai is a lattice basis vector.

Table 4.1: First and second order derivatives of the total energy (183).

crystalline structure can be deduced when the total energy of the system is known.
The total energy difference gives better insight to analyze two or more structures of
the same composition. The simplest relationship between two structures can be judged
using first derivatives of the total energy of the systems with respect to the volume
(which gives the pressure). The elastic constants and vibrational spectrum are the
properties that can be calculated using second derivatives of the energy which are the
most important for our purposes.

4.3.3.1 Equation of state (EOS) and phase transitions

Usually, the behavior of crystalline systems under pressure (or change in volume) is a
very important aspect. Pressure (P ) and temperature (T ) are the independent variables
in the case of high pressure experiments. In our calculations, the volume V (and T = 0)
is the independent variable. Minimization of the total energy of the system is performed
keeping the volume constant but the other geometrical parameters are optimized such
as cell parameters and fractional coordinates. The same procedure is repeated for 30
- 40 different volumes. Using an analytical function to this data the E versus V curve
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is fitted. Mostly, we use either a polynomial or one of the many equations of states
(EOS) proposed in the literature. We have considered the Murnaghan (236) EOS,

E(V ) = E0 +
B0V

B′
0

(

(V0/V )B
′

0

B′
0 − 1

+ 1

)

− B0V0
B′

0 − 1
(4.1)

where the three fit parameters B0 and B′
0 are the bulk modulus and its derivative

and V0, the equilibrium volume, respectively. We can compute the pressure by taking
the first derivative of E(V):

P = −
(

∂E

∂V

)

T

. (4.2)

With the above relation, it is easy to represent the pressure P as an analytic function
of V , P ≡ P (V ) or, conversely, V ≡ V (P ) and E ≡ E(P ).

4.3.3.2 Transition pressure

In experiments, the controlled parameters are N (number of atoms), T and P , so that
the thermodynamic function of interest is the Gibbs free energy:

G = E + PV − TS (4.3)

On the experimental level, the syntheses are performed at constant pressure. So we
adopt the same condition where pressure and temperature are applied externally and
the energy E, volume V and entropy S are adjusted so as to minimize the Gibbs free
energy G. The above equation gives the information about the stability of a structure:
an increase in pressure with smaller specific volume may be acceptable, even if this
leads to a higher internal energy.

The stability of the most stable modification of a chemical system is the one with
the lowest Gibbs free energy at given values of N , P , and T . The implication of the
NPT thermodynamic ensemble (where N is the number of atoms, presumed constant)
is that there is no coexistence of two phases over a range of external pressures. In
the case of the static limit which we usually consider in this work (T = 0, and frozen
nuclear motion), G is reduced to H, the enthalpy (H = E + PV ), and the function of
interest is then:

H ≡ H(P ) (4.4)

which can be easily obtained because both of the functions E ≡ E(P ) and V ≡
V (P ) have been obtained using an analytic form from the fitting function.

By definition, the pressure is defined as p = −∂E
∂V

. A condition for a pressure
driven phase transition, is that the enthalpies of the two modifications must be equal.
The transition pressure is given by the negative slope of the joint tangent of the two
E(V)-curves.

For the determination of the transition pressure, we need the energy E as a function
of the volume V for every phase involved in the transition. A set of data points is
obtained from CRYSTAL or VASP calculations, and these data points are fitted by an
adequate equation of state or by a fitting polynomial. As mentioned earlier, we applied
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the Murnaghan (236) EOS. We calculated the energy by changing the volume and
keeping the symmetry of the modification fixed, in other words, a restricted geometry
optimization should be performed at each volume. For calculating the bulk modulus,
we used the Murnaghan EOS for fitting the E(V) data. The bulk modulus of the
modifications is calculated at the equilibrium position of the energy of that chemical
system.

4.3.3.3 Phonon Calculations

For phonon calculations, we used two packages, FROPHO and phonopy (237).
An atom κ in the primitive cell l, having mass mκ, is displaced from the equilibrium

by u
(

l
κ

)

as the lattice vibrates. The force on each atom is then given by

Fα

(

l
κ

)

=
∑

l′κ′β

φαβ

(

l l′

κ κ′

)

uβ

(

l′

κ′

)

(4.5)

where φ represents the interactions between pairs of atoms.
A normal mode with angular frequency ω is represented as a motion such that

F(l, κ) = −mκω
2u(l, κ). Phonon solutions which have two equivalent atoms with the

same κ but in different primitive cells, will differ in the phase of their motion by an
amount q·∆r, where ∆r is the difference in the positions of their primitive cells. Mass
reduced coordinates can be defined as ǫ

(

l
κ

)

=
√
mκu

(

l
κ

)

and, using 4.5, the equation
of motion for phonon solutions define an eigenvalue problem at each wave-vector q:

− ω2ξ = D(q)ξ (4.6)

where the Fourier-transformed dynamical matrix is

Dαβ

(

q
κκ′

)

=
∑

l

1√
mκmκ′

φαβ

(

l l′

κ κ′

)

exp

{

i

(

q.

[

r

(

l′

κ′

)

− r

(

l
κ

)])}

(4.7)

The frequencies and eigenvectors ξ of the normal modes at each wave-vector q
are given after evaluation and diagonalization of D(q), which may be assigned to the
corresponding point of the Brillouin Zone.

We have to consider interactions between pairs of atoms at all separations up to
infinity. But, it is practically impossible because only non-Coulombic contributions de-
cay rapidly enough with distance and thus only a few atom pairs have to be considered.
In addition, calculations of a dynamical matrix for all atom pairs within one super-cell
are sufficient to give phonons at all wave-vectors within the super-cell. For example,
phonon calculation at the Γ-point may be performed with only a single primitive cell.

Making small displacements of each atom at a time, and computing the correspond-
ing forces experienced on all the atoms, the dynamical matrix can be computed, and
the force constants can then be computed from eqn. 4.5. In addition, we can get the
useful information about the force constants with the help of symmetry which exists
in a system (239).
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Figure 4.2: Flowchart for phonon calculation using Phonopy (238)
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4.3.3.4 Theory: Finite displacement method for computing force constants

The potential energy of the phonon system is represented as functions of the atomic
positions:

V

[

r

(

l1
κ1

)

, . . . , r

(

ln
κN

)]

, (4.8)

where r

(

l
κ

)

is the point of the l-th atom in the κ-th unit cell and n and N are the

number of atoms in a unit cell and the number of unit cells, respectively. A force and
a second-order force constant φ(αβ) are given by

Fα

(

l
κ

)

= − ∂V

∂rα

(

l
κ

) (4.9)

and

Φαβ

(

l l′

κ κ′

)

=
∂2V

∂rα

(

l
κ

)

∂rβ

(

l′

κ′

)

= −
∂Fβ

(

l′

κ′

)

∂rα

(

l
κ

) (4.10)

respectively, where α, β, ..., are the Cartesian indices, l, l′, ..., are the indices of
atoms in a unit cell, and κ, κ′, ..., are the indices of unit cells. In the finite displacement
method, the equation for the force constants is approximated as

Φαβ

(

l l′

κ κ′

)

≃ −
Fβ

((

l′

κ′

)

; ∆rα

(

l
κ

))

− Fβ

(

l′

κ′

)

∆rα

(

l
κ

) (4.11)

where Fβ

((

l′

κ′

)

; ∆rα

(

l
κ

))

are the forces on the atoms with a finite displacement

∆rα

(

l
κ

)

≡ uα

(

l
κ

)

and usually Fβ

(

l′

κ′

)

≡ 0.
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New Developments

5.1 Introduction

As we mentioned earlier, structure prediction is based on global energy landscape
exploration. It is divided into two parts viz., global search and local optimization.
While performing energy landscape exploration, we computed energies on ab-initio
level. Prior to this way of exploration, the energy calculation was performed using
model potentials e.g., the Born-Mayer-Huggins potential (240), the Buckingham po-
tential (241), and many more. These model potentials require less time for energy
computation as compared to ab-initio calculations. But, such potentials have serious
short-comings. They are dependent upon the system. For a given system, it is not
guaranteed that all important modifications correspond to basins around local min-
ima. Apart from this, these potentials are useful for ionic systems whereas they have
problems with covalent or metallic bonds or mixtures of covalent and ionic bonds. To
overcome these problems, ab-initio energy calculation is the best option. Initially, some
systems were studied by computing ab-initio energies with the CRYSTAL code (230)
which is based on Gaussian type orbitals. In this work, we went one step further and
created an interface to the VASP code (231, 232, 233, 234), where the ab-initio energy
calculations are based on plane waves.

Using plane wave basis functions has several advantages over Gaussian type basis
sets:

• the same basis function can be used for all atom types,

• convergence problems during the self-consistent field procedure are less severe,

• plane wave functions do not depend upon nuclear positions.

• In particular for metallic systems, the use of the plane wave method is advanta-
geous.
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5.1.1 Calculation using VASP

The general procedure for VASP energy calculations is as follows:

• It require four input files viz., INCAR, POSCAR, POTCAR, and KPOINTS.

• INCAR contains all input parameters such as the algorithm used for geometry
optimization, spin-polarized calculations, and many more.

• POSCAR has complete information about the system which includes lattice vec-
tors and fractionals/cartesian coordinates.

• POTCAR contains the pseudopotential/projector augmented wave functions for
each atomic species used in the calculation.

• KPOINTS contains the k-point coordinates and weights or the mesh size for
creating the k-point grid.

• Output files are STDOUT, OSZICAR, IBZKPT, CONTCAR, CHGCAR, CHG,
WAVECAR, TMPCAR, EIGENVAL, DOSCAR, PROCAR, PCDAT, XDAT-
CAR, LOCPOT, ELFCAR, and PROOUT.

• OSZICAR or STDOUT contains information about convergence speed and about
the current step.

• CONTCAR contains optimized geometry of the crystal structure.

For the interface to the G42-program, the files KPOINTS, POTCAR, and INCAR
have to be provided beforehand, while the file POSCAR is provided by the G42-code.
One of the important parameters during the global search is the minimum allowed
distance between two atoms. Usually, we keep the minimum distance between two
atoms 0.5 - 0.7 times the sum of the ionic radii in order to avoid unphysical geometries
which can cause numerical instabilities in the ab-initio calculations. In order to estimate
the atomic radii, a Bader charge analysis (163, 215) is performed. Then, the atomic
and ionic radii are obtained from tabulated values of the corresponding atoms/ions,
as a function of charge (226) (and employing a simple linear interpolation to obtain
the radii, as the computed Bader charges are noninteger). We note that there is an
ongoing discussion concerning the accuracy of the Bader charge analysis. However, we
do not expect a big impact of the accuracy of the Bader charge analysis on the present
calculations, as the derived charges and radii are only used to eliminate unrealistic
conformations.
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6

Lithium

6.1 Introduction

Lithium is a soft, silver-white metal which belongs to the alkali metal group. It is
the lightest metal and the least dense solid element at standard conditions. It is
highly reactive and flammable as the other alkali metals. Because of its high reactivity,
lithium never occurs freely in nature, and instead, only appears in compounds, which
are usually ionic. The physical and electronic properties are explained by the nearly-
free-electron model.

Lithium and its compounds have several industrial applications that include heat-
resistant glass and ceramics, high strength-to-weight alloys used in aircraft, lithium
batteries and lithium-ion batteries. About half of the production of lithium is consumed
by the above usage.

It is a monovalent element, with one valence electron in the 2s orbital. It easily gives
up this single electron to form a cation. It is a good conductor of heat, electricity and
a high reactive element. However, lithium has a relatively low reactivity as compared
to the other alkali metals because of the proximity of its valence electron to its nucleus;
the remaining two electrons of lithium in the 1s orbital have much lower energy, and,
therefore, they do not participate in chemical bonds.

At ambient condition, lithium crystallizes in a body-centered-cubic (bcc) structure
like the other alkali metals. It shows interesting structures at low temperature and
high pressures. With the help of x-ray diffraction, Barrett and Trautz suggested the
existence of a hexagonal close packed (hcp) (242, 243, 244) structure at 77 K. This
structure coexists with some fraction of the untransformed bcc phase. Using cold work
some of the material could be converted to the face-centered-cubic (fcc) form. Neutron-
scattering experiments performed below 70 K, and interpreted by Overhauser, led to
the proposal and confirmation of a new modification. It is a hexagonal polytype and
similar to the structure of samarium metal, the so-called 9R structure (245). In an hcp
packing, there are alternating layers stacked ABAB..... in the c direction whereas an
fcc lattice has the stacking sequence ABCABC..... In contrast, the 9R modification
consists of a close-packing with a nine layer stacking sequence of ABABCBCAC.
Lately, there have been some studies using neutron scattering (246, 247, 248) that
show that 9R is predominantly found at low temperature, but there is also evidence of
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coexistence of some amount of bcc and some more closed-packed structures. Theoretical
studies (249) showed that the low-temperature modification is not superconducting
even at 6 mK. However, recent experiments showed that it becomes a superconductor
below 0.4 mK (250) at ambient pressure.

Lithium is stable in the bcc modification up to 6.9 GPa, above which structural
transformations occur. The crystal structure of the compressed lithium was detected as
fcc, but the limited data would also be consistent with an hcp or 9R structure. Neaton
and Ashcroft (251, 252) suggested a dimerization of lithium at very high pressure be-
yond the fcc phase to an insulating αGa-type structure. It was the first study which
suggested broken-symmetry structures at high pressure in such a simple monovalent
metal. This signified that a build up of valence charge in the interstitial might be due
to the core expulsion under strong compression. The prediction of such a novel struc-
ture brought back interest in experimental and theoretical investigations to discover
the phases of lithium under high pressure. Later, it was discovered that the fcc phase
transforms into a cubic structure with 16 atoms in the unit cell (cI16) (253, 254) at
42 GPa. There is one intermediate structure between these two phases, the so-called
hR1 phase (255). Beyond the cI16 structure, there are suggestions for the existence of
a broken-symmetry phase for Li above 60 GPa. This is suggested due to superconduc-
tivity (256) and Raman (257) measurements, but there is no clear evidence from x-ray
diffraction data. In theory, apart from the paired dimer αGa-type structure, the or-
thorhombic Cmca-24 (258, 259) structure (260, 261) has been found to be energetically
preferable with respect to the cI16 phase at very high pressure.

Recently, there has been an experimental study which yielded the phase diagram
fig. 6.1 over a wide P − T range (262, 263) by means of powder and single-crystal
X-ray synchrotron diffraction. This study summarized the behavior of the solid phases
and melting curve. It showed exciting features of the Li melting curve. In the range of
40 - 60 GPa, the melting temperature is 190 K which is the lowest melting tempera-
ture among the elemental metals. More spectacularly, lithium showed superconductiv-
ity (264, 265) at Tc = 17 K where the melting curve reaches a minimum in the same
pressure range. At a temperature below 200 K and in the pressure range 45 - 60 GPa,
the cI16 structure is stable. With more pressure, the cI16 structure is transformed
into an orthorhombic C-face centered phase which has 88 atoms per unit cell, oC88.
This phase is stable in a narrow pressure range. At 70 GPa and 150K, it changes into
another C-face centered orthorhombic structure with 40 atoms per unit cell (oC40).
There is one more detailed study in the 50 - 120 GPa range, see fig. 6.2. The oC40
phase has a wider stability range compared to oC88. Experimentally, it is observed
that the sample becomes more dark when it transforms from oC88 to oC40. This
is correlated to a metal-to-semimetal transition. As the oC40 phase is compressed
further, it transforms to a C-faced centered orthorhombic phase with 24 atoms per
unit cell (oC24). This structure is stable until 130 GPa. There is a narrow pressure
range 94 - 110 GPa (see fig. 6.2) where lithium showed a metal-semiconductor-metal
transformation (258, 263).

There has been one further theoretical study on lithium which predicted crystalline
phases at high pressure, Aba2− 40 (259) and Cmca− 56 (60) which are stable for 60
- 80 GPa and 185 - 269 GPa, respectively.

Thus, it is an interesting task to investigate the energy landscape of lithium on the
ab-initio level, and to perform a global search for structure candidates. The technical
details of this procedure are described in the following section. The predicted structures
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Figure 6.1: (Proposed) Phase diagram of lithium over a wide pressure-temperature

range.

Phase diagram of lithium over a wide pressure-temperature range. We have taken this

phase diagram from the literature.(262)

Figure 6.2: The diagram shows the different modifications in the pressure range 50

- 120 GPa.

The diagram shows the different modifications in the pressure range 50 - 120 GPa. (263)

59



6. LITHIUM

as well as their thermodynamic and kinetic stability are discussed in the section on
results and discussion.

6.2 Methods

We employ a general structure prediction method based on the global exploration of
the energy landscape, where the stable modifications are represented by locally ergodic
regions of the landscape, in particular by the local minima. (41, 266) The method
used for the global exploration of the energy landscape is as follows: First, a list of
structure candidates is obtained via global optimization. Then each candidate structure
is optimized locally, and the symmetry and space group are determined (222, 223). The
global optimization consists of simulated annealing runs combined with subsequent
stochastic quenches. During the global search, the ab-initio calculations are performed
without gradient-based minimization. To analyze the symmetry and space group of
the structure candidate, the software KPLOT (225) is used.

In this study, all energy calculations during the global and local optimization were
performed on the ab-initio level using CRYSTAL09. (267) The system consisted of 4
or 8 lithium atoms in a variable periodically repeated simulation cell, where the initial
cell volume for 4 and 8 atoms was 176.52 Å3 and 353.05 Å3, respectively. The atoms
were initially placed at random positions inside the cell, and the initial temperature
for the simulated annealing runs was 1 eV (∼= 11604K). Each run consisted of 5000
Monte Carlo steps, where the temperature was reduced by a factor of 0.995 after every
250 steps. Subsequently, the temperature was set to 0K and a quench of 10000 steps
was performed. During the stochastic simulated annealing and quench, the moves were
chosen as: movements of individual atoms (80%) and changes of the lattice parameters
(20%). The probability of the cell to shrink during a lattice move was set to 60%, in
order to reach solid state densities more rapidly.

6.2.1 Details of the energy calculation at standard pressure

The global optimization calculations were performed on the level of the local density
approximation (LDA), whereas the local optimizations using analytical gradients (268,
269) were performed using both LDA and the gradient corrected functional by Perdew,
Burke, Ernzerhof (PBE). Gaussian-type orbitals were used as basis sets (during the
global search [3s2p] with 0.15 as the exponent of the 3sp shell, and during the local
optimization [3s2p] with 0.10 as the exponent of the 3sp shell as in Ref (270)) During

the global exploration, a smaller 4×4×4 ~k-point mesh was used, in order to improve the

computational speed. For the local optimization, a 8×8×8 ~k-point mesh was employed,
and a smearing temperature of 0.001 Eh (1 Eh=27.2114 eV) was applied. Note that
the final results as presented in the figures and tables are all obtained with high quality
parameters.
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6.3 Results and Discussion

Figure 6.3: Enthalpy as a function of the diffuse sp exponent of the basis set for the

fcc structure versus the pressure. The calculations were performed on the LDA level.

6.2.2 Details of the energy calculation at high pressure

The energy landscape exploration was performed at high pressure on the LDA level.
We used during the global exploration a [3s2p] basis with 0.18 as the exponent of the
3sp shell. We employed a different basis-set for the high pressure landscape exploration
because we had to ensure that it is stable at high pressure (see Fig. 6.3). Apart from
this, we kept all parameters the same.

6.3 Results and Discussion

6.3.1 Standard pressure

We performed 136 global search runs at standard pressure, of which 94 runs employed
4 atoms per unit cell and 42 runs 8 atoms per unit cell, respectively. Besides the bcc-,
fcc-, and hcp-structures, and several high-lying minima, we found the A15 structure as
a promising candidate (see figure 6.4). The four modifications obtained from our search
with the lowest energy after the local optimization were bcc, fcc, hcp, and A15 (c.f.
Tables 6.1). According to the statistics (c.f. Tables 6.2), bcc-Li was the most likely
outcome of the global optimization (41 times), followed by fcc-Li (32 times), while
hcp-Li and A15-Li were found four times each.

The most interesting result is the prediction of a new modification exhibiting the
A15 structure type. This structure is normally observed in binary compounds (with
Cr3Si as the reference), where the cations form infinite non-intersecting chains parallel
to the Cartesian axes. This structure type had initially been suggested for elemental
tungsten, (271) but later it was argued that W in the A15 structure is only possible
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6. LITHIUM

Figure 6.4: A15 structure for lithium. Light green spheres correspond to Li1 atoms

and dark green spheres to Li2 atoms.

Table 6.1: Total energies at zero pressure of the relaxed structures of the most relevant

modifications found and their statistics of occurrence during the global optimization.

Energies are in hartree units (1 Eh=27.2114 eV), per atom. For comparison, the 9Ra

structure is also shown.

structure space energy [Eh]

type group LDA PBE

bcc Im3̄m (229) -7.4059 -7.5176

fcc Fm3̄m (225) -7.4062 -7.5180

hcp P63/mmc (194) -7.4063 -7.5179

A15 Pm3̄n (223) -7.4057 -7.5174

9Ra R3̄m (166) -7.4063 -7.5179

cI16a I4̄3d (220) -7.3802 -7.4872

hR1a R3̄m (166) -7.4028 -7.5136
a This structure was not observed in the searches, since it contains 3, 9, and 16 atoms

per unit cell for hR1, 9R, and cI16 whereas cells containing 4 or 8 atoms were

considered during the global optimization. Thus, only structures with 1,2,4 or 8

atoms in the primitive cell could be found (i.e. the divisors of 8).
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6.3 Results and Discussion

Table 6.2: Statistics of structures found at standard and high pressure

Structure type (at pressure in GPa)

0 16 32 48 64

bcc 41 2 3 1 0

fcc 32 1 1 0 0

hcp 4 0 0 0 0

A15 4 0 1 0 0

other modifications 2 3 2 0 0

(with higher energies and

irregular polyhedra)

Total number of runs 136 12 14 12 5

in the presence of impurities such as oxygen (272) – a still ongoing discussion (see
e.g. Ref. (273)). There are two crystallographically different types of lithium atoms
(analogous to Cr3Si) viz., Li1 corresponds to Si atoms and Li2 corresponds to Cr
atoms, respectively. In the Cr3Si structure type, Cr (Li2) atoms form rods along the
faces of the cube made up of Si atoms, parallel to the Cartesian axes. These rods are
non-intersecting and create voids which are filled by Si (Li1) atoms. The coordination
of the Li2 atoms is 2+4+8 (see Table 6.3). Two atoms are equidistant from the Li2
atom along the chain, four voids that are created by Li rods are occupied by the next
neighbors (Li1), and the remaining eight neighbors are from the neighboring chains.
The nearest neighbors of the Li1 atom are 12 Li2 atoms, which occupy the faces of
the cube. The lattice constant is 5.347 Å. We are aware of only one computational
study, an on-site-energy-only generalized cluster expansion investigation for a large set
of elemental systems, (274) where this structure has been considered for lithium in the
past.

The E(V ) curves for all important structures are displayed, on the LDA level, in
table 6.1 and figure 6.5. We note that the energy of the A15 structure is very close
to the energies of the other four structures (bcc, fcc, hcp, and 9R), and that they
can be considered degenerate within the limitations of DFT-LDA (an energy differ-
ence of less than one milli-hartree is within the range of the numerical noise). This
near-degeneracy of the various possible lithium phases is well known from previous
calculations, e.g. Ref (270, 278). Experimentally, having several energetically compet-
itive phases present can lead to the possible co-existence of various phases – fcc, hcp,
9R (a stacking variant of fcc and hcp) and possibly also A15 – at low temperature,
with the bcc phase appearing at higher temperature. The A15 structure has so far
not been observed, and it would be highly interesting to search for ways to synthesize
such a structure for bulk lithium. Although the calculations suggest that the energy
is degenerate with the observed phases at ambient pressure, it may be that the A15
structure is only stable within a very narrow temperature and pressure range, or can

63



6. LITHIUM

Table 6.3: Interatomic Li-Li distances [Å] and volumes [Å3] per atom of the known

modifications and A15 at ambient conditions after local optimization on the LDA level.

Energy and volume are given per atom.

modification distance between Li atoms (in Å) Nearest volume (Å3)

experimental computed neighbor

bcc 3.013 (275) 2.922 8 19.217

fcc 3.104 (276, 277) 3.001 12 19.105

hcp 3.111 (242, 243, 244) 2.856 6 19.059

3.116 (242, 243, 244) 2.886 6

9Ra 3.101 (275) 2.969 6 19.058

3.133 (275) 3.030 6

A15 2.989 (Li1) 12 19.106

2.673 (Li2) 2

2.989 (Li2) 4

3.274 (Li2) 8

cI16a 2.282 2 18.312

2.306 3

2.338 6

hR1a 2.752 6 16.805

2.931 2

a This structure was not observed in the searches.
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Figure 6.5: E(V ) curves for the structures in table 7.1, on the LDA level

only be synthesized using special synthesis techniques. One possibility could be to grow
lithium on a substrate such as Ti3Sb, which has the same structure type and similar
lattice parameters (279) as the predicted lithium modification.

To ensure that the newly found A15 structure is stable, phonon frequencies were
computed across the Brillouin zone using the FROPHO code, (280) which is based
on the finite-displacement approach. (281) This work was performed with the help
of Dr. D. L. V. K. Prasad. The required forces for the displaced 2×2×2 super cell
structures were obtained from VASP with the PAW (projector augmented wave) ap-
proximation (282) and the PBE functional. The forces were considered converged when
the electronic energy threshold of 10−8 eV had been reached. The computed phonon
dispersion of lithium in the A15 structure at 0 GPa is presented in figure 6.6. The
absence of imaginary frequencies indicates that the structure is dynamically stable
against small displacements. The highest phonon frequency is 11.93 THz (398 cm−1)
and corresponds to the Li-Li bond (2.717 Å) stretching mode in the Li chain. The
overall frequency range is comparable to that of fcc- and bcc-Li. (278)

As a further check, the stability of the structure against finite atom displacements
was tested by changing the interatomic distances between lithium atoms along the
chain by up to 0.4 Å; in all cases, the distorted structure returned to the original one
upon relaxation. In addition, all atoms were randomly displaced by about 10% of the
lattice constant (∼ 0.5 Å) away from their positions in the A15 structure raising the
energy of the distorted structure by about 0.0036Eh per atom (∼= 1150K). Again, the
original A15 structure was recovered after relaxation, clearly indicating the relatively
high stability of this modification.

The band structure and density of states for this structure are displayed in fig-
ure 6.7. The A15 structure shows metallic character similar to the other ambient
pressure structures. Near the Fermi energy, the band is mainly s-like. The Mulliken
population charges show virtually the same charge for Li1 and Li2.
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Figure 6.6: Phonon dispersion spectrum for lithium-A15 structure
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Figure 6.7: Calculated band structure and electronic density of states of lithium-A15

modification, on the LDA level
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Figure 6.8: E(V) for known modification and cI16. The calculations were performed

on the LDA level

The band structure and the phonon dispersion spectrum do not give any indications
that the structure might exhibit instabilities such as Peierls distortions. Thus, we
can conclude that the A15 structure, found by the global exploration of the energy
landscape of lithium, is a new metastable structural candidate, in addition to the
experimentally known structures. The A15 structure is unusual for elemental systems,
but the calculations suggest that it is energetically competitive with the structures
known to exist at ambient pressure.

6.3.2 High pressure

We performed 43 runs for global searches with various pressures using 4 and 8 atoms per
unit cell. We found the same structure types as at standard pressure (c.f. Tables 6.2).
However, we could not do enough simulations for a large statistical sample at high
pressures, because the simulation times were quite long. In addition to the outcome of
the global searches, we have included structure candidates known at high pressure in
our study i.e., cI16 and hR1. We optimized these structure under pressure using LDA.
We plotted the enthalpy as a function of pressure in fig. 6.8. It becomes apparent, that
over 70 GPa, the cI16 structure is a stable structure. We also confirmed that the cI16
structure is obtained from the bcc structure by reducing the symmetry (its space group
is a subgroup of the space group of the bcc structure): In figure 6.9, we optimized the
cI16 structure at various fixed volumes. We could see a clear transition from cI16 to
bcc: the fractional coordinate changes from 0.05 to 0.0 when increasing the volume (or
reducing the pressure), where 0.0 corresponds to bcc.
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Figure 6.9: Change of fractional coordinate as a function of the lattice constant for

the cI16 structure. The calculations were performed on the LDA level

6.4 Conclusion

We successfully performed a global exploration for elemental lithium on the ab-initio
energy landscape at standard and high pressure. We found all those structures which
are experimentally known at standard pressure, except for the 9R structure. We pre-
dicted a new modification, the A15 structure, as an interesting candidate. The energy
of this structure is comparable to those of the known structures. In order to provide
evidence of the kinetic stability, we performed phonon calculations and relaxations af-
ter finite atom displacements. Thus, this new hypothetical modification should be a
promising synthesis target, although finding a route for the synthesis of this structure
will pose a challenging task for the experimentalist. Our high pressure global search
did not yield all high-pressure modifications. The number of runs was less as compared
to the runs at standard pressure, because the number of atoms used for the simulation
was larger. We have studied in detail some known modifications to understand their
structural relationship. From this study, we confirmed that the cI16 modification is a
derivative of the bcc structure. We plotted the E(V ) and H(p)-curves which confirmed
that it is a stable modification at high pressure, with lower enthalpy than the structures
which are stable at zero pressure.
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Calcium carbide

7.1 Introduction

Calcium carbide is a very well known binary system which is commonly used to prepare
acetylene (283) and calcium hydroxide. At the beginning of the 20th century, calcium
carbide lamps (284) were used in the mines. Later, it was realized that the usage
of these lamps was dangerous in coal mines where the presence of the flammable gas
methane made them a serious hazard. There are some other industrial applications of
calcium carbide such as in the desulfurization of iron, as a fuel in steel-making, and
the production of calcium cyanamide (285).

Our motivation for studying CaC2 was that it is a mixed covalent-ionic system thus
allowing us to go beyond the study of purely ionic (e.g. LiF (286)) or purely covalent
(e.g. BN (65)) systems. We note that in all experimentally known structures in this
system, the carbon atoms combine to form C2-dumbbells. Since the bonds between
the carbon atoms in the dumbbells are covalent whereas the interaction between Ca
and C2 is “ionic”, the global energy landscape of CaC2 cannot be easily described
by straightforward empirical potentials. Thus, it is necessary to perform the global
search for structure candidates on the ab-initio level. Besides allowing us to deal with
complex interactions, using ab-initio energies also enables us to dispense with the use
of rigid C2-building units during the global search, as had been commonly used for
similar systems containing complex building blocks in the past (287), and to employ
freely moving individual carbon atoms instead. In this fashion, one is able to identify
structures that exhibit C-atom networks, which might occur at very high pressures.

Experimentally, four different modifications of CaC2 are known (c.f. Fig. 7.1 (a),
7.1 (b), and 7.1 (c)). At room temperature, CaC2-I crystallizes in the body-centered
tetragonal system with space group I4/mmm (no. 139) (288) and unit cell parameters
a=3.87 Å and c=6.40 Å. The C2-dumbbells are oriented along the [001] axis of the
structure. With the C2-dumbbells differently orientated, there are two more modifi-
cations viz., CaC2-II with space group C2/c (No. 15) (288) and CaC2-III with space
group C2/m (No. 12) (288), both of which are assumed to be metastable. In both
monoclinic structures, the C2−

2 -unit is surrounded by a distorted octahedron made of

69



7. CALCIUM CARBIDE

Ca2+ ions. Finally, cubic CaC2-IV (288) is found at high temperature. It can be visu-
alized as a rock-salt structure with Ca2+ in the Na+ positions and the center of gravity
of the rotating C2−

2 -dumbbells in the Cl− positions.
The following sections are organized as follows: the global search method is briefly

explained in the next section. In the section “results”, we present the outcome of
the global searches performed on standard and elevated pressures. In the discussion
section, the results are compared with the experimentally observed CaC2 polymorphs
and typical AX2-type structures found in other chemical systems. Furthermore, the
effect of the rotation of the C2-dumbbell in all directions is analyzed, which gives
insight to understand the stability of this material. Finally, the performance of the
global optimization algorithm used is discussed.

7.2 Details for the global search

The technical details are given below for the global search. Regarding the size of the
system, we have considered 2, 3 and 4 CaC2 formula units per simulation cell, where
one formula unit is composed of one Ca and 2 C atoms, since, from databases (289), it
is known that most binary crystalline structures can be described by using up to four
formula units per primitive cell. The initial volume of the simulation cell was chosen
by multiplying with a factor in the range from 3 to 5 times of the ionic volume of the
atoms. In this study, it was 883 Å3 in the case of 2 formula units and 2650 Å3 in the
case of 4 formula units. Periodic boundary conditions were applied.

The global search was composed of simulated annealing and a subsequent stochastic
quench which was based on the Metropolis algorithm (102). The initial temperature
for the simulated annealing was 1.00 eV ( ∼ 11604 K) and 6250 steps were used for
2, 3 and 4 formula units. The reduction in temperature during the simulation was
exponential. Every 250 steps, it was multiplied by a factor of 0.995. The temperature
was 0.88 eV (∼ 10245 K) at the end of a simulated annealing run. After the simulated
annealing, a quench was applied, i.e., a simulated annealing run with the temperature
0 eV. The selection of the simulated annealing and quench moves was based on the
following criterion: movements of individual atoms (70%), atom exchange (10%), and
change in lattice parameters (20%) were attempted. To accelerate shrinking of the cell,
we set the probability to shrink the lattice constant to 60%. We note that there was
no significant change by extending the length of the simulated annealing run to more
than 15000 steps for the global optimization.

The calculations were performed for various pressures (0, 16, 32, 48, and 64 GPa),
in order to search for possible high-pressure modifications.

There are some additional important parameters, e.g., the minimal allowed distance
between two atoms and the reduction of the cell size. The minimal distance between
two atoms was 0.7 times the sum of the ionic radii to avoid unphysical geometries
which are responsible for numerical instabilities. The estimation of atomic/ionic radii
was performed using a Mulliken population analysis. Later, the atomic and ionic radii
were obtained from tabulated values of the corresponding atoms/ions, as a function of
charge (226) (and employing a simple linear interpolation to obtain the radii, as the
computed Mulliken charges are non-integer).
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7.2 Details for the global search

7.2.1 Description of basis set and pseudopotential

All energy calculations during the global search were performed on the ab-initio level
with periodic boundary conditions using the CRYSTAL06 code (230). It is based
on local Gaussian type orbitals. Since structure prediction is a very time consuming
task involving many millions of energy calculations, one usually attempts to reduce
the computational effort by employing simplified ab-initio energy functions. Here, we
used two basis sets for the optimization. In the global optimization, calcium with a
large core effective potential (290) was used together with a [1s] basis set. For the [1s]
contraction we used the first two exponents of the [1s] contraction as it was originally
calibrated together with the pseudopotential (291). For carbon, we used a [3s2p] basis
set, which was derived from the 6-31G basis set (292), but with the outermost diffuse
sp exponent replaced by 0.25, in order to speed up the calculation, and to achieve a
higher numerical stability. In the subsequent local optimizations we used a small-core
pseudopotential (293) for calcium, together with a [3s2p] basis set. The tight [2s]
and [2p] functions of this basis set were the same as in ref. (293), and one additional
s-function (0.2) was added. For carbon, we used the same basis set as in the global
search, but the outermost diffuse exponent was kept at the value 0.168714 instead of
0.25.

7.2.2 Local optimization

The local optimization is performed using analytical gradients (268, 269, 294, 295, 296),
taking the symmetry of the structure into account. In order to gain an estimate of the
validity of the ab-initio calculations, we have performed both Hartree-Fock and DFT
(local density approximation, LDA, and the hybrid functional, B3LYP) calculations
for all structures and systems during the local optimization. This local optimization
is performed at zero temperature. These calculations require little CPU time and are
therefore done with high-accuracy computational parameters.

7.2.2.1 Energy calculations

We note that the ab-initio total energy calculations for the global optimization were
performed on the Hartree-Fock level, since the Hartree-Fock calculations are easier to
converge for insulators due to the resulting larger size of the band gaps compared to
DFT calculations. This is especially important as the atoms initially are at random
positions that can be quite far apart (65), and the corresponding band structure looks
therefore rather like that of a system with distant atoms and not with the typical
density of solids.

Keeping the CPU time low plays a key role in the efficiency of the global search. This
requires a careful calibration of many parameters in simulated annealing, e.g., the initial
volume and temperature, the number of simulation steps and cooling schedule and the
parameters of the ab-initio energy calculations. The initial volume and temperature
are very large, i.e., the system is essentially in a gaseous state at the start. Converging
the total-energy calculation both at such a random geometry and at all later stages of
the simulated annealing and the quench, is a particularly difficult task for the system
CaC2 due to the mixed (covalent-ionic) nature of the bonds.
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7. CALCIUM CARBIDE

Figure 7.1: Experimentally known low-temperature modifications of CaC2. (a)

CaC2-I (experimental + predicted), (b) CaC2-II, and (c) CaC2-III. Blue (big) spheres

correspond to calcium, yellow (small) spheres to carbon atoms, respectively. The lines

indicate the unit cells, with the z-axis pointing upwards. The label ’side-on’ (’end-on’)

marks the C2-dimer which is a side-on (end-on) neighbor of the central Ca atom.

In order to speed up the calculations during the global search, the self-consistent
field cycles were terminated when the energy difference between two consecutive cycles
was 10−4 Eh. A k-point mesh of the size 4×4×4 was used. In contrast, for the local
optimization, default convergence criteria (10−7 Eh) and a larger k-point mesh (8×8×8)
were used.

7.3 Results

7.3.1 Standard pressure

We performed 227 global searches for standard pressure. These global searches result
in 10 different structure candidates for this system which have a space group different
from P1. All polymorphs obtained from global searches showed the formation of C2-
bonds from initially widely separated carbon atoms. Three modifications symbolized
by CaC2-I, -V and -VI are energetically particularly stable (low-lying) at standard pres-
sure. The total energies of these structures, after the local optimization, are displayed
in table 7.1. These predicted structures are shown in Fig. 7.1 (a), 7.2 (a), and 7.2 (b)
with XCRYSDEN (297), and their optimized structures are given in Table 7.2. In all
structures, there is one common feature, isolated dumbbells are formed by the carbon
atoms. The computed C-C bond length ranges from 1.272 Å to 1.280 Å for the low
temperature structures CaC2-I to -VI and CaC2-VII (see Table 7.3, where the bond
lengths after the local optimization are displayed).

72



7.3 Results

Table 7.1: Total energies at zero pressure of the relaxed structures of the most im-

portant modifications found and their statistics of occurrence during the global opti-

mization. Energies are in hartree units (1 Eh=27.2114 eV), per formula unit. A run is

termed as successful, if it reaches a stable local minimum structure. Out of 227 runs

at standard pressure 54 were successful. Similarly, among the 104 runs at elevated

pressures, there were 39 successful runs.

name of space energy [Eh] number of times found

modification group

(structure) (at pressure in GPa)

LDA B3LYP HF 0 16 32 48 64

CaC2-I I4/mmm -112.1717 -112.9470 -112.2114 11 1 3 2 0

(Tetragonal) (139)

CaC2-V Immm -112.1735 -112.9499 -112.2141 18 3 3 5 1

(Orthorhombic) (71)

CaC2-VI C2/m -112.1720 -112.9481 -112.2125 5 1 0 1 1

(Monoclinic) (12)

CaC2-VII R3̄m -112.1532 -112.9215 -112.1821 0 2 4 1 4

(Trigonal) (166)

other 20 0 2 4 1

modifications

(with higher

energies and

irregular

polyhedra)

# of successful 54 7 12 13 7

runs

Total # of runs 227 24 24 32 24
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7. CALCIUM CARBIDE

Table 7.2: The energetically most favorable structures in the CaC2-system, plus

several structures at higher energy derived from well-known structure types.

modification and cell parameters and fractional coordinates Energy (in hartree)

space group (predicted, LDA) (experimental at per formula

83 K(288)) unit (LDA)

CaC2-I(expt) a=3.87 Å, c=6.40 Å

CaC2-I(predicted) a=3.87Å, c=6.34Å -112.1717

I4/mmm(139) Ca(0, 0, 0) Ca(0, 0, 0)

Tetragonal structure C(0, 0, 0.399) C(0, 0, 0.407)

CaC2-V(predicted) a=3.71Å, b=5.34Å, -112.1735

Immm(71) c=4.89Å

Orthorhombic structure Ca(0, 0, 0)

C(0, 1/2, 0.130)

CaC2-VI(predicted) a=6.85Å, b=3.88Å, -112.1720

C2/m(12) c=3.95Å

Monoclinic structure β=114.3 ◦,

Ca(0, 0, 0)

C(0.595, 0.000, 0.628)

CaC2-II(expt)
a a=6.56Å, b=4.11Å a=6.60Å, b=4.19Å -112.1732

C2/c(15) c=7.60Å c=7.31Å

Monoclinic structure β=109.1 ◦ β=107.0 ◦

Ca(0, 0.325, 1/4) Ca(0, 0.182, 1/4)

C(0.230, 0.145, 0.935) C(0.282, 0.146, 0.056)

CaC2-III(expt)
a a=7.05 Å, b=3.80 Å a=7.21Å, b=3.83Å -112.1731

C2/m(12) c=7.52 Å c=7.37Å

Monoclinic structure β=106.6 ◦ β=107.2 ◦

Ca(0.204, 0.000, 0.249) Ca(0.197, 0, 0.254)

C1(0.542, 0.000, 0.935) C1(0.421, 0, 0.021)

and C2(0.080, 0.000, 0.566) and C2(0.952, 0, 0.420)

CaC2-VII(predicted) a=b=c=3.51Å -112.1532

R3̄m(166) α=β=γ=86.6 ◦

Trigonal structure Ca(0, 0, 0)

C(0.600, 0.600, 0.600)

”Ca(CN2)“ configuration a=b=c=4.55Å -112.1678

R3̄m(166) α=β=γ=49.4 ◦

Trigonal structure Ca(0, 0, 0)

C(0.447, 0.447, 0.447)

”Cu (N C N)” configuration a=b=3.78Å, c=8.09Å -112.1653

P63/mmc(194) γ=120.0 ◦

Hexagonal structure Ca(0, 0, 0)

C(1/3, 2/3, 0.328)

FeS2 (pyrite) configuration a=b=c=5.81Å -112.1654

Pa3̄ (205) Ca(0, 0, 0)

Cubic structure C(0.437, 0.437, 0.437)

MgC2 configuration a=b=6.42Å, c=2.93Å -111.7925

P42/mnm (136) Ca(0, 0, 0)

Tetragonal structure C(0.730, 0.730, 0)

a Not found in the structure prediction, but instead experimental data was optimized.
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7.3 Results

Table 7.3: Interatomic C-C distances[Å] and volumes[Å3] per formula unit of the most

relevant modifications after local optimization on the LDA level, at standard pressure.

modification C-C distance (in Å) volume (Å3)

experimental computed

CaC2-I 1.19 1.277 47.515

CaC2-V 1.272 48.420

CaC2-VI 1.274 47.805

CaC2-II 1.19 1.274 a 48.364 a

CaC2-III 1.18 1.275 a 48.254 a

1.27

CaC2-VII 1.280 43.049

a Not found in the structure prediction, but instead obtained from the local optimiza-

tion of experimental data

Figure 7.2: Newly predicted low-temperature modifications of CaC2. For notation

c.f. Fig. 7.1. Modifications (a) CaC2-V and (b) CaC2-VI are low-pressure modifica-

tions; (c) CaC2-VII is a high-pressure modification.
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7. CALCIUM CARBIDE

Table 7.4: Interatomic distances[Å] between Ca and C atoms in the CaC2-I, -II,

-III, -V, -VI, and -VII modifications, with different types of coordination of Ca by

C2-dumbbells at zero pressure after local optimization on the LDA level.

modification coordination of Ca Distance from nearest

by C-atoms carbon atom (in Å)

(experimental) a (predicted)

CaC2-I 2x,end-on 2.531 2.531

8x,side-on 2.812 2.812

CaC2-V 4x,end-on 2.589

4x,side-on 2.747

CaC2-VI 2x,end-on 2.551

4x,side-on 2.668

CaC2-II 2x,end-on 2.567

2x,side-on 2.602

2x,side-on 2.756

2x,side-on 2.795

2x,side-on 3.304

CaC2-III end-on 2.556

side-on 2.753

side-on 2.765

2x,end-on 2.579

2x,side-on 2.676

2x,side-on 2.990

CaC2-VII 2x,end-on 2.576

6x,side-on 2.813

a after local optimization of experimental data
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7.3 Results

The experimentally observed tetragonal structure (CaC2-I) (298, 299) was identical
with the first predicted structure, which is the room temperature modification. The
orientation of the C2-dumbbells is along the [001] axis of the tetragonal unit cell (see
Fig. 7.1 (a)). Each Ca atom is surrounded by 4 C2-units in a side-on way and 2 C2-units
in an end-on way.

We predicted two additional low-energy structures labeled as CaC2-V and CaC2-VI
from our simulation. In CaC2-V (see Fig. 7.2 (a)), the C2-dumbbells are oriented along
the [001] axis. Two C2-units are side-on to Ca atoms. This breaks the tetragonal
symmetry when compared to CaC2-I, i.e., the C4 axis of rotation is missing in the
CaC2-V structure, and the space group is Immm. Although the predicted CaC2-VI
polymorph shows the same space group as CaC2-III, the two structures are not the
same. This is most obvious from the fact that CaC2-VI requires only two formula
units per primitive cell, while CaC2-III contains 4 formula units per primitive cell. In
CaC2-VI (see Fig. 7.2 (b)), the Ca6-octahedra around the C2-dumbbells are strongly
distorted. Each Ca atom is surrounded by 2 end-on and 4 side-on C2-dumbbells.

The experimental low-temperature modification CaC2-III (299) is displayed in Fig. 7.1 (c).
The LDA-optimized C-C distance in the C2-dumbbell is about 1.275 Å. Again, the C2-
dumbbells are surrounded by a Ca6-octahedron. Each Ca atom is enclosed by 3 C atoms
in an end-on way and 6 C atoms in a side-on way. For completeness, we describe the
modification CaC2-II (299). It takes the form of the ThC2 structure type (300) with
C2-dumbbells directed towards an edge of a Ca6-octahedron and a small tilt angle. The
octahedron itself is very strongly distorted (see Fig. 7.1 (b)). In CaC2-II, a Ca atom is
enclosed by 4 side-on and 2 end-on C2-dumbbells (c.f. Table7.4).

7.3.2 Global search on elevated pressure

For the high pressures, viz. 16, 32, 48, and 64 GPa (c.f. Table 7.1), we have performed
104 global optimizations. Several new structures were found and some of the ones
which are observed at standard pressure. The possible structures at 16 GPa are CaC2-
I, CaC2-V, CaC2-VI, and CaC2-VII. Above 32 GPa pressure the CaC2-VII structure
(see Fig. 7.2 (c)) is predicted as the thermodynamically stable structure, the one with
lowest enthalpy. The CaC2-VII structure closely resembles the CsCl structure. The
Ca atoms form a distorted cube with the C2-units in the center (see Fig. 7.2 (c)) and,
conversely, the centers of mass of the C2-units form a distorted cube around the Ca
atoms. Due to the distortions, the cubic symmetry of the “CsCl-type arrangement“ is
reduced, resulting in the space group R3̄m (no. 166). Our results only apply to low
temperature, of course. At elevated temperatures, we expect that the C2-units will be
able to rotate freely, and thus the CaC2-VII structure will transform to a CsCl-type
structure.

BaC2 crystallizes in the CaC2-I structure type at ambient conditions. In very
recent high pressure experiments, a CaC2-VII structure with space group R3̄m (166)
was observed at a pressure of 30 GPa. As Ba and Ca are both earth alkaline metals,
this newly observed BaC2 structure can be viewed as a confirmation of the existence of
this structure type which we had predicted for CaC2, and a strong hint that it should
also exist for CaC2.

With LDA and B3LYP functionals (see Fig. 8.3 (a) and 8.3 (b)), the energy-vs-
volume curves are plotted for all relevant modifications. By the introduction of pres-
sure, the high-coordinated structures become more favorable, which is in agreement
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with the rule that the coordination number increases with pressure - see e.g., Ref.
(301). It is obvious from Fig. 8.4 (a) that the high-pressure structure would, at stan-
dard pressure, have the smallest volume per formula unit and thus the highest density,
whereas CaC2-I to -VI all have very similar volumes at standard pressure (see Ta-
ble 7.3). The enthalpies are presented in Fig. 8.4 (a) and 8.4 (b) for LDA and B3LYP,
respectively. The change in structure is observed from the structure CaC2-VI to the
structure CaC2-VII, and the transition pressure computed with LDA and B3LYP is 24
and 34 GPa, respectively.

7.4 Discussion

7.4.1 Comparison with experiment

There are only standard pressure modifications of CaC2 available for a comparison
regarding structural data. According to table 7.3, there is good agreement between
the experimentally observed bond-lengths and the theoretically computed ones. There
is one exception, the CaC2-III structure where two significantly different bond-lengths
are found in experiments (1.18 Å and 1.27 Å at 83 K; and even 1.13 Å and 1.48 Å at
295 K). But, it was mentioned (288) that an artifact of the refinement is a probable
reason for the inconsistency. In order to resolve this issue, we optimized the CaC2-III
structure resulting in a bond length of 1.275 Å, which is much more consistent with
those found in the other modifications.

All structures, including the experimentally known structures (CaC2-I, -II and -III)
and the predicted low-temperature/low-pressure structures (CaC2-I, -V and -VI), are
some derivative of the rock-salt structure type: the centers of the C2-dumbbells form
an elongated and distorted octahedron around Ca atoms and conversely, the dumbbells
are in the centers of elongated octahedra of Ca-atoms. The distances between Ca and
the neighboring C atoms are displayed in table 7.4. The spatial orientation of the C2-
dumbbells is the main difference between these five structures. This is similar to the
high-temperature modification CaC2-IV that is described in the rock-salt type, where
the centre of mass of the rotating C2-dumbbells lie at the center of Ca-octahedra. It
is observed that the three experimentally known low-temperature modifications (288)
are found to coexist at 295 K (288). At a temperature of about 640 K (288), CaC2-II
transforms to CaC2-I and CaC2-III.

From our simulations, the CaC2-V structure is the energetically most favorable
structure. The differences in energies to the experimentally observed monoclinic struc-
tures (CaC2-II and -III) are higher by about 0.4mEh per formula unit (≈ 4meV /atom),
corresponding to about 42 K. The predicted monoclinic structure (CaC2-VI) is higher
by about 1.5 mEh per formula unit (≈ 14 meV /atom, i.e. by about 160 K), and
the tetragonal structure (CaC2-I) is higher by about 1.8 mEh per formula unit (≈ 16
meV /atom) corresponding to about 190 K. We suggest that all five modifications, plus
additional variants with alternative C2 orientations should be able to exist at low tem-
perature. We computed transition pressures with the LDA-functional, and predicted
that there is a change in structure from CaC2-V to CaC2-I at about 5 GPa and at
about 7 GPa from CaC2-I to CaC2-VI (see Fig. 8.3 (a) and 8.4 (a)) and finally at 30
GPa to CaC2-VII.
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7.4 Discussion

Figure 7.3: E(V)-curves of the most relevant structures, at the LDA and B3LYP

level. Energies per formula unit are given in hartree (Eh).
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Figure 7.4: Enthalpies per formula unit of the most relevant structures, at the LDA

and B3LYP level. Inset upper left: high pressure range; inset lower right: standard

pressure range.
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7.4 Discussion

7.4.2 Analyses of the barrier structures

As mentioned in the previous part, all the structures CaC2-I to -VI are based on an
essentially cubic close packed arrangement of the Ca atoms, where the C2-units are
located in the octahedral voids. All the structure types of CaC2 are different because
of the orientations of the C2-units, leading to the many different low-temperature
structures observed and predicted. To understand the stability of these modifications,
we have studied the effect of the rotations of the C2-dumbbells (302, 303). We have
selected the CaC2-I structure as a starting (and reference) configuration and one of
the (equivalent) dumbbells. We rotated the C2-unit and relaxed the structure via a
local optimization. The rotation of the C2-dumbbell can be described by a zenith angle
(θ) and an azimuthal angle (φ) (see Fig. 8.1 (a)). When φ = 0◦, each C atom points
towards the opposite face of the octahedron, and for φ = 45◦ each carbon atom points
towards the opposite edge of the octahedron.

When we start with the CaC2-I-type and then rotate the C2 dumbbell by a very
small angle (θ ≤ 2◦ and φ=0◦), we note that the subsequent local optimization goes back
to the starting structure CaC2-I. When the angle of rotation is larger than (10◦ ≤ θ ≤
50◦), then the structure stabilizes in the CaC2-VI structure after the subsequent local
optimization. When the angle of rotation goes beyond 60◦, then the local optimization
leads to the structure CaC2-V (see Fig. 8.1 (b)). The above result holds good for any
angle φ. This explains that the structures CaC2-I, CaC2-V and CaC2-VI are closely
related but still distinct local minima. In contrast, the CaC2-II and CaC2-III structures
are not accessible by a simple rotation of a single C2 unit of the CaC2-I structure.

The barrier estimation is possible, for transitions from the tetragonal (CaC2-I)
to the monoclinic (CaC2-VI) or the orthorhombic (CaC2-V) structure. The starting
point was the tetragonal modification, where the C2 dumbbell is oriented along the
[001] direction. Then, the C2 unit was tilted slowly and a local optimization was
performed. When the C2 dumbbell is rotated (and no optimization performed), then
the energy increases monotonously with the tilt angle theta (up to θ = 90◦). Therefore,
this energy can be used as an upper bound of the barrier. To have a transition from
the tetragonal structure to the monoclinic structure, a tilt angle of 2◦ is required. The
energy (for one formula unit) of the structure after such a tilt is 0.0001 hartree higher
than that of the tetragonal structure, and this is an upper bound for the barrier. This
barrier is very small, i.e., there is practically no barrier. To have a direct transition
from the tetragonal to the orthorhombic structure, a tilt angle of 60◦ is required. The
difference in energy after such a rotation is 0.039 hartree which is more than that of the
tetragonal structure (for one formula unit). Again, this would be an estimated barrier
which may be much larger than the real barrier (where many dumbbells might rotate
in some connected fashion).

7.4.3 Comparison with CaC2 candidates derived from com-

mon A(X2)-structure types

In the literature (289), there are a number of “quasi-ionic“ structures A(X2) and A(X3)
containing a fixed X2-dumbbell or X3-dumbbell. Clearly, it would be interesting to in-
vestigate, whether these structures have any resemblance to local minima on the energy
landscape of CaC2. Hence, we studied several such systems (c.f. Table 7.5). After re-
placing the cation (A) and anion (X) by Ca atoms and C2-dumbbells, we have relaxed
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Figure 7.5: (a) Definition of the tilt angles θ and φ. (b) Rotation of the C2-unit

starting in the CaC2-I-configuration. The curve shows the energy per formula unit after

tilting the C2-dumbbell by an angle φ (φ=0◦, 10◦, 20◦, 30◦, 40◦ and 45◦) and rotating

by an angle θ through 180◦, and subsequently performing a local optimization. Three

ranges of θ can be distinguished, [0◦, 2◦], [10◦, 50◦] and [60◦, 90◦], belonging to the

basins of the CaC2-I-, CaC2-VI- and the CaC2-V-modification. Note that the value of

φ does not influence the outcome of the local minimization.
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7.5 Analysis of the performance of the global optimization procedure

these structures, first keeping the space group fixed and then performing subsequently
a full local optimization. We note that FeS2 (marcasite) and RhN2 relaxed to the
CaC2-I modification, and the structures based on BaC2, KO2, and NaN3 transformed
into CaC2-V. All five structures above are not having any structural relation to CaC2-I
or CaC2-V. The FeS2 (pyrite)-based configuration remains in the same structure type,
but the energy (see Table 7.5) is higher than those of the other structures. Thus, this
structure may only exist at high temperatures; however, there it would compete with
the CaC2-IV structure. The one common feature in all the above structures is that the
C2-unit is octahedrally coordinated with Ca atoms after the local optimization.

CaC2 in the Ca(CN2) structure type remains a trigonal structure both before and
after full local optimization. The C2-dumbbell is surrounded by 8 Ca-atoms and shows
the same space group as CaC2-VII. This structure has a lower enthalpy than the CaC2-
VII structure below 10 GPa; but, for higher pressure, CaC2-VII is thermodynamically
stable. In the case of Cu(NCN), the analogous CaC2 structure transforms from an
orthorhombic structure type before optimization to a distorted NiAs type after relax-
ation. We compared the ”Cu(NCN)“, ”Ca(CN2)“, and ”FeS2 (pyrite)“ type modifi-
cations with several of those found during the global search, i.e., CaC2-VII, CaC2-V,
and CaC2-I, with regard to the enthalpy as a function of pressure (see Fig. 8.2). We
observed that not a single new modification deduced from the literature structures is
thermodynamically stable, at least at low temperatures, compared to the predicted
structures. Thus, we conclude that the structures obtained from our global search are
representative for the thermodynamically stable low-temperature modifications.

7.5 Analysis of the performance of the global opti-

mization procedure

So far, we have analyzed the outcome of the global search for possible modifications
from a physical/chemical point of view by comparison with experiment and typical
A(X2) structure types known from other chemical systems. We could conclude that we
have most likely found the global minimum on the ab-initio energy landscape investi-
gated, and in addition a typical sample of the many possible low-energy modifications
that can be generated by varying the orientation of the C2-units.

By performing additional simulated annealing runs, one would reach those minima,
too. In general, the finite computation time available limits the volume of configuration
space that can be explored using stochastic global optimization techniques and the
cooling should be infinitely slow (304). However, the question arises, how large an
additional computational effort would be necessary to substantially increase the number
of new minima found, and whether this would be the most efficient use of computer
resources.

In order to address this issue, we have performed an a-posteriori statistical analysis
concerning the structures found. The calculation of posterior probability distribution
functions had been suggested as a possible statistical analysis tool (305, 306, 307, 308).
In the present work, in order to perform a statistical analysis, we sample subsets (called
events) of the total set of runs (227 at standard pressure), each subset containing
10 randomly selected runs from among the total set. For each event, the ten runs
were categorized into 3 groups viz. low-lying structure, duplicate, and not-a-low-lying
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Table 7.5: Optimization of crystal structures taken from ICSD. Complex anions

and cations were replaced by C2-units and Ca-atoms, respectively. These modified

structures were locally optimized using LDA. It was checked, whether the relaxed

structure exhibited Ca6-octahedra around the C2-dumbbells.

Optimization of crystal structures taken from ICSD (289). Complex anions and

cations were replaced by C2-units and Ca-atoms, respectively. These modified

structures were locally optimized using LDA. It was checked, whether the relaxed

structure exhibited Ca6-octahedra around the C2-dumbbells.

ICSD before local after local

compound optimization optimization

structure space structure space Energy Ca6-

type group type group octahedron

BaC2 ThC2 C2/c CaC2-V Immm -112.1735 Yes

Ca(CN2) high R3̄m high R3̄m -112.1678 No

temperature temperature (approximately

modification modification cubic)

of NaN3 of NaN3

Cu (N C N) Cmcm P63/mmc -112.1653 No

(NiAS-

type)a

FeS2 Marcasite Pnnm CaC2-I I4/mmm -112.1717 Yes

FeS2 Pyrite Pa3̄ Pyrite Pa3̄ -112.1654 Yes

KO2 C2/c CaC2-V Immm -112.1735 Yes

MgC2 P42/mnm P42/mnm -111.7925 Yes

NaN3 α-NaN3 C2/m CaC2-V Immm -112.1735 Yes

RhN2 Pnnm CaC2-I I4/mmm -112.1717 Yes

a Ca at the Ni place, C2 at the As place
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7.5 Analysis of the performance of the global optimization procedure

Figure 7.6: Enthalpy per formula unit of the three most relevant structures found

during the global search and three additional ones based on well-known structure types,

at the LDA level. Inset: upper left: 3 to 6 GPa; middle: 6 to 8 GPa; lower right: 23

to 26 GPa.
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Table 7.6: Statistical analysis at different pressures

pressure # of runs # of event low-lying duplicates not-low-lying

for one event structures structures

1 1 1 8

2 3 1 6

0 10 3 3 1 6

4 1 0 9

5 2 0 8

6 2 1 7

1 3 20 77

100 2 3 16 81

3 3 15 82

1 2 2 6

high 10 2 4 1 5

3 3 3 4

4 4 2 4

100 1 4 35 61

2 3 38 59

structure. The term low-lying structure is used when at the end of the run one of
the energetically most favorable polymorphs is obtained. Other modifications (with
higher energies and irregular coordination polyhedra) and unsuccessful runs, are placed
into the category not-a-low-lying structure. If one of the runs ends up in a low-lying
structure which had already been observed at the event under consideration, then it
is counted as a duplicate. Six such events were analyzed, and the outcome is given in
Table 7.6. The same analysis was repeated for three events consisting of 100 randomly
chosen runs out of the total of 227 runs (c.f. Table 7.6).

We observe that out of 10 runs, 1-3 (average: 2) different low-lying structures were
found. Similarly, out of 100 runs, 3 (average = 3) different low-lying structures were
found, and the percentage of duplicates substantially increases. From this observation,
we conclude that a substantially higher effort would be needed to find new low-lying
minima.

We also performed the same statistical analysis at high pressure (16-64 GPa) using
10 and 100 (c.f. Table 7.6) global optimization runs as events. We observe that out of
10 runs, 2-4 (average: 3.25) and out of 100 runs, 3-4 (average: 3.5) different low-lying
structures are found, respectively, and the percentage of duplicates again substantially
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increases when moving from 10 to 100 run events. Again, we can conclude that finding
new low-lying minima would require a substantially larger computational effort.

Obviously, this statistical analysis can only serve as a rough estimate on the success
rate of the global optimization procedure. But there is a clear trend that considerably
more runs would be needed to identify additional relevant minima. However, since
the structures of these minima apparently are all variants of a common structural
theme (six/eight-fold coordination of Ca by C2-units), performing further full global
optimization runs does not appear to be very efficient. Instead, new minima could
be generated systematically by selectively rotating C2-units in the basic (rock salt /
CsCl) structure, and then performing local optimizations to find the corresponding
local minima.

For general comparison purposes, we have also performed 64 quench runs from
random starting points. Such a set of stochastic local minimizations can serve as a
reference for the efficiency of the global optimization procedure. However, in the present
example, none of these runs reached one of the low-lying minima, demonstrating that
the simulated annealing stage of the global search is definitely necessary.

7.6 Conclusions

We have shown that structure prediction, on the basis of simulated annealing as global
optimization technique and ab-initio energy calculation in all steps of the search pro-
cedure, is feasible for the mixed covalent-ionic system CaC2. The search was insofar
restricted, as the structures with partially occupied sites or disordered structures were
not included, and also structures with a very large number of formula units in the prim-
itive cell (>4) could not be encountered. In all the polymorphs found, the carbon atoms
had combined to form C2-units. We found one experimentally known modification and
several structures that are closely related to low-temperature modifications. Two new
structures are predicted to be at least metastable at standard pressure: an orthorhom-
bic structure (CaC2-V), which was found to have the lowest energy of all structures
considered, and another monoclinic modification (CaC2-VI). At high pressure (above
approximately 30 GPa), a transition is predicted from the quasi-six-fold coordinated
structures to a quasi-eight-fold coordinated structure (CaC2-VII) which is a distorted
variant of the CsCl structure-type. In very recent high pressure experiments, CaC2-VII
structure was observed for BaC2.
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8

Pernitride compounds

8.1 Introduction

In the earth’s atmosphere, the most abundantly found element is nitrogen, constituting
78.08% by volume. Thus, nitrogen-rich compounds are very common, with nitrogen
appearing in a variety of bonding situations. Among these are the nitrides, which are
compounds of nitrogen where nitrogen has a formal oxidation state of 3. A class of
nitrogen compounds which are related to, but distinct from nitride, are pernitrides,
with N2−

2 or N4−
2 -units (N2−

2 is sometimes called diazenide), analogous to carbides C2−
2 .

For completeness, there is an additional class of compounds, called azide, containing
(N3

−) units.
Metal nitrides and pernitrides show a wide range of excellent properties such as

hardness, superconductivity, photoluminescence and various types of magnetism (309,
310, 311, 312, 313, 314). Hence, these compounds are attracting increasing interest in
both experimental and theoretical studies. Pernitride compounds are not so common
as nitrides. The experimentally known pernitrides are mostly from alkaline metals,
alkaline earth metals, and some transition metals.

BaC2 and BaO2 are well known compounds for barium. Naturally this raised the
question, whether a similar compound exists for the barium and nitrogen system.
Barium nitride exists for two compositions, Ba2N and Ba3N. These are metal-rich
compounds. On the other hand, the nitrogen-rich side might produce interesting N-N
bonded species, more specifically the N2−

2 in BaN2. This anion is closely related and
isoelectronic to the oxygen molecule and to the C2−

2 anion of their oxide and carbide,
respectively. (This is thought to be responsible for superconductivity in rare earth
metal carbides and carbide halides (315, 316).) Experimentally, first nitrogen-rich
nitrides were reported in 1892 (317). In the 1950s, the first high pressure experiments
were performed for the preparation and characterization of BaN2 (318, 319). The
results showed the coexistence of Ba3N2 and BaN2 (318, 319). Later in 2001, once
again the same method was used to synthesize the barium pernitride. It crystallizes
in the space group C2/c, similar to the ThC2 structure type (320). Analogously,
SrN2 (321) was also synthesized the same way as BaN2. In this reaction, Sr2N is used
as starting compound which reacts with N2 under high pressure and high temperature.

89



8. PERNITRIDE COMPOUNDS

During this synthesis, first SrN formed and later SrN2. SrN crystallizes in a monoclinic
structure with space group C2/m whereas SrN2 is formed in the CaC2 structure type.

In 2003, a theoretical study was performed on CN2 (322, 323), SiN2 (323), and
GeN2 (323) which are not-yet synthesized systems. In this study, the compounds
considered need the form A4+[N2]

4− where A is C, Si, and Ge, and the anions form the
same electronic configuration as S2−

2 in the pyrite structure in FeS2. These structures
were locally optimized and their physical properties were calculated. The distance
between N-N atoms in SiN2 and GeN2 is 1.454 Å and 1.428 Å respectively, which is
closely related to a single bond between nitrogen atoms in a N-N bond, whereas in the
case of CN2 one finds 1.34 Å which is in-between the length of a single and double
bond between nitrogen atoms. The band gaps are calculated for CN2, SiN2, and GeN2

to be 0.9, 5.5, and 1.5 eV, respectively. The bulk modulus has also been calculated
for CN2 to be 405 GPa (322). The experimentally known compositions of carbon and
nitrogen are C3N4 (hardest compound) and C11N4 (324, 325, 326).

Later, a binary noble metal nitride, PtN2, had been synthesized successfully at 45-
50 GPa and temperatures more than 2000 K. Initially, it was wrongly formulated as
PtN. But, afterwards theoretical (327) as well as experimental (328), studies showed
that instead of PtN, PtN2 (329) had been synthesized. It crystallized in the pyrite
structure type. Similarly, Ir reacts with N2 at high temperature and high pressure.
IrN2 is stabilized in the baddeleyite structure type (330). PtN2 and IrN2 are insulators
at ambient conditions.

In 2008, palladium nitride was synthesized at a pressure above 58 GPa and a tem-
perature somewhat below 1000 K (330). The other noble metal nitrides (IrN2, OsN2,
RuN2, and RhN2) were also formed at high pressure and temperature conditions but
PdN2 decomposes at about ∼13 GPa. And theoretical studies also showed that PdN2

stabilizes in the same structure type as PtN2 (330). There was one independent study
performed on OsN2, which clearly shows that OsN2 crystallizes in the marcasite struc-
ture type and is metallic in nature (331).

In 2010, theoretical work was performed on alkaline-earth metal pernitrides, viz.,
BeN2, MgN2, and CaN2 (332). According to this study, BeN2 and MgN2 should crys-
tallize in the ThC2 type structure, and CaN2 in the ZnCl2 structure type, respectively.
But recent experimental investigations on CaN2 showed that the CaC2-I structure
type (333) is the stable one. Later in the same year, a theoretical investigation was
performed on LaN2 (334). In this system, the ThC2 structure type should be the most
stable modification at high pressure which is similar to the CaC2 system. According
to the electron count LaN2 should be described as La3+ + N2−

2 + e−.
In 2011, theoretical studies were performed on noble metal nitrides with the metals

Ru, Rh, Re, and Au. It was proposed that RuN2 and RhN2 stabilize in the marca-
site structure type (335), while ReN2 should crystallize in an orthorhombic structure
with symmetry Pbcn (336). It should be a metallic and super-compressible solid. Its
computed hardness is comparable to Si3N4 which is ∼17 GPa (337). Au belongs to
the same row as Os, Ir, and Pt. So AuN2 was the next candidate for a theoretical
structural exploration. A theoretical study showed that AuN2 would be quite difficult
to synthesize because of it having a higher formation energy compared to other perni-
trides (338). With the help of high pressure and high temperature, AuN2 may show
the same Au:N stoichiometric ratios or same other composition.

Some theoretical investigations have been performed on alkali metal diazenides viz.,
Li2N2 (339) and NanN2 (333). Li2N2 crystallizes in the space group Immm. In the
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NanN2 study, different compositions of Nan (n = 2,..,6) with N2 were investigated,
where some interesting structures were predicted, Na2N2 (in space group Pmmm) and
Na6N2 (in space group Cm).

Finally, iron nitrides were first studied by Despretz (340) in 1829. The phase di-
agram of the binary Fe-N system (341) has been investigated in the middle of the
twentieth century. There are four iron-rich compounds, among them two closely re-
lated daltonide compounds (Fe4N and Fe8N), the berthollide phase (Fe3N) (342) and
Fe2N (343), which are exothermic. The next candidate in the phase diagram shows a
1:1 composition of Fe and N, which exists in crystalline powder form or in thin films.
It is anti-ferromagnetic and crystallizes in the ZnS-type structure. The next compo-
sition is nitrogen-rich i.e., FeN2 (344) which has also been theoretically studied. It is
ferromagnetic and adopts the space group R3̄m.

In this chapter, we are interested to globally explore the energy landscapes of CaN2,
LaN2, and TiN2 by applying the ab-initio search method presented in this thesis (see
Chapter 5). These systems are also mixed covalent-ionic systems like CaC2. These
three systems had not been yet-synthesized at the start, but interestingly, recently
CaN2 (333) has been successfully synthesized. The following sections are organized as
follows: the specific technical aspects of the global optimization are given in the method
section. In the section “results”, the outcome of the global explorations are presented
for optimizations at standard and elevated pressures. In the discussion section, the
results are compared with the predicted structure for pernitride system polymorphs and
typical AX2-type structures found in other chemical systems. Furthermore, we studied
physical properties such as thermodynamical stability, bulk modulus, and conducting
behavior of these pernitride compounds.

8.2 Method

The global search consists of simulated annealing runs and subsequent stochastic
quenches. The temperature at the beginning of the simulated annealing is 1 eV (∼
11 604 K), and 0.778 eV (∼ 9038 K) at the end of the run. We used for each run z
= 2, 3, or 4 formula units per simulation cell of (AN2)z (A = La, Ca, and Ti). Here,
one formula unit is composed of one A and two nitrogen atoms. The initial volume
of the simulation cell was selected to be much larger than the estimated cell size for a
solid phase. This initial choice of the cell is based on the atomic and ionic radii. After
selecting the volume of the cell, the initial position of the atoms were randomly chosen,
such that the system will have enough freedom for rearrangements during the global
search. The positions of the atoms and the cell parameters were changed during the
run by controlling the movement of an individual atom (70 %), switching the positions
of two atoms (10 %), and altering the lattice constants (20 %). When a change in the
cell parameter was proposed, the probability to contract the lattice constant was set
to 60 %, which proved to be useful in smoothly and efficiently reducing the cell volume
while not restricting the global exploration. Every run is composed of 12500 simulated
annealing moves which are followed by 10000 quench steps. The calculations were
performed at different pressures (0, 16, 32, 48, and 64 GPa), to explore the possible
candidates which can exist at high-pressure.

All the total energy calculations were performed at ab-initio level using the VASP
(Vienna Ab Initio Simulation Package) (231, 232, 345, 346) which is a plane-wave code.
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A generalized gradient approximation (GGA) of PBE type (347) and the projector-
augmented wave (PAW) method (348) were used for both the global and the local
optimizations. During the global search, a small 2×2×2 k-point mesh was used to
improve the computational speed. For the local optimization, a larger 8×8×8 k-point
mesh was employed and a smearing temperature of 0.001 eV was applied. The final
results as presented in the figures and tables have all been obtained with the high-
quality parameters.

The structures obtained at the end of the global optimization all show space group
P1 due to the optimization which is not restricted in any way. We used the program
KPLOT (225) to determine possible symmetries (see Chapter 4) after the global search
and once again after the local optimization.

In addition, the candidates obtained from the exploration of the energy land-
scape and the most common experimentally known AB2 structures listed in the ICSD
database (289) were compared in this study. We computed energy-vs-volume curves
and determined the bulk moduli by fitting Murnaghan-type equations of state to these
curves for the locally optimized structures obtained from global searches or from the
database. Furthermore, with the help of the E(V )-curves and the corresponding H(p)-
curves, we determine possible phase transitions at high pressures. Finally, to under-
stand the chemical bonding in these compounds, we performed Bader charge analy-
ses (217).

8.3 Results

We performed energy landscape explorations and local optimizations of the structure
candidates for CaN2, LaN2, and TiN2. These searches were supplemented by local
optimizations of selected commonly known A(B2) structure types. Furthermore, we
performed local optimizations for SrN2 and BaN2 starting from structure types found
during the global optimizations in the CaN2, LaN2, TiN2 and CaC2 systems and se-
lected AB2 structure types from the ICSD, for comparison.

8.3.1 SrN2

25 different well-known AB2 structure types were considered in order to find new struc-
ture candidates (c.f. Table 8.2). These structures were relaxed without applying any
constraints. From all the above structure types, the tetragonal (CaC2-I) structure and
the orthorhombic (CaC2-V) structure type were the lowest one in energy (c.f. Table 8.1)
for the structure types considered (see Fig. 8.1(a) and Fig. 8.2(b)). Experimentally,
SrN2 crystallizes in the tetragonal structure type at standard pressure. We observe
that when performing unconstrained optimizations of the structures, most of them re-
main in the same structure type as the starting one, with the exception of ThC2, which
changed to the CaC2-I structure type. The distance between the two nearest nitrogen
atoms is 1.24 Å.

As in the case of CaC2, the tetragonal (CaC2-I) structure type, the N2 dumbbell lies
along the [001] axis, and in the orthorhombic structure, it is perpendicular to the [001]
axis. Each Sr atom in the CaC2-I modification is enclosed by six N2 units. The E(V )-
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Table 8.1: Energetically most stable structures which are derived from well-known

structure types for SrN2 on the PBE level.

modification lattice parameters(in Å) N-N energy volume

and and fractionals distance (eV) per (in Å3)

space group (in Å) formula

experimental predicted unit(PBE)

“CaC2-I” a= 3.81, a= 3.85, 1.254 -19.83762 46.72

configuration c= 6.28 c= 6.31

I4/mmm (139) La(0, 0, 0), La(0, 0, 0),

N(0, 0, N(0, 0,

0.402) 0.401)

“CaC2-V” a= 3.98, 1.259 -19.52950 49.88

configuration b= 5.28,

Immm (71) c= 4.74

La(0, 0, 0)

N(0, 1/2,

0.867)

“MgC2” a= b= 4.39, 1.238 -19.68955 45.51

configuration c= 5.22

P42/mnm (136) La(0, 0, 0),

N(0.600,

0.600, 0)

and H(p)-curves were calculated for the optimized structures with two different func-
tionals viz., PBE (GGA with PBE funtional) and GGA (GGA with PW91 functional)
(Fig. 8.3 and 8.4). The CaC2-I-type is the thermodynamically stable modification with
the PBE functional whereas the CaC2-V-type in the case of the GGA functional. This
indicates that for SrN2 there are two structures equally likely to occur from a theoret-
ical point of view, suggesting that several modifications might exist and be accessible
to experiments, similar to e.g. calcium dicarbide (see chapter 7) (288, 349).

8.3.2 BaN2

The same procedure was followed for BaN2 (c.f. Table 8.4 and 8.3). The ThC2 type
(see Fig. 8.1(b)) was found as the thermodynamically stable structural candidate,
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Figure 8.1: Experimentally known modifications of AN2, where A is the cation (Sr,

Ba, Ca, La, and Ti). (a) CaC2-I and (b) CaC2-II. Green (big) spheres correspond to

metal, blue (small) spheres to nitrogen atoms, respectively. The lines indicate the unit

cells, with the z-axis pointing upwards.

Experimentally known modifications of AN2, where A is the cation (Sr, Ba, Ca, La,

and Ti). (a) CaC2-I and (b) CaC2-II (288). Green (big) spheres correspond to metal,

blue (small) spheres to nitrogen atoms, respectively. The lines indicate the unit cells,

with the z-axis pointing upwards.
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Figure 8.2: Predicted modifications for AN2, where A is the cation (Sr, Ba, Ca, La,

and Ti). (a) MgC2-I and (b) CaC2-V. Green (big) spheres correspond to metal, blue

(small) spheres to nitrogen atoms, respectively. The lines indicate the unit cells, with

the z-axis pointing upwards.
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Table 8.2: Optimization of crystal structures taken from ICSD for SrN2 with AB2

structure type on the PBE level. The lowest energies are displayed by boldfaces.

name Structure before optimization Structure after optimization energy(eV)

of Structure space Structure space

compd type group type group

SrN2 Al2Cu I4/mcm (140) Al2Cu I4/mcm (140) -19.08906

AlB2 P6/mmm (191) AlB2 P6/mmm (191) -16.19455

CaC2-I I4/mmm (139) CaC2-I I4/mmm(139) -19.83762

CaC2-II C2/c (15) ThC2 C2/c (15) -19.6891

CaC2-III C2/m (12) ThC2 C2/c (15) -19.6891

CaC2-V Immm (71) CaC2-V Immm (71) -19.52950

CaC2-VII R3̄m (166) CaC2-VII R3̄m (166) -19.18153

CaF2 Fm3̄m (225) CaF2 Fm3̄m (225) -14.09131

CaI2 P3̄m1 (164) P6/mmm (191) -16.23583

CdCl2 R3̄m (166) CdCl2 R3̄m (166) -19.18153

Co2Si Pnma (62) Co2Si Pnma (62) -16.88936

Cu2Mg Fd3̄m(227) Cu2Mg Fd3̄m (227) -14.17465

Cu2S Fd3̄m (227) Cu2S Fd3̄m (227) -14.17465

CuZr2 I4/mmm (139) CaC2-I I4/mmm (139) -19.83762

Ga2Sr P6/mmm (191) Ga2Sr P6/mmm (191) -16.19455

La2Sb I4/mmm (139) CaC2-I I4/mmm (139) -19.83762

MgC2 P42/mnm (136) MgC2 P42/mnm (136) -19.68955

NbS2 P63/mmc (194) NbS2 P63/mmc (194) -18.43622

PbCl2 Pnam (62) Cmcm (63) -14.21644

PbClF P4/nmm (129) PbClF P4/nmm (129) -14.08754

SiS2 I4̄2d (122) SiS2 I4̄2d (122) -16.60333

SiSr2 I41/amd (141) SiSr2 I41/amd(141) -18.90665

ThC2 C2/c (15) ThC2 C2/c (15) -19.86604

TiO2(rutile) P42/mnm (136) MgC2 P42/mnm (136) -19.68955

ZnCl2 Pna21 (33) Pmna (62) -19.60341
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Figure 8.3: E(V )-curves of SrN2 at (a) GGA and (b) PBE level. Energies per

formula unit are represented in eV.
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Figure 8.4: H(p)-curves of SrN2 at (a) GGA and (b) PBE level. Energies per formula

unit are represented in eV.
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in agreement with experiment. Again, we plotted the E(V )- and H(p)-curves for
all relevant structure candidates using PBE and GGA functionals. We noted in the
BaN2 system that the monoclinic, ThC2-type structure is thermodynamically stable
and there are three metastable modifications which are only slightly higher in energy.
The energy difference between the experimentally known structure (ThC2) and the
tetragonal structure (CaC2-I) is 0.3 eV/atom using the PBE functional. For both
functionals, the ThC2 structure type is the stable modification up to at least 20 GPa,
whereas the CaC2-I structure type is a metastable modification (see Fig. 8.5. The bond
length of the N2-unit in the ThC2 modification is 1.23 Å.

8.3.3 CaN2

Since at the beginning of this study CaN2 was not known experimentally, before starting
global optimizations, in a preliminary calculation, we selected a plausible structure
candidate already observed in CaC2, the CaC2-I type structure, and compared its
energy with the one of elemental calcium plus solid N2. This formation energy being
negative suggested that CaN2 may be capable of existence. Based on these observations,
132 global optimization runs at ambient pressure were performed, which resulted in
three promising structure candidates with symmetry higher than space group P1. In all
the predicted structures with higher symmetry than P1, the calcium atom is surrounded
by an octahedron formed by N2 units.

The structures with the lowest energy were of a tetragonal (CaC2-I), recently found
in the experiment, and an orthorhombic (CaC2-V) structure type (see Fig. 8.1(a) and
Fig. 8.2(b)). Supplementing this global search with the minimization of structures
analogous to those present in the database or found during global explorations in
other carbides, peroxide or pernitride systems, showed that, in particular, the MgC2

type structure candidate is also likely to be thermodynamically stable (c.f. Table 8.7
and 8.6). Further global optimization runs were performed at higher pressures, viz.,
16, 32, and 48 GPa (c.f. Table 8.5), where, similar to the case of the CaC2 and the
LaN2 system (see below), in addition to a number of new structures, several of those
already observed during the searches at standard pressures are again found. After the
local minimization stage, the E(V )- and H(p)-curves for all important structures were
computed using the GGA/PBE type DFT functional and are shown in Fig. 8.5. From
this, we conclude that the MgC2 type modification is thermodynamically stable at low
pressure, whereas the CaC2-I type structure is a good structure candidate at elevated
pressure. We note that the bond length of nitrogen atoms in the N2 units increases
from 1.242 Å to 1.258 Å after the phase transition (computed at the minimum of the
E(V)-curve).

8.3.4 LaN2

At standard pressure, 160 global searches were performed, resulting in 9 different struc-
tures with space group other than P1 (c.f. Table 8.5). In all the structure candidates,
we observed that N2 dumbbells formed from initially distant nitrogen atoms. There
are four modifications which have comparably low energies at standard pressure, viz.,
the CaC2-I (see Fig. 8.1(a)), the MgC2 type (Fig. 8.2(a)), the ThC2 (see Fig. 8.1(b))
and the CaC2-III type. These four structures show an octahedral coordination of La
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Table 8.3: Energetically most stable structures which are derived from well-known

structure types for BaN2 on the PBE level.

modification lattice parameters(in Å) N-N energy volume

and and fractionals distance (eV) per (in Å3)

space group (in Å) formula

exptl. predicted unit(PBE)

“CaC2-I” a= 4.14 1.239 -20.04876 57.32

configuration c= 6.68

I4/mmm (139) La(0, 0,

0)

N(0, 0,

0.407)

“CaC2-V” a= 4.31 1.247 -19.72012 60.42

configuration b= 5.72 ,

Immm (71) c= 4.90 ,

La(0, 0,

0)

N(1/2, 0,

0.373)

“ThC2” a= 7.17 a= 7.26 1.230 -20.12775 57.56

configuration b= 4.39 b= 4.46

C2/c (15) c=7.23, c= 7.37

β=104.86 ◦ β=104.8 ◦

Ba(0, 0.198, Ba(0, 0.789,

1/4) 1/4)

N(0.291, 0.143, N(0.703, 0.852,

0.032) 0.454)
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Table 8.4: Optimization of crystal structures taken from ICSD for BaN2 with AB2

structure type on the PBE level. The lowest energies are displayed by boldfaces.

name Structure before optimization Structure after optimization energy(eV)

of Structure space Structure space

compd type group type group

BaN2 Al2Cu I4/mcm (140) P4/mmm(124) -13.84225

AlB2 P6/mmm (191) AlB2 P6/mmm (191) -15.88645

CaC2-I I4/mmm (139) CaC2(rt) I4/mmm (139) -20.04876

CaC2-II C2/c (15) ThC2 C2/c (15) -20.12775

CaC2-III C2/m (12) ThC2 C2/c (15) -20.12775

CaC2-V Immm (71) CaC2-V Immm (71) -19.72012

CaC2-VII R3̄m (166) CaC2-VII R3̄m (166) -19.44838

CaF2 Fm3̄m (225) CaF2 Fm3̄m (225) -14.21804

CaI2 P3̄m1 (164) P6/mmm (191) -15.88645

CdCl2 R3̄m (166) Fm3̄m (225) -14.21804

Co2Si Pnma(62) Co2Si Pnma (62) -20.05729

Cu2Mg Fd-3m(227) Cu2Mg Fd-3m (227) -14.21804

Cu2S Fd3̄m (227) Cu2S Fd3̄m (227) -14.21804

CuZr2 I4/mmm (139) CaC2(rt) I4/mmm (139) -20.04876

FeS2 Pa3̄ (205) FeS2 Pa3̄ (205) -19.42560

Ga2Sr P6/mmm (191) Ga2Sr P6/mmm (191) -15.88645

La2Sb I4/mmm (139) CaC2(rt) I4/mmm(139) -20.04876

MgC2 P42/mnm (136) MgC2 P42/mnm (136) -19.95962

PbCl2 Pnam (62) Cmcm (63) -14.28985

PbClF P4/nmm (129) PbClF P4/nmm (129) -14.18913

SiS2 I4̄2d (122) SiS2 I4̄2d (122) -16.762

SiSr2 I41/amd(141) SiSr2 I41/amd(141) -19.18037

ThC2 C2/c(15) ThC2 C2/c(15) -20.12774

TiO2(rutile) P42/mnm (136) MgC2 P42/mnm (136) -19.95962

TiO2(badd) P21/c (14) ThC2 Cmmm(65) -16.88778

ZnCl2 Pna21 (33) Fm3̄m (225) -14.21804

ZrO2(badd) P21/c (14) ThC2 C2/c(15) -20.12774
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Figure 8.5: (a) E(V) and (b) H(p)-curves for the important structures of BaN2 at

PBE level. Energies per formula unit are represented in eV.
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Table 8.5: The statistics of the most relevant modifications during the global opti-

mization at various pressures.

name Structure type space group number of times found

of the (at pressure in GPa)

system 0 16 32 48 64

CaN2 “CaC2-I” I4/mmm (139) 12 6 1 1 0

“CaC2-V” Immm (71) 4 2 1 0 0

other 14 4 7 5 0

modifications a

successful runs 30 12 9 6 0

Total runs 132 25 29 26 0

LaN2 “CaC2-I” I4/mmm (139) 9 3 1 1 0

“MgC2” P42/mnm (136) 13 5 0 0 0

“ThC2” C2/c (15) 3 1 0 0 0

“CaC2-III” C2/m (12) 4 2 2 0 0

other 22 1 5 14 10

modifications a

successful runs 51 12 8 15 10

Total runs 160 31 21 41 31

TiN2 “CaC2-I” I4/mmm (139) 2 0 0 0 0

“TiN2-I” Pm21 (31) 15 4 1 1 0

“CaC2-V” Immm (71) 2 0 0 0 0

“ThC2” C2/c (15) 5 0 0 0 0

“CaC2-III” C2/m (12) 4 0 2 0 0

other 20 8 9 4 0

modifications a

successful runs 48 12 12 5 0

Total runs 154 25 25 26 0

a With

irregular polyhedra and higher in energies.
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Table 8.6: Optimization of crystal structures taken from ICSD for CaN2 with AB2

structure type on the PBE level. The lowest energies are displayed by boldfaces.

name Structure before optimization Structure after optimization energy(eV)

of Structure space Structure space

compd type group type group

CaN2 Al2Cu I4/mcm (140) Al2Cu I4/mcm(140) -19.51051

AlB2 P6/mmm (191) AlB2 P6/mmm(191) -16.77081

CaC2-I I4/mmm (139) CaC2(rt) I4/mmm(139) -20.12208

CaC2-II C2/c (15) ThC2 C2/c(15) -20.11887

CaC2-III C2/m (12) CaC2-III C2/m(12) -20.05048

CaC2-V Immm (71) CaC2-V Immm(71) -19.93767

CaC2-VII R3̄m (166) CaC2-VII R3̄m (166) -19.44461

CaF2 Fm3̄m (225) CaF2 Fm3̄m (225) -14.44418

CaI2 P3̄m1 (164) CaI2 P3̄m1 (164) -16.85026

CdCl2 R3̄m (166) CaC2-VII R3̄m (166) -14.69461

Co2Si Pnma(62) CaC2(rt) I4/mmm(139) -20.12208

Cu2Mg Fd3̄m (227) Cu2Mg Fd3̄m(227) -14.86347

CuNCN R3̄m(166) P63/mmc(194) -19.62057

Cu2S Fd3̄m (227) Cu2S Fd3̄m (227) -14.87344

CuZr2 I4/mmm (139) CaC2(rt) I4/mmm(139) -20.12208

FeS2 Pa3̄ (205) FeS2 Pa3̄ (205) -19.65973

Ga2Sr P6/mmm (191) Ga2Sr P6/mmm (191) -16.77081

La2Sb I4/mmm (139) CaC2(rt) I4/mmm(139) -20.12208

MgC2 P42/mnm (136) MgC2 P42/mnm (136) -19.98375

NbS2 P63/mmc (194) P63/mmc (194) -19.62057

PbCl2 Pnam (62) PbCl2 Pnam (62) -17.70491

PbClF P4/nmm (129) PbClF P4/nmm (129) -15.09714

SiS2 I4̄2d (122) SiS2 I4̄2d (122) -17.1235

SiSr2 I41/amd(141) SiSr2 I41/amd(141) -19.26138

ThC2 C2/c(15) ThC2 C2/c(15) -20.11887

TiO2(rutile) P42/mnm (136) MgC2 P42/mnm (136) -19.98375

TiO2(badd) P21/c (14) ThC2 C2/c(15) -20.11887

ZnCl2 Pna21 (33) P63/mmc (194) -19.62057

ZrO2(badd) P21/c (14) ZrO2(badd) C2/c (15) -20.11887
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8.3 Results

Figure 8.6: (a) E(V) and (b) H(p)-curves for the important structures of CaN2 at

PBE level. Energies per formula unit are represented in eV.
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Table 8.7: Energetically most stable structures in CaN2 and some more structures

which are derived from well-known structure types on the PBE level.

modification lattice parameters(in Å) N-N distance energy (eV) volume

and space group and fractionals (in Å) per formula (in Å3)

unit(PBE)

“CaC2-I” configuration a= 3.62, c= 6.01 1.258 -20.12208 39.41

I4/mmm (139) La(0, 0, 0)

N(0, 0, 0.395)

“CaC2-V” configuration a= 4.93, b= 4.62 1.263 -19.93767 42.22

Immm (71) c= 3.70,

La(0, 0, 0),

N(1/2, 0.864, 0)

“MgC2” configuration a= 4.191, c= 4.88 1.242 -19.98375 42.86

P42/mnm (136) La(0, 0, 0)

N(0.395, 0.395, 0)

by N2 units. The other five structures found are considerably higher in energy and
exhibit distorted La(N2)6−8 coordination polyhedra.

Furthermore, we performed 124 global optimization runs at various pressures, viz.
16, 32, 48, and 64 GPa (c.f. Table 8.5). We observed that several of the low pressure
structures also exist at high pressures. In particular, the CaC2-I type modification
appears to be metastable up to high pressures. Finally, we selected a number of
A(B2) type structures from our earlier landscape studies of the CaC2-system (349)
and from the ICSD-database for local minimizations. After local optimization of all
the structures found, the total energies displayed in Table 8.9 were computed. The
computed bond length of the N2 units varied from 1.291 Å to 1.343 Å over the predicted
modifications. We performed these calculations using PBE and PW91-functionals.

For all relevant modifications, the E(V ) and H(p)-curves computed by DFT with
the PBE-functional are depicted in Fig. 8.7. Close to standard pressure, the thermody-
namically stable candidates are the MgC2 and the ThC2 modification. The MgC2-type
structure is more favorable in the negative pressure range whereas the ThC2 type is
stable at slightly positive pressures. Since experience has shown that the actual tran-
sition pressures between two modifications can vary by several gigapascal depending
on the computational method employed, it is not possible to definitely assign one of
these two structures as the one present at ambient conditions.
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Table 8.8: Energetically most stable structures in LaN2 and some more structures

which are derived from well-known structure types on the PBE level.

modification lattice parameters(in Å) N-N distance energy (eV) volume

and space group and fractionals (in Å) per formula (in Å3)

unit(PBE)

“CaC2-I” configuration a= 3.75 , c= 6.23 1.314 -24.15885 43.72

I4/mmm (139) La(0, 0, 0)

N(0, 0, 0.395)

“ThC2” configuration a= 6.75 , b= 4.14, 1.299 -24.32581 44.44

C2/C (15) c= 6.53, β= 103.4 ◦

La(0, 0.785, 1/4),

N(0.199, 0.632, 0.947)

“MgC2” configuration a=b=4.29, c= 5.11 1.291 -24.33338 47.07

P42/mnm (136) La(0, 0, 0),

N(0.894, 0.894, 1/2)

“CaC2-V” configuration a= 5.12, b= 4.02 1.343 -23.92080 46.89

Immm (71) c= 4.56,

La(0, 0, 0),

N(1/2, 0, 0.853)
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Table 8.9: Optimization of crystal structures taken from ICSD for LaN2 with AB2

structure type on the PBE level. The lowest energies are displayed by boldfaces.

name Structure before optimization Structure after optimization energy(eV)

of Structure space Structure space

compd type group type group

LaN2 Al2Cu I4/mcm (140) Al2Cu I4/mcm(140) -22.96325

AlB2 P6/mmm (191) AlB2 P6/mmm(191) -20.73669

CaC2-I I4/mmm (139) CaC2(rt) I4/mmm(139) -24.15885

CaC2-II C2/c(15) ThC2 C2/c(15) -24.32581

CaC2-III C2/m(12) CaC2-III C2/m(12) -24.15885

CaC2-V Immm(71) CaC2-V Immm(71) -23.92080

CaC2-VII R3̄m(166) CaC2-VII R3̄m(166) -23.03919

CaF2 Fm3̄m (225) CaF2 Fm3̄m (225) -20.5332

CaI2 P3̄m1 (164) P6/mmm (191) -20.95268

CdCl2 R3̄m (166) Fm3̄m (225) -20.5332

Co2Si Pnma(62) Co2Si Pnma(62) -21.9826

Cu2Mg Fd3̄m (227) Cu2Mg Fd3̄m (227) -18.57192

Cu2S Fd3̄m (227) Cu2S Fd3̄m (227) -18.57191

CuSr2 I4/mmm(139) CaC2(rt) I4/mmm(139) -24.15885

CuZr2 I4/mmm (139) CuZr2 I4/mmm (139) -24.15885

FeS2 Pa3̄ (205) FeS2 Pa3̄ (205) -23.43642

Ga2Sr P6/mmm (191) Ga2Sr P6/mmm (191) -20.95268

HgI2 P42/nmc (137) P4/mmm (123) -21.59069

La2Sb I4/mmm (139) CaC2(rt) I4/mmm(139) -24.15885

MgC2 P42/mnm (136) MgC2 P42/mnm (136) -24.33338

NbS2 P63/mmc (194) NbS2 P63/mmc (194) -22.75316

PbCl2 Pnam (62) Cmcm (63) -23.97604

PbClF P4/nmm (129) PbClF P4/nmm (129) -20.66454

SiS2 I4̄2d (122) SiS2 I4̄2d (122) -18.66506

SiSr2 I41/amd(141) SiSr2 I41/amd(141) -21.84387

TiO2(badd) P21/c (14) ThC2 C2/c(15) -24.32581

TiO2(rutile) P42/mnm (136) MgC2 P42/mnm (136) -24.33338

ZnCl2 Pna21 (33) Pmna (62) -19.35462

ZrO2(badd) P21/c (14) ThC2 C2/c(15) -24.32581
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Figure 8.7: (a) E(V) and (b) H(p)-curves for the important structures of LaN2 at

PBE level. Energies per formula unit are represented in eV.
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8.3.5 TiN2

Titanium is present in various oxidation states e.g., +2, +3, and +4 in ionic compounds.
Usually, titanium reacts with nitrogen to form titanium nitride with composition TiN
at standard conditions, crystallizing in the rock-salt type crystal structure. Though
TiN is a strong contender in the Ti/N-chemical system, nitrogen rich phases such as
Ti3N4 (350) or TiN2 might be capable of existence, respectively, at least as a metastable
phase. Here, our aim is to study the potential existence of titanium pernitride TiN2.
We performed 154 simulated annealing runs in order to explore the energy landscape of
TiN2 at standard pressure. Four promising modifications were found as an outcome of
the global searches, which includes the CaC2-I, TiN2-I (related to the CdCl2 structure),
MgC2-, and CaC2-V structure (see Fig. 8.1(a), Fig. 8.8, Fig. 8.2(a), and Fig. 8.2(b)),
respectively. All the modifications show that N2-dumbbells were formed that are sur-
rounded by a Ti octahedron, except for the case of TiN2-I. In the TiN2-I modification,
the N2-unit sits inside a distorted square-pyramid formed by Ti cations. The bond
length of N2 varies from 1.26Å to 1.46 Å for all the (meta)stable modifications. Of
these modifications, TiN2-I and CaC2-V were the ones with the lowest energy (c.f.
Table 8.10 and 8.11). By again performing local minimizations of standard structure
types taken from the ICSD-database and our earlier searches on AB2-systems (349), we
identified one further possible metastable modification, the MgC2-type. We also per-
formed global searches at high pressures (16, 32, and 48 GPa), which yielded mostly
the TiN2-I modification. After the local optimizations, the E(V )- and H(p)- curves for
all relevant structures were plotted for two different functionals viz. PW91 and PBE
(see Fig. 8.10). With this we see that, TiN2-I is the thermodynamically stable struc-
ture at standard and slightly elevated pressure. At 14 GPa, the TiN2-I-modification
transforms into the CaC2-V structure type. Again, we observe that with an increase
in pressure, the system goes from lower coordination (see Fig. 8.3) of the N2-unit to a
higher one (301) (see Fig. 7.2(b)) similar as to the CaC2 system (see chapter 7) (349).

8.4 Discussion

8.4.1 Information gained from local optimizations of structure

candidates derived from known AX2-structure types

In the literature, there are a large number of quasi-ionic AX2 types of structures with
X2 existing as a dumbbell (and not as isolated atoms). So, it is interesting to examine
whether the existing AX2 structure types correspond to local minima on the energy
landscape of AN2 types of systems. Several such systems were studied by exchanging
the cation with Ca, Sr, Ba, La, and Ti atoms, and the anionic units X2 with N2

dumbbells. We optimized these modified structures. During the local optimization,
the structure was optimized with a full unconstrained relaxation. The results are
presented in tables 8.2, 8.4, 8.6, 8.9, and 8.11.

We observed a common feature in all pernitride systems: the locally optimized
structures derived from CaC2-II, CaC2-III, and ZrO2 (badd) transform into the mon-
oclinic structure type ThC2. Several common AB2 structures with isolated B-atoms
were also included in our study for comparison. The structures taken from the CuZr2-
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Table 8.10: Energetically most stable structures in TiN2 and some more structures

which are derived from well-known structure types on the PBE level.

modification lattice parameters(in Å) N-N energy (eV) volume

and and distance per formula (in Å3)

space group fractionals (in Å) unit(PBE)

“CaC2-I” a= 2.85, c= 9.05 1.460 -25.47611 36.65

configuration La(0, 0, 0),

I4/mmm (139) N(0, 0, 0.581)

“TiN2-I” a=b= 3.62, 1.258 -26.28087 34.05

configuration c= 6.02

Pm21 (31) La(0, 0, 0),

N(1/2, 1/2, 0.105)

“CaC2-V” a= 4.37, b= 4.16 1.353 -25.88455 28.34

configuration c= 3.12 ,

Immm (71) La(0, 0, 0),

N(1/2, 1/2, 0.105)

“MgC2” a=b=3.75, c= 4.16 1.333 -25.19346 29.32

configuration La(0, 0, 0),

P42/mnm (136) N(0.874, 0.874, 1/2)
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Table 8.11: Optimization of crystal structures taken from ICSD for TiN2 with AB2

structure type on the PBE level. The lowest energies are displayed by boldfaces.

name Structure before optimization Structure after optimization energy(eV)

of Structure space Structure space

compd type group type group

TiN2 AlB2 P6/mmm (191) AlB2 P6/mmm (191) -22.2919

CaC2-I I4/mmm (139) CaC2(rt) I4/mmm(139) -25.47611

CaC2-II C2/c (15) CaC2-II C2/c (15) -26.27021

CaC2-III C2/m (12) CaC2-III C2/m (12) -26.50148

CaC2-V I4/mmm (139) CaC2-V Immm(71) -25.88455

CaC2-VII R3̄m (166) CaC2-VII R3̄m (166) -24.62764

CaF2 Fm3̄m (225) CaF2 Fm3̄m (225) -24.1039

CaI2 P3̄m1 (164) CaI2 P3̄m1 (164) -23.81788

Cu2Mg Fd3̄m (227) MgC2 Fd3̄m (227) -19.98679

Cu2S Fd3̄m (227) Cu2S Fd3̄m (227) -19.98680

CuZr2 I4/mmm (139) CaC2(rt) I4/mmm(139) -25.47611

Ga2Sr P6/mmm (191) Ga2Sr P6/mmm (191) -22.29105

MgC2 P42/mnm (136) MgC2 P42/mnm (136) -25.19346

NbS2 P63/mmc (194) NbS2 P63/mmc (194) -25.78936

PbCl2 Pnam (62) PbCl2 Pnam (62) -26.20261

PbClF P4/nmm (129) PbClF2 P4/nmm (129) -25.37726

SiS2 I4̄2d (122) Fd3̄m (227) -23.13742

ThC2 C2/c(15) ThC2 C2/c(15) -26.27021

TiO2(rutile) P42/mnm (136) MgC2 P42/mnm (136) -25.19346

TiO2(badd) P21/c (14) ThC2 C2/c(15) -26.27021

ZnCl2 Pna21 (33) Co2Si Pnma(62) -26.20261

ZrO2(badd) P21/c (14) ThC2 C2/c(15) -26.27021
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Figure 8.8: Predicted modifications for TiN2. In the text, it is termed as TiN2-I.

Green (big) spheres correspond to titanium, blue (small) spheres to nitrogen atoms,

respectively.

and La2Sb-based modifications transform to the CaC2-I type whereas TiO2 (rutile) dis-
torts into the MgC2-type. As mentioned above, the ThC2-type is the stable structure
in the case of BaN2 and LaN2, and the CaC2-I-type structure is lowest in energy in the
case of SrN2 and CaN2. For SrN2, BaN2, and CaN2, the MgC2 and the CaC2-V-type
are metastable modifications. We also considered cubic and hexagonal structure types
(pyrite, fluorite, hexagonal omega, chalcocite, Al2Cu, and many more) for local opti-
mization. These structures turned out to correspond to local minima which are quite
high in energy.

8.4.2 Comparison among Metal Pernitrides

While comparing the SrN2, BaN2, CaN2, LaN2, and TiN2 systems, we noted that
the difference between energies of CaC2-I, MgC2, and CaC2-V structure types is less
compared to other structures for the SrN2 and the CaN2 system. From the energy-vs-
volume and enthalpy-vs-pressure curves calculated using the PW91 and PBE function-
als (see Fig. 8.3 and 8.4), it is likely that the CaC2-V-type is the thermodynamically
stable modification on PW91 level and the CaC2-I type using the PBE functional. The
experimentally known modification is CaC2-I. Based on the enthalpies at zero temper-
ature, the CaN2 system stabilizes in the CaC2-I structure type at ambient conditions
and it transforms into the MgC2 structure at negative pressure. In the BaN2 system,
we noted that the monoclinic structure, ThC2 structure type, is thermodynamically
stable and that the CaC2-I, MgC2, and CaC2-V-types are metastable modifications
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Figure 8.9: Density of states for TiN2 at PBE level for (a)TiN2-I and (b)CaC2-

V-modification. The total density of states is indicated by the red curve. And the

contribution of the titanium atom is given as a shaded green area whereas nitrogen is

displayed by the blue curve.
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Figure 8.10: (a) E(V) and (b) H(p)-curves for the important structures of TiN2 at

PBE level. Energies per formula unit are represented in eV.
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which are higher in energy. We computed the energy difference between the exper-
imentally known structure ThC2 and the tetragonal structure, CaC2-I, 0.3 eV/atom
using the PBE functional.

In LaN2 (334), we observed that the structures seen in the global searches are
among those published in a theoretical study in the literature, including the global
minimum. LaN2 should crystallize in the ThC2 structure at ambient pressure, but at
negative pressure, it transforms into the MgC2-type. There exist also some metastable
structures e.g., a CaC2-I and a CaC2-V type modification. In the case of the alkaline
earth metals (Ca, Sr, and Ba) and the lanthanum pernitride system, we have seen
one common feature, i.e., the ThC2 and CaC2-I structure types are derivatives of the
rock-salt structure type: the center of each N2 unit is surrounded by an elongated and
distorted octahedron of cations and, conversely, the N2 units form distorted octahedra
around the cations. The main difference in these structures is the spatial orientation of
the N2 units. TiN2 should crystallize in the TiN2-I modification at standard conditions.
At elevated pressure, it transforms into the CaC2-V structure. In addition, there are
two metastable modifications, the CaC2-I and the MgC2-type.

8.4.2.1 Bond length of the N2-unit

We compared the bond length of N2 units among the thermodynamically stable mod-
ifications for the five pernitride systems, which are in the range of 1.230 to 1.263 Å
(c.f. Table 8.12), except for LaN2. These bond lengths are much longer than the N-N
triple bond and smaller than the N-N single bond. The length of an N-N double bond
is 1.240 Å. For all systems, the bulk moduli of the various modifications have been cal-
culated, and they are displayed in table 8.12. 65 and 46 GPa are the bulk modulus for
SrN2 and BaN2, respectively, which is in good agreement with experimentally reported
values. In LaN2, the value of the bulk modulus of the ThC2 and the MgC2 modification
is 89 and 126 GPa, respectively. The bulk modulus for the ThC2 modification of the
LaN2 system is also comparable to published results from a theoretical study (334). In
the case of the TiN2 system, the bulk modulus of TiN2-I and the high pressure mod-
ification CaC2-V are 125 and 196 GPa, respectively. Finally, we performed a Bader
charge analysis, which showed that the metal cation of the thermodynamically sta-
ble modifications should be assigned to the oxidation states +2 in all MN2 systems,
suggesting the claim that the N2-dumbbell should exist as a N2−

2 -unit.

8.4.2.2 Trends of binding energies

As we mentioned in the introduction, all the experimentally known pernitride systems
were synthesized at high pressure and high temperature. So, we were interested in
the binding energies of these and/or newly predicted systems. They were computed as
the difference between the total energy of the thermodynamically stable modification
with the total energy of the pure metal and N2 at zero pressure, and are displayed
in table 8.13. We find a negative binding energy, which signifies that the compound
is at least metastable and should not dissociate into the constituent elements at zero
pressure. If we consider PdN2, the existence of this system is only known in the range
of 11 to 36 GPa (330). Thereafter, experimentally known pernitrides can exist at
ambient conditions. For example, the binding energy is computed for CaN2 in the
CaC2-I modification as -1.576 eV per formula unit, whereas for LaN2 it is -2.733 eV
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Table 8.12: Bulk modulus for various metal pernitrides on PBE and GGA level

name of Structure N-N Bulk modulus in GPa

compound type distance in Å experimental calculated

PBE GGA

SrN2 CaC2-I 1.254 65 (334) 64 64

MgC2 1.238 75 76

CaC2-V 1.259 66 66

BaN2 CaC2-I 1.239 51 52

ThC2 1.230 46 (334) 47 47

MgC2 1.230 51 51

CaC2-V 1.247 50 51

CaN2 CaC2-I 1.258 82 81

MgC2 1.242 79 80

CaC2-V 1.263 89 89

LaN2 CaC2-I 1.314 115 113

ThC2 1.299 86a 87 87

MgC2 1.291 126 127

CaC2-V 1.343 115 116

TiN2 CaC2-I 1.460 26 26

TiN2-I 1.258 125 126

CaC2-V 1.353 196 221

a taken from

the literature (334).
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Table 8.13: Binding Energy in eV per formula unit on PBE level for MN2 (where M

= Sr, Ba, Ca, La, and Ti)

name of compound Structure type Binding Energy in eV per formula unit

CaN2 CaC2-I -1.57623

CaC2-V -1.39182

MgC2 -1.43790

SrN2 CaC2-I -1.50679

MgC2 -1.35869

CaC2-V -1.59177

BaN2 CaC2-I -1.48129

ThC2 -1.56064

MgC2 -1.39214

CaC2-I -1.17144

LaN2 CaC2-I -2.56472

ThC2 -2.73344

CaC2-V -2.73283

MgC2 -2.40917

TiN2 TiN2-I -1.91137

CaC2-V -1.51505

CaC2-I -1.10661

per formula unit. In the TiN2 system, the binding energy of the TiN2-I modification
lies in-between those of the CaN2 and LaN2 system. As CaN2 has been synthesized
at high pressure and temperature and the same has been suggested for LaN2 (334),
we propose that a possible way to synthesize TiN2 may also be a high pressure - high
temperature synthesis.

8.4.2.3 Electronic density of states for the TiN2 modifications

In the literature, it is reported that SrN2, BaN2, CaN2, and the proposed LaN2 are
metallic in nature. Thus, we have calculated the electronic density of states (DOS) for
the TiN2-I and the CaC2-V-structure type for titanium pernitride. Fig. 8.9 shows that
TiN2-I has a bandgap of 0.8 eV and should be denoted as a semiconductor, whereas
the CaC2-V modification should be metallic. Apart from common features, e.g., such
as the 2s states of N being filled (between -13 and -10 eV), the π bonding states of
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the (N=N)2− unit for TiN2-I are located in the range from -7 to -5 eV, whereas for
the CaC2-V-type, they are found in the range from -9 to -4 eV. The contribution from
the 3s orbital of Ti and the π∗ states of the N2-unit exist in the range of -3 to 0 eV
in both modifications. Above the Fermi energy level, the density of states exhibits
major contributions from the 3d orbital of the titanium atoms in both modifications.
As we increase the pressure, TiN2 transforms into the higher symmetry to the CaC2-V
modification, which is also responsible for the change in the electronic behavior from
semiconducting to a metal.

8.5 Conclusions

We successfully performed a structure prediction study for MN2 (M = Ca, La, and
Ti) at different pressures using ab-initio energy calculations during both the global
energy landscape exploration and the local optimization. In our study, SrN2 and BaN2

were also included for the comparison. To supplement the global search for new mod-
ifications, we also considered well-known AB2-type modifications as a starting point
for local optimizations. After proper replacement of anion and cation, we relaxed the
structures and compared with structures obtained from global searches. In all systems,
N2 units are surrounded by the cations in an octahedral or distorted octahedral fashion,
except for TiN2-I, where N2 is enclosed in a square pyramid formed by the titanium
atoms. For CaN2, the CaC2-I and the MgC2 modifications are stable at standard
pressure and slightly negative pressure, respectively, and the same applies to SrN2.
For BaN2 and LaN2, the ThC2 modification is stable. Finally, TiN2 should transform
from the TiN2-I modification at standard pressure to the CaC2-V modifications at high
pressure. From a Bader charge analysis, we confirmed the existence of a N2−

2 unit in
the thermodynamically stable modification in all three pernitride systems. With the
exception of TiN2 the pernitride systems investigated are metallic in nature; only the
high-pressure phase of TiN2 should be metallic. The binding energy of TiN2 is slightly
lower than the one of CaN2, and we suggest that it may be synthesized at high pressure
and temperature.
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Summary

Nowadays, in theoretical solid-state chemistry one of the main aims is to develop and
design a new methodology to predict the possible (meta)stable modifications of a chem-
ical system especially at ambient and high pressure. This information is quite useful
to plan the synthesis of new compounds, and to investigate their physical properties
under standard and extreme conditions. It is also important for systems which have
not-yet been synthesized, and those that are hard to synthesize because of the require-
ment of extremely high pressure or high temperature. In such situations, theory can
give some assistance, by investigating the energy landscape of the chemical compound
of interest at ambient and elevated pressure. And these exploration methods also give
more insight about chemical systems which can have several stable or metastable mod-
ifications. And theory can help to determine the crystal structure of newly synthesized
compounds and provide estimates about their stability.

The aim of this thesis is to develop energy landscape exploration methods that work
efficiently on the ab-initio level, and to apply these techniques to explore the energy
landscape of several chemical systems such as elemental solids and binary compounds.
The starting point of our exploration is to use the fact that (meta)stable modifications
of chemical compounds correspond to locally ergodic regions of the energy landscape.
At low temperatures these regions are basins around local minima, and thus identifying
these minima is the foundation of all structure prediction methods. Once these stuc-
tures have been found, they are analyzed and their physical properties are computed.

The general exploration methodology can be split into two parts, the first part being
the global search and the second one the local optimization. The global optimization
method used in this work to determine structure candidates consists of simulated an-
nealing runs and subsequent stochastic quenches, where the energy is computed using
ab-initio methods. The CRYSTAL and the VASP programs were used for the energy
calculations. As part of our work, we created an interface for our global optimization
program (G42) to the VASP-code. Both VASP and CRYSTAL have certain advantages:
VASP requires no optimization of basis sets, and each energy calculation is relatively
fast. CRYSTAL can employ the Hartree-Fock approximation, which tends to yield
faster convergence than DFT-based calculations. Since the efficiency of the global
search is an important factor in the methodology, we reduced the simulation time by
using less stringent parameters in the ab-initio calculations during the global optimiza-
tion, such as a e.g., smaller k-point mesh, less diffuse basis set (in case of CRYSTAL),
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and higher tolerance of the Self Consistent Field (SCF) cycles than usually used for
ab-initio calculations. After the global search, the symmetry and space group of the
candidate was determined. Then, a local optimization was performed for this candidate
on ab-initio level with strict simulation parameters, and again, the symmetry and space
group are identified. The E(V) and H(p)-curves yielded the thermodynamical stability
of the structure as function of pressure, and the transition pressures among the phases
were determined. For estimating the kinetical stability, phonon calculations were per-
formed. Finally, to understand the charge distribution of the system, Bader charge
analyses (VASP) and Mulliken population analyses (CRYSTAL) were performed.

This methodology was successfully applied to various chemical systems viz., lithium,
calcium carbide and the binary pernitrides MN2 (M = Ca, La, and Ti). In the case
of lithium, all experimentally known modifications (fcc, bcc, and hcp) at standard
pressure were observed during the global explorations, except the 9R modification.
The A15 structure was predicted as a new modification which is quite energetically
competitive to the known modifications. Phonon calculations and relaxations after
finite atoms displacements were performed in order to study the kinetical stability of
the new structure. The results showed that the new predicted modification is quite
stable and a good candidate for synthesis.

In the second project, global searches were performed for calcium carbide, which is a
mixed covalent-ionic system. We found one experimentally known structure and several
more which are closely related to known low-temperature modifications. Two newly
predicted modifications are at least metastable at standard pressure: an orthorhombic
structure, CaC2-V, which is lowest in energy compared to all (experimentally and
theoretically observed) modifications, and another monoclinic structure (CaC2-VI),
which is closely related to the experimentally known low-temperature modification
CaC2-II. A phase transition was predicted at about 30 GPa, with a transformation of
the six-fold coordinated structure (CaC2-VI) to an eight-fold coordinated one (CaC2-
VII), which is a variation of the CsCl structure type.

Finally, a global structure prediction study was performed for metal pernitride
systems, MN2 (M = Ca, La, and Ti) at various pressures. We also included SrN2 and
BaN2 in our study, which had been synthesized some years ago, for comparison. In
addition to global searches, we investigated, whether well-known AB2-structure types
also constitute local minima on the energy landscape. We noted that in all pernitride
systems, the N2 dumbbells are surrounded by the metal cations in an octahedral or
distorted octahedral fashion. An exception is the TiN2-I structure, where the N2 units
are enclosed in square-pyramids formed by the cations. In the CaN2 and SrN2 system,
the CaC2-I and MgC2 modifications are thermodynamically stable at standard pressure
and slightly negative pressure, respectively. The ThC2 structure type is stable for BaN2

and LaN2. TiN2 should transform from the TiN2-I modification at standard pressure
to the CaC2-V structure type at 20 GPa. The pernitride systems are metallic in
nature except TiN2, which shows metallic behavior only at increased pressure in the
CaC2-V-modification. The existence of a N−2

2 unit in all thermodynamically stable
modifications was confirmed using Bader charge analysis. TiN2 may be a promising
candidate for synthesis at high pressure and temperature as the binding energy of TiN2

is slightly lower than the one of CaN2, and CaN2 has recently been synthesized at such
thermodynamic conditions.

In conclusion, we successfully explored the energy landscape for lithium, calcium
carbide, and metal pernitride systems at standard and high pressure conditions. We
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predicted new modifications for all systems. Recently, CaC2-VII, the predicted high-
pressure crystal structure for calcium carbide was found in the BaC2 system.
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[113] A. Möbius, A. Neklioudov, A. Diaz-Sanchez, K. H. Hoffmann,
A. Fachat, and M. Schreiber. Phys. Rev. Lett., 79:4297–4301, 1997. 18
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Appendix A

Ionic radii

Table A.1: Ionic radii and ionization potential for lithium and calcium as function

of charge.

Ionic radii and ionization potential for lithium and calcium as function of

charge. (226)

neme of the element charge ionic radii in Å ionization energy in eV

Li -1.0 1.52 -0.618

0.0 1.23 0.0

1.0 0.78 5.39

Ca -2.0 1.97 100000.0

-1.0 1.97 100000.0

0.0 1.74 0.0

1.0 1.41 6.111

2.0 1.06 17.98
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A. IONIC RADII

Table A.2: Ionic radii and ionization potential for carbon, nitrogen, lanthanum, and

titanium as function of charge.

neme of element charge ionic radii in Å ionization energy in eV

C -4.0 2.6 25.0

-3.0 2.1 15.0

-2.0 1.6 5.0

-1.0 0.7 -1.263

0.0 0.7 0.0

1.0 0.6 11.26

2.0 0.43 35.63

3.0 0.3 83.47

4.0 0.18 147.94

N -3.0 1.4 21.6

-2.0 1.2 8.2

-1.0 1.0 -0.07

0.0 0.71 0.0

1.0 0.25 14.54

La 0.0 1.88 0.0

1.0 1.69 5.574

2.0 1.42 16.628

3.0 1.22 35.794

4.0 1.10 85.72

Ti -1.0 2.0 -0.079

0.0 1.44 0.0

1.0 1.32 6.83

2.0 0.86 20.46

3.0 0.69 48.6

4.0 0.61 91.84
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Appendix B

Basis set for lithium and carbon

Table B.1: Besis set for lithium in CRYSTAL09 input format

3 3

0 0 6 2. 1.

840.0 0.00264

217.5 0.00850

72.3 0.0335

19.66 0.1824

5.044 0.6379

1.5 1.0

0 1 1 1. 1.

0.514 1.0 1.0

0 1 1 0. 1.

0.15 1.0 1.0
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B. BASIS SET FOR LITHIUM AND CARBON

Table B.2: Besis set for carbon

6 3

0 0 6 2.0 1.0

.3047524880D+04 .1834737130D-02

.4573695180D+03 .1403732280D-01

.1039486850D+03 .6884262220D-01

.2921015530D+02 .2321844430D+00

.9286662960D+01 .4679413480D+00

.3163926960D+01 .3623119850D+00

0 1 3 4.0 1.0

7.868272350 -0.1193324200 0.06899906660

1.881288540 -.1608541520 0.3164239610

0.5442492580 1.143456440 0.7443082910

0 1 1 0.0 1.0

.1687144782 1.000000000 1.000000
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Appendix C

Pseudopotential for Calcium

Table C.1: Pseudopotential for carbon in CRYSTAL09 input format

220 1

2. 0 1 1 1 0

0.898000 12.466000 0

0.548000 5.146000 0

1.119000 -7.709000 0

0 0 2 2.0 1

0.8382650 0.1068310

0.4323130 -0.3872400
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C. PSEUDOPOTENTIAL FOR CALCIUM

154



Appendix D

List of publications

A. Kulkarni, K. Doll, J. C. Schön, and M. Jansen, “Structure prediction of binary
pernitride compounds MN2 (M = Ca, Sr, Ba, La, and Ti)” (in preparation)

A. Kulkarni, K. Doll, D. L. V. K. Prasad, J. C. Schön, and M. Jansen, “Alternative
structure predicted for lithium at ambient pressure”, Phys. Rev. B, 84, 172101 (2011)

A. Kulkarni, K. Doll, J. C. Schön, and M. Jansen, “Global exploration of the enthalpy
landscape of calcium carbide”, J. Phys. Chem. B, 114, 15573 (2010)

155



D. LIST OF PUBLICATIONS

156



Part VII

Formalia

157





Eidesstattliche Versicherung
Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig
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