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Abstract

A given chemical system, in general, will realize many (meta)stable struc-
tures, some of which might be observable on an experimentally viable
timescale. Some of these polymorphs could have novel properties waiting to
be exploited. However, addressing the problem of directing solid state syn-
thesis towards such unknown polymorphs remains a major challenge. The
prediction of new compounds using various theoretical methods is not usu-
ally followed up by an actual synthesis and planning the synthesis of novel
inorganic solids often requires recourse to theoretical methods that can not
only predict the thermodynamic stability of possible structure candidates
but also model the kinetic behavior of atoms during the experimental syn-
thesis. Here, we strive to fill this gap between knowledge derived from
structure prediction methods and performing the actual synthesis of new
structures experimentally by using tools available to the theoretical chemist
that include energy landscape search algorithms, ab initio spectroscopy cal-
culations and molecular dynamics simulations with the synthesis of MgF2

via the low-temperature atom beam deposition (LT-ABD) method as the
model system.

Hence, in a first step, in order to understand the possible cluster mod-
ifications of MgF2 that can exist in the vapor phase, we perform global
optimizations on neutral and charged clusters using Monte-Carlo simulated
annealing and find many possible structures. We also explore the energy
landscape of (MgF2)3 and (MgF2)4 using the threshold algorithm in order
to be able to estimate the stability and dynamics of these clusters. This
method allows us to determine not only the stable and metastable isomers
but also the barriers separating these isomers and the probability flows
among them, yielding estimates of the stability of all the isomers found.
We find that there is reasonable qualitative agreement between the ab ini-
tio and empirical potential energy landscapes, and important features such
as sub-basins and energetic barriers follow similar trends. However, we
observe that the energies are systematically different for the less compact
clusters, when comparing empirical and ab initio energies. Furthermore, we
employ the same procedure to additionally investigate the energy landscape
of the tetramer. For this case, however, we use only the empirical potential
due to computational limitations.

This is followed by the calculation of Raman and IR spectra including the
phonon modes and their intensities, for all the clusters found from the above
study. We also calculate IR intensities and phonon modes for all bulk poly-
morphs of MgF2. This way, we provide the synthetic chemist with a means



to observe possible (meta)stable phases of this system in both the vapor
phase and the deposit while performing a deposition experiment on MgF2.
The calculated data are compared with in-situ measurements in the LT-
ABD apparatus. The MgF2 vapor and film are characterized via Raman
spectroscopy of the MgF2 gas phase species embedded in an Ar-matrix and
of the MgF2-films deposited onto a cooled substrate, respectively. We find
that, in the vapor phase, there are mostly monomers and dimers of the neu-
tral and charged species present in our experimental setup. Furthermore,
the results suggest that in the amorphous bulk MgF2, rutile-like domains
are present and MgF2 clusters similar to those in the matrix. Finally, peaks
at about 800 cm−1, which are in the same range as the Ag modes of clusters
with dangling fluorine atoms connected to three-coordinated Mg atoms, in-
dicate that such dangling bonds are also present in amorphous MgF2 and
can be used to track the amorphous to crystalline transition in this system.

Finally, we model the growth of solid MgF2 from the gas-phase on an Al2O3

substrate as it occurs in a real LT-ABD experiment, a hypothetical MgF2-
anatase substrate and a MgF2-rutile substrate. The process is studied in
all its stages, from the dynamics of MgF2 clusters in the gas phase, over
their impact on the surface of the cold and hot substrates, and their diffu-
sion on the substrate, to the formation of crystallites. The growth process
was analyzed as a function of synthesis parameters including the substrate
temperature, deposition rate and types of clusters deposited.

Both high and low rates resulted in the formation of amorphous MgF2

deposits. On annealing, we discovered a possible mechanism for the sta-
bilization of the CaCl2-type structure. We find two competing structures
in the first few nanoseconds of the deposition related to the CaCl2 and
CdI2 structure types and argue that this competition stabilizes the CaCl2-
type structure long enough for experimental observations to take place.
Furthermore, the atom arrangements found in our simulations are in good
agreement with existing experimental observations based on TEM and XRD
measurements, for both the amorphous and the partly ordered metastable
phase.



Zusammenfassung

In einem gegebenen chemischen System können im allgemeinen viele (meta)-
stabile Strukturen existieren, von denen einige auf einer experimentell
zugänglichen Zeitskala beobachtet werden können. Einige diese Polymor-
phe könnten neuartige Eigenschaften haben, die der zukünftigen Nutzung
harren. Die Lösung des Problems, wie die Festkörpersynthese gezielt auf
eine solche Verbindung hingelenkt werden kann, bleibt jedoch eine grosse
Herausforderung. Denn auf die Vorhersage neuer Verbindungen durch the-
oretische Methoden erfolgt normalerweise keine wirkliche Synthese, und
die Planung der Synthese von anorganischen Festkörpern benötigt oft den
Einsatz von theoretischen Verfahren, die nicht nur die thermodynamis-
che Stabilität von möglichen Strukturkandidaten vorhersagen sondern auch
das kinetische Verhalten der Atome während der experimentellen Synthese
modellieren. In dieser Arbeit wollen wir den Graben zwischen den Ken-
ntnissen aus der Strukturvorhersage und der tatsächlichen Synthese neuer
Strukturen durch den Einsatz von Verfahren überbrücken, die dem theo-
retischen Chemiker zur Verfügung stehen wie Algorithmen zur Erkundung
von Energielandschaften, zur Berechnung von Spektren und für Molekular-
dynamiksimulationen, wobei die Synthese von MgF2 durch die Tieftemper-
aturabscheidungsmethode (LT-ABD) als Modellsystem dient.

Vom Standpunkt des Modellierers kann man die LT-ABD-Synthese in drei
Teile aufspalten: the Erzeugung der Gasphase, die Abscheidung des Gases
auf dem Substrat, und das Tempern des abgeschiedenen Films. Um die
möglichen Clustermodifikationen von MgF2, die in der Gasphase existieren
können, zu verstehen, führen wir als ersten Schritt globale Optimierun-
gen an neutralen und ionischen Clustern unter Verwendung von Simu-
lated Annealing durch und finden viele mögliche Strukturen. Darüber
hinaus erkunden wir die Energielandschaft von (MgF2)3 und (MgF2)4 mit
dem Thresholdalgorithmus, um die Stabilität und Dynamik dieser Cluster
abzuschätzen. Diese Methode erlaubt uns nicht nur die Bestimmung der
stabilen und metastabilen Isomere sondern auch der Barrieren, die die Iso-
mere trennen, sowie der Wahrscheinlichkeitsströme zwischen ihnen, welche
Abschätzungen der Stabilität aller Isomere liefern. Wir finden eine qualita-
tive Übereinstimmung zwischen der auf ab initio Energien und der auf em-
pirischem Potential basierenden Landschaft, und wichtige Aspekte wie die
Unterbassins und die Energiebarrieren folgen ähnlichen Trends. Wir finden
allerdings, dass diese Energien sich bei den weniger kompakten Clustern
systematisch unterscheiden. Daneben haben wir dasselbe Verfahren ange-
wandt, um zusätzlich die Energielandschaft des Tetramers zu untersuchen.



In diesem Fall haben wir uns wegen des Rechenaufwandes auf das em-
pirische Potential beschränkt.

Der nächste Schritt bestand in der Berechnung der Raman- und Infrarot-
spektren, einschliesslich der Phononmoden und Intensitäten, für alle Clus-
ter, die in der obigen Untersuchung gefunden worden waren. Zusätzlich
berechneten wir die IR-Intensitäten und Phononmoden für alle Bulkpoly-
morphe von MgF2. Hierdurch stellen wir dem Synthesechemiker eine Meth-
ode zur Verfügung, mögliche (meta)stabile Phasen des Systems sowohl in
der Gasphase als auch in dem abgeschiedenen Film während eines Ab-
scheidungsexperiments zu beobachten. Die berechneten Daten werden mit
den in-situ Messungen in der LT-ABD-Apparatur verglichen. Das MgF2-
Gas und der MgF2-Film werden mit Hilfe von Ramanspektroskopie an
der in einer Argonmatrix ausgefrorenen Gasphase bzw. an dem auf einem
gekühlten Substrat abgeschiedenen Film untersucht. In der Gasphase finden
wir vor allem Monomere und Dimere der neutralen und geladenen Spezies.
Die Messungen deuten weiter darauf hin, dass in der amorphen Bulkphase
bereits rutilartige Domänen vorhanden sind. Schliesslich zeigen Peaks bei
etwa 800 cm−1, die in demselben Bereich wie die Ag-Moden der Cluster
mit isolierten F-Mg-Bindungen an dreifach koordinierte Magnesiumatome
liegen, dass solche einfach gebundenen isolierten Fluoratome auch im amor-
phen MgF2 vorliegen und genutzt werden können, um den Übergang von
der amorphen zur kristallinen Phase in diesem System zu verfolgen.

Im letzten Schritt modellieren wir das Wachstum des festen MgF2 von der
Gasphase auf einem Al2O3-Substrat, wie es im tatsächlichen Experiment
verwendet wird, sowie auf einem MgF2-Anatassubstrat und einem MgF2-
Rutilsubstrat. Der Prozess wird in all seinen Teilschritten untersucht, von
der Dynamik der MgF2-Cluster in der Gasphase, über ihr Auftreffen auf
der Oberfläche der kalten und heissen Substrate, und ihre Diffusion auf dem
Substrat, bis zu der Bildung von Kristalliten. Der Wachstumsprozess wurde
als Funktion der Syntheseparameter einschliesslich der Substrattemperatur,
der Abscheiderate, und der Art der abgeschiedenen Cluster analysiert.

Sowohl hohe als auch niedrige Abscheideraten führten zur Bildung von
amorphen MgF2-Filmen. Beim Tempern entdeckten wir einen möglichen
Mechanismus für die Stabilisierung der CaCl2-Struktur. Wir finden zwei
im Wettbewerb stehende Strukturen in den ersten Nanosekunden der Ab-
scheidung, die mit der CaCl2- und der CdI2-Struktur verwandt sind, und
schliessen, dass dieser Wettbewerb die CaCl2-artige Struktur lange genug
stabilisiert, um experimentelle Beobachtungen vornehmen zu können.
Darüber hinaus sind die in unseren Simulationen beobachteten Atomanord-
nungen in guter Übereinstimmung mit den vorliegenden auf TEM und
XRD-basierenden Messdaten, und zwar sowohl für die amorphe also auch
für die teilweise geordnete metastabile Phase.
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Introduction

1.1 Introduction

A given chemical system, in general, will realize many (meta)stable structures that
might be observable on an experimentally viable timescale. Some of these polymorphs
could have novel properties waiting to be exploited. However, systematically address-
ing the problem of directing solid state synthesis towards such unknown polymorphs
remains a major challenge. While a number of inorganic materials of technological
interest have been discovered serendipitously(1), there has been a concentrated effort
in the last two decades to rationally synthesize new inorganic materials. At the same
time, it has been recognized that the exploration of the space of possible stable and
metastable compounds experimentally is not sufficient and must be supplemented by
a theoretical effort aimed at predicting new compounds (2, 3, 4, 5, 6, 7, 8, 9, 10). This
symbiotic effort has led to the successful prediction(11, 12, 13, 14) and subsequent syn-
thesis of a number of new and exciting compounds(15, 16, 17, 18, 19). However, the
prediction of new compounds using various theoretical methods is not usually followed
up by an actual synthesis. The failure may be due to a lack of subtle experimental
synthesis methods where a number of parameters can and must be tweaked to achieve
directed synthesis. While we can often propose a synthesis by analogy to the routes
of related compounds, planning the synthesis of novel inorganic solids often requires
recourse to theoretical methods that can not only predict the thermodynamic stability
of possible structure candidates but also model the kinetic behavior of atoms during
the experimental synthesis. In principle, theory can allow us to model existing synthe-
sis routes in atomic detail (20), analyze the various steps involved, and finally aid the
experimentalist in his work. Still, in practice, very few experimental methods can be
simulated with reasonable accuracy from start to finish.

In this context, the low-temperature atom beam deposition method (LT-ABD) has
been found to be particularly successful for the synthesis of previously unknown com-
pounds. This approach has been employed to successfully synthesize new metastable
compounds of binary and ternary salts and intermetallics(14, 15, 16). As opposed
to conventional deposition methods used for solid-state synthesis, such as molecular
beam epitaxy, where the substrate is heated in order to obtain ordered structures,
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in LT-ABD, an atomically disperse amorphous deposit is formed on a cold substrate.
Crucially, this technique reduces the thermal activation barrier for solid state reactions
by shortening the diffusion paths between the reactant molecules. These unique char-
acteristics bring this particular synthesis method within the realm of simulation using
advanced Monte-Carlo and molecular dynamics methods.(16)

In this thesis, we strive to model the whole LT-ABD synthesis route for the specific
example of alkaline earth halides as realistically as possible. In a previous study on
the energy landscape of magnesium difluoride solids, Wevers et al. (21) had suggested
the not-yet-synthesized MgF2-anatase structure as a likely structure candidate. On the
energy landscape, this modification appears as an isolated basin with a high energetic
barrier separating it from the rest of the structures. This indicates that, once syn-
thesized, it might be possible to stabilize this structure on experimentally measurable
timescales. This possibility, in particular, makes it interesting to study MgF2 as a
model system for LT-ABD deposition.

In an earlier investigation, the LT-ABD deposition of Xenon on alpha-alumina was
studied using molecular dynamics simulations(22). In this case, a random distribution
of Xe atoms was deposited on a cooled Al2O3 substrate, after verifying that even at
rather low temperatures, Xe was still a monoatomic gas. In contrast, in the case of al-
kaline earth halides, the composition of the vapor phase is expected to play a major role.

So far, in the field of inorganic crystal structure prediction, there has been an over-
whelming emphasis on predicting the thermodynamic stability of unknown modifica-
tions of various systems(2, 3). This might be sufficient if one explores high-temperature
synthesis methods that are expected to yield the thermodynamically stable compound.
But, for the LT-ABD synthesis, it is important to understand the kinetic behavior dur-
ing deposition and subsequent tempering and in this way try to understand different
routes that could lead to the same global minimum. As a consequence, in this thesis,
we have divided the synthesis route into essentially three steps (See Figure 1.1):

1. The formation of small clusters in the vapor phase after evaporation :
This is modeled by a thorough investigation of the energy landscape of neutral
(MgF2)n (n=1,3) clusters on the ab initio level (estimation of barriers, stabil-
ity and probability flows among various isomers)) and an investigation of the
empirical energy landscape of ionic species and global minima of bigger cluster
configurations. Eventually, we arrive at likely cluster candidates for the gas phase
and calculate the Raman and infra-Red spectra on the ab initio level and compare
with in-situ Raman measurements for experimental verification.

2. Deposition of clusters on α-Al2O3, MgF2-rutile and hypothetical MgF2-
anatase : Neutral dimers and monomers of MgF2 are deposited on three different
substrates. Parameters that are varied include the substrate temperature, rate
of deposition of clusters and the face of the substrate exposed to the deposit.

3. Tempering of the deposit : After a long deposition, we temper this deposit at
a constant temperature for a long time to see what kind of ordering is produced.
Again, the variable parameters include temperature and face of the substrate
exposed to the deposit.
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Figure 1.1: LT-ABD setup-A schematic representation of the LT-ABD method.

In this manner, we have strived to achieve an optimal combination of various model-
ing tools that are available to the theoretical chemist. These include a powerful package
of stochastic Monte-Carlo energy landscape exploration algorithms (G42), molecular
dynamics simulations code for thousands of atoms and Density functional theory based
approaches for calculation of energies and vibrational spectra on an ab initio level. We
hope that by using such a combination of tools to study the aforementioned three steps
of the synthesis route, we will be able to gain further insight into the process of rational
synthesis of inorganic solids via the LT-ABD method.

Understanding deposition and crystal growth mechanisms is key to both funda-
mental and applied sciences. It has been observed that different experimental tech-
niques for synthesis of periodic structures take different paths to the global minimum
structure (23). The low-temperature atom beam deposition method(15), has been em-
ployed in order to produce both known and novel stable and metastable phases of
oxides(24),nitrides(25, 26) and halides(16, 18) that had not been accessible using any
alternative synthesis route. The reason for this could be the low thermal activation
barrier associated with this technique that slows down kinetics to experimentally ob-
servable scales.During low-temperature atom beam deposition, the metal constituents
of the desired compound are initially evaporated using thermal effusion cells. Simulta-
neously, the oxygen molecules, for example, are broken up to form a low-density atomic
gas. The oxygen-metal gas thus produced is then deposited on a cold substrate, which
is maintained at liquid nitrogen or liquid helium temperature.

In the case of MgF2, an order-disorder transition is observed on annealing the de-
posit from a low temperature of -228 ◦ C to 450 ◦ C. A new CaCl2 polymorph of MgF2

was found using the low-temperature atom-beam deposition technique (18). In this
experiment, the MgF2 bulk was initially evaporated and using thermal effusion cells at
temperatures of 50K to 800K. The molecules are broken up at very low partial pressures
of 10−6 mbar. The gas produced is then deposited on a cold substrate, which is main-
tained at very low temperatures using liquid helium or liquid nitrogen. Eventually, an
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X-ray amorphous deposit is obtained on the substrate at a low-temperatures. Then,
after slowly heating the substrate from the bottom, various (meta)stable modifications
are observed during the transition to the global minimum structure.

X-ray amorphous deposits are obtained as a result of this procedure. Finally, upon
slow heating, crystals of various stable and metastable modifications are generated.
Understanding this procedure is of high scientific and technological interest, due to its
unusually high degree of control over the synthesis parameters as compared to most
other solid state synthesis methods. The goal of this study is thus to model such a
synthesis throughout all its stages with MgF2 as a model system.

Molecular dynamics predicts atomic trajectories by direct integration of the equa-
tions of motion Newtons second law for classical particles with appropriate specifica-
tion of an inter-atomic potential and suitable boundary conditions. In this section, I
briefly explain a few important aspects of a classical Molecular Dynamics simulation.
A comprehensive introduction to MD techniques can be found in Ref.(27).
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Background

In this section we describe (a) experimental work regarding the system under inves-
tigation and (b) pioneering work in the fields of structure prediction of clusters and
solids, ab initio spectroscopy and molecular dynamics modeling of vapor deposition
techniques that are of relevance to the investigations performed in this thesis. A basic
introduction to various methods used in the thesis is also given in some detail.

2.1 Brief literature review

2.1.1 Experiments on MgF2

Different physical vapor deposition techniques have been used to synthesize thin films
of MgF2. For example, Kennedy et al.(28) studied the optical properties of MgF2 films
deposited by Ion Beam Assisted Deposition. Atanassov et al.(29) studied the mechani-
cal and structural properties of MgF2 films prepared by plasma ion-assisted deposition.
Many such studies have since been performed in order to improve the refractive index
of thin films of MgF2 for anti-reflection properties for solar cells (30, 31).

Experiments directed purely at synthesis of new structures of MgF2 are consider-
ably more rare. The low-temperature atom beam deposition carried out by Bach et al.
(18) found an unknown CaCl2-type polymorph as a meta-stable state.

Polymorphs other than the rutile-type and the CaCl2-type have been observed ex-
perimentally through high-pressure studies of Haines et al.(32).In the latter work, the
transition from rutile-type to α-CaCl2-type phase was shown to be second order and
probably ferroelastic. They also found the α-PbO2 (3GPa), PdF2 (3 GPa) and the
nine-fold coordinated contunnite phase (35GPa) for the MgF2 system. Furthermore,
the authors presented a general pathway for high-pressure phases. This was as follows:
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rutile → CaCl2 → α-PbO2 → PdF2(modified fluorite) → α-PbCl2, with an overall
increase in the coordination number of Mg from 6 to 9. The cubic fluorite-type struc-
ture was also found to be stable at 30GPa. (33)

Experimental Raman studies on bulk MgF2 have been carried out frequently (33,
34, 35, 36). The first Raman spectrum of magnesium fluoride in the rutile type was
calculated by Krishnan and Katiyar (34, 35). Subsequently, the vibrational modes
were assigned from more accurate data by Porto et al. (36). As far as the vapor
phase is concerned, some experimental studies including Raman(37), infra-red(38),
and mass spectroscopic measurements(39, 40) have been performed in the past. MgF2

and (MgF2)2 clusters have been previously observed and characterized using Raman
spectroscopy by Lesiecki et al.(37). However, the assignment of the specific isomer was
not conclusively made by any experimental study.

2.1.2 Theoretical studies on MgF2

The energy landscape of bulk MgF2 has been studied in detail using simulated anneal-
ing and the threshold algorithm by Wevers et al. (21, 41) and various possible meta-
stable modifications at zero pressure were suggested(41, 42, 43). Based on this work,
it appears that the anatase-type modification is locally ergodic and should be kineti-
cally stable at the standard conditions. This implies that given the right experimental
parameters, it might be possible to generate the yet-unknown anatase polymorph us-
ing e.g the LT-ABD method. However, the physical properties of the hypothetical
metastable bulk MgF2 phases, which could be used for their identification have not
yet been studied. In addition, the high pressure phase transition from rutile to CaCl2
was studied using molecular dynamics by Zhang et al. (44) and Nga et al.(45) where
a shock-induced phase transition from rutile to the cubic fluorite structure was found
to take place.

Furthermore, the frequencies of the monomer, two dimers and nine proposed trimers
of MgF2 have been studied at different levels of theory by Gigli, Axten, Simandiras,
Ystenes and Francisco et al. (46, 47, 48, 48, 49, 50). None of the theoretical cal-
culations have included any data on intensities, which would be particularly useful
when assigning structures of isomers to experimental data. Furthermore, the possible
charged species of MgF2 that could appear under experimental conditions in the gas
phase have not been studied up to now to our knowledge.

2.1.3 Deposition of atoms and clusters on a substrate

Growth processes of solid materials are of great interest from both the fundamental
and the technological point of view. Understanding how different growth procedures
lead to different polymorphs of the same substance, for instance, is a key issue in nat-
ural sciences with many applications in fields as diverse as the electronic, chemical and
pharmaceutical industry. Since different modifications of the same material display in
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general different properties(23), it is vital to study the relationship between the syn-
thesis route followed and the resulting morphology of the grown compound.

Although recent progress has made available tools for the microscopy and spec-
troscopy of solid compounds during the whole growth process (51, 52, 53), atom-
istic simulations prove invaluable in casting light on the mechanisms which determine
the growth mode (54, 55). In particular, molecular dynamics (MD) has been exten-
sively used to study growth processes of materials from both the liquid and the gas
phase (56, 57, 58, 59, 60, 61, 62, 63), especially in an attempt to model the experimen-
tal conditions occurring during a molecular beam epitaxy experiment(64).

A brief background of the methods used in this thesis are provided in the following
subsections.

2.2 Constructing an energy landscape

An energy landscape is defined as the hypersurface of (potential) energy over the 3N-
dimensional space of configurations of a N-atom chemical system. Thus, the landscape
contains all the possible (meta)stable modifications as locally ergodic regions; in par-
ticular the local minima of a given chemical system, together with transition paths and
energetic barriers between these regions. In practice, the chemical system is defined
by a potential that describes all important interactions in this system accurately. The
(meta)stable states are essentially local minima on this potential, and the barriers and
possible transition paths depend on the form of this potential. Thus, it is crucial to
have an accurate potential to describe the given system.

A three-pronged approach is used for the effective exploration of the energy land-
scape of clusters and bulk systems studied here.

1. Global optimization using e.g. simulated annealing in order to find local minima.

2. A detailed global exploration of the barrier structure using the threshold algo-
rithm.

3. Local optimization of structure candidates on ab initio level.

We note that plenty of methods such as simulated annealing, genetic algorithms,
taboo search, lid-based algorithms, basin-hopping, meta-dynamics, swarm-particle op-
timization, etc. have been developed for the identification of local and global minima
and the study of the global barrier structure for chemical systems. These are briefly
described in the following subsections. The underlying theme for the global optimiza-
tion methods is to arrive at the lowest-energy structures in the shortest possible time.
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2.2.1 Global optimization

2.2.1.1 Simulated annealing

Monte-Carlo (MC) methods are essentially stochastic in nature1. Here, a walker at
configuration i at time step t is moved in a particular direction in configurational space
(by making e.g an atom exchange move). If this new configuration j satisfies a pre-
defined acceptance criterion, the move is accepted. Else, the move is rejected and the
walker stays at the original configuration i. In classical MC, we use the Metropolis
acceptance criterion (65) i.e if the energy of state j is equal to or below the one for
state i, the move is accepted. If E(j) > E(i), then the move is accepted with an
exponential probability exp (−(E(j)− E(i))/C) where E(j) and E(i) are the energies
of the final and initial configuration respectively and C is a control parameter usually
corresponding to the temperature kT . In this way, barriers of height C can be crossed
with a certain probability (1/C) while sampling the energy landscape. If the control
parameter C is set to zero, only moves that take the system lower in energy will be
accepted. This corresponds to the stochastic quench.

Kirkpatrick et al. developed the simulated annealing algorithm (66) for global op-
timization. Cerny (67) used this approach to solve the traveling salesman problem(68,
69). Simulated annealing requires a single initial individual configuration as a starting
point and a unary search operation. The implementation of this algorithm is quite
simple: it corresponds to a lowering of the control parameter C during a Metropolis
walk(65).

Typically, simulated annealing is performed in order to globally explore the en-
ergy landscape of the system. The aim is to be able to visit as many interest-
ing configurations of the system as possible in the “shortest” time. Various mod-
ifications of this method are available today depending on the problems at hand
(4, 68, 69, 70, 71, 72, 73). In the following subsections, we describe other methods
used for globally optimizing a system and finding the global minimum on the energy
landscape. While not following trajectories as precisely as a molecular dynamics sim-
ulation, Monte-Carlo based methods are often preferable for optimization purposes
because of their ability to employ large steps on the landscape and thus explore com-
plex landscapes more efficiently. We note that the choice of an efficient combination of
moves (the ”moveclass”) is of great importance for the success of the optimization.

2.2.1.2 Genetic algorithms

Genetic algorithms are a class of evolutionary algorithms that are inspired by the
natural selection rules of Darwinian evolution and use moves derived from evolution-
ary biology such as inheritance, mutation, natural selection, and recombination (or
crossover) to generate new structures (74, 75). The technique was pioneered by J.
Holland in 1975 (76). As a first step, many random solutions are generated to form an

1This method derives its name from the city of Monte-Carlo as it involves the use of random

numbers and probabilistic statistics.
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initial population.

The population size depends on the nature of the problem, but typically contains
several hundreds or thousands of possible solutions. Traditionally, the population is
generated randomly, allowing the entire range of possible solutions or atom configu-
rations for chemical systems. Occasionally, the solutions may be “seeded” in areas
where optimal solutions are likely to be found. These random seeds are represented
in a binary format as a set of 0s and 1s; however for chemical systems, representation
in other formats is possible, especially if the configurations are always locally mini-
mized. Many of these solutions are stochastically selected from the whole population
and crossed (mutated) with each other to form a new population. The fitness of these
populations is evaluated using appropriate fitness tests and this process is repeated
iteratively. Eventually, the system of random configurations “evolves” to a population
that is the fittest.

When used in the context of constructing energy landscapes, the fitness is usually
set equal to the energy of the system where maximum fitness corresponds to minimum
energy. Thus, an ensemble of configurations with the lowest energy survives preferen-
tially from one generation to the next. In the process, we find interesting low-energy
structures and the global minimum structure is the one with the lowest energy. More
details can be found in Ref.(75) and Ref.(77, 78).

2.2.1.3 Basin hopping

The basin-hopping method was suggested by David Wales in 1997(79). In this tech-
nique, the potential energy surface is transformed into a collection of inter-penetrating
staircases. The model exploits the fact that a typical potential energy surface should
have a large potential energy gradient and the lowest possible transition state energies
or rearrangement barriers. The transformation associates any point in configuration
space with the local minimum obtained by a geometry optimization started from that
point, effectively removing many transition state regions from the problem. However,
unlike other methods based upon hypersurface deformation, this transformation does
not change the global minimum. The method is described in Ref.(79) in detail.

A description of other interesting methods used for global optimizations on the
energy landscapes of chemical systems can be found in Ref. (4, 70, 80, 81, 82, 83).

2.2.2 Exploring the barrier structure

2.2.2.1 Threshold algorithm

The threshold algorithm (70) is a stochastic approach for exploring the barrier structure
of a chemical system. Starting points of the threshold exploration are the minima
obtained from e.g. simulated annealing. For each local minimum, a series of lids
slightly above it are chosen. Then, one performs a random walk in configuration space
restricting the total energy of the system below the specified lid value. Periodically,
multiple quenches are performed from holding points along the walker’s trajectory in
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Figure 2.1: Threshold algorithm - A schematic representation of the threshold

algorithm.

configuration space (c.f. Figure 2.1). For lids slightly above the minimum, the walker
typically remains in the vicinity of the starting minimum. On raising the lid beyond
a certain threshold, different minima are obtained after the quench. This implies that
the energetic barrier for transformation has been breached, and the lid at which this
occurs gives an upper limit for the height of the energetic barriers separating the
minima. We can also analyze the distribution of local minima found from the holding
points as a function of energy lid. This allows an estimate of the size of the transition
regions compared to the minimum basins(21). Furthermore, the likelihood to reach a
neighboring minimum as a function of lid energy yields a measure of the probability
flow in the system (42). Note that if new minima are found during a threshold run,
these serve as additional starting points for further explorations.

The move-class for the threshold runs is different from the one used for simulated
annealing insofar as atom exchange moves are concerned. Atom exchange moves are
unrealistic and correspond to a tunneling through the energetic barrier and hence cause
major jumps on the landscape. Thus they are usually excluded from threshold runs.

In addition to the estimates of the energy barriers, the analysis of the frequency
with which various minima are reached allows us to construct transition maps at every
threshold. These maps show us both the size of basins and transition regions as a
function of the threshold value, and provide a measure of the probability flow on the
energy landscape which involves energetic and entropic barriers. These also allow us to
construct tree-graphs to visualize the interactions among different isomers. The whole
procedure is semi-automated and can be applied to systems comprising hundreds of
local minima.
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2.2.3 Free energy

Usually, the structures obtained during experiment are the ones with the lowest free
energy (Equation 2.1)

F (R) = −kBT log(Z)(R) (2.1)

Thus, in order to understand which possible (meta)stable states could be observed
experimentally, we compute the local free energy for all locally ergodic regions which
correspond to these metastable modifications, and identify the ones with the lowest free
energy. For low temperatures, it is usually sufficient to consider only the contributions
of vibration to the free energy. We note that, mathematically, local free energy is not
a continuous function of R.

2.3 Molecular Dynamics simulations

Molecular dynamics predicts atomic trajectories by direct integration of the equations
of motion derived from Newton’s law for classical particles with appropriate specifica-
tion of an inter-atomic potential and suitable boundary conditions. In this section, I
briefly explain a few important aspects of a classical Molecular Dynamics simulation.
A comprehensive introduction to MD techniques can be found in Ref.(27).

2.3.1 Force calculations

Force calculations are the most time-consuming part for an MD run. Consider a system
with N particles interacting in a pair-wise fashion. Assuming interactions between a
particle and the nearest (periodic) image of another particle, we must evaluate N(N-
1)/2 pair distances. Thus, the time required to evaluate forces scales as N2. In our
particular case, where we model deposition from the vapor phase, we have anything
between 6000-15000 atoms in the system. Thus, a fast-pair list construction algorithm
(84) is implemented to obtain considerable speed-up and “quasi-linear” scaling with
system size under periodic boundary conditions. More details about this algorithm can
be found in Ref. (84, 85). A version of this method is also implemented in the popular
GROMOS package used for MD simulations of biomolecules.

2.3.2 Velocity-Verlet algorithm

The Velocity-Verlet algorithm is used for integrating the equations of motion. Once the
forces on all particles have been computed, Newton’s equations are solved to construct
a trajectory. If r(t) defines the positions, a(t) the accelerations and r(t− δ(t)) are the
positions from the previous step, then the equation for advancing the positions is given
by 2.2 1:

1See Ref.(27) for details. Notations are taken from this reference.

15



2. BACKGROUND

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) (2.2)

This is derived by adding the Taylor expansions about r(t + δt) and r(t− δt). By
subtracting these expansions, we derive velocities at time step t. This is shown in
equation 2.3. These are very useful for estimating the kinetic energy and hence the
system temperature.

v(t) =
r(t+ δt)− r(t− δt)

2δt
(2.3)

While the positions are subject to errors of the order δt4, the velocities are subject
to errors of the order δt2.

2.4 Electronic structure calculations

In this section, we discuss briefly the first-principles methods used in this thesis. The
starting point is the time-independent Schrödinger equation:

Hψ = Eψ (2.4)

Here H is the Hamiltonian operator of the system, ψ is the wave function describing
the entire system and E is the eigen value of the Hamiltonian that corresponds to the
total energy of the system. The Hamiltonian for a typical chemical system can be
described by

Htotal =
∑
I

p2I
2MI

+
∑
i

p2i
2Mi

+
1

2

∑
I 6=I′

ZZ ′e2

| ~XI − ~XI
′|

+
1

2

∑
i 6=i′

e2

|~xi − ~xi
′|

+
∑
I,i

Ze2

| ~XI − ~xi|
+ relativistic corrections

= T I + T e + VII + Vee + VIe (2.5)

where Z and Z′ are the charges of the ions labeled by I and I′, respectively. ~XI and
~xi are position vectors of the ions I and electrons i respectively, MI and mi are the
masses of ions and electrons, respectively.

2.4.1 Hartree-Fock method

The Hartree-Fock (HF) self-consistent field calculation scheme is a self-consistent itera-
tive variational procedure to calculate the Slater determinant for which the expectation
value of the electronic Hamiltonian is a minimum. The method works within the Born-
Oppenheimer approximation, i.e. the positions of the nuclei are assumed to be fixed.
This means that the nuclear and electronic terms in the Schrödinger equation can be
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separated, enabling it to be solved for fixed positions of the nuclei, and the electronic
energies are calculated at various internuclear distances. The method was developed
for calculations on atoms and later further developed by Pople(86) and others for
molecules and solids(87, 88, 89). However, there are a few disadvantages associated
with the method. Relativistic effects like spin-orbit coupling are completely ignored.
The variational solution is assumed to be a linear combination of a finite number of
basis functions, which are usually chosen to be orthogonal and the finite basis set is
assumed to be approximately complete.

The starting point for the HF method is a set of approximate one-electron orbitals.
For a molecular or crystalline calculation, the initial approximate one-electron wave
functions are linear combinations of atomic orbitals (LCAO). This results in a collec-
tion of one-electron orbitals that are anti-symmetric. The variational theorem states
that for any given time-independent Hamiltonian, any trial wave function will have an
energy expectation value that is greater than or equal to the true ground state energy
corresponding to the given Hamiltonian. Because of this, the Hartree-Fock energy is
an upper bound to the true ground state energy of a given molecule. In the context
of the HF method, the best possible solution is at the HF limit; i.e., the limit of the
HartreeFock energy as the basis set approaches completeness.

Finding the ground state is actually an optimization problem, where we minimize∫
ψ?Hψdx with the condition that only anti-symmetric wave functions are admissible

as a result of the Pauli principle (i.e each orbital is occupied by only one electron.) and
that the wavefunction is normalized. The algorithm is summarized in Figure 2.2 (90).

A complete discussion of the algorithm and the method can be found in Ref.(91)

2.4.2 Density Functional Theory

The main idea of density functional theory is that any property of a system of many
interacting particles can be viewed as a functional of the ground state density no(r).
Thus, one scalar function of position r(x,y, z) determines all information in the many-
body wave functions for the ground state and all excited states (91). This offers an
elegant formulation of N-particle quantum mechanics, promising conceptual simplicity
and computational efficiency. There are, of course, limitations on accuracy from the
approximation of unknown terms in the energy functional.

The approach of Hohenberg and Kohn (92) is to formulate density functional theory
as an exact theory of many body systems. The formulation applies to any system of
interacting particles in an external potential Vext(r), including any problem of electrons
and fixed nuclei, where the Hamiltonian can be written as :

H =
~

2me

∑
i

52
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|

(2.6)
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Figure 2.2: Schematic Hartree-Fock algorithm - A schematic representation of

the Hartree-Fock algorithm.(90)
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Next, they proposed the following theorems:

• Theorem I: For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by
the ground state particle density no(r).

• Corollary I: Since the Hamiltonian is thus fully determined, except for a con-
stant shift of the energy, it follows that the many-body wavefunctions for all
states (ground and excited) are determined. Thus, all properties of the system
are completely determined given only the ground state density no(r).

• Theorem II: A universal functional for the energy E[n] in terms of the density
n(r) can be defined, valid for any external potential Vext(r). For any particular
Vext(r), the exact ground state energy of the system is the global minimum value
of this functional, and the density n(r) that minimizes the functional is the exact
ground state density no(r)

• Corollary II: The functional E[n] alone is sufficient to determine the exact
ground state energy and density. In general, excited states of electrons must be
determined by other means.

A detailed discussion can be found in Ref (91).

2.4.3 Basis sets

Quantum mechanical calculations are typically performed using a finite set of basis
functions. For Hartree-Fock calculations and also some DFT calculations, we use a
basis composed of a finite number of atomic orbitals, centered at each atomic nucleus
within the solid and interacting through linear combinations (see Ref. (93). These
atomic orbitals were typically Slater orbitals which corresponded to a set of functions
which decayed exponentially with distance from the nuclei. In the CRYSTAL’09 frame-
work, these Slater-type orbitals are approximated as linear combinations of Gaussian
orbitals instead. This leads to a massive increase in computational efficiency as it is
easier to calculate overlap and other integrals using Gaussian basis functions (94).

There are many types of basis sets composed of Gaussian-type orbitals (GTOs).
The basis sets containing only occupied orbitals are called minimal basis sets. They
are typically composed of the minimum number of basis functions required to represent
all of the electrons on each atom. Some basis sets can literally contain dozens of basis
functions on each atom. We add or remove diffuse functions on the atomic orbitals
corresponding to the sp or d shell in order to describe anions and other soft molecular
systems (95, 96, 97, 98, 99). A detailed description of the types of basis sets used and
the calculation of energies can be found in the CRYSTAL’09 manual (100).

It must be noted that the interaction energies are susceptible to a basis set su-
perposition error (BSSE). As the atoms of interacting molecules, the basis functions
overlap. If the total energy is minimized as a function of system geometry, the short
range energies must be compared with the long-range energies from the unmixed sets,
and this mismatch introduces error. Thus, there is a need to parameterize the basis
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sets depending on the system being studied keeping this error in mind.

The most common alternative choice of basis is a set of (very many) plane waves.
Parameters that influence the accuracy of the subsequent calculations are the energy
cut-off of the plane waves and the k-point mesh over the diffusion zone. In order to
reduce the number of waves, one often introduces pseudopotentials that incorporate
the effects of the inner electrons. Further details can be found in Ref.(100, 101).

2.5 Low-temperature atom beam deposition of MgF2

Conventional methods for synthesis in the solid state are based on reacting solids which,
even after intense milling, are dispersed on a macroscopic scale compared to atomic
distances. As a consequence, solid state reactions require a high thermal activation,
favoring the formation of thermodynamically stable products. One way to overcome
these complications is to reduce the transport distances to atomic dimensions. This
idea is realized with the Low-Temperature - Atomic Beam Deposition‘ (LT-ABD),
which allows to disperse the components of the desired product at an atomic level
and in an appropriate ratio. Such randomly ’frozen mixtures of atoms could serve as
an ideal starting point for solid state syntheses from atoms. The reduction of trans-
port distances also brings this method closer to theoretical methods like molecular
dynamics where it is particularly hard to realistically model diffusion processes over
long time-scales. For synthesis, several UHV-preparation chambers are used with a
special cart-system, which allows sample transfer maintaining vacuum and cooling.
This method has been applied successfully to synthesize predicted modifications of
halides(16, 18), nitrides(15) and alloys(102).

A summary of the experimental parameter field investigated including substrate
temperature, vapor pressure, and sample temperature during X-ray diffraction, is de-
picted in Figure 2.3. Amorphous MgF2 (black dots) is only obtainable at substrate
temperatures below -100◦ C. The CaCl2 polymorph (red dots) can be formed at -80◦

C already during deposition and is generated at 70 ◦ annealing temperature from an
amorphous deposit. At deposition temperatures around -50 ◦ C, distorted rutile type
(green) is obtained. The formation of rutile type (blue dots) by annealing clearly de-
pends on the deposition temperature. The lower the substrate temperature during
deposition, the higher is the temperature which is needed to form the rutile type. This
trend is also true for the other phase transitions from amorphous state via CaCl2 to
rutile type, which all correspond to displacive and orderdisorder transitions with no
clear frontiers noticeable, particularly not between CaCl2 and distorted rutile type.
(18)
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2.5 Low-temperature atom beam deposition of MgF2

Figure 2.3: Parameter field for synthesis - Obtained phases of MgF2 as a func-

tion of substrate temperature, vapor pressure, and measurement temperature, XRPD

results; color code: amorphous MgF2 (black), CaCl2 polymorph (red), distorted rutile

type (green), rutile type (blue); each black line corresponds to one experiment..
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3

Methods

3.1 Introduction

In this section we describe the various simulation parameters used for the Monte-Carlo,
molecular dynamics and quantum mechanical calculations used in this thesis. Also, the
parameterization for force-fields that need to be used for performing reasonably accu-
rate empirical potential calculations are described here.

3.2 Exploration of energy landscapes

A three-pronged approach is used for the effective exploration of the energy landscape
of clusters and bulk systems studied here.

1. Global optimization using simulated annealing in order to find local minima.

2. Detailed global exploration of the barrier structure using the threshold algorithm.

3. Local optimizations on ab initio level.

3.2.1 Global optimization parameters

Global optimization is performed using the simulated annealing procedure (66, 103).
During each of the simulated annealing runs, multiple stochastic quenches followed
by local optimizations based on analytical gradients are performed to identify possi-
ble low-lying minima. The search for minima is followed by a more detailed explo-
ration of the energy landscape, and especially the barrier structure, by the threshold
algorithm(70, 104). No symmetry constraints are used during the global optimization.
Various parameters associated with the simulated annealing of MgF2 clusters and all
bulk systems studied are described in Table 3.2.
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3. METHODS

Typically this procedure leads us to thousands of minima. In order to automatically
distinguish between various cluster and bulk configurations, we use various symmetry
identification routines implemented in the KPLOT code(105). For the clusters, the
compare cluster (CCL) algorithm (106) and for periodic structures, the compare cell
algorithm (CMPZ)(107) is used, respectively to eliminate duplicates. In the literature
(108), very often energies are used to distinguish one structure from another but this
fails e.g. in the case of enantiomeric pairs of isomers. However, we find that, in the case
of clusters, it is particularly useful to make distinctions based on geometry. As this
allows for the possibility of counting the exact number of isomers found as a function
of a tolerance parameter. Point group identification of clusters is performed using the
SYMMOL code(109) and the space group identification for bulk structures is done via
the RGS algorithm (110). These algorithms allow us to eliminate duplicates and assign
space groups/point groups after the global optimization runs are complete.

3.3 Energy calculations

3.3.1 Potentials

During the Monte-Carlo simulated annealing and threshold runs for MgF2 clusters us-
ing empirical potentials, all single-point energy calculations were performed using the
GULP code(111). The Coulomb-plus-Buckingham-type potential derived by Catti et
al.(112) was used for the magnesium fluoride clusters and during MD simulations of
MgF2. This is described in Equation 3.1. The Coulomb-plus-LJ type potential de-
scribed in Eq.3.2 was used for the simulated annealing on periodic structures and in
MD runs as well. The interactions between atoms of the MgF2 deposit and the Al2O3

substrate were also modeled using this potential.

Eij =
ZiZj

rij
+ bij exp

(
−rij
ρ

)
− dij
r6ij
. (3.1)

Vij =
ZiZj

rij
+ ε
(
(σ/rij)

12 − (σ/rij)
6
)

(3.2)

The σ term was chosen as the sum of the ionic radii of the interacting ions, and
the epsilon term was set to 0.05. Interactions within the substrate were modeled using
the pairwise Coulomb-plus-Buckingham potential suggested by Bacorisen et al. (113)
for Al2O3 and Catti et al. for MgF2(112). Parameters for individual interactions are
shown in Table 3.1. The interactions between the substrate (Al2O3) and the vapor
phase (clusters of MgF2) was described by a Coulomb-plus-Lennard-Jones type po-
tential. The potential for MgF2 was derived to reproduce the lattice constants and
elastic constants of the bulk MgF2 rutile structure. Given that our system is periodic
in two-dimensions, a treatment of the Coulomb term in the Coulomb-plus-Buckingham
type potential within the Ewald scheme was computationally expensive. Therefore, we
opted for the damping procedure proposed by Wolf et al. (85)which has the advantage
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3.3 Energy calculations

Table 3.1: Potential parameters used for Molecular Dynamics and Monte-Carlo

simulations for MgF2 and Al2O3.

i,j A(eV) Rho(Angstroms) C(AeV)

Mg-F 905.517 0.215 0.5557

F-F 17039.097 0.215 15.168

Mg-Mg 4166.274 0.215 0.5557

Al-O 1374.79 0.301 0.0

O-O 9547.96 0.219 32.0

of being applicable to systems with arbitrary geometry, without introducing a signif-
icant error into the potential calculation. The parameters for both the systems are
described in Table 3.1. Also, given the scale of this simulation on a single processor,
we implemented the fast pair-list construction algorithm as described by Heinz and
Huhenberger(84). The epsilon-term was fixed at 0.05 eV and the σ-terms were derived
from the sum of ionic distances as described in the literature (27). The 12-6 term of the
LJ-type potential is not expected to play a significant role as far as the total energies are
concerned as the Coulomb term is typically 8-10 times greater than the L-J term (114).

3.3.2 Ab initio energy calculations

The CRYSTAL’09 package (100, 115) was used for performing ab initio calculations of
energies at different levels of accuracy. Here, the fundamental approximation is the ex-
pansion of the single particle wave functions as a linear combination of Bloch functions
defined in terms of local functions. These local functions are defined as linear combi-
nations of Gaussian type functions. The exponents and coefficients of these Gaussian
type functions are defined in the input in the form of a basis set.

In the final local optimizations of the minima, for magnesium and fluorine the basis
sets using Valenzano et al. (116) and Nada et al. (117) were chosen, respectively. After
local optimization with tight parameters, the lattice constants of the rutile-type MgF2

structure were found to be reproduced accurately. Similarly, for calcium, the basis set
from Kaupp et al. (118, 119) was used as starting point for energy calculations.

Using the CRYSTAL program, we can solve both Hartree-Fock (restricted and
unrestricted) and Kohn-Sham equations with local and hybrid functionals. Various
exchange functionals used in DFT such as LDA, Becke, PWGGA, PBE, etc. and cor-
relation functionals such as PZ, LYP, VWN, etc. can also be calculated. Also, hybrid
HF-DFT functionals such as B3Pw, B3LYP and other user-defined hybrid functionals
can be calculated. (100)
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3. METHODS

Table 3.2: Typical simulation parameters for simulated annealing and threshold runs,

using ab initio and empirical energy functions; in case of threshold runs, the number

of runs, minima etc. refers to the number per starting point per threshold

Parameter Simulated annealing Threshold

Empirical Ab initio Empirical Ab initio

Init. vol. factor 100 3 n.a. n.a.

Minim. dist. allowed 0.55Å 0.7(r+ + r−) 0.55Å 0.7(r+ + r−)

Steps/run 106 5000 125x10,000 5x7,000

No. of runs 1 50 1 125 15

Holding points/run 400 1 125 5

Quenches / holding point 3 1 5 5

Length of quench run 10,000 10,000 10,000 7,000

Tinit (eV/atom) 1.0 1.0 n.a. n.a.

Tfinal (eV/atom) 0.006 0.78 n.a. n.a.

Moveclass (translation, 80,10,10 80,10,10 90,0,10 90,0,10

atom exchange, cell vectors %)

Symmetry constraints none none none none

No. of minima / run 1200 1 625 25

CRYSTAL’09 can be used for both 3-D periodic systems and 1-D periodic systems.
Also, it is especially useful for studying 2-D periodic slabs and surfaces. Local op-
timizations that include full optimization of cell parameters and atomic coordinates,
calculation of vibrational modes and infra-red intensities are other useful qualities that
we have exploited.

During the simulated annealing and threshold runs, there is a need for a speed-
up and it is needed that energies of largely low-symmetry random configurations are
calculated quickly. This is done by loosening the parameters for accuracy. Specifi-
cally, in the case of the MgF2 trimer, several approximations needed to be made in
order to allow faster calculation of the energies. In the Mg basis, the diffuse Mg sp
shell (exponent 0.28) and the Mg d-shell (exponent 0.5) were not considered. Also,
the thresholds from the integral selection were reduced from the default values (10−6,
10−6, 10−6, 10−6, 10−12) to 10−4, 10−4, 10−4, 10−4, 10−8. The convergence threshold on
the self-consistent field cycles was reduced from the default (10−7 Eh) to 10−3 Eh. It is
shown in Figure 3.1 that these approximations have a negligible effect on the energies
of the MgF2 trimer. This is important to note because the barrier energy estimates
are also made in the smaller basis.
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3.4 Calculation of Raman and IR spectra

Figure 3.1: Effect of basis- Effect of reducing the basis set and applying lose pa-

rameters for speed-up.

3.4 Calculation of Raman and IR spectra

3.4.1 Clusters

For clusters, we calculate both Raman and IR intensities using the Gaussian’03 suite.
Calculations were performed using the three-parameter hybrid functionals of Becke and
the correlation functional of Lee, Yang, and Parr B3LYP(120). Geometries were op-
timized using the Berny algorithm(121) with very tight optimization parameters, and
vibrational frequencies were then computed by determining the second derivatives of
the energy with respect to the Cartesian nuclear coordinates. Vibrational frequencies
are computed by determining the second derivatives of the energy with respect to the
Cartesian nuclear coordinates and then transforming to mass-weighted coordinates.
Finally Raman and IR intensities were produced by numerical differentiation of dipole
derivatives with respect to the electric field (122). No scaling factors of any kind were
used as the trends in frequencies remain constant and the experimentally known fre-
quencies were well reproduced for the MgF2 monomer.

3.4.2 Periodic systems

For the periodic crystals, Raman active and IR active phonon modes were identified
and the IR intensities were calculated using the CRYSTAL’09 program(100, 115). For
magnesium, the basis sets from Valenzano et al. (116) and for fluorine the basis sets
from Nada et al. (117) were chosen. The lattice constants of the rutile-type modifica-
tion of bulk MgF2 were well reproduced and the Raman active frequencies predicted
for the rutile polymorph were also within error limits. We also compared the energies,
bond lengths and frequencies with experimental measurements from Porto et al (36).
In these calculations, the IR intensity and Raman activity of the vibrational modes
are determined from the changes in the electric dipole moment and the polarizability
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tensor with the oscillations of the atoms (123).

The reasons for using Gaussian’03 and CRYSTAL’09 for evaluating the Raman spec-
tra of clusters (up to 10 units of MgF2) and solid MgF2, respectively, were the following:
For non-periodic structures, Raman intensities can be calculated using Gaussian03, but
this is not possible with CRYSTAL’09. Also, Gaussian’03 is faster for non-periodic sys-
tems as it has analytical second derivatives. On the other hand for periodic systems,
we found CRYSTAL’09 to be preferable to Gaussian’03 as the latter cannot handle all
the symmetries, e.g. only the ones like mirror planes, but not a threefold rotation axis.
Therefore it is beneficial to use CRYSTAL’09 as it can handle any space group or point
group symmetry in the solid state.

3.5 Molecular Dynamics simulations

After establishing the contents of the vapor phase using the methods above, we pro-
ceeded to perform molecular dynamics simulations. The details of the potentials used
for MD simulations have been discussed in Section 3.3.1. Depositions were carried out
at temperatures of 10K, 50K, 300K, 500K and 1000K and the MD time step varied
between 2fs to 6fs.

The procedure for modeling the LT-ABD setup was the following. We first con-
structed substrates and these were equilibrated at temperatures ranging from 50K to
1000K. The time-step of each MD step was varied from 2fs to 6fs. We also tested
the effect of annealing at high-temperatures after generating a 12000 atom amorphous
deposit of larger clusters of up to 30 atoms on the Al2O3 substrate.

A schematic of all the interacting functions in the MD code can be seen in Figure
3.2.
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3.5 Molecular Dynamics simulations

main

read_input

set_potentials

read_dep_clust_input

set_seed

read_initial_part_num

initialize_arrays

read_initial_configuration

set_initial_structure

find_z_thermostat

find_z_fix_atom

label_fixed_atom

construct_pair_list

read_initial_velocities

calculate_temperature

init_substrate_vel

introduce_new_atom

create_cell_arrays

output_configuration

update_cells

force

print_header

write_energy_quench

write_energy

therma

vel_partial_update

vel_quench

velocity_rescaling

int_to_string

output_velocity

write_adatom_coords

print_summary

delete_clust_array

delete_pair_list

delete_cell_arrays

delete_arrays

break_line

calculate_join_params_hybrid_pot

calculate_truncation_params

create_list

create_cluster

insert_element_in_list

delete_cluster

create_clust_array

delete_list

create_copy_cluster

label_substrate_atoms

fill_mask

fill_mask_pointer

ran2

Figure 3.2: MD code- The figure shows how various functions in the MD code

interact with each other.
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4

Exploration of the energy landscape

on MgF2

4.1 Bulk MgF2

The whole synthesis LT-ABD route has been modeled with the MgF2 system as a
model. We start with reproducing the earlier result of the investigations by Wevers et
al. (21, 41, 42) on the MgF2 landscape by performing long simulated annealing runs
with a simple Coulomb-plus-Lennard-Jones potential. We have used 2, 3 and 4 formula
units of MgF2, 106 annealing steps followed by 50000 quench steps. The minima found
agreed with those identified earlier. The E(V) curves of all the important structures
found from these runs are plotted in Figure 4.1. The system was annealed from a tem-
perature of 1eV (≈ 11,600K). During the simulated annealing, 42 different structure
types were found. The crystal structures were distinguished using the cmpz algorithm
(107) as implemented in the KPLOT program (105) using default tolerance parameters.

The structures were further locally optimized at the B3LYP level. The fractional
coordinates and lattice parameters of the fully optimized structures are shown in Table
4.1. With longer runtime and ab initio local optimizations, this is an improvement on
the previous work and more accurate lattice parameters and fractional coordinates are
derived that are shown in Table 4.1 for the various structures that were suggested.

Very often, a structure that appears to be metastable with the Coulomb-plus-
Lennard-Jones potential, relaxes to a different structure after optimizing with tight
parameters on the ab initio level. Specifically, the CaCl2-type polymorph transformed
into the rutile-type structure on local optimization with tight parameters. Thus, at 0
Pa, this structure is not thermodynamically stable and must relax to the rutile-type.

Next, the energy as a function of volume curves were fitted to the Birch-Murnaghan
equation (See Figure 4.1). These E(V) curves calculated for the kinetically stable mod-
ifications show that the anatase-type structure should be synthetically accessible for
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4. EXPLORATION OF THE ENERGY LANDSCAPE ON MGF2

Figure 4.1: E(V) curves- E(V) curves fitted to the Birch-Murnaghan equation.

Energies from a fully ab initio local optimization of structures found from simulated

annealing.

the MgF2 system.

4.2 Detailed energy landscapes of neutral (MgF2)n

(n=3, 4) clusters

4.2.1 Local minima and energies

As a first step in modeling the LT-ABD synthesis of MgF2, we study the energy land-
scape of neutral MgF2 clusters. Using the threshold algorithm, we performed exten-
sive searches for local minima on the energy landscapes of the dimer, trimer and the
tetramer on an empirical potential level and of the dimer and trimer on the ab initio
level, respectively.

Figure 4.3 gives an overview over the minimum structures found using simulated
annealing and the threshold algorithm in the (MgF2)3 system. The structures are la-
beled in increasing order of energeies as predicted by the empirical potential.

For both the empirical and ab initio simulated annealing, the biggest basin belonged
to structure 3 (D2d). Structures 5 and 6 look nearly identical; however, in structure
6, the six-member ring is planar (C2v), whereas in structure 5 (Cs) it is not. The
energies of these two minima are considerably different. Note that structure 9 has one
imaginary frequency (-3 cm−1) in the vibrational spectrum. It is possible that with a
higher level of theory, a negative frequency does not occur at all. All these structures
have previously been reported (48), where short range interatomic potentials had been
used for Mg-Mg, F-F and Mg-F pairs had been derived from the electron gas model
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4.2 Detailed energy landscapes of neutral (MgF2)n (n=3, 4) clusters

Table 4.1: Lattice parameters and atomic coordinates for optimized bulk structures

as obtained from CRYSTAL09.

Minimum Space Group Cell Constants(a,b,c,α,β,γ) Atom x y z

Rutile(6a) P42/MNM (136) a=4.646, b=4.646, c= 3.107 Mg 0.000 0.000 0.000

tetragonal α = 90, β = 90, γ = 90 F 0.303 0.303 0.000

Anatase(6b) I41/AMD (141) a=3.877, b=3.877, c=9.930 Mg 0.000 0.000 0.000

tetragonal α = 90, β = 90, γ = 90 F 0.000 0.000 0.208

CaCl2
1

PNNM (58) a=4.592, b=4.938, c=2.959 Mg 0.000 0.000 0.000

orthorhombic α = 90, β = 90, γ = 90 F 0.275 0.325 0.000

CdI2(6d) P-3M1 (164) a=3.156, b=3.156, c=4.804 Mg 0.000 0.000 0.500

hexagonal α = 90, β = 90, γ = 120 F 1/3 -1/3 -0.318

5-fold (5a) P21/M (11) a=9.087 b=3.857 c=6.332 Mg 0.139 0.250 0.499

monoclinic α = 90, β = 90, γ = 90 Mg 0.360 0.250 0.000

F 0.250 0.250 0.250

F -0.085 0.250 -0.499

F 0.250 0.250 -0.250

F -0.415 0.250 0.000

6e CMC21(36) a=3.0255, b=6.585, c= 6.732 Mg 0.000 0.293 -0.251

orthorhombic α = 90, β = 90, γ = 90.00 F 0.000 0.008 0.296

F 0.0 -0.278 -0.445

6c P4/mmm(123) a=3.029 b= 3.029 ,c=3.742 Mg 0.000 0.000 0.000

tetragonal α = 90, β = 90, γ = 90 F 0.500 0.500 0.000

F 0.000 0.000 0.500
1These lattice parameters are not for the locally optimized structure. Ref.(124).

(EGM) of Gordon and Kim (125) and followed by a Monte-Carlo growing strategy and
optimization by Powell’s quadratically convergent method was employed. Our simu-
lated annealing approach coupled with the threshold algorithm also found the same
structures.

For a comparison, the energies of the minima were computed using several energy
functions (empirical potential, B3LYP, HF and LDA). These have been summarized
in Table 4.2 and Figure 4.2. In general, the pair potential favored the more compact
structure 1 (Cs) with relatively high coordination numbers, whereas all quantum me-
chanical methods predicted planar structure 3 (D2d) as the global minimum. This is
reasonable, since the pair potential had been calibrated for bulk MgF2 modifications.
Figure 4.2(b) shows the relative energy of the tetramer cluster configurations with
respect to the global minimum. While the ab initio trimer energy differences are rela-
tively well reproduced by the pair potential, this does not apply to the same degree to
the tetramer molecule in the high-energy range. These are the structures with a low
coordination number.

Since the volume of the cell is approximately 100 times the volume of the atoms,
we also observe the formation of fragments ((MgF2)2 + MgF2) during the simulated
annealing runs. Typically, these minima lie very high on the energy landscape. We
have not considered such structures when performing the threshold analysis as large
energetic barriers need to be overcome to achieve any transitions from the (MgF2)3
minimum configurations to fragmented structures. However, these fragments do occur
frequently in the simulated annealing runs on both the ab initio and the empirical
energy landscape. The fragmentation energies of such molecules have been thoroughly
studied using both theory and experiment in the past. (47, 126, 127).
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4. EXPLORATION OF THE ENERGY LANDSCAPE ON MGF2

Table 4.2: Energies(eV/atom) of structures and frequency of occurrence in simulated

annealing runs for (MgF2)3; percentages refer to occurrence in empirical potential (ab

initio energy) runs

Structure Empirical DFT-B3LYP HF DFT-LDA Occur. (%)

1 (Cs) -6.4377 -9.1254 (2) -9.2308 (3) -12.7006 (2) 4.91 (10.0)

2 (D3h) -6.4279 -9.1206 (3) -9.2426 (2) -12.6685 (6) 4.50 (10.0)

3 (D2h) -6.4268 -9.1499 (1) -9.2499 (1) -12.7127 (1) 88.75 (30.0)

4 (Cs) -6.4247 -9.1100 (4) -9.2082 (4) -12.6945 (3) 0.30 (5.0)

5 (Cs) -6.4029 -9.0643 (5) -9.1601 (5) -12.6861 (4) 0.0 (0.0)

6 (C2v) -6.3607 -9.0456 (8) -9.1398 (7) -12.6858 (5) 0.0 (0.0)

7 (Cs) -6.3933 -9.0561 (7) -9.1528 (6) -12.6643 (7) 0.0 (0.0)

8 (C2v) -6.3997 -9.0583 (6) -9.1338 (8) -12.6374 (8) 0.0 (0.0)

9 (Cs) -6.2980 -8.9516 (9) -9.0516 (9) -12.5246 (9) 0.0 (4.0)

fragments n.a. n.a. n.a. n.a. 1.54 (41.0)

*The remaining 1.5% we see the occurrence of fragment (MgF2)2 + MgF2
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4.2 Detailed energy landscapes of neutral (MgF2)n (n=3, 4) clusters

Figure 4.2: Relative energies on empirical potential and ab initio level (HF, DFT-

LDA, DFT-B3LYP) for cluster configurations with respect to the global minimum for

the trimer (a) and tetramer (b), respectively. For the ab initio calculations, the Large

basis set was used.
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4. EXPLORATION OF THE ENERGY LANDSCAPE ON MGF2

Figure 4.3: Isomers of (MgF2)3- Labeled in increasing order of energy derived from

the pair potential.

The global optimization on ab initio level was quite efficient: In the 50 relatively
short simulated annealing runs using ab initio energies, we found 5 of the 9 structures
(1, 2, 3, 4 and 9), whereas the search of the empirical landscape during the five long
simulated annealing runs with empirical potential produced only 4 of the 9 structures.
All the structures shown in Figure 4.3 were found during the threshold runs. This
result underlines the fact that it is not sufficient to perform just a few long simulated
annealing runs with many quenches along the way, since these few runs do not efficiently
explore the landscape globally although they tend to do a very good job finding the
deepest minimum in the sub-regions visited. Minimum no. 3 was found to be the most
common one (88.75% for empirical and 30% for ab initio calculations, respectively) in
the simulated annealing runs.

The results from the simulated annealing runs are presented in Table 4.2.

4.2.2 Energetic barriers - (MgF2)3

The barrier structure of the landscape was analyzed using the threshold algorithm.
We compared the barriers both for empirical and ab initio methods (B3LYP functional
with the smaller basis set). During the threshold run, energies were computed using
less accurate ab initio parameters, and hence the energies of local minima were com-
puted at this level. These energies were used to calculate the barriers in figure 4.4,
which separate the individual minima from the global minimum.

Tree-graph models as simplified representations of the empirical (Figure 4.5a) and
ab initio (Figure 4.5b) landscapes were constructed. Despite some differences in the
energy rankings of the minima, the tree-graphs look qualitatively similar, in particular
exhibiting the same sub-basins ((4,1), (6,5) and (8,3)).

The essentially linear D2d structure 3 shows the highest energetic barrier towards
the rest of the landscape both at the empirical and the DFT level. Also, the energetic
barriers for transition to the global minimum predicted by ab initio methods are gen-
erally greater than the barriers predicted by empirical methods (see Figure 4.4). In
particular, the barriers for the 4-1 and 2-3 transitions are much higher for ab initio
calculations (0.097 and 0.08, vs. 0.221 and 0.232 eV per atom, respectively). It is not
clear, why such a big gap appears for these two particular transitions. For the (8, 3)
and (6, 5) sub-basins, the ab initio barriers calculated are 0.102 eV per atom and 0.024
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Figure 4.4: Energetic barriers - Energy barriers for transition from local minima

to the global minimum for the trimer. Overall, the barriers determined on ab initio

level (B3LYP, green) are higher than those on empirical potential level(red).

eV per atom respectively. Analogous calculations with the empirical pair-potential
indicate a barrier of 0.061 eV per atom and 0.050 eV per atom. As an exception from
the general trend, for the 65 transition, we find that the empirical barrier is greater
than the one predicted by ab initio methods.

4.2.3 Energetic barriers - (MgF2)4

The tree-graph representation for the tetramer is shown in Fig 4.6. This particular
tree-graph can be characterized as being of the willow-tree kind(128). The deepest
super-basin contains structures 1, 2, 3, 4 and 14 that are stabilized by a bridged eight-
membered ring consisting of 4 Mg and 4 F atoms, and the transformations among
them involve only deformations of the octagonal ring. Analogous to the case of the
trimer, the energetic barriers surrounding the linear isomer 21 (D2h symmetry) are very
high. This particular structure does not interact with any other local minimum on the
landscape up to the highest lid investigated (0.32 eV per atom). Furthermore, isomers
22, 23 and 28 also exhibit high barriers for transitions to neighboring minima.

4.2.4 Probability flows - (MgF2)3

Along with estimates of the energetic barriers, the threshold algorithm also provides
important information about the stability of the minima and basins by determining the
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Figure 4.5: Tree-graph representations - Tree-graph representations of landscapes

derived from (a) empirical and (b) ab initio energies.
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4.2 Detailed energy landscapes of neutral (MgF2)n (n=3, 4) clusters

Figure 4.6: Tree-graph representation of tetramer - Tree-graph representations

of landscapes derived from the empirical potential for the tetramer.

likelihood of a given minimum configuration to transform to a new minimum configu-
ration after a certain energy barrier is crossed. A summary of these probability flows
for the trimer can be found in Figure 4.7 Reliable data is available for the empirical
methods (a total of 18,750 minima generated). For the sake of completeness, we also
present the probability flow charts for ab initio threshold runs (850 minima generated).

From Figure 4.7 (a) we see that as the threshold is raised, new minima begin to
occur. For the empirical threshold runs, the first transition we see is at a threshold of
0.037 eV above the global minimum (threshold, empirical, 1st transition: TE1). This
occurs from isomer 4 (Cs) to isomer 1 (Cs) with a very small probability (0.5%). On
raising the threshold by 0.05 eV/atom (TE2 = 0.087 eV/atom), we observe a trans-
formation of isomer 5 (Cs) to isomer 6 (C2v). The figure also shows that while the
transformation from 5 to 6 is unlikely (0.96%), one from 6 to 5 occurs more readily
(50%). On increasing the threshold by a further 0.05 eV/atom (TE3 = 0.137 eV/atom),
many minima begin to interact. Structures 2, 5, 6, 7 and 8 now transform to the global
minimum with various probabilities. Isomers 8 (C2v) and 3 (D2d) especially interact
at this threshold: about 40% of the time, we observe a transformation of structure
8 (C2v) to structure 3 (D2d). However, on starting from isomer 3, we never see the
formation of isomer 8. In fact the D2d configuration of structure 3 has a 100% return
rate up to 0.17 eV/atom above the global minimum, clearly indicating the existence of
a high entropic or kinetic barrier shielding structure 3 from the rest of the landscape.
We note that in general (42), such entropic barriers are usually not symmetrical at a
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given energy level TE, i.e. B
(A→B)
S (TE) 6= B

(B→A)
S (TE).

From the analogous ab initio charts, we see that the first transition appears at a
threshold of 0.132 eV/atom (threshold, ab initio, 1st transition: TA1) above the global
minimum, where the basins 5 and 6 interact. On raising the threshold by 0.05 eV/atom
(TA2 = 0.182 eV/atom), isomer 4 returns to isomer 1 with a probability of 92%. On
raising the threshold by a further 0.05 eV/atom (TA3 = 0.232 eV/atom), we see that
all runs originating from structure 8 lead to structure 3. Similarly, all runs starting
from isomer 9 lead to isomer 3. We note that these three isomers all exhibit essentially
linear structures. This distinct close association of isomers with linear structures is not
observed so clearly for the empirical landscape.

It is clear that although the sub-basins remain the same, preferences for certain
basins change when going from the empirical to the ab initio potential. For example,
there was a greater probability flow from structure 6 to structure 5 in the empirical
potential threshold runs when compared to the ab initio energy threshold runs. Also,
minima corresponding to structures 1 and 2 are very closely associated on the ab initio
landscape but not with isomer 4, while in threshold runs on the empirical landscape,
structure 2 never appears without the concurrent appearance of both structures, 1 and
4.

4.2.5 Probability flows - (MgF2)4

A probability flow chart derived from the threshold runs for the tetramer can be seen
in Figure 4.11. At the lowest threshold, only the low-energy structures (1, 2, 3 and
4) interact with each other significantly. We next see the emergence of the (14-2) and
(9-7) sub-basins which do not even require a bond to be broken during the transition.
As we increase the threshold by a further 0.05 eV/atom, greater energetic barriers are
overcome. As in the trimer, the basin corresponding to the essentially linear configura-
tion 21 (D2h) remains completely isolated up to the highest threshold value considered
(0.27 eV/atom above the global minimum), indicating a combination of large energetic
and entropic barriers that separate this isomer from the rest of the landscape.

4.2.6 Holding point analysis - (MgF2)3

The analysis of holding points and the minima one can reach from these configurations
gives us further insight into the size of transition regions connecting the basins(21).
For instance, one can visualize the various routes taken by the walkers moving between
different interacting local minima at different threshold values. A holding point is qual-
itatively classified as either a basin point or a transition point based on the following
criteria: 1) A holding point is a basin point if at least 80% of the quenches (4 out of
5) end up in the same minimum. Otherwise, the holding point is a transition point .
2) A holding point is a basin point if 100% of the quenches (5 out of 5) end up in the
same minimum. Otherwise it is a transition point.
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Figure 4.7: Probability flow-chart : Trimer - Probability flow charts derived

for the trimer from threshold runs. x-axis: starting configuration (1-9); y-axis: final

configuration (1-9) (1) empirical landscape at (a) 0.037 eV per atom, (b) 0.087 eV per

atom, (c) 0.127 eV per atom and (d) 0.177 eV per atom above the global minimum.

(2) Ab initio landscape at (a) 0.132 eV per atom, (b) 0.182 eV per atom, (c) 0.232 eV

per atom and 0.282 eV per atom above the global minimum.
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Figure 4.8: Probability flow-chart : Tetramer - Probability flow charts derived

for tetramer from threshold runs. x-axis: Starting configuration (1-28); y-axis: Final

Configuration (1-28). Empirical landscape at a) 0.07 eV/atom, b) 0.12 eV/atom and

c) 0.15 eV/atom. above the global minimum.
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Figure 4.9: Holding point analysis: trimer - The figure shows all the transitions

as a function of the threshold values for 1) Empirical landscape at a) 0.037 eV/atom

b) 0.087 eV/atom c) 0.127 eV/atom and d) 0.177 eV/atom above the global minimum

and 2) Ab initio landscape at a) 0.132 eV/atom b) 0.182 eV/atom c) 0.232 eV/atom

and 0.282 eV/atom above the global minimum. Numbers in red show the percentage

of holding points belonging to the basins corresponding to the local minima. Numbers

in green show the percentage of holding points corresponding to the transition regions.

Every isolated region is allotted a 100% probability.

In Figure 4.9(1a-1d) we have plotted the percentages of all the holding points as-
sociated with the transition regions as well as the holding points belonging to basins
that correspond to individual local minima for the empirical potential landscape. We
note that at low energy lids, the landscape is usually split into several disjoint regions.
For every such isolated region on the energy landscape, the probabilities to belong to
holding and transition points add up to 100%. For example, in Figure 4.9(2d), we
see there are two distinct isolated regions on the energy landscape. One corresponds
to the four minimum (1-2-4-5) basin which contains more compact structures. The
other corresponds to the three minimum (3-8-9) basin which contains the linear D2d

structure 3 and its modifications. Only minima that interact with other minima at a
given threshold are shown here. It is clear that both the aforementioned classification
schemes give similar numbers in Figures 4.9(1a-1d). However, the difference is much
greater in Figures 4.9(2a-2d) because only 5 holding points per structure were gener-
ated for a given threshold.

For the trimer, 2% of the holding points at the lid TE1 = 0.037 eV/atom belong
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to transition regions. This changes to 30.4%, 5.2% and 4.7% on raising the threshold
to TE2 = 0.087 eV/atom, TE3 = 0.122 eV/atom and TE4 = 0.177 eV/atom, respec-
tively. It is interesting that in contrast to the study(21) of the landscape of solid MgF2,
the size of the transition regions does not monotonically increase with lid-energy. If
this observation also applies to other cluster systems, it might have important conse-
quences both for the synthesis of various cluster isomers and their isomerization, and
the success of the many global optimization algorithms that are based on combinations
of large jumps on the landscape with local optimizations.

Since we do not sample the configurational space long enough using ab initio meth-
ods, we do not have enough statistics to make a statistically significant comparison
with the empirical potential threshold runs. However, for the sake of completeness,
a diagram is provided in Figure 4.9(2a-2d). The most obvious difference to the em-
pirical landscape is that the landscape remains split into disjoint regions up to much
higher energies, in agreement with the energy barriers found for the two landscapes.
Furthermore, the size of transition regions appears to be larger on the ab initio energy
landscape than on the empirical energy landscape.

Both for the ab initio and empirical energy landscape, we see that isomer 6 is vis-
ible, i.e. it possesses basin points among the holding points, only until threshold T2
and then disappears for higher energies. This indicates that it is a small sub-basin
bordering only structure 5, while the latter can draw probability from the main part
of the landscape, mainly via isomer 1.

4.2.7 Holding point analysis - (MgF2)4

A similar analysis of holding points was performed for the tetramer as well (Figure
4.10), where the same convention was applied to the holding point assignments as for
the trimer. The first minima that interact are 1, 2, 3, 4 and 14, and 15% of all holding
points are transition points at the first threshold value (T1 = 0.07 eV/atom). On raising
the threshold by 0.05 eV/atom to 0.12 eV/atom above the global minimum, 5.2% of all
holding points belong to transition regions. We see five distinct isolated regions on the
energy landscape with interacting local minima. The basin that originally contained
only the isomers with octagonal rings (1, 2, 3, 4 and 14) now also includes clusters with
high coordination and more compact structures (5, 6, 7, 9, 13, 19 and 25). The possible
routes for this isomerization can be visualized using Figure 4.10. Transformations to
each of these configurations can be achieved by ’breaking’ only one bond in the ring-like
structures followed by some atom rearrangement. The second isolated region consists
of structures 16, 17 and 20. Transformations among these structures again require only
one bond to be broken followed by a rearrangement. In fact, isomers 16, 17 and 20
lie so close to each other on the landscape that from four different holding points one
could reach all three of these minima when performing the set of five multiple quenches.
The other three isolated basins contain the interacting pairs of isomers 18-27, 8-10 and
11-12, respectively.

At the next threshold of 0.17 eV/atom above the global minimum, we see that the
smaller isolated basins mentioned above merge into the biggest basin and all of the
local minima (except 15, 21, 22 and 28) can interact with each other. The possible
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Figure 4.10: Holding point analysis: tetramer - All transitions as a function of

the threshold values for runs with a pair potential on the tetramer at threshold values

of a) 0.07 eV/atom, b) 0.12 eV/atom and c) 0.15 eV/atom. Holding point belongs to

a basin if 4 out of 5 quenches lead to the same minimum.
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paths are shown in Figure 4.10. From the tree-graph in Figure 4.6, structures 15, 22
and 28 start interacting with other local minima at the next threshold of 0.22 eV/atom.
However, the energetic barrier for a transformation of the linear D2h structure is not
crossed up to the highest lid considered, 0.27 eV/atom above the global minimum.

4.2.8 Local density of states - (MgF2)3

Using the overlap of the densities of states (DOS) observed when starting from a given
minimum i allows us to approximately construct the local density of states gi(E)(104).
These local DOS merge once the energy barrier for a transition has been reached and
in addition the growth laws of the different gi(E) have become essentially identical.
Thus, it is possible that the full merger occurs at energies higher than the energy of
the lowest saddle connecting the two basins. The reason for this is the fact that due
to finite sampling time one actually measures the accessible local density of states,
i.e. the sampling can be influenced by the entropic barriers that separate two basins
even at energies above the saddle points. From Figure 4.11 we see that for the trimer,
gi(E) for every local minimum i fully merges with the global minimum at some energy
which typically lies a little higher than the energetic transition barriers. Only at lid
values above the energetic barriers (0.22 eV/atom), gi(E) is practically independent
of the starting points. On the other hand, we note that minima corresponding to iso-
mers 6 and 8, and similarly isomers 3 and 2, follow a very similar growth law even
before reaching the separation barrier energy. This indicates that the phase space vol-
umes of these basins are rather similar already in the regions close to the respective
local minima. However, these similarities were not reflected in the probability flows,
indicating that the multidimensional shapes of the two basins are different nevertheless.

4.2.9 Comparison of ab initio and empirical landscapes

When comparing the ab initio and empirical landscapes, two clear differences emerge.
Firstly, the global minima predicted are different. Secondly, the barriers predicted
with the ab initio calculations are, in general, significantly higher than the ones for
the empirical potential. However, both configurations suggested to be global minima
belong to the structures with the lowest energies for both the empirical and the ab
initio landscape. Furthermore, the barrier trends for transition to the respective global
minima remain the same. Still, it is clear from the different global minima and the
barriers for the 6-5 transition that the empirical energy function does not properly
work for structures with low coordination. It could therefore be beneficial if the pair-
potential parameters were (re-)fitted with these energetic barriers in mind. Regarding
the dynamics on the energy landscape, features such as sub-basins, transition regions,
and overall probability flows are quite similar for the two landscapes. Quite generally,
such a comparison of the dynamics can serve as an indicator of how much of a sys-
tem’s “real’ landscape is reproduced by a given force-field, in contrast to just selected
(minimum) configurations. Thus, comparing both the minima and the dynamics of
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Figure 4.11: Local densities of states log(g(E)) for all neutral trimer structures, based

on sampling the empirical potential landscape. The red line corresponds to the global

minimum.

landscapes based on ab initio calculations and empirical potentials is expected to be-
come a valuable tool for validating empirical potentials in the future.

Of possibly general importance could be the observations, if confirmed, that a) the
ratio of the size of transition and basin regions does not remain constant with energy,
and b) the relative size of the transition regions is larger for the ab initio landscape
than for the empirical potential one. Experimentally, the small size of the transi-
tion regions suggests that a) the various isomers can exhibit some degree of stability
even at relatively high temperatures compared to the lowest saddle barrier energies,
and b) the transformations between isomers occur only via a few distinct channels on
the landscape. Concerning the global search for minima, the existence of many basin
points at high energies might explain the success of algorithms that combine large
jumps on the landscape with local minimizations, such as basin-hopping(79), thermal
cycling(129, 130) or evolutionary algorithms(131), at least for small clusters. However,
it is clearly necessary that many more (cluster) landscapes need to be explored regard-
ing the size of their characteristic regions, before firm conclusions can be drawn.

4.2.10 Thermodynamics

Returning to the original motivation for the exploration of the landscape of MgF2 clus-
ters, an important aspect for the proper modeling of the gas phase of MgF2 during
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the LT-ABD synthesis is, to what extent the clusters in the gas phase are equilibrated
among each other (via collisions), and with respect to the isomerization processes of an
isolated cluster. Thus, as a first step, we have computed the Boltzmann-equilibrium
probabilities of an isolated trimer and tetramer cluster as a function of temperature
based on the energies of the individual minima (c.f. Figure 4.12(a) and 4.12(b), respec-
tively).

Francisco et al. have previously computed the Boltzmann distributions of three
specific trimers (structures 1, 2 and 3) using total energies (derived via Møller-Plesset
perturbation methods that are expected to yield somewhat more accurate energies than
the ones we have computed here) and including harmonic vibrational frequencies(48).
They observe a transition from isomer 3 (D2d) to isomer 2 (D3h) at 3600 K which is
due to the different vibrational contributions of these structures. We do not observe
any such transitions, of course, since we compute the Boltzmann distribution based
only on the energies of the minima. However, this is not critical, since we are only
interested in the low-temperature regime expected to exist in the experiment, where
the vibrational contributions are not very influential.

The next step is the computation of the likelihood of collisions among the clusters
during their travel between the source and target. Using the kinetic theory of gases

(132), we find that for an ideal trimer gas, the root mean square velocity (
√

3RT
M

)

is 200.09 m/s for the trimer and 173.28 m/s for the tetramer respectively, and thus,
the mean free path in the framework of the LT-ABD synthesis (18) of bulk MgF2,
where typically low pressures (10−4 mbar) and temperatures (280K) are involved1, for
the trimer (approximately 5 Å in diameter) is 71.2 cm and for the tetramer (approxi-
mately 10 Å in diameter) is 17.8 cm. Thus, the molecules should not collide with each
other once they have left the surface of the source material. Since the distance from
source to target is approximately 15 cm in the experimental apparatus, internal degrees
of freedom must be used for isomerization transitions between the different minima.

The ab initio barriers, and the analysis of the holding points, probability flows
and local DOS indicate that once a certain cluster configuration is achieved, it takes
a relatively high temperature (of the order 103K) for any fast isomerization reaction.
Combining this with our observation during the simulated annealing runs that isomer
3 (D2d) is by far the most likely one to form in the vapor phase (for short synthesis
times) when starting from single atoms or molecules that merge to form trimers, sug-
gests that there is a good chance that isomer 3 would be observed, besides the other
minima with the lowest energies (1 and 2). Clearly, analogous arguments apply to the

1Based on the ratio of vaporization temperature TV ≈ 2500 K to the temperature to which the

source material is heated ≈ 1500 K, TV /TS ≈ 5/3, one finds that the evaporated gas of clusters

(consisting of the high-velocity tail range in the Maxwell-Boltzmann distribution of the atoms at the

surface of the source material) should have a temperature of Tc ≈ 280 K after escaping from the solid

surface. This estimate assumes that the evaporated clusters do not reach equilibrium with the heated

surface of the source material, but travel essentially ballistically towards the target (and the cooled

walls of the synthesis chamber).
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Figure 4.12: Boltzmann distribution curves based on the fully optimized ab initio

energies of local minima for the trimer (a) and tetramer (b). For the tetramer, only

the ten lowest minima and structure 21 are depicted.
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Figure 4.13: Global minima - Global minimum for (MgF2)1−10

clusters from Monte-Carlo simulate annealing.

tetramer, where also the D2h-isomer 21 is expected to be present besides the low-energy
structures 1, 2, 3 and 4 (c.f. Figure 4.12(b))

Furthermore, the common occurrence of fragments in the optimization runs sug-
gests, that many individual MgF2 molecules and (MgF2)2 clusters will also be present
in the gas phase, besides the trimers and tetramers, and should be included in the gas
mix impinging on the substrate.

4.3 Global optimizations of neutral (MgF2)n clus-

ters

The global minima of neutral clusters containing up to 10 units of MgF2 are depicted
in Figure 4.13 and the simulated annealing runs are summarized in Table 4.3. Our
global minima for (MgF2)2−10 are in good agreement with those found in a previous
study on the same system which employed a basin-hopping scheme for finding global
minima (133). The bond energies and second energy differences indicate that in ther-
modynamic equilibrium, clusters of sizes 2, 7 and 8 would be favored.

4.4 Global optimizations of charged clusters

To our knowledge, the structures of charged species of Mg/F clusters have not been
studied. Since we cannot exclude the possibility of their survival under experimental
conditions, we have also investigated the energy landscapes of such charged structures
and determined the deepest local minima via the stochastic simulated annealing algo-
rithm. Only structures with a single overall charge were considered. This is reasonable
as it would take an unrealistic amount of energy to form small divalent charged clus-
ters in the vapor phase. The systems studied were MgF+ (monomer cation), MgF−3
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Table 4.3: Global optimizations for (MgF2)2−10.

Number of units Number of minima after MC/SA Energy per MgF2 unit(eV) Point group

2 1 -399.84708 D2h

3 6 -399.86548 D2d

4 18 -399.87922 C2v

5 34 -399.88607 Cs

6 71 -399.89275 Cs

7 117 -399.90171 C2v

8 151 -399.90564 Cs

9 169 -399.90602 1

10 181 -399.91225 Cs

(monomer anion), Mg2F
+
3 (dimer cation), Mg2F

−
5 (dimer anion), Mg3F

+
5 (trimer cation)

and Mg3F
−
7 (trimer anion). The local minima obtained for each of these systems are

depicted in Figure 4.14. Again, the structures are labeled in the order of the energies
obtained from the pair-potential. The parameters for simulated annealing used for
these clusters are exactly the same as the ones used for the neutral clusters.

We used a Monte-Carlo simulated annealing based approach to find the global
minima for all neutral and charged clusters up to decamers and trimers ((Mg3F7)

−,
(Mg3F5)

+), respectively. The starting point was a random atom arrangement inside
a very large cubic simulation cell. The initial volume of the container was 100 times
the volume of the atoms/ions as estimated by their atomic radii. We used periodic
boundary conditions as far as the movement of atoms was concerned, but atoms could
only interact inside the simulation box. The atoms were not allowed to come closer
than 0.55 Å. All calculations were performed at 0 GPa. The form of the two-body
potential used and the parameters for the optimization(112) were exactly the same
ones used for optimizing neutral clusters discussed above.

For each of the polymers of MgF2 considered, one very long simulated annealing
run consisting of 106 Monte-Carlo steps was performed, in order to find the global min-
imum and as many low-lying side minima as possible. The temperature was reduced
exponentially from 1 eV/atom to 0.006 eV/atom over the length of the annealing run.
At 400 different points along the trajectory, we performed 5 quenches of 10,000 steps
each followed by a gradient descent after each quench. Afterwards, the five structures
with the lowest energies and/or largest basins were picked and optimized at the ab
initio level. Finally, the vibrational spectra were calculated for the modification with
the lowest ab initio energy.

As far as the periodic systems were concerned, no further global explorations were
performed. The most promising candidates suggested by Wevers et al.(41) were ana-
lyzed on the ab initio level by minimizing their energies and computing their Raman
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Figure 4.14: Isomers of monovalent clusters - Isomers of all the monovalent

clusters studied. MA=Monomer Anion, DA=Dimer Anion, TA = Trimer Anion, MC

= Monomer Cation, DC = Dimer Cation, TC = Trimer Cation

and infra-red spectra.

4.4.1 Conclusion

We have explored the energy landscape of MgF2-trimers and MgF2-tetramers both on
ab initio and empirical potential level, and determined not only the stable isomers, but
also the energetic and entropic barriers separating them and their local densities of
state. Especially for the tetramer, we observe that the energies are systematically dif-
ferent for the less compact clusters , when comparing empirical and ab initio energies.
To our knowledge, this is the first study comparing energetic barriers of empirical and
ab initio potentials. The agreement is better for the more compact clusters , which
is to be expected, as the potential was calibrated for bulk MgF2 and thus a compact
structure. We find that the barrier structures of the empirical and ab initio energy
landscapes are quite similar qualitatively although quantitative differences exist. We
have investigated the probability flow on the landscape, in order to study the stability
of the various isomers. We find that with the mean free path greatly exceeding the
distance between source and substrate in the experiment, the stability of the individual
local minima is high enough such that a mixture of different isomers is expected to im-
pinge on the substrate during the LT-ABD synthesis of metastable MgF2-modifications.

56



4.4 Global optimizations of charged clusters

Additionally, we have also found local minima from extensive simulated anneal-
ing runs for possible species of charged clusters and global minima for clusters upto
(MgF2)1−10. We now proceed to calculate at ab initio leve, the Raman and IR spectra
of all the species found from these extensive studies in the next chapter.
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Ab initio Raman and IR

spectroscopy
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5

Ab initio Raman and IR

spectroscopy

Experimental studies including Raman (37), IR (38), and mass spectroscopy measure-
ments (39, 40) have been performed in the past on MgF2 clusters. The frequencies
of the monomer, two dimers and nine proposed trimers of MgF2 have been studied at
different levels of theory (46, 47, 48, 48, 49, 50) already. For example, (MgF2)2 clusters
have been previously observed and characterized using Raman spectroscopy(37). But
up to now, none of the theoretical calculations have included any data on intensities,
which would be particularly useful when assigning structures from experimental data.
Furthermore, the possible charged species of MgF2 that could appear when generating
the gas phase in the experimental LT-ABD setup have not been studied yet. In this
chapter, we present the results of computations of the Raman and IR frequencies and
intensities of all species found in the previous chapter.

5.1 Methodology

5.1.1 Theory

5.1.1.1 Local optimization and determination of IR/Raman frequencies

The energy landscape including the barrier structures and probability flows among the
local minima, has been described in detail in the previous chapter for the neutral trimer
on the ab initio level (DFT with a B3LYP functional), and for the neutral tetramer on
the empirical level using a standard Coulomb-plus-Buckingham type potential. Esti-
mating the lifetimes of the various cluster modifications, we found that many isomers
of MgF2 clusters may survive in non-negligible amounts in the vapor phase, even at
high temperatures during a low-temperature atom beam deposition experiment. Thus,
while the smaller (MgF2)1−3 clusters are the ones most likely present in the gas phase
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5. AB INITIO RAMAN AND IR SPECTROSCOPY

Figure 5.1: Raman frequencies and intensities for neutral clusters (up to three MgF2

units) calculated in the B3LYP/631++G** basis. The nine isomers are labeled in

increasing order of energies derived from the pair-potential as discussed in the previous

chapter.

in an evaporation-based experiment, it is likely that higher oligomers and even charged
Mg/F clusters may be present in the gas phase or on the surface as part of the de-
posit. Similarly, possible bulk polymorphs of MgF2 were calculated by Wevers et al.
(21, 41) in an earlier study. In the previous section, these crystalline modifications
were locally optimized. After careful optimization, we calculated the Raman and IR
active frequencies, in detail for each polymorph using CRYSTAL’09. It must be noted
that these frequencies are very sensitive to the positions of the atoms. Thus, extremely
tight parameters were used during optimization and all structures were re-optimized
until convergence was achieved after the first step itself.

We used the Gaussian03 (134) software for optimization and calculation of the
Raman spectra and vibrational modes of charged and neutral MgF2 clusters. All cal-
culations were performed with the B3LYP functional (120) in the 6-311++G** basis.
The energies, bond-lengths and frequencies for the trimer were then compared with
known values from the literature.(37, 38, 47, 48, 49, 135).

Raman spectra for solid MgF2 were calculated using CRYSTAL09 (100, 115). For
magnesium, the basis sets from Valenzano et al. (116) and for fluorine the basis sets
from Nada et al. (117) were chosen, respectively. We verified that the lattice constants
of the rutile-type modification of bulk MgF2 were well reproduced. Similarly, we com-
pared the energies, bond lengths and frequencies with experimental measurements from
Porto et al (36). In these calculations, the infra-red intensity and Raman activity of
the vibrational modes are determined from the changes in the electric dipole moment
and the polarizability tensor with the oscillations of the atoms.
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5.1 Methodology

Figure 5.2: Experimental Raman spectra of three different samples of MgF2 in argon

matrix (deposited at -250 ◦C (LHe), sapphire substrate, 1x10−4 mbar Ar-chamber

pressure) measured at -250 ◦C. Experimental Raman measurements by A. Bach (18).

5.1.2 Experiment

In order to be able to identify the clusters actually present in the gas phase during
the LT-ABD synthesis, magnesium difluoride films and samples of MgF2 in argon ma-
trices were prepared by A. Bach and D. Fischer (136) to perform studies by Raman
spectroscopy. Magnesium difluoride (99.99%, Aldrich, USA) was dried at 200◦C in
vacuum and directly evaporated from an effusion cell (Dr. Eberl MBE - Komponenten
GmbH, Germany), which was held at a constant temperature between 1020◦C and
1050◦C, and deposited onto a cooled substrate (−100◦C) inside an ultra high vacuum
chamber (1×10−8 to 5×10−9mbar) for a period of several hours. The residual gas was
analyzed and monitored by quadrupole mass spectrometer (Prisma Plus QMG 220,
Pfeiffer Vacuum GmbH, Germany). MgF2 in argon matrices were prepared by simul-
taneous deposition of MgF2 and argon gas (1×10−4mbar) on the cooled substrate (at
−250◦C). The following materials were used as substrates: sapphire (0001) (CrysTec
GmbH, Germany), polished copper (polycrystalline, Goodfellow GmbH, Germany).
The substrates with the deposited samples were transferred from the deposition cham-
ber to the Raman spectroscopy unit, while maintaining vacuum and cooling, by means
of a car transfer system. This work was performed by Andreas Bach and Dieter Fis-
cher in our group. The results are summarized in Table 5.1. The experimental Raman
measurement on the thin-films of MgF2 are shown in Figure 5.3 and three independent
measurements on the vapor phase are shown in Figure 5.2

To carry out the Raman spectroscopy, a microscope laser Raman spectrometer
(iHR 550 spectrometer; BXFM microscope, manufactured by HORIBA, Bensheim)
with confocal geometry was used. The incident laser beam (473 nm at 20 mW ) passes
through a window in the vacuum chamber and finally impinges on the sample.
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5. AB INITIO RAMAN AND IR SPECTROSCOPY

Figure 5.3: Experimentak Raman spectra measured at 25 ◦C of Bottom: MgF2

powder, Middle: clean Cu substrate and Top: MgF2 layer on Cu substrate (deposited

at -100◦C). Experimental Raman measurements by A. Bach (18).

Table 5.1: Raman bands of MgF2 clusters and bulk MgF2 polymorphs.

Sample Raman Shift(cm−1)

MgF2 in Ar-Matrix 165 216 283 291 307 365 553

Disordered MgF2 on Cu 222 303 352 419 507 800

MgF2 rutile 921 295 410 5151

MgF2 anatase (calculated) 160 280 322 377 451 532

MgF2 CaCl2 (calculated) 153 268 277 347 384 488
1See Ref.(36)
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5.2 Raman and IR calculations for neutral (MgF2)1−10

clusters

Since our goal is to identify possible isomers in the gas-phase during an LT-ABD
experiment, we have calculated Raman and IR active frequencies and intensities for
all suggested modifications up to (MgF2)3. These include one monomer (M1), two
isomers of the dimer (D1, D2) and 9 isomers of the trimer (T1-T9). The structures
are labeled in increasing order of energy as computed with the pair potential. The
structures of these isomers have been reported in previous works that employed Monte-
Carlo investigations on the energy landscape (48, 137). In addition, we have calculated
vibrational spectra for all the global minima up to (MgF2)10, since such clusters might
also be present in the gas phase or form on the substrate and the vibrational spectra
of these bigger clusters could help us to better understand the seeding and growth
mechanisms involved in the LT-ABD met

For the monomer, the computed bond-length of 1.765 Å is in good agreement with
the experimentally reported bond length of 1.77 Å (138). The F-Mg-F bending mode
is found at 145 cm−1 in reasonable agreement with the experimentally reported value
(139) of 160 ± 3 cm−1, and the Raman active symmetric stretch mode was found at
549 cm−1, which is in excellent agreement with measured 550 cm−1 of MgF2 in an Ar
matrix (37).

5.3 Charged Clusters

In the literature, no structures of charged species of Mg/F clusters are available. Since
we cannot exclude the possibility of their survival under experimental conditions, we
have also investigated the energy landscapes of such charged structures in the previous
chapter. The Raman spectra computed at ab initio level for selected structures in each
system are shown in Figure 5.4. All calculated Raman active modes are depicted in
Figure 5.4. DA1, TC1, TC2, TC3, TC6 and TA3 show intense Raman modes. Specifi-
cally, DA1 and TC6 have intense modes at 307 cm−1 and 210 cm−1, and TC1 a weaker
one at 150 cm−1. (See the appendix for more details and IR spectra)

5.4 Assignment of predicted vapor phase structures

to experimental observations

In Table 5.2, we have summarized experimentally observed frequencies of vapor phase
clusters from Lesiecki et al. (37) (L), Snelson et al (38). (S), Mann et al (135). (M) and
Hauge et al (H) (140), the most recent assignments made by Francisco et al.(48) (F),
along with possible assignments from this work. None of the earlier calculations on
phonon modes of MgF2 clusters so far had included intensities derived for the Raman
or infra-red peaks. With our new calculated data, it is possible to distinguish between

65



5. AB INITIO RAMAN AND IR SPECTROSCOPY

Figure 5.4: Raman frequencies and intensities for charged clusters upto 3 units cal-

culated in the B3LYP/631++G** basis. For notation, see previous chapter.
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5.4 Assignment of predicted vapor phase structures to experimental
observations
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Figure 5.5: Raman active frequencies for possible (meta)stable modifications of bulk

MgF2.

isomers of dimers and trimers. For example, the IR active band at 240 cm−1 had been
assigned to either a dimeric or trimeric species by (M) and (F). We see that the most
intense peak in this region arises from the dimer D1 (D2h isomer). In the calculated IR
spectrum for D1, this peak is accompanied by two other intense peaks at 492 cm−1 and
761 cm−1. A peak around 490 cm−1 was reported by S, M, H and L and assigned to a
dimeric species. S and H also reported a peak at 745 cm−1 and 746.5 cm−1 respectively
and assigned it to a dimeric species. We believe this corresponds to the intense peak
found at 761 cm−1 in our calculations for D1, which is within the error limits. There-
fore, it would appear that the D2h isomer of the dimer was present in the experiments
reported, as the three most intense IR peaks have all been observed experimentally.
The most intense Raman peak for this isomer is seen at 480 cm−1 in our calculations.
This has, however, not been reported so far, possibly due to the intensity not being
measurable. L has reported Raman active modes at 550 cm−1 and 584 cm−1. It is
clear that the 550 cm−1 peak comes from the most intense Raman frequency of the
monomer found at 549 cm−1 in our calculations. The mode at 584 cm−1 was assigned
to a dimeric species by L and F. The most intense Raman mode for the C3v isomer
of the dimer (D2) is found at 605 cm−1 in our calculations suggesting that this is the
isomer found by L. It is interesting that the most intense Raman active peak for D1 is
not found in any experiment whereas all three intense IR peaks are observed.

We can say with some confidence that for our experimental results in the vapor
phase the peak at 550 cm−1 corresponds to the monomer (M1) and the one at 365
cm−1 to the D2h dimer. Among the neutral clusters considered, none of the systems
had a high intensity Raman active mode up to the 280-300 cm−1 region. Furthermore,
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5. AB INITIO RAMAN AND IR SPECTROSCOPY

Figure 5.6: IR active frequencies and intensities for clusters (MgF2)n (n=1,2,3).

according to the calculations, none of the other peaks were observed in previous exper-
iments on the vapor phase of MgF2. However, it is possible that at lower effusion cell
temperatures (1050◦C compared to the 1275◦C (37) ), charged species are stabilized
in the argon matrix. Although a number of peak assignments to various cationic and
anionic clusters are possible, among the charged species considered in our calculations,
DA1 appears to have a very strong Raman activity in this region of the spectrum.
Thus, the dimeric anion DA1 is also likely to be present in the experiment, while the
other anionic and cationic species are possible (especially DA3 and TC6) but less likely.

5.5 Specific structural features

5.5.1 Fingerprint frequencies

From the calculations performed so far, it appears that linear isomers ((MgF2)1−6) cor-
responding to (BeCl2)n-like chains can be identified using Raman spectroscopy. These
MgF2 chains have characteristically intense frequencies at 470-480 cm−1 and 775-785
cm−1 with very few low-intensity Raman active modes in between (See Fig.5.8). These
two modes are found as the most intense vibrations for only these types of isomers. The
470-480 cm−1 peak is the result of in-plane stretching of the bonds involving bridging
fluorine atoms that belong to the three-coordinated magnesium atoms at either end of
the chain, while the 775-785 cm−1 vibration is a result of the movement of the dan-
gling fluorine atom at each end. These modes can be seen in Figure 5.8. In fact, this
frequency appears to be characteristic for dangling F-atoms in the terminal MgF3 unit
in all neutral clusters investigated.
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Figure 5.7: IR active frequencies for possible (meta)stable modifications of bulk MgF2

(Intensities for each structure are shown in the appendix).

Figure 5.8: The two most intense modes for linear chains of the dimer(top),

trimer(middle) and tetramer(bottom) of MgF2.
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Figure 5.9: Examples of the Raman active frequencies possibly characteristic of the

amorphous MgF2 deposit containing dangling bonds.

5.5.2 Order parameter for amorphous-crystalline transition

In this context, we note that in the Raman measurements on amorphous MgF2 de-
posited on Cu substrate, there occurs a broad peak at roughly 800 cm−1. However,
this peak is not present in the crystalline phases. We believe this feature could be a
result of dangling fluorine atoms that are only present in the amorphous material but
not in the crystalline phases. In Figure 5.9, we show some examples of these modes.
The arrows indicate the direction of movement of the atom. In all of the cases shown
in the figure, the dangling fluorine atom on a three-coordinated Mg moves in the di-
rection of this Mg atom and this mode always results in an intense Raman vibration
between 750 and 800 cm−1. It might therefore be possible to follow the transition from
amorphous to crystalline MgF2 by observing this peak.

5.6 Limitations

5.6.1 Computational limitations

The most important limitation for the Raman and IR study of MgF2 clusters was the
non-availability of Raman intensities for bulk structures in CRYSTAL’09. While the
frequencies show good agreement with the known experimental data for the rutile-type
structure, it would be extremely useful to have data on intensities in order to make
accurate assignments to bulk polymorphs. Also, we would have preferred to use more
accurate quantum chemical methods (such as the coupled-cluster approximation and
possibly multi-reference methods) for calculating the vibrational spectra. These meth-
ods are, however, much more expensive and thus too time consuming. Finally, we have
used an empirical pair-potential that was fitted for reproducing the lattice parameters
and elastic constants of the rutile-type structure of MgF2 bulk for exploring the land-
scape of the clusters. This has not been much of a concern, as we have shown in the
previous chapter that the potential reproduces the qualitative features (especially the
local minima) of the true ab initio landscape quite satisfactorily.
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5.7 Conclusion

5.6.2 Experimental limitations

Raman intensities of MgF2 powder are low compared to a MgF2 crystal and are further
reduced by the limited thickness of the thin films. Thus, the detection of a Raman sig-
nal of an amorphous MgF2 film is difficult. The same holds for the matrix spectroscopy,
where we have also a low concentration of MgF2 species. Because of this background
we are not able to draw stronger conclusions from the spectra obtained. It is also
possible that in the argon matrix the gas phase species combine together during the
deposition and formed larger clusters. Furthermore, the magnesium fluoride clusters
interact with the matrix atoms (matrix damping effect). Both processes can lead to
band shifts, intensity anomalies, or to new visible bands.

5.7 Conclusion

In order to characterize the clusters present in the gas phase during the LT-ABD pro-
cess, we have calculated the Raman and infra-red spectrum of these structures and of
various predicted bulk MgF2-polymorphs (including Raman and infra-red intensities
for the clusters). We have compared these results with experiments performed in the
context of the low-temperature atom beam deposition synthesis of MgF2 polymorphs.
We find that the monomer M1 and the dimer D2 constitute only a minor part in the gas
phase during the synthesis and find evidence that most likely, several charged species
are also present. We have also discussed the possibility of following the amorphous to
crystalline transition of MgF2 by following the intensity of the broad peak at about 800
cm−1 which is most likely due to the dangling fluorine atoms in three-coordinated Mg
atoms. Finally, in our calculations, we can identify two characteristic Raman active
frequencies at around 475-480 cm −1 and at about 800 cm−1 for the short and long
linear polymorphs of (MgF2)n which can also serve as a fingerprint for such chain-like
structures both in clusters and bulk phases of MgF2. Since the peaks discussed are
present in all matrix samples investigated, it is unlikely that impurities are the reason
for their existence.
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Table 5.2: Assignment of observed frequencies in vapor phase.

Frequency(cm−1) S (38) M(135) H(140) L(37) F(48) This work

240(IR) M1, Polymer D1

248,249(IR) M1 D2 D1 D1

283, 291, 307(IR) T1, T2, TA5

354(Raman) Dimer D2 D2,T2

450(IR) Polymeric T1,T3,T6

477(IR) M1 No MgF2 No MgF2 M1, T1, T3, T6

490S, 483M,486.6H, 486.5L (IR) Polymeric Polymeric D1,D2 D1,D2 D1,D2 D1,T3

548(IR) MgF2X D2 D2

550(Raman) M1 M1 M1

584(Raman) D2

(738.2, 732.8, 726.5)(IR) MC1 DA1,MA1

(745.9,741.1, 735.4)(IR) Polymeric MC1 D1,MgF MgF D1, T2, T3

850, 840,842.3, 841.8(IR) M1 M1 M1 M1 M1 M1
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Molecular Dynamics simulations

73





6

Atomistic modeling of the LT-ABD

method

6.1 Introduction

In this section, we present the results of molecular dynamics simulations of the deposi-
tion of MgF2 clusters of various sizes on the Al2O3 substrate and subsequent annealing
of the deposit. We also discuss the kinetic stability of the yet-unknown anatase poly-
morph of MgF2. The previous two chapters have described a detailed study on the
vapor phase of MgF2. The logical next step is to deposit precisely the species identi-
fied onto the Al2O3 substrate used in experiment. There has been a significant exper-
imental interest in synthesizing MgF2 thin-films for optimizing the optical properties.
However, we have not come across any theoretical study that discusses the atomistic
growth process of MgF2.

6.2 Setting up the substrates for deposition

6.2.1 α-Al2O3 substrate

Before proceeding with the actual deposition, we need to have a stable equilibrated
surface in order for the simulations to succeed. In the case of Al2O3, the slab was
chosen in such a way as to expose the oxygen-terminated (0001) surface. Although
the Al-terminated surface had been previously calculated to be more stable than the
O-terminated (0001) surface (141), we still decided to use the latter in order to re-
produce more closely the experimental conditions. It has been shown in ultra-high
vacuum experiments that this substrate is oxygen terminated in the presence of major
impurities such as argon, nitrogen and water (142, 143). Since the pressure in the ex-
perimental chamber before starting deposition was around 10−8 bar and the substrate
had not been specially treated with any cleaning process, we expected the exposed Al
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layer to be passivated with O and other species present in the chamber within a few
seconds. Therefore, it is reasonable to assume an O-terminated surface as a starting
configuration before deposition was initiated.

The slab chosen for deposition comprised 3600 atoms and was obtained by con-
structing an ABA stacking of close-packed planes of O atoms. Six close-packed planes
made of 120 oxygen atoms and with lateral dimensions of 50.4 Å × 48.5 Å were used.
The nearest-neighbor distance between O atoms was 2.8 Å. Two thirds of the octahe-
dral hollow sites between two adjacent close-packed O-planes were filled with Al atoms,
in such a way to reproduce the known crystal structure of α-alumina. During the sim-
ulation, the bottom two planes comprising of oxygen and aluminium atoms were fixed
so as to reproduce the stabilizing effect of the bulk sample. Then, the initial slab was
locally minimized by using an MD-assisted quenching procedure. At each MD step,
after solving the classical equations of motion via the velocity-Verlet algorithm, the
quenching was accomplished by canceling all those components of an atom’s velocity
whose scalar product with the force acting on the atom was negative. Periodic bound-
ary conditions across the plane parallel to the xy-plane were applied. Upon quenching,
the topmost plane of oxygen atoms was observed to relax inwards, in such a way to
reduce the surface dipole moment. This effect has also been observed experimentally
in an extremely clean environment under very low vapor pressures.

Before initiating the actual deposition, the minimized slab was equilibrated by per-
forming MD for a time interval of around 1 ps and at the temperature of the deposition.
A simple thermostat based on velocity rescaling was used and applied to all atoms ly-
ing within a distance less than one third of the slab height from the bottom of the
slab. The equilibrated structure was then used as the substrate for the deposition and
growth simulation.

The minimized and equilibrated slab at 1000K is shown in Figure 6.1. The inward
relaxation of the top-most Oxygen plane can be seen.

6.2.2 MgF2-anatase substrate

The anatase structure can be stabilized for TiO2 up to a thickness of 20 nm in vacuum
(144). By depositing on a hypothetical substrate for anatase-MgF2, we can test the
kinetic stability of this structure at different conditions and generally study whether
epitaxial growth and subsequent tempering will yield the same anatase-type structure
or transform into the rutile structure.

We chose to expose the (011) and (100) faces based on previous studies on the
stability of the TiO2-anatase structure and electronic structure calculations of surface
energies using the CRYSTAL’09 suite. For the purpose of studying epitaxial growth,
we feel it would be sufficient to explore low-index surfaces only.

For the (011) slab, the starting structure was terminated by fluorine atoms and
comprised 3360 atoms. The simulation cell dimensions were 53.50 Å × 52.22 Å in the
x and y directions respectively. The MgF2-anatase unit cell used to produce this slab
had dimensions of a=3.822 Å, b=3.822 Åand c=9.719 Å. Next, after tempering for 2
ns, we saw a significant relaxation of the top most layer of F-atoms, quite similar to the
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6.2 Setting up the substrates for deposition

Figure 6.1: Substrates used for deposition- (a) α-Al2O3 (b)MgF2-anatase (011)

(c) MgF2-anatase (001) (d)MgF2-rutile (100) (e) MgF2-rutile (110)
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case of Al2O3 described above. The starting and final structures at 1000K are shown
in Figure 6.1. This is the highest temperature at which these slabs are equilibrated.

The (100) slab comprised 3120 atoms and the top-most layer had both Mg and F
atoms. The simulation cell dimensions were 48.59 Å × 49.69 Å in the x and y direc-
tions respectively. Here too, we see a significant relaxation of the top-most layer that
is most pronounced at 1000K as can be seen from Figure 6.1.

6.2.3 MgF2-rutile substrate

The rutile structure was stabilized with the (100) and the (110) surfaces exposed. The
(100) slab comprised 3168 atoms and the dimensions were 48.83 Å × 50.87 Å. For the
(110) slab, comprised of 3264 atoms, the slab’s dimensions were 51.88 Å × 52.32 Å in
the x and y directions. In a previous ab initio study on MgF2 surfaces (145), these
faces were found to be the thermodynamically most stable ones. They are shown in
Figure 6.1.

6.3 Setting up the vapor phase

In a previous study of Xenon deposition, it was found that up to experimental vapor
pressures from 10−7 to 10−3 bar, no clusters of Xenon were formed. Subsequently, a
deposition of single atoms at different rates was studied (22). However, in the context
of an ionic system like MgF2, it is clear that this will not be the case. The previous
two chapters have described details of an energy landscape and Raman investigation
on the vapor phase of the experiment being modeled. Especially from the results of the
Raman investigation, it is clear that the linear monomer and the D2h dimer are present
in our experimental setup, among other possible structures. The exact distribution and
percentages of these clusters remains unclear, however. Thus, we have deposited these
two clusters with a probability of 0.5 each. The initial distance of the particle was
set at 10 Å above the the growing surface. The x and y coordinates of the impinging
cluster were chosen randomly. In a separate study, we also deposited bigger clusters
of up to 45 atoms in order to see the effects of changing the gas phase composition on
the deposit.

The rate of cluster deposition was varied from 4.5 atoms every 1000 MD (high-
rate) steps to 4.5 atoms every 10,000 MD steps (low-rate). This is in contrast with
most MD studies on molecular beam epitaxy that tend to start with a monoatomic
gas phase/plasma or deposit atoms in a particular stoichiometric ratio (22). We also
deposited big clusters found from the simulated annealing study performed in the
previous chapter. Two clusters of 45 atoms and 30 atoms were deposited in with a
probability of 0.8 and 0.2 respectively. In the case, the average deposition rate was 42
atoms per 1000 MD steps and 10,000 MD steps at 50K and 1000K respectively.
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6.4 Deposition

6.4.1 Deposition on α− Al2O3

We first simulated the deposition at a rate of about 1012 atoms/s and about 1010

atoms/s. This translated to a new cluster being deposited on the substrate every 1000
and 10000 MD steps respectively (1 MD step = 2 fs). This deposition rate is much
faster than the experimental deposition rate, of course.

Independent of the rate of deposition or temperature of the substrate, we always
obtain an amorphous deposit after depositions on a cold substrate at these two rates
with the temperature being greater towards the top of the deposit. Figure 6.2 shows an
example of the structure obtained after deposition at 50K and 1000K (the lowest and
highest temperatures for depositions studied) on the α-Al2O3 substrate. It is interesting
to note that we see epitaxial growth at even the fastest rates on the hypothetical MgF2-
anatase and MgF2-rutile substrates at substrate temperatures of 1000K.

At 1000 K, the 6681 atoms deposited on α-Al2O3 substrate produced a film of
thickness of around 75 Å whereas for the amorphous deposit at 50 K, the thickness for
the same number of atoms was 90 Å. A bin of 4 Å is chosen in order to make sure that
layers containing only a small number of atoms are not underrepresented. (See 6.2b)
when computing average temperature.

Snapshots at four different intervals of time during deposition are shown in Figure
6.2a. We can therefore conclude that MgF2 films would follow the island type growth
process on Al2O3 substrate at both high and low temperatures.

6.4.2 Analysis of the deposition

We study the amorphous deposit during deposition with respect to the following data:
(1) the temperature gradient along the z-axis, (2) coordination histograms, (3) radial
distribution function and (4) bond-distance histograms. These are shown in Figure 6.3.

We note that the radial distribution function is an important feature for the com-
parison with the transmission electron microscopy experiment. This is discussed in
detail in the methods section.

There appears to be a positive temperature gradient (See figure 6.3(a)) across the
deposit from top to bottom with the top layers being hotter than the bottom-most
layers. This behavior is observed at temperatures of 300K, 500K and 1000K as well.
The reason is that the thermostat is applied only at the bottom of the substrate and
the time between individual depositions is not long enough for the energy of the de-
posited cluster to completely dissipate out of the system. The gradient remains the
same for deposits generated at a lower rate too. In contrast, in the work on deposition
of Xenon, it was found that the layers have largely the same temperatures. This could
be a result of the ionic nature of the Mg-F interactions that do not permit heat diffusion
easily even at high temperatures by reducing the number of collision during deposition.
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Figure 6.2: Deposition at different temperatures -(a) The figure shows different

stages of growth of the amorphous MgF2 deposit at 50K. (b) Amorphous deposits at

three different temperatures of 1000K, 300K and 50K. .

80



6.5 Tempering

The tight packing in Xe with practically no voids inside the deposit implies that the
temperature can be easily distributed across all atoms through collisions leading to
a better averaged kinetic energy throughout the deposit and the heat dissipation is
mostly controlled by the substrate-deposit interface.

The fluorine-fluorine coordination ranges from 5 to 15 with a peak at 12 growing
with time. We note that the coordination of 12 is required for the hcp arrangement
in the CaCl2-type structure (rutile shows tetragonal fluorine atom packing with a 11
fold F-F coordination). The radial distribution function indicates that absolutely no
long-range order is present in the final deposit after deposition at all temperatures and
rates studied. Average Mg-F, Mg-Mg and F-F bond lengths of 1.96 Å, 2.5 Å and 4 Å
are found in the deposit at 50K.

6.5 Tempering

After the deposition stage resulting in amorphous structures as described above for
deposition at temperatures ranging from 50K to 1000K, we tempered these deposits
first at the temperatures at which these were grown. However, even after tempering
at 1000K for 18 ns, we did not find an ordered deposit. Thus, keeping the computa-
tional time expenses in mind, we performed tempering runs of five different amorphous
structures grown at 50K at 1500K and 2000K (the experimentally reported melting
point of MgF2 is 1536K (146)), but it must be noted that most empirical potentials
fitted for bulk systems do not reproduce melting points in general and tend to under or
over estimate this value significantly. Given the constraints of time and computational
effort, we performed a long tempering on a few deposited amorphous layers, where the
high temperatures essentially accelerate the diffusion and lead to ordering within the
the first nanosecond of the simulation time.

We observed that for all amorphous samples studied (i.e the ones generated using
big clusters, small clusters and different temperatures), tempering at 1500K led to a
structure exhibiting some ordering within a simulation time of approximately 1 ns. The
driving force for formation of an ordered structure is the formation of a fully ordered
layer at the substrate-deposit interface. As soon as this is achieved, the ordering
process begins in a bottom-up fashion. This process is clearly observed at 1500K with
accelerated diffusion. Figure 6.4 shows snapshots that clearly indicate this bottom-up
ordering process. The temperature of 2000K is found to be too high since the deposit
becomes liquid like and remains that way for the duration of the simulation.

The change in total energy of the system during the annealing process can be seen
in Figure 6.5 at 1000K and 1500K: the energy of the low-temperature deposit signifi-
cantly increases during tempering as a result of an increase in kinetic energy. After a
certain point in time, the process of ordering begins and the energy reduces drastically
as more and more bonds are formed. After about 1 ns, the system equilibrates and
the bottom-up ordering process is nearly complete. At 2000K, the crystallization step
does not occur as the deposit remains liquid-like.
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Figure 6.3: Analysis of deposition at 50K- The figure shows (a) The temper-

ature gradient normal to the substrate at different time-steps (b) F-F and Mg-Mg

coordination numbers at different time steps (c) F-F bond angle histograms and (d)

Bond-distances of Mg-F, Mg-Mg and F-F bonds distributed across the deposit. .
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Figure 6.4: Snapshots of annealing at 1500K- The figure shows different stages

during the annealing process starting from an amorphous structure obtained at 50K

to an ordered deposit.

We saw during deposition that for all the choices of deposition parameters, the
temperature of the deposit increased gradually in the direction normal to the exposed
plane of the substrate. During the tempering stage however, this trend is reversed
almost instantly. The reason is that our thermostat is placed at the bottom of the
substrate. Without new deposited clusters adding kinetic energy at the top, it is easy
to see why this happens. The trend is illustrated in Figure 6.5 where we can see the
temperature change as a function of the z-coordinate in bins of 4 Å. A bin of 4 Å was
chosen to make sure that at least 100 atoms were involved in the computation of the
average the kinetic energies per layers. The temperature of the layer is then calculated
from the kinetic energies via the law of equipartition of energy.

6.5.1 Structural features of the deposit

All structures after annealing for 1 ns at 1500K show an hcp-like packing of fluorine
atoms as indicated by an ABAB type stacking of the fluorine layers (See figure 6.6).
Experimentally, the amorphous to rutile phase transition has been suggested to pro-
ceed via the CaCl2-type structure through an order-disorder type phase transition.
The arrangement of fluorine atoms should be that of a tetragonal close packing for
the structure to be classified as rutile-type whereas in the CaCl2-type structure, the
fluorine-fluorine coordination should be equal to 12. However, a well-known shearing
of the CaCl2-type structure easily transforms it into the rutile-type structure (147).
Thus, understanding the behavior of the fluorine atoms becomes key to understanding
the precise crystalline structure of the ordered deposit.

A clearer picture emerges when we look at the polyhedral connections along the y-z
and x-z planes in sections of 3-4 Å thickness along the x or y directions. We see that
while the ABAB type stacking of fluorine atoms is consistently maintained, the mag-
nesium atoms are distributed across the deposit so as to enable the existence of several
different crystal types, and in particular, two specific ones: while a major part of the
annealed deposit contains CaCl2-type edge-sharing octahedral connections, we also see
the emergence of regions containing CdI2-type nuclei. Both these configurations can

83



6. ATOMISTIC MODELING OF THE LT-ABD METHOD

Figure 6.5: Analysis of anneal at 1500K- The figure shows different stages during

the annealing process starting from an amorphous structure obtained at 50K to an

ordered deposit.
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Figure 6.6: ABAB stacking of fluorine atoms- The figure shows ABAB type

stacking of fluorine atoms in the annealed deposit at 1500K after 1 ns. The magnesium

atoms are hidden from view. .

co-exist while maintaining an hcp-arrangement of the fluorine atoms. The CdI2-type
crystal structure had also been predicted to be a kinetically stable local minimum on
the energy landscape by Wevers et al. (21, 41). The polyhedral patterns can be seen
in Figure 6.7. On quenching this configuration, we can clearly recognize the existence
of two nuclei distributed across the whole deposit.(See figure 6.8)

6.5.2 Mechanism

It can thus be argued that it is the presence of small regions containing the CdI2-type
nuclei that stabilizes the CaCl2-type crystal in experiment. It has been argued from
TEM studies performed in collaboration with X. Mu, Dr. Wilfried Sigle and Prof. P.
Van Aken that, in fact the CaCl2-type nucleus is stabilized by the grain-boundaries.
However, the structure of the grain-boundary remained unclear. From our MD sim-
ulations, it would appear that the CdI2-type arrangement of edge-sharing polyhedras
should be a part of this grain boundary. The radial distribution functions of the model
derived from experimental studies appear to match the model predicted by our MD
simulations (148). Thus, it is possible that the grain boundaries are in fact of the CdI2-
type. This also opens up the possibility of varying simulation parameters in order to
stabilize the CdI2-type nucleus.

It has been previously argued that the diffusion of magnesium atoms within the hcp
lattice of fluorine atoms leads to the observance of the CaCl2-type structure due to av-
eraging over distortions in the XRD/TEM experiments. However, we can see from the
MD simulations that this is not the case. The CaCl2-type structure is stable because of
the competing CdI2-type arrangement within the system. Over longer periods of time,
the CaCl2-type arrangement cannibalizes the CdI2-type. Finally, when the crystal is
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Figure 6.7: Competing nuclei- The figure shows the formation of two competing

nuclei in the annealed deposit at 1500K after 1 ns. Two sections of 3 Å are cut across

the y-z plane. .

Figure 6.8: Competing nuclei- The figure shows the formation of two competing

nuclei in the annealed deposit at 1500K after 1 ns followed by a quench. Sections of 3

Å are cut across the y-z and x-z planes. .
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Figure 6.9: Fluorine diffusion profiles- The figure shows that during annealing,

the fluorine atoms diffuse until crystallization occurs and then only vibrate along their

lattice sites. .

big enough to make a C2 axis rotation (the shearing transformation mentioned earlier),
the CaCl2 structure relaxes to the more stable rutile structure. The impediment of this
mechanism would explain the stability of the metastable CaCl2 structure type in the
experiment.

6.5.3 Diffusion profiles

In order to gain more insight into the kinetics of the deposition and annealing processes,
the diffusion profiles of 9 fluorine atoms picked randomly at different points within the
amorphous deposit are shown in Figure 6.9. It appears from the figure that after
crystallization has occurred, hardly any movement of fluorine atoms takes place in the
deposit and they essentially vibrate around fixed positions as expected. Similarly, from
the diffusion profiles of the Mg atoms, we see that after crystallization, there is very
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Figure 6.10: Magnesium diffusion profiles- The figure shows that during anneal-

ing, the magnesium atoms diffuse until crystallization occurs and then only vibrate

along their lattice sites. .
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Figure 6.11: Deposition on MgF2 seeds- Amorphous and crystalline deposits

obtained at 50K and 1000K for MgF2-anatase and MgF2-rutile seeds. .

little movement and the atoms tend to vibrate about their lattice positions. A sample
of seven Mg atoms picked randomly is shown in Figure 6.10

6.6 Epitaxial growth and tempering on MgF2-anatase

From the energy landscape exploration on bulk MgF2, ab initio local optimizations and
the vibrational spectra of MgF2-anatase, we can state with confidence that the anatase
structure should be kinetically stable, at least at very low temperatures. However, the
degree of kinetic stability of this structure still needs to be established. We note that
we did not come across this structure during the amorphous-crystalline phase transi-
tion on Al2O3 discussed above.

Assuming that we are able to stabilize a big enough nucleus, our MD simulations
show that this structure should survive long enough as a meta-stable phase for exper-
imental observation. During deposition on both rutile (110 and 001) and anatase (110
and 100) substrates, we find epitaxial growth in the structure as the substrate at 1000K.
At 500K, the growth is a little more disordered. At low temperatures of 10K and 50K,
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Figure 6.12: Annealing on MgF2-anatase- Tempering the amorphous deposit for

15 ns at 1500K on the Anatase-110 substrate results in the formation of the Anatase-

type structure. .

there is practically no diffusion during the deposition and thus we get amorphous de-
posits on all surfaces studied. This suggests that depositing at high temperatures on
an anatase-compatible substrate might increase the likelihood of obtaining the anatase
form, and this also shows the kinetic stability of this structure.

To test this proposition further, we anneal the amorphous structures obtained at
low temperatures at a high temperature of 1500K for 18 ns. On both the anatase sur-
faces studied (100 and 011), the amorphous structure transforms to the anatase-type
structure of the substrate within 2.1 ns (See figure 6.13). We can thus conclude that
if a big enough seed of the anatase-type is formed, this structure can be stabilized for
the MgF2 system. On the rutile substrate, the analogous process resulting directly in
a rutile crystal occurs. In particular, we see no formation of a CaCl2-type phase or
stacking faults that result in the CdI2-type structures on the Al2O3 substrate.

6.7 Radial distribution functions

The structural evolution of MgF2 from an amorphous deposit through a metastable
phase to the thermodynamically stable polymorph is also studied by comparing pair dis-
tribution functions extracted from energy-filtered electron diffraction and our molecular-
dynamics simulations. To do so, we calculate radial distribution functions of all the
structures studied at different points in time. These enable us to figure out exactly
when long-range order is established in the system. We also compare models generated
from our MD simulations with the pair distribution functions derived by X. Mu and
Prof. Peter Van Aken at the Stuttgart Center for Electron Microscopy. We find excel-
lent agreement for the amorphous structure found experimentally at a temperature of
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Figure 6.13: Energies during annealing on MgF2-anatase- The energy increases

as the substrate is heated from 50K to 1500K. This is followed by a crystallization

almost immediately resulting in the anatase-type structure. The system is the in

equilibrium as energies fluctuate around this structure. .

623 K.

Figure 6.14a shows the experimental structure factors of the specimen measured
at 733 K (Fig. 6.14a , black solid line) and of the MD simulation at 500 K using
all atoms of the MD cell (Fig. 6.14a, red solid line) and of the perfect model of
rutile-type structure (Fig. 6.14a, blue dotted line). Peak positions of the experimental
structure factor show good agreement with those of the perfect model of the rutile-
type structure. This agreement confirms that the structure of the sample annealed at
733 K is close to rutile-type. However, the peaks of the experimental structure factor
are strongly damped compared to the perfect rutile-type model. On the other hand,
the experimental structure factor shows excellent agreement, both in peak heights and
widths, with the structure factor calculated from the 500 K MD model. Because the 500
K MD simulation contains highly ordered as well as disordered regions, we conclude
that the specimen annealed at 733 K also contains disordered regions. Most likely
these regions correspond to grain-boundary regions (perhaps containing small CdI2-
type nuclei) because these represent a large volume fraction in the nanocrystalline
structure of the specimen annealed at 733 K. The behavior of the structure factors is
confirmed by the PDFs shown in Figure 6.14.

From the 500 K MD simulation result we calculate element-specific partial pair
distribution functions (PDFs)(See Figure 6.15: F-F (blue), Mg-F (pink), and Mg-Mg
(green)). These partial PDFs allow us to better understand the presence of peaks of
the total PDFs. The first pronounced peak at 1.99 Å is due to the MgF first coordi-
nation shell. The second pronounced peak at 2.83 Å is mainly attributed to the first
F-F coordination shell. The first and second peaks reveal the approximately average
bonding angle of F-Mg-F of 90 ◦ , and confirms the existence of the Mg-centered MgF6

octahedra in the annealed specimen. The right shoulder of the second peak around
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Figure 6.14: Comparison of RDFs- (a) Structure factors obtained from experiment

at 733 K (black, solid) and MD simulation at 500 K (red, solid), as well as the perfect

rutile-type structure (blue, dot). (b) PDFs obtained from the experiment at 733 K

(black, solid), MD simulation at 500 K (red, solid) and the perfect rutile-type structure

(blue, dot). Also shown (bottom three curves) are the element-specific partial PDFs,

FF (blue), MgF (pink), and MgMg (green), calculated from the atomic structure of

the MD simulation at 500 K. Figure by X. Mu at Max Planck Institute for Intelligent

Systems, Stuttgart.
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Figure 6.15: Comparison of RDFs- (a) Structure factors obtained from the exper-

iment at 123 K (black) and MD simulation at 50 K (red), as well as the element-specific

partial structure factors, FF (blue), MgF (pink), and MgMg (green), calculated from

the MD model annealed at 50 K. (b) PDFs obtained from the experiment at 123 K

(black), MD simulation at 500 K (red) and the element-specified partial PDFs (bottom

three curves), FF (blue), MgF (pink), and MgMg (green), calculated from the atomic

structure of the MD simulation at 50 K. Figure by X. Mu at Max Planck Institute for

Intelligent Systems, Stuttgart.

3.10 Å and the third pronounced peak at 3.60 Å correlate with two Mg-Mg peaks
which come from two different geometric configurations of the adjacent Mg-Mg atom
pairs in the rutile-type structure. The first configuration is due to two adjacent MgF6

octahedra sharing one edge, i.e. two nearby Mg atoms share two F atoms, to form the
first Mg-Mg coordination shell. The second configuration is due to two adjacent MgF6

octahedra sharing only one corner, namely one F atom, to form the second Mg-Mg
coordination shell.

The experimental structure factor of the specimen deposited and measured at 123
K (Figure 6.15 black) shows a very good agreement to the structure factor of the 50
K MD simulation result (Figure6.15 red line). The broad peaks in both structure fac-
tors confirm the amorphous structure. The element-specific partial structure factors,
F-F, Mg-F, and Mg-Mg (Figure 6.15a) show that at large angles the total structure
factor is dominated by the Mg-F partial structure factor. The F-F and Mg-Mg par-
tial structure factors are strongly damped in the large-angle region. PDF and partial
PDFs are shown in Figure 6.15b. Again, experimental and simulated total PDFs show
excellent agreement. From the partial PDFs we see that the first pronounced peak
at 1.99 Åcorresponds to the Mg-F first coordination shell, the same as for the rutile-
type . The peak around 2.72 Åin the experimental PDF correlates to the short-range
structure of the FF octahedral structure. Compared to the crystalline state (Fig.6.14),
the peak at 2.72 Å is strongly damped in the experimentally obtained pair distribu-
tion functions of the amorphous material. This implies that the MgF6 octahedra are
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significantly distorted and some of the Mg atoms may even have only 4 or 5 F neighbors.

There are some small differences between the experimental and simulated PDFs
marked by arrows in Fig. 6.15b. The red arrow on the 50 K MD PDF points out
the first Mg-Mg peak which occurs when two adjacent Mg atoms share two F atoms
(Figure 6.15, left, red dashed line), i.e. the first Mg-Mg coordination shell. The blue
arrow on the 50 K MD PDF indicates the second Mg-Mg peak which corresponds to
two adjacent Mg atoms sharing only one F atom, i.e. the second MgMg coordination
shell. As the contributions of the Mg-F peaks in the region between 2.9 Å and 3.8 Å
are not expected to be very pronounced, the positions of the two arrow-marked peaks
should mainly be dominated by the Mg-Mg contribution. Therefore, we assume that
the mismatch of experimental and simulated PDF must be related to the two Mg-Mg
geometries.

The experimental PDF shows also two different Mg-Mg geometries, as in the crys-
talline octahedral structure in the rutile-type phase. Since the red arrow at 2.97 Å
in the experimental PDF should relate to the first Mg-Mg coordination shell, and the
blue one at 3.68 Å should relate to the second Mg-Mg coordination shell, respectively,
the mismatches marked by the red and blue arrows in Figure 6.15 can be attributed
to different MgMg distributions of the experimental and simulated structure. The first
Mg-Mg coordination shell in the experiment has a larger radius than the one in the
MD model, while the second Mg-Mg coordination shell in the experiment has a smaller
radius than the MD simulation result. We note that this difference might be connected
to the mismatch marked by the green arrow in Figure 6.15 which is contributed by the
Mg-F pairs.

6.8 Conclusion

We modeled the growth of solid MgF2 from the gas phase on an Al2O3 substrate,
a MgF2-anatase substrate and a MgF2-rutile substrate as it occurs in a real low-
temperature atom beam deposition experiment. The process was studied in all its
stages, from the dynamics of MgF2 clusters in the gas phase, over their impact on
the surface of the cold and hot substrates and their diffusion on the substrate, to the
formation of crystallites. The growth process was studied as a function of synthesis
parameters including the substrate temperature, deposition rate and type of clusters
deposited.

Both high and low rates resulted in the formation of amorphous MgF2 deposits.
On annealing, we discovered a possible mechanism for the stability of the CaCl2-type
structure. We find two competing structures in the first few nanoseconds of the depo-
sition and argue that this competition stabilizes the CaCl2-type structure long enough
for experimental observations.

We also confirm the kinetic stability of the yet-unknown MgF2-anatase polymorph
by annealing an amorphous deposit on a hypothetical MgF2-anatase substrate and
find this structure to be stable. A nearly perfect layer-by-layer epitaxial growth was
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achieved on both MgF2-anatase and MgF2-rutile at high temperatures.
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Appendix A

Vibrational frequencies of neutral

clusters

Structure Frequency(cm−1) Mode IR intensity Raman Intensity(scaled)
M1 148.0 PIU 136.2 0.0

148.0 PIU 136.2 0.0
549.0 SGG 0 0.0
862.5 SGU 152.4 5.7

D1 53.2 B3U 32.0 0.0000
102.4 B2U 58.7 0.0000
131.0 B2G 0.0 0.1395
151.2 B3G 0.0 0.3822
254.0 AG 0.0 0.8445
264.1 B3U 194.4 0.0000
436.0 B3G 0.0 0.1865
453.6 B1U 40.8 0.0000
479.8 AG 0.0 4.4909
491.8 B2U 225.6 0.0000
761.4 B1U 347.8 0.0000
784.3 AG 0.0 2.5668

D2 126.0 A’ 5.3809 0.0475
126.4 A” 4.9356 0.0467
247.0 A” 23.3475 0.0649
247.8 A’ 23.8909 0.0640
280.7 A’ 83.3832 0.2660
281.1 A” 84.3854 0.2664
324.8 A’ 12.2685 1.3123

109



A. VIBRATIONAL FREQUENCIES OF NEUTRAL CLUSTERS

390.3 A’ 94.4795 0.6034
564.8 A” 150.4727 0.7560
566.5 A’ 150.5218 0.7518
605.0 A’ 121.7408 8.0581
743.1 A’ 117.9504 0.4341

T1 41.5 A” 8.7898 0.0468
74.5 A’ 13.4606 0.2703
88.6 A” 0.5391 0.0246
116.4 A’ 28.6598 0.0339
121.5 A’ 8.1677 0.0195
127.6 A” 34.5196 0.0537
186.2 A” 11.1164 0.0747
221.8 A’ 34.3575 0.3270
277.7 A” 85.8194 0.1685
292.4 A’ 17.0860 0.5658
300.1 A’ 13.3136 0.0864
312.3 A’ 128.3836 1.3710
334.2 A” 53.4468 0.0256
372.7 A’ 36.8189 0.4358
449.1 A’ 105.1304 1.7405
470.4 A’ 42.9653 2.2137
501.3 A’ 61.6946 0.2286
546.1 A” 166.5212 0.2603
649.8 A’ 271.2572 0.7904
746.8 A’ 109.3279 0.7453
772.4 A’ 156.1625 1.7253

T2 43.5 B1 39.0506 0.0002
47.8 A2 0.0000 0.0321
50.0 B1 0.1347 0.0321
90.4 A1 24.9874 0.2180
91.2 B2 23.8209 0.2068
136.4 B2 11.2876 0.1219
138.2 B2 9.1610 0.1050
140.0 A1 18.8608 0.2129
176.0 B1 0.0406 0.1055
176.8 A2 0.0000 0.1039
241.4 A1 0.0000 0.3474
259.0 B1 291.1725 0.0000
320.0 A1 0.0031 2.9982
407.2 A1 97.0486 0.0061

110



407.3 B2 96.1379 0.0077
571.4 A1 105.5569 0.0594
572.1 B2 105.2027 0.0617
580.5 B2 0.4946 0.0004
762.0 B2 298.3694 0.7702
762.0 A1 249.2707 1.4109
764.0 A1 48.8832 4.0220

T3 36.5 E 12.2875 0.0097
36.5 E 12.2875 0.0097
78.6 B1 0.0000 0.0256
102.0 E 0.0189 0.1126
102.0 E 0.0189 0.1126
141.0 E 49.8869 0.0787
141.0 E 49.8869 0.0787
169.3 A1 0.0000 0.5406
246.2 E 75.4518 0.1369
246.2 E 75.4518 0.1369
317.2 B2 4.6353 0.0756
439.5 E 0.0385 0.1455
439.5 E 0.0385 0.1455
440.5 A1 0.0000 0.2323
470.4 B2 35.8086 0.2656
474.0 A1 0.0000 6.1841
497.0 E 234.7357 0.0041
497.0 E 234.7357 0.0041
620.1 B2 315.1249 0.0835
770.0 B2 285.5255 0.0427
774.6 A1 0.0000 2.4080

T4 60.8 A’ 8.3647 0.1213
86.9 A” 3.0095 0.0680
93.2 A’ 6.2821 0.1235
126.9 A’ 68.3523 0.2745
127.5 A” 11.8183 0.0104
171.3 A” 15.3715 0.0926
189.7 A” 28.4894 0.1052
190.7 A’ 6.0682 0.0688
237.7 A’ 53.1411 0.2960
297.6 A” 20.5940 0.3125
299.3 A’ 51.5793 0.2493
314.0 A’ 47.3980 0.8942
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365.2 A” 0.0840 0.0270
398.7 A’ 126.0244 1.6972
456.6 A’ 149.5222 0.4994
476.1 A” 39.6279 0.1266
506.8 A’ 156.9000 0.4303
538.4 A’ 75.5735 3.5392
682.0 A” 199.1603 0.2940
731.4 A” 203.1952 0.8707
745.7 A’ 87.3807 1.9166

T5 54.0 A’ 7.7371 0.0430
124.4 A” 17.4140 0.1656
130.0 A’ 10.9628 0.0365
183.4 A” 1.2842 0.0211
210.7 A’ 9.6254 0.1280
231.7 A” 9.4204 0.1889
251.1 A’ 21.1302 0.3122
267.6 A” 8.8632 0.0564
289.0 A’ 22.8508 0.5266
328.2 A’ 34.0474 0.1303
337.2 A’ 25.9769 0.7002
339.8 A” 93.8939 0.0020
368.7 A” 1.7879 0.2548
424.5 A’ 50.0123 1.2059
438.5 A’ 61.7045 0.2162
464.4 A’ 161.9525 2.0283
466.9 A” 270.2487 0.0221
536.2 A’ 123.3064 4.8036
550.9 A” 67.7196 0.0359
597.2 A’ 241.0170 0.3073
713.5 A’ 139.5334 1.4484

T6 70.6 B1 2.9457 0.0204
122.9 A1 0.8654 0.0303
132.9 B2 10.8874 0.1416
163.3 B1 1.3794 0.0079
201.8 A2 0.0000 0.0463
202.5 B2 119.6797 0.0028
245.6 B1 49.1215 0.1138
251.3 A1 14.0570 0.6545
279.8 B2 5.1319 0.0737
297.6 B2 31.5348 0.1975
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301.1 B1 42.3173 0.0728
348.7 A1 18.2333 1.3034
363.0 A2 0.0000 0.2513
377.0 A1 26.6579 0.3523
440.1 A1 71.7765 0.0458
451.6 B1 260.2597 0.2996
464.3 B2 250.8441 0.0268
506.5 A1 28.6621 6.7414
616.5 B2 78.7279 0.0826
653.4 A1 227.1155 1.4360
713.2 A1 128.0996 1.4198

T7 68.5 A” 7.6704 0.0619
106.4 A’ 0.5411 0.0424
107.6 A” 1.9695 0.0341
120.9 A’ 39.2952 0.1707
184.8 A” 8.1091 0.0289
202.4 A’ 55.9345 0.2128
231.6 A” 22.4024 0.0201
235.0 A” 16.4679 0.1990
270.0 A’ 1.3786 0.8320
311.1 A’ 46.0444 0.0600
321.2 A’ 17.9661 0.2486
373.2 A” 31.6876 0.0231
388.1 A’ 7.3084 0.4483
404.0 A’ 184.7231 1.7208
428.1 A’ 84.6590 0.2994
480.2 A” 41.5636 0.3104
540.7 A’ 128.7992 2.7961
547.0 A” 271.0096 0.1716
565.2 A’ 58.1100 3.5233
626.5 A’ 194.5326 0.6894
721.7 A’ 151.1661 0.9241

T8 6.7 A” 0.7373 0.0153
41.8 A’ 0.5302 0.0066
84.8 A” 1.4423 0.0030
122.1 A’ 30.0149 0.0538
142.7 A” 41.8700 0.1617
183.5 A” 3.0652 0.0447
185.6 A’ 2.5098 0.5236
218.4 A’ 12.2745 0.0273
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255.2 A’ 7.3137 0.1683
267.6 A” 15.0231 0.1753
299.9 A’ 155.5214 0.1180
369.4 A’ 13.5348 0.1049
381.6 A’ 126.6344 0.6490
413.4 A” 50.8211 0.1379
486.7 A’ 6.4779 3.3473
503.0 A” 96.0985 0.0328
542.9 A’ 281.4334 0.8002
567.0 A’ 143.7221 0.6635
579.9 A” 204.7646 0.5750
620.3 A’ 23.4273 7.0113
768.0 A’ 161.8410 0.6015

T9 -3.7 A” 0.4249 0.0040
44.3 A” 0.7037 0.0059
80.4 A’ 1.0247 0.0041
125.1 A” 29.6125 0.0440
135.6 A’ 43.7493 0.1682
166.6 A’ 5.5360 0.1196
188.3 A’ 0.1928 0.4757
221.0 A” 11.9621 0.0131
256.3 A” 4.9389 0.1598
267.8 A’ 14.6046 0.1672
300.3 A” 159.5594 0.1156
367.6 A’ 8.3764 0.1209
376.5 A’ 134.3805 0.5687
409.7 A’ 52.7907 0.2039
485.1 A’ 12.7501 3.1954
500.3 A’ 96.4353 0.1865
540.1 A’ 273.0599 0.7736
566.6 A” 152.9906 0.6274
581.0 A’ 186.1845 0.7722
621.5 A’ 30.6112 6.9002
767.8 A’ 161.0548 0.5871
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Appendix B

Vibrational frequencies of global

minima upto 10 units

Number of units Frequency(cm−1) Mode IR intensity Raman Intensity(scaled)
4 58.6 A1 6.7326 0.1837

80.0 B2 20.8441 0.0731
86.5 A2 0.0000 0.0364
115.5 B1 34.5686 0.2769
145.2 B1 13.1537 0.0203
146.1 B2 0.0237 0.1120
147.5 A1 1.9802 0.0001
165.2 A2 0.0000 0.1332
166.8 A1 12.5773 0.1362
215.5 A2 0.0000 0.0988
216.4 B2 145.0914 0.0025
218.7 A1 6.0993 0.1693
222.6 B1 62.9640 0.0869
233.8 B2 0.0041 0.0561
317.3 A1 4.0220 1.3079
330.2 B2 30.3425 0.1141
335.7 B1 33.2935 0.1800
349.3 A1 58.1075 2.3089
417.5 A1 132.3348 1.1394
427.5 B2 14.2666 0.0421
439.0 A2 0.0000 0.0075
439.7 B1 93.2202 0.0352
461.2 A1 1.5330 2.4764
470.5 B1 33.5846 0.0002
523.8 B1 329.7026 0.0583
534.5 A1 144.7885 0.3543
627.5 A2 0.0000 0.0224
647.4 B2 407.1950 0.1736
726.4 B2 71.5541 0.6949
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B. VIBRATIONAL FREQUENCIES OF GLOBAL MINIMA UPTO 10
UNITS

734.9 A1 196.3153 2.4906
5 42.5 A’ 16.2501 0.0169

75.3 A’ 3.0805 0.1565
76.5 A” 12.2114 0.0063
88.0 A” 8.3603 0.0259
94.8 A’ 7.3953 0.0173
105.9 A’ 8.5464 0.0940
112.5 A” 1.1732 0.0912
129.8 A” 8.8877 0.1293
135.9 A’ 18.5476 0.1466
161.9 A” 0.6419 0.1026
170.2 A’ 7.9129 0.0987
187.4 A’ 42.1853 0.0538
187.5 A” 32.9779 0.0191
197.4 A’ 1.0468 0.1846
216.5 A’ 61.7957 0.0906
220.2 A” 15.3913 0.2248
247.9 A’ 54.2461 0.0263
260.4 A” 50.5935 0.0595
284.3 A” 31.4531 0.0841
307.8 A’ 30.8066 0.0727
323.7 A’ 8.0105 0.3201
332.6 A’ 27.9853 4.5423
345.0 A” 81.1791 0.0092
364.5 A’ 10.0140 0.6831
396.4 A’ 29.0563 0.2085
410.2 A” 29.1124 0.0198
422.1 A’ 3.6968 0.8813
447.6 A’ 118.1758 0.6275
467.1 A’ 94.4912 0.1251
480.6 A” 20.7465 0.0773
509.2 A” 252.8038 0.0013
516.8 A” 3.4352 0.0100
550.1 A’ 203.5833 0.0710
569.9 A” 206.2644 0.0618
585.9 A’ 104.4917 0.3169
605.0 A” 24.2561 0.0005
630.1 A’ 400.1761 0.2634
707.7 A’ 331.2969 0.0167
713.1 A’ 5.0237 3.5877

6 22.8 A” 6.6111 0.0388
58.8 A’ 13.2458 0.0092
79.6 A’ 5.1512 0.0083
82.3 A” 2.8915 0.0201
88.7 A” 0.0336 0.0399
99.1 A’ 3.4155 0.0428
104.5 A” 0.3359 0.0013
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106.0 A’ 8.7921 0.1830
117.3 A’ 1.4871 0.2121
128.9 A’ 13.8882 0.1493
129.1 A” 15.6826 0.0410
153.8 A” 4.8281 0.0871
160.1 A’ 29.8695 0.0878
166.5 A” 0.4783 0.0201
188.2 A’ 0.8744 0.0862
190.1 A” 0.1704 0.0471
195.9 A’ 38.5085 0.0733
212.2 A” 53.9713 0.2148
213.0 A’ 6.7457 0.0304
222.0 A’ 15.8285 0.1417
225.5 A” 74.1638 0.1101
272.5 A” 8.3068 0.0481
278.8 A’ 6.7363 1.6054
287.5 A” 27.4609 0.0224
291.2 A’ 0.2408 0.0320
306.6 A’ 30.1298 2.4951
328.5 A’ 19.6677 0.4617
341.9 A’ 2.4085 0.0332
353.5 A” 90.0244 0.0083
366.5 A’ 222.8767 1.4521
385.1 A” 73.7103 0.0018
397.6 A’ 15.7381 0.0557
415.2 A’ 5.9872 0.0292
418.2 A” 126.4654 0.0408
442.3 A’ 34.0089 0.9430
455.7 A’ 9.2135 0.0898
495.5 A’ 66.2716 0.1207
513.3 A” 197.6633 0.0074
529.2 A” 32.8299 0.0357
534.0 A’ 3.7027 0.1637
554.9 A’ 248.8994 0.8477
564.6 A” 122.2987 0.0520
604.4 A’ 80.6193 0.2939
611.4 A’ 195.9529 0.0440
611.4 A” 36.2122 0.0204
635.0 A’ 531.7646 0.2197
702.2 A’ 198.6839 1.4801
750.9 A’ 173.6522 1.9915

7 13.0 E 1.6422 0.0012
13.0 E 1.6422 0.0012
25.3 E 0.0738 0.0423
25.3 E 0.0738 0.0423
31.7 B 0.0000 0.0025
40.0 E 6.3874 0.0108
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40.0 E 6.3874 0.0108
55.2 A 0.0000 0.0000
72.9 A 0.0000 0.2377
73.9 E 0.0836 0.0271
73.9 E 0.0836 0.0271
77.0 B 0.0000 0.0075
94.4 A 0.0000 0.0000
100.7 E 14.6496 0.0051
100.7 E 14.6496 0.0051
105.5 B 0.0000 0.0921
125.3 E 0.2206 0.0254
125.3 E 0.2206 0.0254
138.5 E 32.5682 0.1966
138.5 E 32.5682 0.1966
144.0 B 0.1104 0.0001
211.1 A 0.0000 0.2312
216.6 E 62.4382 0.0202
216.6 E 62.4382 0.0202
235.4 E 9.6898 0.0052
235.4 E 9.6898 0.0052
250.5 E 48.4617 0.0797
250.5 E 48.4617 0.0797
272.2 B 1.2535 0.0056
324.7 A 0.0000 0.2009
363.9 B 2.2216 0.4695
423.2 A 0.0000 0.0851
436.2 E 0.5347 0.3960
436.2 E 0.5347 0.3960
437.5 E 0.9343 0.0437
437.5 E 0.9343 0.0437
439.6 B 8.0338 0.0963
440.0 E 0.0839 0.0034
440.0 E 0.0839 0.0034
451.8 A 0.0000 0.1017
458.4 B 6.5540 0.0287
461.6 A 0.0000 5.4063
473.7 B 34.2935 0.2104
473.8 A 0.0000 7.7781
486.4 E 20.9914 0.0016
486.4 E 20.9914 0.0016
496.8 E 2.2921 0.0008
496.8 E 2.2921 0.0008
508.6 E 635.6606 0.0004
508.6 E 635.6606 0.0004
581.9 B 1323.7050 0.0062
609.8 A 0.0000 0.0009
627.7 B 49.5150 0.0404
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636.1 A 0.0000 0.0000
639.1 B 2.8465 0.4195
771.1 B 274.9044 0.0420
771.4 A 0.0000 2.3211

8 50.0 A” 0.3969 0.0067
60.4 A’ 2.4826 0.0235
68.2 A” 6.2329 0.0543
76.7 A’ 8.5233 0.0327
83.8 A” 6.5839 0.0144
97.4 A’ 1.4379 0.0840
107.0 A” 0.0281 0.0056
114.0 A’ 0.7317 0.0544
119.7 A” 3.0533 0.0258
126.3 A” 0.0171 0.0524
128.5 A’ 7.5386 0.1412
138.5 A’ 3.3461 0.0592
146.4 A’ 0.9195 0.0551
151.2 A” 4.0448 0.0033
152.5 A” 13.2419 0.0597
152.6 A’ 35.0947 0.2060
159.6 A’ 16.0083 0.1476
179.5 A’ 26.8372 0.0667
180.9 A” 4.5971 0.0199
186.2 A’ 28.9752 0.0098
195.0 A” 22.7203 0.1290
199.4 A” 10.2353 0.2049
204.5 A’ 1.1776 0.1286
223.2 A’ 42.7241 0.1662
230.3 A” 10.7963 0.0038
241.5 A” 17.7016 0.0303
245.2 A’ 53.4046 0.0804
254.5 A” 5.3647 0.0185
263.3 A’ 11.6420 0.0145
270.5 A” 18.7553 0.0058
270.8 A’ 37.9365 0.0190
285.0 A’ 16.0584 3.3535
294.6 A” 0.4333 0.0191
306.2 A’ 6.0721 0.5679
323.1 A’ 0.7360 0.4020
335.4 A’ 9.0177 1.2675
348.4 A’ 67.1888 0.7186
360.5 A’ 53.0865 0.0208
362.1 A” 62.2728 0.0467
389.5 A’ 114.1426 0.0487
389.8 A” 85.0982 0.0616
398.1 A’ 114.4946 0.0093
402.7 A” 126.7417 0.0006
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404.0 A’ 63.1571 0.7153
435.2 A’ 9.2814 0.0617
436.5 A” 4.6381 0.0259
453.7 A’ 83.9177 1.4879
458.8 A’ 30.5904 0.2052
463.8 A” 1.6080 0.0216
469.0 A” 73.8072 0.0302
472.3 A’ 90.9997 0.5727
498.1 A’ 9.1417 0.0271
501.8 A” 72.4480 0.0049
507.1 A’ 45.4412 0.0261
526.1 A” 59.1465 0.0153
543.0 A’ 33.1433 0.0685
553.0 A’ 85.4608 0.1603
560.1 A” 6.3038 0.0380
562.6 A’ 314.1408 0.0347
586.0 A’ 463.3548 0.1636
589.0 A” 156.7928 0.0318
601.7 A” 224.7759 0.0940
646.9 A” 178.5020 0.0506
653.1 A’ 124.6271 0.0313
676.2 A’ 383.9245 0.1149
715.8 A’ 248.0084 1.5732

9 31.6 A 2.1665 0.0330
43.6 A 3.6851 0.0168
53.5 A 1.8765 0.0127
66.5 A 9.0712 0.0578
70.2 A 4.4174 0.0246
78.4 A 3.9557 0.0688
87.4 A 0.4800 0.0327
94.5 A 1.4446 0.0626
99.0 A 3.0160 0.1585
105.4 A 2.8840 0.1288
114.1 A 5.6767 0.0672
120.2 A 7.6769 0.0438
130.5 A 4.4267 0.1213
138.6 A 3.0259 0.1578
139.5 A 7.9405 0.2045
146.2 A 7.2878 0.0218
149.3 A 10.8678 0.1254
157.4 A 23.3236 0.0511
158.2 A 11.0660 0.2046
164.9 A 12.1132 0.0378
167.1 A 38.6998 0.1372
187.9 A 14.3337 0.1028
195.7 A 15.1703 0.0145
200.3 A 3.3631 0.1070
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206.3 A 13.2481 0.2055
209.5 A 41.3094 0.3295
229.3 A 11.4889 0.7214
229.9 A 24.3394 0.2577
241.3 A 19.5985 0.2835
253.4 A 79.3442 0.3822
260.1 A 12.3575 0.5912
265.5 A 114.3311 0.8078
273.7 A 69.9533 0.5728
279.5 A 23.8249 0.0713
285.2 A 35.4327 0.3174
298.0 A 14.2573 0.4424
312.1 A 13.3333 1.1343
323.8 A 15.6850 0.9982
324.4 A 12.3478 0.8149
341.8 A 3.0957 1.3903
347.6 A 61.3149 0.3217
362.6 A 47.6414 0.3607
371.6 A 57.3908 0.0292
377.7 A 149.6673 0.6454
382.3 A 52.5440 0.1011
403.7 A 126.9940 0.0859
406.2 A 153.3274 0.1925
408.9 A 288.4836 0.1569
424.0 A 22.3274 0.2346
435.0 A 47.4411 0.3684
445.8 A 17.1127 0.3432
453.5 A 19.1752 0.6970
466.4 A 33.7412 1.1303
468.5 A 11.5022 0.0980
482.2 A 0.4043 0.3111
492.3 A 79.0891 0.8056
501.5 A 18.8070 2.7075
508.7 A 12.2672 0.2576
525.9 A 95.2352 0.6121
530.2 A 20.5372 0.0524
531.9 A 88.7572 0.1731
557.7 A 90.2204 0.1036
570.4 A 38.5739 0.3955
572.6 A 106.4015 0.4427
610.0 A 61.5525 0.2056
630.2 A 38.6600 0.0505
633.7 A 101.2509 0.2263
643.6 A 177.7731 0.0521
648.9 A 97.6276 0.1820
659.2 A 64.6150 0.3252
664.3 A 244.9240 0.7080

121



B. VIBRATIONAL FREQUENCIES OF GLOBAL MINIMA UPTO 10
UNITS

669.6 A 522.1809 0.0489
697.8 A 184.5098 0.0371
713.6 A 241.1336 0.1190
780.3 A 189.5966 0.6176

10 -48.5 A” 0.0000 0.0043
22.5 A’ 3.7658 0.0155
33.0 A’ 0.3349 0.0701
61.7 A” 0.0004 0.0356
79.1 A” 10.3786 0.0115
81.6 A” 0.0001 0.0075
97.2 A’ 55.2013 0.0009
113.0 A’ 1.3493 0.0037
120.8 A” 0.1574 0.0138
129.1 A’ 1.1633 0.0282
135.8 A” 0.4063 0.0404
138.5 A” 0.0000 0.0284
143.3 A’ 4.4763 0.0187
145.9 A” 0.6501 0.0286
149.3 A’ 0.0551 0.0111
158.8 A’ 2.2289 0.1640
165.3 A’ 1.6075 0.0176
175.9 A” 19.9424 0.0293
177.1 A” 0.0011 0.0003
180.6 A’ 11.9819 0.0384
194.0 A” 75.5174 0.0270
194.1 A’ 7.9757 0.1218
194.6 A’ 1.3862 0.0353
197.9 A’ 33.1184 0.0007
204.7 A” 1.8705 0.0002
217.1 A’ 14.4901 0.0471
218.1 A” 0.0000 0.0020
220.1 A” 0.0011 0.0098
229.1 A’ 33.0239 0.1140
236.8 A” 20.8729 0.0056
253.7 A’ 0.0009 0.0005
254.4 A” 0.0004 0.0017
260.2 A’ 60.5301 0.5794
267.7 A” 35.2671 0.0048
284.6 A’ 0.3185 0.7454
287.4 A’ 136.4049 0.0001
304.2 A’ 31.2394 0.0004
306.8 A” 167.8007 0.0026
323.4 A’ 4.2092 0.0489
331.1 A” 0.0000 0.0262
331.2 A’ 74.3278 0.0110
339.0 A” 2.4741 0.0021
347.7 A’ 84.8624 0.0118
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356.2 A” 6.3529 0.0170
365.8 A’ 13.7869 0.0676
367.0 A” 8.2219 0.0469
370.3 A’ 152.5974 0.0549
374.0 A” 0.0005 0.0691
383.4 A’ 236.1554 0.0111
408.4 A’ 16.8096 0.0122
409.9 A’ 91.6895 0.8100
431.2 A” 372.0890 0.0040
434.1 A” 0.0680 0.0329
443.5 A’ 45.5549 0.0254
444.8 A’ 196.5176 0.0789
453.4 A” 13.0024 0.0514
463.4 A’ 28.5946 0.0065
464.6 A’ 52.8870 0.1171
472.9 A” 0.0011 0.0312
475.9 A’ 38.7383 1.9089
490.9 A’ 20.3717 0.0019
500.4 A” 96.4716 0.0257
520.9 A” 0.0000 0.0008
530.7 A” 1.0359 0.1444
539.3 A’ 42.9993 0.0527
544.6 A’ 368.9668 0.0132
556.9 A” 0.0003 0.0113
567.9 A’ 1.2616 0.1774
570.7 A’ 64.2559 0.0055
580.5 A’ 13.2129 0.1024
588.9 A” 173.2279 0.0010
589.6 A” 0.3764 0.0000
596.0 A” 20.3506 0.0344
603.5 A’ 0.4926 0.0015
614.7 A’ 67.8846 0.0378
623.3 A’ 4.2561 0.0607
627.0 A” 0.0141 0.0002
633.2 A” 0.0021 0.0184
639.4 A’ 230.0861 0.0715
640.4 A” 104.1140 0.0424
640.7 A’ 424.0081 0.0873
666.6 A’ 504.0917 0.2095 43
667.3 A” 806.9889 0.0083
686.6 A’ 479.0277 0.0028
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Appendix C

Vibrational frequencies of ionic

clusters

c Structure Frequency(cm−1) Mode IR intensity Raman Intensity(scaled)
MC1 679.8018 SG 78.8403 7.4925
MA1 -110.5 E’ 0.4104 23.2675

-110.5 E’ 0.4102 23.2869
73.5 A2” 111.4239 0.0000
516.2 A1’ 0.0000 106.6192
667.8 E’ 45.3380 45.4110

DC1 265.0 B1 23.6325 0.2687
266.0 A1 23.9081 0.2758
276.7 B2 443.7219 0.0365
327.2 B2 0.2685 15.9612
329.2 A2 0.0000 15.7746
400.0 A1 0.0001 109.2487
474.4 A1 98.2860 0.6070
475.2 B1 98.3594 0.6141
549.8 A1 0.0010 2.8787

DC2 84.9 B1 14.0533 1.4872
133.9 B2 27.8667 0.0727
219.2 B1 69.2485 11.3888
281.2 A1 0.0001 0.6758
396.1 B2 34.0819 2.3021
467.3 A1 93.6508 75.5593
475.8 A1 27.2367 2.5574
483.1 B2 98.1352 0.2187
766.3 A1 182.1028 1.4581

DC3 -138.5 PIU 1.0810 0.0000
-138.5 PIU 1.0810 0.0000
-57.5 PIG 0.0000 1009.9197
-57.5 PIG 0.0000 1009.9200
25.9 PIU 18.0044 0.0000
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25.9 PIU 18.0044 0.0000
248.3 SGG 0.0000 129.2307
460.1 SGU 397.1577 0.0000
743.1 SGG 0.0000 73.8618
755.5 SGU 84.0479 0.0000

DA1 66.2 B1 30.7103 0.0290
93.4 A1 47.7257 3.1752
125.3 A2 0.0000 1.5100
138.2 B2 0.5991 0.2692
176.0 A2 0.0000 3.3518
204.4 B1 80.9822 0.5421
239.7 A1 0.2578 156.6837
259.3 B1 18.5432 3.7675
276.1 B2 22.1043 31.4769
308.9 A1 74.9180 2820.3390
454.6 B2 16.1697 4.1155
481.3 A1 44.7666 2049.5416
484.4 A1 83.7108 592.4673
749.9 B2 259.3744 281.7580
773.0 A1 5.7531 3020.0861

DA2 43.6 B2 30.7103 1.6095
45.2 A2 47.7257 3.9971
93.6 B1 0.0000 0.0061
119.8 B2 0.5991 0.9180
146.2 B1 0.0000 0.2391
214.5 A1 80.9822 1.3424
249.0 B2 0.2578 1.1012
338.9 A1 18.5432 21.3338
416.4 B2 22.1043 5.0196
439.4 B1 74.9180 0.1546
446.6 A1 16.1697 11.7881
476.4 A1 44.7666 6.8373
494.3 B1 83.7108 0.0054
666.3 A1 259.3744 6.1669
773.8 A1 5.7531 1.4591

DA3 -36.6 A 0.0000 50.6544
-8.6 A 6.9357 24.5911
9.7 A 8.9434 28.1201
88.1 A 2.7941 19.1799
91.9 A 0.0001 58.7104
110.7 A 33.0797 2.0066
119.0 A 32.4177 0.0871
218.0 A 59.3988 1.9739
219.8 A 84.9449 3.4491
310.2 A 0.0000 139.3342
501.7 A 44.7279 63.6140
597.5 A 0.0056 161.5212
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602.9 A 60.0225 135.8909
603.5 A 72.1319 113.5497
699.4 A 55.2994 4.5919

TC1 136.8 B2 418.3581 1340.4660
148.6 A1 416.9516 1300.8257
186.2 B1 0.0712 315.1066
186.4 A2 0.0000 313.2535
232.1 B1 17.1611 0.4381
250.0 B2 3.8741 112.7729
251.6 A1 3.4423 111.2257
323.8 A2 0.0000 17.3689
326.8 B1 0.0009 15.0988
343.9 A1 0.0350 0.6957
352.1 B2 42.2601 5.3177
353.9 A1 45.5417 7.6014
402.0 B1 117.6992 0.0269
405.8 B2 0.0702 0.1302
438.6 A1 0.0608 424.6644
474.1 A1 0.0016 9.0957
517.2 A1 27.0627 23.7837
518.2 B2 27.3886 23.7634

TC2 35.3 B1 2.5610 0.0354
89.5 B2 85.8832 49.7256
120.2 B2 6.4857 20.9734
133.1 B1 17.0968 0.0595
134.2 A1 15.2675 11.5524
144.4 A2 0.0000 193.9584
225.5 B1 65.3621 8.8713
251.0 A1 2.0804 39.6663
337.3 A1 9.8357 130.3101
348.4 B2 411.2856 0.9958
378.0 A1 15.6952 79.9564
402.7 A2 0.0000 5.2578
455.8 B2 10.5427 103.9680
469.2 B1 100.8959 1.0866
507.9 A1 3.8291 51.5220
535.9 B2 17.3467 4.6889
546.1 A1 115.4438 223.9297
744.4 A1 199.6938 38.9575

TC3 -65.6 A” 22.4451 2006.6145
-63.7 A’ 22.4625 1988.5870
21.2 A’ 3.9328 140.9161
22.1 A” 4.0115 131.9974
117.6 A’ 1.8760 531.2836
118.5 A” 1.9823 521.0164
186.2 A’ 27.3257 299.2814
271.5 A’ 25.2831 9.7127
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273.1 A” 25.3136 10.7137
313.3 A” 8.5750 26.1795
315.2 A’ 9.6294 25.5272
374.8 A’ 627.7478 264.3189
415.6 A’ 6.0065 91.7594
485.7 A’ 101.1238 12.5041
486.3 A” 101.2806 12.8220
510.9 A’ 172.0292 86.5508
627.1 A’ 162.7790 34.0599
787.3 A’ 99.1198 102.2815

TC4 43.3 A2 0.0000 1.0345
48.3 B1 19.6957 0.0511
84.2 B1 2.1914 6.5110
92.4 A1 23.0557 0.3756
117.4 B2 0.0159 0.0292
134.8 B2 20.9378 1.9946
142.6 A1 25.1177 6.4170
175.5 A2 0.0000 0.8324
233.6 B1 153.8661 10.2567
245.6 A1 0.6078 10.5717
324.9 A1 13.5231 2.0198
372.6 B2 50.4493 1.0809
420.7 A1 41.9334 18.9884
537.4 B2 38.7141 1.9434
572.5 A1 208.0347 175.5988
575.9 B2 21.9942 2.2376
753.1 B2 295.5469 0.0671
754.1 A1 127.6767 1.5852

TC5 43.1 B1 6.1630 0.0005
56.3 B2 3.6148 0.5222
79.1 A2 0.0000 0.2548
119.2 B1 13.0668 0.1978
128.3 B2 30.4411 0.2997
184.3 A1 0.0098 0.7767
199.2 B2 2.0201 9.3436
244.0 B1 87.8513 0.1342
330.5 A1 5.0068 2.3423
395.7 B1 36.0350 2.3027
434.7 B2 6.9203 0.0352
444.8 A1 8.5735 10.0123
470.1 A1 139.3128 46.9441
475.2 A1 2.7020 4.1350
486.3 B1 105.4313 0.3681
495.8 B2 184.4568 1.4756
620.2 A1 269.1153 11.0571
770.7 A1 153.3829 3.6310
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TC6 -147.1 B1 1.5970 33.5646
-127.2 B2 0.0688 443.7031
-43.3 B1 2.6646 929.8834
19.3 B1 9.8371 8.0977
20.5 B2 8.3125 20.3830
48.1 B2 0.8270 251.5355
79.3 B1 12.3282 220.8117
132.8 B2 26.1824 11.9392
169.6 A1 0.0005 16.4449
210.0 B1 51.3572 816.7051
317.9 A1 5.5779 35.8832
421.8 A1 482.7756 102.4106
427.8 B2 0.0382 3.6374
462.6 A1 23.5302 758.2066
479.7 B2 118.1511 96.6718
624.8 A1 0.1169 1944.2514
734.1 A1 74.0768 13.6941
765.9 A1 277.6935 7.1181

TA1 65.8 A’ 2.7291 54.3360
66.5 A” 1.4227 57.1131
70.8 A’ 15.9000 29.3380
104.3 A’ 13.3146 14.9332
107.2 A” 11.7427 15.8007
124.9 A” 0.0793 0.0112
151.2 A’ 0.0410 22.2048
152.3 A” 0.0000 23.9270
209.1 A’ 32.9098 0.2053
236.9 A 0.2441 6.4803
237.0 A 0.2684 6.6628
274.2 A’ 0.2956 111.9139
331.2 A” 3.5376 0.8244
331.7 A’ 3.3610 0.5288
405.2 A’ 167.0294 1.5353
433.1 A’ 4.7581 24.1506
433.7 A” 4.5155 24.3821
452.4 A’ 80.3742 22.3108
504.4 A” 0.0606 0.0145
521.1 A” 5.8534 0.5073
523.2 A’ 6.0774 0.6037
562.3 A’ 271.1470 27.6516
563.4 A” 267.7650 25.0229
655.6 A’ 42.1063 129.6275

TA2 32.6891 B1 5.2962 8.8640
62.9291 A1 2.2538 68.4745
72.4416 A2 0.0000 24.0930
80.7613 A 10.5665 24.9851
81.2377 A 9.3551 63.0562
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125.7098 B2 5.9407 0.0067
134.2234 B1 12.6166 4.0781
137.3993 A1 2.5274 23.9647
139.5365 B2 0.9630 24.4449
183.3292 A2 0.0000 2.8121
236.1175 B1 94.5877 0.4807
257.0320 A1 2.2848 153.2806
275.1156 A1 9.1626 10.4140
388.6284 B2 4.9504 35.4235
393.2017 A1 9.2182 15.6255
413.0533 A2 0.0000 2.2115
458.7100 A1 4.5387 45.7923
475.7693 B1 184.1895 82.3009
483.7675 B2 26.8532 5.2151
501.2036 B2 236.5422 25.4715
547.2299 A1 0.5302 20.3724
563.1630 B2 0.5912 0.8336
584.4562 A1 140.5754 280.8352
699.8364 A1 56.6756 588.3195

TA3 32.6 B1 5.2962 8.8640
62.9 A1 2.2538 68.4745
72.4 A2 0.0000 24.0930
80.7 A 10.5665 24.9851
81.2 A 9.3551 63.0562
125.7 B2 5.9407 0.0067
134.2 B1 12.6166 4.0781
137.3 A1 2.5274 23.9647
139.5 B2 0.9630 24.4449
183.3 A2 0.0000 2.8121
236.1 B1 94.5877 0.4807
257.0 A1 2.2848 153.2806
275.1 A1 9.1626 10.4140
388.6 B2 4.9504 35.4235
393.2 A1 9.2182 15.6255
413.0 A2 0.0000 2.2115
458.7 A1 4.5387 45.7923
475.7 B1 184.1895 82.3009
483.7 B2 26.8532 5.2151
501.2 B2 236.5422 25.4715
547.2 A1 0.5302 20.3724
563.1 B2 0.5912 0.8336
584.4 A1 140.5754 280.8352
699.8 A1 56.6756 588.3195

TA4 12.5 A” 1.7977 5.5767
40.3 A” 2.8885 0.9890
68.8 A’ 11.6210 0.1872
86.8 A” 1.6003 1.0151
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110.9 A’ 21.3890 0.0090
120.5 A” 21.1982 0.8472
122.1 A’ 5.1785 0.0240
177.8 A” 1.3047 0.7086
199.0 A’ 13.0500 0.7111
272.3 A” 53.2860 0.1235
281.5 A’ 91.6820 1.8757
297.3 A’ 7.4699 0.3194
304.8 A’ 66.1771 1.6772
337.2 A” 44.7641 0.0452
349.6 A’ 30.1508 19.8825
376.3 A’ 32.6328 2.4455
418.8 A” 0.7280 5.3665
446.2 A’ 77.8804 10.8052
469.7 A’ 52.6552 2.1178
493.9 A’ 63.2596 1.2578
542.8 A” 156.4184 0.2418
647.9 A’ 335.6601 0.4185
665.7 A’ 98.6323 7.5735
748.6 A’ 109.5739 0.8327

TA5 -41.6 A 0.0063 5.0569
5.2 A 5.9848 0.3500
10.9 A 6.1814 0.3509
69.8 A 5.9941 1.7392
78.6 A 15.8592 0.0601
124.8 A 30.3762 0.8079
127.0 A 48.7007 0.0592
156.3 A 2.0944 0.6806
173.5 A 9.5987 0.3072
177.6 A 26.9464 0.0157
273.6 A 0.1309 0.1491
275.0 A 0.1137 0.1606
287.6 A 107.9823 0.0776
288.4 A 102.7952 0.0838
308.6 A 8.7147 21.1351
342.8 A 46.9987 4.2953
420.2 A 44.9250 8.4157
446.1 A 0.0220 5.6037
524.2 A 7.5888 7.3737
525.0 A 166.0017 0.3495
526.0 A 160.0976 0.3430
627.0 A 173.2496 7.6490
733.2 A 191.5725 0.8000
768.1 A 173.3371 3.0487

TA6 -35.9 A 20.6585 0.0022
11.9 A 10.8582 0.0577
17.9 A 4.1098 0.6184

131



C. VIBRATIONAL FREQUENCIES OF IONIC CLUSTERS

37.3 A 0.0000 3.8214
90.6 A 8.9953 0.3131
99.2 A 0.0000 0.3554
101.7 A 31.7922 0.0866
109.9 A 32.2447 2.3678
161.9 A 0.1541 0.8686
244.3 A 49.1700 0.3963
249.8 A 78.2769 0.2398
286.2 A 0.0154 4.9424
357.0 A 11.6742 12.0868
437.9 A 0.1207 4.3856
451.4 A 0.3652 4.1157
469.2 A 1.9053 0.0733
469.8 A 4.1172 0.0843
471.4 A 16.1329 6.6153
478.8 A 9.7693 7.8714
500.4 A 211.7009 0.0357
500.7 A 189.4414 0.0020
665.6 A 310.8828 0.0744
710.7 A 50.9102 2.6078
801.6 A 82.6512 1.7868

TA7 24.8163 A 3.6058 4.7312
44.7923 A 1.7470 1.2527
63.8069 A 7.7771 0.2979
85.5801 A 4.2907 0.8387
106.3863 A 26.8274 0.0481
110.9924 A 19.0923 1.0727
137.6858 A 21.7089 0.1571
179.5617 A 5.5833 0.6016
204.9413 A 15.9547 0.9810
286.2145 A 70.7604 1.9999
291.9682 A 73.5866 0.1123
305.4118 A 64.5502 1.1214
316.3778 A 10.5353 2.6929
359.4924 A 47.9684 0.0059
365.9997 A 27.2618 15.6892
391.9323 A 59.5050 0.3730
441.4299 A 0.1770 4.5188
459.8353 A 54.2472 9.8446
494.5301 A 52.6490 1.5836
533.2184 A 61.0202 1.1216
557.3734 A 126.0952 0.5200
678.1435 A 174.3689 1.8802
708.6247 A 137.2994 3.0937
780.0202 A 73.8730 0.8888
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Appendix D

Vibrational modes for all the

periodic structures studied

Structure Frequency(cm−1) Mode IR active(I/A) Raman active (I/A) IR intensity(Km/mol)
Rutile -3.1407 EU A I 0.04
(6a) 0.0000 A2U A I 0.00

119.2986 B1G I A 0.00
268.1421 B1U I I 0.00
280.4701 EU A I 416.98
291.5282 EG I A 0.00
336.7311 A2G I I 0.00
395.5091 EU A I 26.46
397.2123 A2U A I 554.31
400.8502 B1U I I 0.00
411.7179 A1G I A 0.00
440.2274 EU A I 605.64
515.9486 B2G I A 0.00

Anatase -3.2360 A2U A I 0.05
(6b) -0.0683 EU A I 0.00

159.5062 EG I A 0.00
279.8888 EG I A 0.00
283.7683 EU A I 257.93
304.3807 B2U I I 0.00
321.9659 A1G I A 0.00
338.3952 A2U A I 536.38
377.0052 B1G I A 0.00
451.3006 B1G I A 0.00
473.5365 EU A I 774.56
532.1146 EG I A 0.00

CaCl2 152.8 B2U I A 0.00
(6c) 159.9 B3U I I 0.00

259.2 B1U A I 204.44
268.2 AG I A 0.00
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D. VIBRATIONAL MODES FOR ALL THE PERIODIC STRUCTURES
STUDIED

277.0 AU I A 0.00
284.8 B3U A I 120.54
347.1 B3G I A 0.00
353.1 B2G A I 254.83
374.8 B2U A I 542.77
382.1 B1G A I 316.06
384.3 B3U I A 0.00
411.2 B1U I I 0.00
459.6 B2U A I 79.27
471.5 AG A I 90.57
488.0 AU I A 0.00

CdI2 334.3 EG I A 0.00
(6d) 389.7 EU A I 562.00

403.8 A2U A I 187.22
413.0 A1G I A 0.00

5-fold -6.0 BU A I 0.00
(5a) -3.1 BU A I 0.00

-0.0 AU A I 0.00
14.7 AG I A 0.00
55.6 AG I A 0.00
68.2 BU A I 3.03
108.6 AU A I 0.00
138.3 AG I A 0.00
158.8 BG I A 0.00
162.7 AG I A 0.00
170.8 BG I A 0.00
192.8 BU A I 65.40
201.7 BU A I 0.84
207.5 AG I A 0.00
216.4 BU A I 0.05
217.9 AU A I 301.25
264.5 BG I A 0.00
286.3 BG I A 0.00
328.4 BU A I 270.08
338.8 AG I A 0.00
376.7 AG I A 0.00
380.5 BU A I 617.23
403.7 AG I A 0.00
432.4 AG I A 0.00
447.3 AU A I 0.01
449.5 AU A I 747.16
456.9 AG I A 0.00
490.0 BU A I 0.01
519.8 BU A I 0.01
532.6 BG I A 0.00
533.7 BG I A 0.00
614.3 BU A I 294.79
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655.8 AG I A 0.00
659.0 BU A I 643.41
674.6 AG I A 0.00

6e -2.4 A1 A A 0.02
-0.9 B1 A A 0.00
-0.1 B2 A A 0.00

119.8 A2 I A 0.00
161.5 A1 A A 2.24
238.6 A2 I A 0.00
248.0 B1 A A 27.81
265.2 B2 A A 12.45
272.2 A1 A A 70.86
290.4 A1 A A 338.34
299.2 B1 A A 283.08
353.2 B2 A A 537.45
355.7 A2 I A 0.00
417.6 B1 A A 121.56
421.9 A1 A A 104.61
464.5 A1 A A 21.46
475.8 B1 A A 100.38
522.4 B1 A A 13.02

NaCl -0.2 EU A I 0.00
(6c) -0.1 AU A I 0.00

119.1 EU A I 424.29
275.7 EU A I 117.98
349.9 AU A I 65.00
705.2 AU A I 202.70
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Appendix E

Raman intensities for global

minima of (MgF2)n clusters

Figure E.1: Raman frequencies and intensities for global minimum of (MgF2)4 at the

B3LYP/6311++G** level
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E. RAMAN INTENSITIES FOR GLOBAL MINIMA OF (MGF2)N
CLUSTERS

Figure E.2: Raman frequencies and intensities for global minimum of (MgF2)5 at the

B3LYP/6311++G** level

Figure E.3: Raman frequencies and intensities for global minimum of (MgF2)6 at the

B3LYP/6311++G** level
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Figure E.4: Raman frequencies and intensities for global minimum of (MgF2)7 at the

B3LYP/6311++G** level

Figure E.5: Raman frequencies and intensities for global minimum of (MgF2)8 at the

B3LYP/6311++G** level
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E. RAMAN INTENSITIES FOR GLOBAL MINIMA OF (MGF2)N
CLUSTERS

Figure E.6: Raman frequencies and intensities for global minimum of (MgF2)9 at the

B3LYP/6311++G** level

Figure E.7: Raman frequencies and intensities for global minimum of (MgF2)10 at

the B3LYP/6311++G** level
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Appendix F

Raman active modes observed in

rutile structures

The four Raman active modes found in the Rutile structure are shown in Figure F.1

Figure F.1: Modes of the rutile structure that are Raman active along with their

frequencies in cm−1.
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Appendix G

CaF2-Energy-Volume curves

Figure G.1: Energy-Volume curves derived for important structures of bulk CaF2

found from Monte-Carlo simulated annealing.
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