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Abstract

In this work, anomalies of acoustic phonons are studied in the elemental superconductors Nb
and Pb and in lead-thallium and lead-bismuth. By using high-resolution spin-echo neutron
spectroscopy, energy resolutions in the range of µeV were reached, which corresponds
to an improvement of several orders of magnitude compared to conventional neutron
spectroscopy. Several renormalization effects and anomalies appear at phonon energies
near the energy gap 2∆ and at temperatures above and below the superconducting
transition temperature Tc. Whereas the relative changes of the linewidths and energies
agree well with predictions based on bcs theory, the absolute values differ significantly.
Surprisingly, Kohn anomalies coincide with 2∆(T = 0K) both in Nb and Pb. By means of
neutron spectroscopy on several Pb1−xBix and Pb1−xTlx alloys, it could be demonstrated
that the energy gap 2∆(T = 0K) follows the energy of the Kohn anomaly as it changes in
the alloys.
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Abstract (German)

In dieser Arbeit wurden Anomalien akustischer Phononen in den elementaren Supraleitern
Nb und Pb und in Blei-Thallium und Blei-Wismuth Legierungen untersucht. Mittels
hochauflösender Spin-Echo Neutronenspektroskopie wurden Auflösungen im Bereich einiger
µeV erreicht, was einer Verbesserung von mehreren Größenordnungen im Vergleich zu
konventioneller Neutronenspektroskopie entspricht. Bei Phononen-Energien nahe der
Energielücke 2∆ und bei Temperaturen um die Sprungtemperatur Tc treten verschiedene
Renormalisierungseffekte und Anomalien auf. Während die relativen Änderungen der
Linienbreiten und der Energien gut übereinstimmen mit Vorhersagen basierend auf der
bcs-Theorie, weichen die Absolutwerte signifikant davon ab. Überraschend ist die Koinzi-
denz einer Kohn-Anomalie mit 2∆(T = 0K), sowohl in Nb als auch in Pb. Mittels
Neutronenspektroskopie an verschiedenen Pb1−xBix und Pb1−xTlx Legierungen konnte
gezeigt werden, dass die Energielücke 2∆(T = 0K) der Energie der sich in den Legierungen
ändernden Kohn Anomalie folgt.
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1. Introduction

In conventional superconductors, itinerant electrons are bound in pairs by vibrations of
the crystal lattice. The resulting composite particles, the Cooper pairs, have no net spin
and a strongly correlated center of mass motion. They constitute the superconducting
(sc) condensate, which can be described by a macroscopic quantum wavefunction. The
electronic system decreases in energy, which manifests itself in a lack of states measured
from the Fermi edge: the energy gap ∆. This course of events was successfully described
by Bardeen, Cooper and Schrieffer (bcs) in 1957 [1]. The bcs theory incorporates the
attractive interaction by lattice vibrations (phonons) and the repulsive Coulomb forces
between the electrons in a phenomenological effective potential. Eliashberg [2] and Morel
and Anderson [3] explained in a more rigorous treatment that the strong Coulomb repulsion
is overcome by the slow motion of the atom cores with respect to the electrons, which
leads to a time-retardation and locality in space of the electron-phonon (e-ph) interaction.

Still, the Eliashberg theory is not parameter-free. The phonon properties in the form of
the e-ph coupling factor α2(ω) multiplied by the phonon density of states (dos) F (ω)
for frequency ω are traditionally modeled or taken from experiment [4, 5]. The single
parameter

λ = 2
∫ ∞

0

α2(ω)F (ω)
ω

dω (1.1)

is commonly used as a measure of the strength of the e-ph coupling in a material. The
neglect of any momentum dependence is in fact a simplification, as the experimental
energy gap magnitude may be anisotropic. For instance, the mean square deviation

β2 = ∆2 − (∆̄)2

(∆̄)2 (1.2)

of the gap value distribution function in Nb is slightly below β2 ≈ 0.01, which amounts to
∼ 10% fluctuations [6]. In Pb, the mean square deviation is roughly 0.01 as well, with the
gap being peaked around two values, 2.4 and 3meV [7].

Phonon linewidths could provide the e-ph coupling parameters for individual phonon
wavevectors q and modes j and not only integrated values, if phonon decay from other
sources than electron scattering can be neglected or separated. The normal conducting
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1 Introduction 2013

state phonon linewidth due to e-ph interactions, Γe−ph
n , is a measure of the phonon’s

importance to superconductivity via the relation [8]

α2(ω)F (ω) =
∑
q,j

Γe−ph
n (q,j)

πN(0)~ωq,j
δ(ω − ωq,j), (1.3)

with ~ Planck’s constant, N(0) the electronic density of states at the Fermi surface (fs)
for both spin orientations and ~ωq,j the phonon energy. The Dirac δ function is used.

The two main experimental methods to study conventional superconductors are tun-
neling spectroscopy and neutron spectroscopy. The differential conductance through a
superconductor-insulator-metal tunnel junction, which is proportional to the so-called
tunneling density of states NT (ω), gives information about the size of the superconducting
gap and, for strong-coupling superconductors, about α2F (ω). An example showing how
the phonon dos is reflected in Eliashberg’s generalized energy gap function ∆(ω) and
in NT (ω) is shown in Fig. 1.1a. The simple bcs gap ∆0 is equal to Re ∆(ω) in the low
energy limit. The single phonon peak model at ω0 creates a damping in the complex
energy gap and a corresponding structure in NT (ω) at ω0 + ∆0. Note the shifted scale:
the tunneling density of states below ∆0 is zero. The e-ph prefactor α2(ω) is taken to
be constant in this example. Indeed, variations in α2(ω) seem to be generally small, as
can be seen from calculations [9] for e.g. Nb, shown in Fig. 1.1b. As the dispersion of the
transverse and longitudinal acoustic phonon modes flattens at the Brillouin zone boundary,
F (ω) is peaked at the maximal values of the respective branches.

In contrast to tunneling, neutron spectroscopy allows to measure the momentum-resolved
phonon band structure, which determines the overall phonon density of states F (ω). The
band structure and phonon linewidths may be affected locally by the e-ph interaction in the
form of Kohn anomalies [10]. In one dimension in the nearly free electron approximation,
a phonon with wavevector equal to the Fermi surface spanning (nesting) vector 2kF and
with negligible energy with respect to the electronic band structure energies would be
able to excite electrons from one point at the Fermi edge to the other point. This would
cause an instability in the phonon dispersion and, concomitantly, a Peierls transition of
the periodic lattice. In three dimensions, electron excitations across the Fermi surface may
cause a dip or kink in the phonon dispersion as displayed for the case of face-centered
cubic (fcc) Pb in Fig. 1.2. Phonon energies generally do not permit transitions from deeper
to higher level states, so that transitions stay close to the Fermi surface. Thus, if the
phonon wavevector q exceeds an electron pocket spanning vector (green and blue arrow in
Fig. 1.2a), a group of potential transition possibilities is lost. Equally so if q falls short
of a hole-filled Fermi surface connection (red arrow). This may translate into upward
and downward kinks in the dispersion, respectively: the Kohn anomalies. Phonons may
couple with various strengths to different sections of the Fermi surface. Generally, the
longitudinal branch couples more strongly to the electrons than the transverse branches,
as can be seen in Fig. 1.2b. The larger and less concave or convex the connected sections
are, the stronger a Kohn anomaly can become.
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Figure 1.1.: (a)(1) The phonon density of states F (ω) for a single phonon peak model. (2) The
real (solid) and imaginary (dashed) parts of the gap function ∆(ω) corresponding
to the phonon model shown in (1). (3) The normalized tunneling density of states
NT (ω)/N(0) (solid) compared with the bcs form (dashed). From Ref. 4. (b) Spectral
function α2F (ω) for Nb calculated by Savrasov and Savrasov (full lines) and results
from tunneling experiments (symbols). The behavior of α2(ω), defined as the ratio
α2F (ω)/F (ω), is shown by dashed lines. From Ref. 9.

Conventional triple-axis neutron experiments can scarcely resolve intrinsic phonon linewidths
resulting from e-ph interaction. In the 1970s the Brookhaven group succeeded to observe
changes of the linewidth of acoustic phonons across the superconducting transition tem-
perature Tc in Nb [14] and Nb3Sn [15]. They took advantage of the optimal spectrometer
focusing condition, which only occurs for few phonons, and from the comparatively large
phonon widths. A typical energy scan in the transverse acoustic phonon branch T2 along
the [110]-direction in the first Brillouin zone of body-centered cubic (bcc) Nb is shown in
Fig. 1.3. The phonon energy is in this case smaller than 2∆0 ≈ 3.1meV. The absolute
intrinsic linewidth in the superconducting state is assumed to be close to zero, as the
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Figure 1.2.: The origin of Kohn anomalies in the phonon dispersion. (a) Central [110] section
of the Fermi surface in Pb in the extended-zone scheme (left) and the folded-zone
scheme (right) compared with an empty-lattice model (circle and arcs). Possible
nesting wavevectors ‖ [1̄10] are indicated by arrows. Adapted from Ref. 11. (b) Effect
on the phonon dispersion, measured by neutron spectroscopy: the vector lengths in
panel (a) determine the lateral positions of the arrows with the same color. Upward
and downward kinks (distinguished by the sign of the respective arrow) are seen
in the longitudinal branch at these wavevectors. The lengths of the arrows in this
panel roughly reflect the relative strength of the Kohn anomalies as was calculated in
1963 [12]. Image from Brockhouse et al., Ref. 13.
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Figure 1.3.: In 1975, Shapiro, Shirane and Axe reported changes in the spectral phonon linewidth
in Nb measured by neutron spectroscopy as the sample becomes superconducting,
shown here for the phonon at [ζζ0]T2, ζ = 0.07 r.l.u.. E0 is the incident neutron
energy. From Ref. [14].

energy of the phonon is not large enough to excite electrons across the gap. This means
that the full width at half maximum (fwhm) of the gaussian peak at T = 2.5K is mostly
caused by the instrumental broadening. The difference in the width between the two
temperatures of 48µeV is small by comparison. For other elemental superconductors like
Pb, the attempt to resolve changes in the phonon linewidth using triple-axis spectroscopy
failed.

The resolution in neutron spectroscopy was improved by several orders of magnitude by
the combination of the spin-echo and the triple-axis spectroscopy (tas) techniques [16, 17].
The instrument Trisp at the neutron source frm ii in Garching is the first dedicated
spectrometer of this type that is able to resolve intrinsic phonon linewidths over broad
energy and momentum regions. Stimulated by the early tas experiments on Nb by Axe and
Shirane, phonon linewidths in the elemental superconductors Pb and Nb were remeasured
with high resolution. The temperature dependence of low-energy acoustic phonons in
Pb was resolved for the first time and proved to follow the expected behavior [18]. The
momentum dependence of the linewidth showed a peak located at the phonon energy
corresponding to the width of the superconducting gap at zero temperature, 2∆0. This
peak persisted up to high temperatures and was assigned to a Kohn anomaly. Figure 1.4
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shows the published data, demonstrating the coincidence between the energy of a Kohn
anomaly along the lowest acoustic phonon branch and the saturated energy gap 2∆0. The
surprising fact is that such a coincidence was also visible in niobium [19, 20]. This lead to
the hypothesis that there might be an as yet unidentified mechanism that links 2∆0 to the
lowest energy Kohn anomaly [21].

2∆0 is at first sight unrelated to a Kohn anomaly. The effect of the anomaly on the
integrated value of α2F (ω) is minor. The anomaly is a normal state property that the
gap magnitude should have no bearing on. The way in which these phenomena – one
determined by the Fermi surface topology, the other by the energy scale of the phonon
band structure - come together is illustrated in Fig. 1.5. Panels (a) and (b) show the
electron excitation by an acoustic phonon with q = 2kF in a 1-dimensional nearly free
electron bandstructure in the normal and superconducting state, respectively. The angle
with respect to the energy axis is in first approximation given by the slope cT of the
transverse acoustic phonon for ω → 0, i.e. ωq = cT q. Panels (c) and (d) show the same
for two dimensions. Panel (e) shows calculated phonon linewidths for a 3-dimensional,
perfectly cylindrical Fermi surface at various values of the superconducting gap [22] and
bears a striking similarity to the experimental data shown in Fig. 1.4.

Figure 1.6 illustrates the situation in Nb and Pb. The respective lowest transverse acoustic
phonon dispersions in the (qx,qy,0)-plane are modeled using neutron data. The average
reported saturated gap values, 2∆(Pb) = 2.8meV and 2∆(Nb) = 3.1meV, are shown
together with the positions of the newly discovered Kohn anomalies along the [100] and
[110] directions [20, 23]. The magnitude of the momentum-dependent saturated energy
gap as determined from the phonon linewidth data departs from the average, seemingly to
follow the phonon energy at the Kohn anomalies. This could explain the anisotropy of the
energy gap observed in tunneling data.

The aim of this thesis is to further investigate the coincidence between the Kohn anomaly
and the width of the energy gap. The strategy pursued is to study alloys of Pb with Bi or
Tl. Adding up to 20% Bi to Pb increases the transition temperature Tc and the magnitude
of 2∆0, whereas alloying Tl reduces these two quantities. It could be verified by neutron
spectroscopy that the energy of the Kohn anomaly also shifts and stays linked to 2∆0
within experimental uncertainty.

The second main aim of this thesis is to study spectral lineshape anomalies at phonon
energies close to 2∆0 and temperatures around Tc. Normally, the damping of phonons is
exponential, leading to Lorentzian lineshapes. As explained in more detail in chapter 3,
dramatically asymmetric phonon lineshapes were first observed in the borocarbide super-
conductor YNi11

2 B2C in 1996 [24]. The asymmetries were explained by Allen [25] as shifts
of spectral weight across 2∆0 consistent with the bcs theory. Though these lineshape
anomalies were thought not to be observable in elemental superconductors such as Pb and
Nb, Weber reported such asymmetries in Nb using conventional tas with comparatively
low resolution but sophisticated data analysis [26]. At trisp, such asymmetries were first
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Figure 1.4.: Coincidence of the saturated energy gap and a Kohn anomaly in Pb in the [110]T1
phonon branch. Top panel: intrinsic phonon linewidths Γe−p(q) measured on trisp
at various temperatures below Tc. Corresponding phonon energies are shown on the
top axis. At qKA = [0.36,0.36,0], ωKA = 2.8meV, the linewidth is broadened due
to a Kohn anomaly. The linewidths reduce to zero for phonon energies below the
gap 2∆(T ). Bottom panel: dashed lines show the values of the energy and temperature
at which the linewidth data from the top panel are recorded. 2∆(T ) (blue area) and
ωKA (gray line) are both reflected in the linewidths. Freely adapted from Ref. 19.
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not observed despite the much better energy resolution. In a second, optimized experiment
on trisp, we could verify that such lineshape asymmetries in Nb are not observable as
the linewidths are smeared out by the finite momentum resolution. The relation between
linewidth and energy renormalization both in Nb and Pb are also analyzed in detail. The
relative changes of the linewidth and the energy proved to be Kramers-Kronig consistent
and follow the predictions by Allen based on bcs. The absolute values show significant
deviations from the predictions based on ab initio calculations for the normal state and
for Allen’s predictions for the superconducting state. The reason for these discrepancies
is not yet understood. Lattice defects and impurities might play an important role, as
they possibly affect the electronic states, the interatomic forces and the electron-phonon
coupling.

In a broader sense, this thesis ranks among the many ongoing endeavors in learning
about electronic signatures on phonons, and the interplay of such effects with respect
to superconductivity (see e.g. Ref. 27, 28 and references therein). The small effects of
the superconducting state on the phonon spectrum, accessible by the neutron instrument
trisp, could enhance the understanding of conventional superconductors. As the phonon
resonance is not quite unlike the formation of a spin-resonance mode in the unconventional
cuprate and ferropnictide superconductors [29, 30], it could provide a basic reference for
these yet to be explained materials.
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(a) (b)

(c) (d)

(e)

Figure 1.5.: (a) Electron excitation through absorption of an acoustic phonon with q = 2kF (red
line) in a nearly free electron model bandstructure (not true-to-scale). The angle
with respect to the energy axis is in first approximation given by the slope cT of the
transverse acoustic phonon for ω → 0, i.e. ωq = cT q. In two dimensions (panel c)
transitions with wavevectors q < 2kF are possible, too. (b) In the sc state, excitations
are only possible if the gap is such that ~ω(2kF) ≥ 2∆. (d) In 2 dimensions, for
~ω(2kF) ≡ 2∆, only the extremal transition is possible. (e) Calculations from Ref. 22
for a cylindrical Fermi surface, showing the normalized transverse acoustic phonon
linewidth in the sc state at T = 0K for various values of the superconducting gap
2∆ = AcT qKA. Curves A = 0 and A = 1 reflect the situations in panel (c) and (d),
respectively.
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(a)

(b)

Figure 1.6.: 3D illustration of the coincidence of the saturated energy gap and Kohn anomalies
in Nb (top) and Pb (bottom), as first reported in Ref. 20. The green surface is
the lowest transverse acoustic phonon dispersion in the (qx,qy,0)-plane, modeled
using high symmetry neutron data and sporadic off-symmetry data. The blue flat
surfaces depict the average reported saturated gap values, 2∆(Pb) = 2.8meV and
2∆(Nb) = 3.1meV, resp. Kohn anomalies along the [100] and [110] directions are
shown in red. The anisotropy of the energy gap (not shown) follows the energy at
the Kohn anomalies.

15



2. Neutron resonance spin-echo
spectroscopy

Neutron scattering is a powerful method for probing condensed matter. Since neutrons
are unstable outside the atomic nucleus and do not have an electric charge, intense beams
of free neutrons can only be produced by nuclear fission within a research reactor or by
the impact of GeV protons on a target in a spallation source. The initially fast neutrons
are slowed down by collisions with atoms of similar mass, such as hydrogen or deuterium
contained in (heavy) water, until they are in equilibrium with the surrounding medium and
their velocity distribution approximately assumes the corresponding Maxwell-Boltzmann
statistics. So-called thermal neutrons with a most probable velocity of 2200ms−1 are
acquired when the moderator has room temperature. This thermal velocity corresponds to
a neutron energy of 25meV. Bearing in mind the wave-particle duality, the most probable
De Broglie wavelength is 1.8Å. Since this wavelength is in the range of the interatomic
distance in solids and liquids, interference effects occur and thus thermal neutrons are
ideal for studying coherent effects. Moreover, their energy is of the same order as those
of typical excitations in condensed matter. This makes them ideal for studying coherent
dynamics.

After the discovery of free neutrons by James Chadwick in 1932, the first nuclear reactor
(“Chicago Pile-1”) was built under the direction of Enrico Fermi in 1942. Fast-forward
to 1956 and Bertram Brockhouse developed the first triple-axis spectrometer (tas), an
instrument that allows for a precisely controlled measurement of the energy and momentum
transfer of neutrons to a sample. He therewith opened up a main topic of condensed-matter
research, namely the study of the energy and lifetime of lattice vibrations (phonons) as
a function of their propagation speed and direction. For this accomplishment he later
received the Nobel prize together with Clifford Shull in 1994.

The spectral linewidth of a phonon is inversely proportional to its lifetime. Since phonons
are generally long-lived, their linewidths can be as small as a couple of micro-electron-volt
or less. To reach this resolution on a conventional triple-axis spectrometer, the energy of
the ingoing and exiting neutrons would have to be determined this precisely. However,
apart from technical difficulties to narrow down the monochromaticity of the neutron
beam, the related loss in beam intensity is so large that measurements are impossible.

16



2 Neutron resonance spin-echo spectroscopy 2013

This intensity problem is avoided by exploiting the precession of the neutron spin in a
magnetic field. Each individual flight path can thus be marked by a Larmor precession
angle. If neutrons with different velocities undergo the same trajectory and scattering
process, their final spin precession phase should be equal. If the energy transfer during the
scattering process is not exactly the same for each neutron because of the linewidth of the
excitation in question, the final spin phases are spread out. This neutron spin-echo (nse)
method was invented and developed by Ferenc Mezei [31]. The fan-out of the Larmor
precession phases depends on the scattering process rather than the neutron velocity.
This means that the energy transfer accuracy is disentangled from the neutron beam
monochromaticity. To achieve the echo, the magnetic field after the scattering event and
therefore the Larmor precession are reversed with respect to the field before the sample.
The limit on the accuracy is set by the sharpness of the boundaries of the magnetic fields
and their homogeneity.

Acoustic phonons, or in general dispersive excitations, impose an additional challenge.
Even if their linewidth is infinitely small, the neutrons scattered from different parts of the
phonon branch transmit different energies and thus there is no perfect “echo”. An ingenious
focusing technique suggested by Mezei [32, 31] and worked out by Roger Pynn [33] offers
a solution: by tilting the magnetic field boundaries with respect to the main neutron
direction, the spin precession for all scattered neutrons becomes equal. With this degree
of freedom, the spin-echo can be tuned to the slope of the dispersion curve, as explained
in more detail in paragraph 2.3.

Golub and Gähler made this acoustic phonon focusing method technically feasible in
1987 [16] by proposing that the solenoids to create a static magnetic field be replaced with
a sequence of high frequency spin π-flipper coils, separated by a zero-field region. In this
setup, there is no classic spin precession, but the interaction with the oscillating magnetic
resonance fields gives the spins a phase angle that is proportional to their flight time in
the zero-field region. This so-called neutron resonance spin-echo (nrse) technique reduces
field inhomogeneity and stray fields at the coil boundaries, which shifts the limit on the
field boundary tilt angles up to approximately 50◦.

The nrse setup may be used for Larmor diffraction as well [34]. This is an elastic
scattering technique that can be used on single crystals and powder in order to determine
the mosaicity or the spread in lattice spacings. Since these data are important to know for
the analysis of phonon linewidths, it is useful to carry out Larmor diffraction to characterize
the samples.

Around the turn of the millennium the first nrse data were produced. By now, the neutron
resonance spin-echo method is well-established. Since 2004, the instrument trisp at the
neutron source Heinz Maier-Leibnitz (frm ii) offers nrse on a triple-axis spectrometer at
a thermal beam line. Its energy resolution is in the µeV range - typically two orders of
magnitude better than for tas alone.
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2.1 Neutron scattering in condensed matter

In this chapter, after a short description of the triple-axis and nrse spectroscopic technique,
the use for Larmor diffraction is briefly explained and the actual instrument setup of trisp
is specified.

2.1. Neutron scattering in condensed matter

The zero electrical charge of the neutron means that there is no Coulomb barrier to be
overcome when entering condensed matter: the bulk of the material is probed and not
the surface. The scattering and absorption cross sections are purely dependent on the
isotopes within the material. There are no systematic variations across the periodic table
as there are for X-ray scattering - many heavy elements are quite neutron transparent.
Isotopes with a large capture cross section for thermal neutrons, such as 10B or 113Cd, are
commonly used for shielding.

Since nuclear scattering can be treated as a very weak perturbation, the nature of the
states in a condensed matter system is not modified. As the momentum and energies
of thermal neutrons are low, the scattering at the nucleus is isotropic (s-wave) and can
be expressed using a single parameter, the scattering length b. In most cases, it can be
assumed constant in the thermal energy range. The corresponding scattering cross section
is σ = 4πb2 and is traditionally measured in barn (1 barn= 100 fm2). To calculate the
total scattering cross section from a sample, one can take the average over the scattering
lengths of the individual atoms.

Neutrons have a magnetic dipole moment despite their zero net electrical charge due to the
neutron’s composition of one up and two down quarks. For interaction with nuclei with a
nuclear spin, the scattering length may vary depending on whether the neutron and nuclear
spins are parallel or antiparallel. The magnetic moment also gives rise to interaction with
the unpaired electron spins in the atomic shell, with a strength comparable to the nuclear
interaction. To select a spin polarization in a white or monochromatic neutron beam,
supermirrors are used that contain layers of a ferromagnetic material (e.g. iron-cobalt).
In triple-axis spectrometers, Heusler alloy crystals are widely used as spin-polarizing
monochromators and analyzers. These are ferromagnetic metal alloys with a face-centered
cubic crystal structure, whose constituents themselves are not ferromagnetic.

Due to interference effects, neutrons scatter not only from individual nuclei, but also
from cooperative effects among periodically structured nuclei. The differential nuclear
scattering cross section can thus be divided into a coherent and incoherent part, σcoh
and σinc (see e.g. Ref. [35, 36]). Elastic Bragg scattering and inelastic scattering by creation
or absorption of one or more phonons or spin waves (magnons) in magnetic materials
are coherent effects. Incoherent scattering on the other hand may provide information
about individual particle motion (e.g. diffusion) or may otherwise violate the interference
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condition. Incoherent one-phonon scattering in a cubic crystal for instance produces a
signal that is directly proportional to the phonon density of states; though energy is
conserved, the dependence on the reciprocal lattice vectors is lost. There are no systematic
variations across the periodic table when it comes to the relative strengths of coherent and
incoherent scattering. Prominent examples of materials for which the incoherent scattering
is large are hydrogen and natural vanadium. As this creates an unwanted background in
phonon measurements, materials containing hydrogen, e.g. many glues, are to be used
sparsely in the sample environment and preparation. Apart from incoherent scattering
that is isotope-specific, a randomly distributed mixture of isotopes gives rise to additional
incoherent scattering.

2.2. Triple-axis spectrometry (tas)

Inelastic scattering experiments can be carried out on a triple-axis spectrometer. It
operates by defining the direction and magnitude of the neutron wavevectors ki,f before
and after the sample, respectively. |k| = 2π/λ is proportional to the square root of the
neutron energy, k =

√
2mnE/~2, with mn the neutron mass and ~ Planck’s constant and

λ the wavelength. The incident neutron energy Ei is selected by Bragg diffraction at the
monochromator crystal, as shown in Fig. 2.1. The nth order reflection from crystal lattice
planes with spacing d is given by

nπ

k
= d sin θ Bragg’s law (2.1)

with θ the angle between the planes and the beam. The neutron energy can thus be altered
continuously by a “θ/2θ” movement.

A coarse spectral selection needs to be performed in order to suppress higher harmonics,
n > 1. This can be achieved by placing a filter material in the beam that has a sharp
energy-dependent attenuation or absorption edge, or by using a velocity selector, which
consists of a rotor with neutron-absorbing blades. The smaller the mosaicity of the
monochromating crystal, the more defined the neutron energy is, but also the more the
beam intensity suffers.

Soller collimators, consisting of parallel absorbing plates, may be used to restrict the
divergence of the neutron paths. This further restricts the distribution of incident neutron
wavevectors ki around the most probable vector kI . Next, the neutrons are scattered by the
sample over an angle 2θS. This determines the direction of kF , but not yet the magnitude.
Since the neutron energy cannot be resolved by the detector, the monochromation process
needs to be repeated at the analyzer in order to select the final neutron energy EF . Now
the difference between the neutron wavevectors before and after the sample is well-defined,
giving the total transferred momentum vector Q = kI − kF and the energy transfer
~ω = EI − EF . These three vectors form the scattering triangle. The sample orientation
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Figure 2.1.: (a) Schematic layout of a triple-axis spectrometer. Soller collimators in between the
units restrict the neutron beam divergence. In the shown arrangement, the scattering
angles are negative at the monochromator and sample and positive at the analyzer
(right-handed configuration). (b) Bragg scattering from a crystal lattice, as utilized
repeatedly in the triple-axis spectrometer. G is the reciprocal lattice vector normal to
the planes with magnitude 2π/d.

with respect to this triangle is specified by the sample angle. It is the custom to label
the monochromator incident angle, monochromator scattering angle, sample incident and
scattering angle, analyzer incident and scattering angle in due order A1. . .A6.

Last, the scattered neutrons may be detected in a 3He proportional counter through the
nuclear reaction

n + 3He → 3H + 1H + 764 keV. (2.2)

If the sample is a single crystal from which a Bragg reflection is measured, then Q equals
the reciprocal lattice vector G. The momentum of phonons depends only on the relative
wavevector q = Q−G within a Brillouin zone, referencing to the nearest reciprocal lattice
point. One common way to measure a phonon energy is to work at a fixed wavevector q,
while varying the energy of the incoming neutrons. Convention dictates that the energy
~ω = EI −EF refers to the excitation in question, i.e. its sign is positive when the neutron
loses energy. The wavevector Q is traditionally defined as kI−kF . Since generally positive
and negative Q’s are symmetrically equivalent, the sign can be neglected. We will carelessly

20



2 Neutron resonance spin-echo spectroscopy 2013

Figure 2.2.: Selection of transverse or longitudinal modes on a tas. An (001)-plane of a crystal
in reciprocal space is shown. Vectors G denote crystal reciprocal-lattice vectors,
Q the total momentum transferred by the neutron and q the phonon momentum.
Purely transverse acoustic modes can be measured at points A and D, while purely
longitudinal acoustic modes are obtained at B and C. Figure from Ref. [36].

proceed to use the symbol ω for the energy instead of the frequency so that we may omit ~.
Hence, the energy and momentum conservation read

ω = EI − EF
Q = kI − kF = G + q. energy and momentum conservation (2.3)

The phonon intensity depends on the Bragg intensity at the nearest reciprocal lattice
vector. The selection rules for the respective crystal structure hold the key as to which
reflections are allowed. Fig. 2.2 shows how transverse versus longitudinal phonon modes
are selected in different Brillouin zones. A longitudinal phonon mode involves atomic
displacements parallel to the direction of propagation. In other words, the polarization ε̂
is parallel to q. Since the coherent one-phonon scattering cross section contains a factor
Q · ε̂ (see e.g. Ref. [36] for the complete scattering formulae), a scan where the phonon
momentum q and the total transfer Q are parallel is sensitive to a longitudinal acoustic
mode. A scan where q is perpendicular to the reciprocal lattice vector G and small in
comparison, so that q is approximately perpendicular to Q, would completely suppress
any longitudinal acoustic mode, so that transverse modes are measured only.

As discussed previously, the monochromator and collimators select a bundle of neutrons
with wavevectors ki around the most probable wavevector kI . The probability to detect
a scattered neutron with wavevector kf is determined by the distribution around kF .
Consequently the energy and momentum transfers of the neutrons are distributed about
the average values (Q0, ω0). The effective instrumental resolution R can be mapped
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using Bragg peaks as δ-peak signals in this four-dimensional space. Though individual
instrument components may have triangular or trapezoidal transmission functions, R is
reasonably well-described by a 4D gaussian distribution

R = R0 exp
(
−1

2XTMX
)

triple-axis resolution function (2.4)

with R0 a constant and introducing the four-component vector X = (Q−Q0, ω − ω0).
The wavevector coordinate system is given by ∆Q‖ parallel to Q0, ∆Q⊥ perpendicular
to Q0 within the scattering plane and the out-of-plane component ∆Qz. In general, the
triple-axis resolution matrix M is not diagonal with respect to these principal axes. This
means that the resolution ellipsoid, which describes the 50%-probability contour of R, is
oblong and canted. Fig. 2.3 shows an example of a resolution ellipsoid for ω0 = 0 and
k ≈ 2.664Å−1, which is obviously canted in the transverse direction ∆Q⊥. If the slope of
the “Bragg tail” (the wing of the ellipsoid through a Bragg peak) is approximately equal
to the slope of an acoustic phonon of interest, it will prohibit the accurate measurement
of the dispersion at small q. A practical rule of thumb exists for the slope of the long axis
of the ellipse along the Q⊥-axis, reading

∆ω
∆Q⊥

≈ −(4meVÅ2)k (2.5)

for right-handed spectrometers (angle A4 negative). It is valid near elastic conditions,
kI ≈ kF ≡ k, whenever the monochromator and analyzer mosaics are more restrictive than
the collimation.

Generally, when measuring other than point-like spectral functions, one measures a
convolution of the scattering function with the resolution function. Phonon focusing
in triple-axis spectrometry means that the inclination of the resolution ellipsoid is in
approximate accordance with the inclination of the slope of the phonon dispersion. If
this is the case, an energy scan provides an intense narrow peak. If the inclinations are
opposed to each other, the peak is broadened. From the sign of Eq. 2.5, it follows that for
transverse long-wavelength phonons, if q points ∼ 90◦ right-hand of G, a created phonon
(ω > 0) is focused [36].

If all instrument parameters are known, the resolution matrix can be calculated according
to the method by Cooper and Nathans [37] or with the more advanced Popovici method
that includes spatial effects [38]. Rescal [39] and Reslib [40] are examples of programs
using the numerical computing environment software Matlab to inspect spectrometer
settings and to simulate the resolution using these calculation methods.

2.3. Neutron resonance spin-echo (nrse) spectroscopy

Using the spin-echo principle, the Fourier transform of a scattering function S(ω) can be
measured by means of the neutron polarization. That way, linewidths can be determined
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Figure 2.3.: Example of the cross sections of a resolution ellipsoid with a given plane (solid lines)
and projections onto the plane (dashed lines). Calculated using the Cooper-Nathans
method for ω0 = 0, Q0 = 1.5Å−1, EI = 14.7meV, horizontal collimations of 20′
each and pg(002) monochromator and analyzer crystals with mosaic widths of 24′.
From Ref. [36].

with excellent energy resolution. The spin-echo setup must be combined with a triple-axis
spectrometer to define the momentum resolution. One important feature is the spin-echo
focusing technique for dispersive excitations. Rather than the classic spin-echo method,
the more advanced resonance spin-echo method is described here. Instead of extended
static magnetic fields, it employs a combination of static and oscillating magnetic fields to
induce a spin precession. Though the experiment may be described quantum mechanically
as a two-state interference [41], the classical treatment pursued here is complete and more
insightful.

A neutron spin state can be described by a linear combination of the orthogonal spin-up
and spin-down states in the two-dimensional Hilbert space. Like any two-state quantum
system, this can be geometrically represented by a vector on the Bloch sphere, where a
vector parallel to the z-axis is chosen to represent up while antiparallel represents down.
The polarization of a neutron beam is the ensemble average over all the neutron spin states
with respect to the quantization axis z. The polarization is P = (N↑ − N↓)/(N↑ + N↓),
where N↑ (N↓) is the number of neutrons with spin up (down).

A single spin state can be selected by a polarizing neutron guide. For example, the
instrument trisp is situated at the end of a 10m polarizing supermirror guide at the
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beam port SR5 of frm ii. The typical transmission for one spin component in the thermal
range of interest is ∼ 70% and the polarization of the transmitted neutrons is > 95%.

Because of the magnetic moment associated with the neutron spin, a torque is exerted on
any spin vector that is not aligned (anti)parallel to a magnetic field B, so that it precesses
with a fixed angular frequency ωL = γB in anticlockwise manner around the field direction.
This Larmor frequency ωL is independent of the inclination θ of the spin vector with
respect to B. Thus the precession angle in a given field is only a function of the time of
flight and can be used as a kind of stopwatch to trace the velocities of individual neutrons.
The gyromagnetic ratio of the neutron is γ ≈ 1.832 · 108 rad T−1s−1.

In a slowly rotating magnetic field (rotation speed � ωL), the spin follows the field
direction. This may be used to change the polarization direction from the z-axis to the
y-axis, perpendicular to the beam direction x. If now suddenly a static field region B0 in
the z-direction is entered, the neutron spins cannot follow the non-adiabatic change in
the field, but retain their original orientation. They then perform a Larmor precession
in the scattering plane (θ = 90◦), as shown in Fig. 2.4(a). In a coordinate system x′y′z
rotating with the Larmor frequency ωL, the spin vector is static. Consequently, the effective
magnetic field in this system is completely annihilated [42]. Suppose a rotating magnetic
field Brf is added to case (a) that is in resonance with the Larmor frequency,

−→ω rf
!= γB0. resonance condition (2.6)

In the rotating coordinate system, this would be a static field as shown in Fig. 2.4(b). The
spin would then precess around Brf as shown. After a time tπ = π/ωrf , the spin would be
back in the scattering plane. This is the principle of the resonance spin-“π” flippers. Thus
the second condition that must be fulfilled is

Brf
!= π~k
γdmn

π-flip condition (2.7)

with d the geometrical width of the resonance field. The performance of resonance spin
flippers is thus limited by the acuteness of the field boundaries and by the velocity
distribution of the neutrons, both of which lead to inaccurate π-flips [43]. The angle
within the x′y′-plane that is bridged by the spin, 2θrf , depends solely on the relative angle
between the spin and Brf when the spin enters the resonance field. In the time that it
takes to complete the π-flip, the complete system rotates in addition by ωLtπ. Thus the
spin direction is altered by

φ− φ0 = 2θrf + ωLtπ. (2.8)
The full advantage of using static plus resonant fields instead of static fields alone will
become evident later on.

Oscillating instead if rotating fields can be used when the alternating field is weak with
respect to the constant field. An oscillating field is equivalent to two opposite rotating fields
as illustrated in Fig. 2.5(a). Since the neutron spins primarily adhere to the rotation ωL,
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Figure 2.4.: Larmor spin precession in a magnetic resonance field. (a) Precession of a spin vector
in the xy-plane about a constant magnetic field B0. The angular frequency is ωL.
(b) In a coordinate system rotating with ωL the spin vector is static, i.e. the effective
magnetic field is zero. When a rotating magnetic field Brf that is in resonance with
ωL is switched on, the spin precesses around Brf with angular frequency ωrf . If the
time that the spin resides in this field is chosen correctly, a “π”-flip is performed,
meaning the spin ends up in the xy-plane again.

the time-averaged counter-rotating field is practically zero and the spins experience only
the field component that resonates with the static-field Larmor precession [44]. When
neutrons pass through consecutive radiofrequency (rf) coils with opposite but equally large
B0 and equal oscillating fields 2πν = |ωrf |, the respective resonance fields alternate. This
is the bootstrap setup shown in Fig. 2.5(b) [43]. The varying arrival times of the spin
vectors at the bootstrap coils result in seemingly chaotic spin π-flips and thus an angle
de-phasing in the xy-plane. If the field component B−rf makes an angle −θrf with the y-axis
at the time a neutron enters the first coil, the field B+

rf makes an angle +θrf + ωLtπ at
arrival in the second coil. Thus, in case the neutrons are initially polarized in y-direction,
their angle with respect to this axis is 4θrf + 4ωLtπ at the exit of the bootstrap. The
main advantage of an even-numbered bootstrap over a single coil is that opposite static
fields significantly reduce stray magnetic fields. Moreover they double the angle θrf and
therewith the efficiency of the field.

The neutron resonance spin-echo setups with four operating single coils and with four
bootstrap coils are shown in Fig. 2.6 and 2.7, respectively. The incident neutrons are
polarized perpendicular to the travel direction. During the zero-field travel time between
coils A and B before the sample, the spin vector does not change, but the rotating fields
do. If the incident neutrons have different velocities, they arrive at B at different times
and thus end up with seemingly random spin phases at the sample. At this point, the
phase does not depend explicitly on the initial arrival time tA at point A anymore, but
only on the time difference tB − tA = L1/(~ki/mn), as can be easily verified [43]. This
means that if the static field components and therewith ωrf ≡ γB0 in coils C and D after
the sample are opposite to those in A and B, the de-phasing is reversed. In the most basic
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Figure 2.5.: (a) The decomposition of an alternating magnetic field in counter-rotating fields.
Only the rotating field component that complies with the Larmor motion in the
additional static field is relevant. (b) Static field directions are alternated in a
bootstrap setup with two radiofrequency coils.

case, where the zero-field regions have equal lengths and the neutron velocities do not
change at the sample site, the initial spin vector is resumed, regardless of how the velocities
are distributed. The intensity of detected neutrons after crossing another polarizer is then
as high as can be. If the velocities do change because the neutrons lose an energy ω0 to
the sample, the rf field frequency ν and strength Brf can be reduced in the second arm to
maintain the “echo”.
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Figure 2.6.: Neutron resonance spin-echo with four operating “π”-flipper coils (A-D). The motion
of a spin vector (polarized perpendicular to the traveling direction) that arrives at an
arbitrary time tA is exemplified. The color of the spin vector at entrance and exit of
the coils is alternated between green and blue. The resonance field direction at the
entrance (exit) of each coil is orange (red), showing schematically the angle ωLtπ.
During the zero-field travel time between the coils, the spin vector does not change,
but the rotating fields do. This results in different arrival times at the following
coils due to the velocity distribution of the beam, and thus de-focusing of the spin
vector angles, as shown schematically by the shading in the bottom graphs. In the
case shown, the initial spin vector is resumed in the end so that there is indeed a
“spin-echo”.
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The objective of the spin-echo setup is to detect as small spreads in the neutron energy
transfer as possible. If the linewidth of an excitation is zero, ideally, there is no spin
de-phasing at the end and thus no loss of polarization, no matter how high the de-phasing
in between. However, if there is a spread in the energy loss of the neutrons at the sample,
the final Larmor phase angles φ become less focused with increasing field frequencies
and zero-field region lengths in both arms. The measure for the de-phasing power is the
spin-echo time τ . By identifying the polarization at several values of the spin-echo time
(i.e. several field frequencies), the transferred energy spread can be determined. To detect
small linewidths, high spin-echo times are needed. A straightforward calculation shows
that an nrse instrument that uses the static field B0 in the resonance coils is 2N times as
effective as a classic spin-echo instrument with B0 over the entire lengths of L1 and L2, N
being the number of operating coils at each of the four positions A, B, C and D. Moreover,
operating the rf coils is technically easier than maintaining an extended homogeneous
magnetic field.

2.3.1. Spin-echo conditions for phonon focusing

The more the energy loss ω of a neutron deviates from the main energy loss ω0, the larger
the spin de-phasing. The main requirement of spin-echo is for the final Larmor phase to
be a linear function of the difference ∆ω = ω − ω0:

φ(ki, kf )− φ0 = −τ ·∆ω
~

(2.9)

with the phase at the center φ0 = φ(kI ,kF ). This condition can be satisfied to first
order in ∆ki,f = ki,f − kI,F when the velocity distributions of the incident and exiting
neutron beam are strongly peaked about their means. This is the case when a triple-axis
spectrometer is equipped with the spin-echo device. In the basic setup with straight coil
boundaries, the surfaces of constant spin-echo phase in (q, ω)-space can be assumed to be
flat within the triple-axis resolution, as shown in Fig. 2.8(a).

In order to avoid a loss of polarization due to the q-broadening for an excitation with
a non-flat dispersion ω0(q), like for an acoustic phonon, it is necessary to incline the
spin-echo surfaces so that their slope C in the direction of q0 matches the slope of the
dispersion,

C != ∇q ω0(q0), (2.10)

as shown in panel (b) of Fig. 2.8. This way, if the dispersion were sharp and linear, ideally,
the same Larmor phase φ0 would be retrieved for all scattered neutrons. This phonon
focusing can be realized by tilting the boundaries of coils A and B by an angle θ1 so that
their normal vector nI changes with respect to the main flight path along kI , as well as
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Figure 2.8.: Focusing of the spin-echo lines onto the dispersion. (a) Schematic drawing of the
spin-echo lines on a triple-axis instrument without tilted field boundaries. The tas
resolution ellipsoid outlines the fwhm of the illuminated volume. (b) Spin-echo with
tilted field boundaries that are adjusted in such a way that the slope of the surfaces
of constant spin-echo phase coincides with the slope of the dispersion at (q0,ω0). A
defocusing configuration of the tas ellipsoid with respect to the dispersion is chosen
to optimize the q-resolution of the phonon linewidths.

tilting coils C and D by θ2 so that their normal vector nF is altered (see Fig. 2.9(a)). The
final Larmor phase is then

φ(ki, kf ) = 4πNmn

~

(
ν1L1 cos θ1

ki · nI
− ν2L2 cos θ2

kf · nF

)
. (2.11)

If ki,f ‖ kI,F , the dependence on the tilt angles of the coils vanishes. When a neutron
is transmitted that loses an additional momentum ∆q and energy ∇qω0(q0) ·∆q with
respect to the main transfer (q0, ω0), the pair of ki and kf that meets these conditions are
slightly tilted with respect to the main directions kI,F . Thus the requirement is for the
lengths of the flight paths through the rhomboid zero-field regions to be in such a manner,
that this neutron’s net accumulated phase is the same as in the main case.

Using Eq. 2.11, the phase shift φ− φ0 can be expanded to first order in ∆ki,f ·nI,F . Using
energy and momentum conservation and again making use of the fact that the neutron
velocities are strongly peaked around their means, ∆ki,f � kI,F , one can reformulate ∆ω
in terms of C and ∆ki,f . As described in detail in Ref. [45], the following constraints for
nI and nF in the spectrometer arms 1 and 2 thus result from the spin-echo condition,
Eq. 2.9:

cos θ1,2 = kI,F
|kI,F |

·
kI,F − mn

~2 C∣∣∣kI,F − mn

~2 C
∣∣∣ . coil tilt angles (2.12)
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Figure 2.9.: Inclination of the precession field boundaries for phonon focusing. (a) real space
(b) reciprocal space. The normal vectors to the precession field boundaries point in
the direction of kI,F − (m/~)∇qω0(q0) as shown in (b) for the case of a transverse
phonon q ⊥ G.

Hence the normal vectors of the field boundaries can be geometrically constructed as
shown in Fig. 2.9(b). The spin-echo condition for the frequency ratio reads

ν1L1

ν2L2
= k2

I

k2
F

cos θ1

cos θ2

∣∣∣kI − mn

~2 C
∣∣∣∣∣∣kF − mn

~2 C
∣∣∣ . frequency ratio (2.13)

If the dispersion is flat, the frequency ratio is equal to the ratio of wavevectors cubed.
Take notice that except for elastic scattering, the phase φ0 at the center of the spin-echo
group is thus not zero, as a cancelation of the accumulated phase in both arms was not
the requirement. The spin-echo time can be equally expressed in terms of either the first
or second spectrometer arm:

τ = 4πN
(
mn

~

)2 ν1,2L1,2

k2
I,F cos θ1,2

∣∣∣kI,F − mn

~2 C
∣∣∣ . (2.14)

As mentioned before, the neutron beam polarization is measured at several values of the
spin-echo time (i.e. several values of ν1,2) to identify the spectral lineshape of an excitation.
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2.3.2. Nrse for measuring spectral lineshapes

The polarization measured in the y-direction is the ensemble-average over the Larmor
phase

〈cosφ〉 = 1
2N

x
S(q, ω)T (ki, kf ) exp[iφ(ki, kf )] d3ki d3kf + c.c. (2.15)

where S(q, ω) is the coherent scattering law, T the transmission probability and N is a
normalization factor. The complex conjugate ensures that the polarization is at all times
real.

If the spin-echo condition (Eq. 2.9) is satisfied, the spins are maximally focused, even
though the phase φ0 is not necessarily zero. By shifting the last rf coil progressively, the
velocity distribution of the neutrons eventually takes its toll and the spin-focusing is lost.
Near the center of the spin-echo group, however, this is not noticeable; changing L2 means
changing the traveling time of the neutrons during which the rf field oscillates and thus,
after the neutrons cross a polarizer, the intensity that arrives at the detector varies like

I(L2) = I0

2

[
1 + P cos

(
4πNmn

~
ν2(L2 − L2,0)

kF

)]
. spin-echo scan (2.16)

The full beam intensity I0 is detected when the polarization is 100%. Examples of spin-echo
scans made to identify the polarization amplitude P are shown in Fig. 2.10a. The value of
I0 can be obtained from shared fits of the scans for different values of τ . Since a negative
polarization cannot be distinguished from a phase shift of π (change of L2,0), the absolute
value of the polarization is extracted from the fits and plotted against the spin-echo time
(Eq. 2.14). This means that only the envelope of Eq. 2.15 is seen. Using Eq. 2.9, the factor
exp(iφ0) thus drops out of Eq. 2.15, only a factor exp(−i∆ωτ) is left.

Using energy and momentum conservation, the integrals over the incident and scattered
neutron energies can be recast into integrations over the respective momentum and energy
loss [46]. The transmission function then can be expressed in terms of the triple-axis
resolution matrix M according to Popovici [38]. The polarization as a function of the
spin-echo time, extracted from several spin-echo scans, is equal to

P (τ) = 1
N

∣∣∣∣x S(Q0 + ∆Q−G0, ω0(Q0 + ∆Q−G0) + ∆ω)

× F (∆Q, ∆ω) d∆ω d3∆Q
∣∣∣∣ (2.17)

with ∆Q = Q−Q0, Q0 = G0 + q0 and ω = ω0(q) + ∆ω. The nrse resolution function is

F (∆Q, ∆ω) = exp
(
−i∆ωτ

~

)
exp

(
−1

2XTMX
)
. (2.18)

The four-component vector X = (Q−Q0, ω − ω0) was already introduced before in
Eq. 2.4. If the Q-resolution is disregarded, it becomes clear that the polarization is the
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Figure 2.10.: (a) Typical spin echo scans, recorded for the (0.38, 0.38, 0)T1 phonon in a lead
alloy with dilute bismuth concentration. The wave amplitude is largest for the
lowest possible value of the spin echo time (blue line), using the minimal frequency
νmin = 50 kHz. Shown is the number of detected neutrons in a time frame in
which 900,000 monitor counts where recorded, which corresponds to half an hour at
ki = 2.51Å−1. (b) Typical polarization profile for a Lorentzian phonon lineshape.
The red and blue points are derived from the respective fits in panel (a). The values
are corrected for the direct beam polarization (measured independently), instrumental
effects, the mosaic spread in the sample and the dispersion curvature (all calculated
using experimental values). An exponential fit gives the phonon linewidth Γ.

Fourier transform of the spectral lineshape function, or in other words, the intermediate
scattering function is measured.

If the scattering function is a simple Lorentzian with linewidth Γ for every energy within
the tas resolution, then

S(q, ω) = 1
π

Γ
(ω − ω0(q))2 + Γ2 . (2.19)

If in addition ω0(q) is a linear dispersion with slope equal to C (Eq. 2.10) and if the
linewidth is much smaller than the energy width of the triple-axis resolution function,
then the polarization reduces to an exponential function

P (τ) = P0 exp
(
−Γτ

~

)
, (2.20)

as shown in Fig. 2.10b.

The polarization values are corrected for the experimental polarization limit that is
measured independently. This limit is fairly constant, decreasing for the smallest and
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2.3 Neutron resonance spin-echo (nrse) spectroscopy

largest possible coil frequencies, as specified in section 2.6. The slight sensitivity on the
tilt angle of the coils and on the neutron velocity is considered as well in this correction
factor. Since the polarization limit does not depend on the scattering angle at the sample,
it may be determined in direct beam experiments.

The declines in polarization with increasing spin-echo time stemming from other individual
effects can be calculated each with the Matlab-programm SeRescal [39] using given
instrument settings and experimentally determined parameters. Specifically, the mosaic
spread can be measured on the same instrument for the same illuminated volume of the
sample, as explained in paragraph 2.4. The mosaic spread in the sample must typically be
much less than one degree for spectral linewidth measurements to be viable, which sets
stringent conditions for the sample quality. Further, the acoustic phonon dispersion tapers
when nearing the Brillouin zone center. This means that the dispersion slope within the
triple-axis resolution is generally not flat and can thus not be matched by the planes of
constant spin-echo face. Since the spectral function S and the nrse resolution function F
can be written as a convolution of the instrumental effects, the mosaic spread of the
sample, the dispersion curvature and the lineshape in momentum and energy space, their
Fourier transform is simply a multiplication, and so is the polarization.

The improvement of the resolution of nrse with respect to the triple-axis resolution
is demonstrated in Fig. 2.11. The tas resolution ellipsoid becomes visible when the
instrument is moved through the point-like Bragg peak. To make the lines of constant
spin-echo phase show up as sinusoidal variations in the intensity, a signal that is extended
in energy would be more straightforward to use. Then the frequencies ν1 = ν2 could be
held constant, and kI fixed, so that the phase would vary with kF . Instead a trick is
implemented: ν2 is adjusted to the scattered elastic neutrons for any inelastic setting of
the instrument.

2.3.3. Nrse for measuring relative dispersion energies

When scans are carried out in the same instrument configuration but different sample
environments A and B, the relative shift φA0 − φB0 between the spin-echo scans points out
a wandering of the most probable scattering energy. This is used to extract energy shifts
as a function of e.g. temperature from the spin-echo scans. To first order, the energy
difference is (

ωA0 − ωB0
)
τ = −4πNmn

ν2
(
LA2,0 − LB2,0

)
kF

. (2.21)

If LA2,0 is longer, it compensates for the fact that the neutrons are relatively faster in the
second spectrometer arm in situation A, i.e. the energy ωA0 is smaller than ωB0 . Since phase
shifts of a multiple of 2π cannot be recognized, only energy differences ∆ω0 � 2π~/τ can
be detected.
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Figure 2.11.: Demonstration of the nrse energy resolution (right) compared to the tas resolution
(left) on trisp. The (220) Bragg peak of a germanium crystal is used. The lines of
constant spin-echo phase translate into sinusoidal variations in the intensity. The
inclinations of the resonance coils are chosen so that ∂ω/∂q = 30meVÅ.

In practice, the average value for the relative energy shift measured at various spin-echo
times is taken.

2.4. Larmor diffraction for measuring the crystal mosaic
spread

The mosaic spread of a single crystal can be measured using the Larmor diffraction
setup shown in Fig. 2.12 [47]. The field boundaries are parallel to the lattice planes
in this symmetric Bragg scattering configuration, which means that the tilt angles are
θ1 = θB − 90◦ and θ2 = −θ1. The field directions in the second arm are inverted with
respect to the first arm like in an ordinary spin-echo setup. The figure illustrates how the
lengths of the field-free drift regions before and after the sample become unbalanced if
Bragg scattering from crystallites tilted by an angle α passes through the configuration.
The total Larmor precession phase is then

φ(ν) = 8πNmn

~k
νLα cot(θB) +O(α2), (2.22)

with N as before the number of operating coils in each bootstrap (two in the figure). The
larger the mosaic spread of the sample, which is assumed to be gaussian with half width
at half maximum αHH, and the larger the transmission for neutron flight paths that are
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Figure 2.12.: Larmor diffraction setup for measuring the mosaic spread αHH in a crystal. The
fields in the second arm are reversed with respect to the fields in the first arm. The
solid black lines depict the optimal scattering orientation whereas the dotted blue
lines depict the scattering from tilted crystallites. In the position shown, the angle
α is negative.

nonparallel to the instrument configuration, the sooner the final polarization will decrease
with increasing ν [47]:

P (ν) = P0 exp
−(8πNmn

~k
νL
)2 cot2 θB

4 ln 2

(
1

A32
HH

+ 1
α2

HH

)−1
 (2.23)

with the rocking scan half width at half maximum A3HH, typically ca. 0.4◦ at standard
settings of trisp.

2.5. Measurement of the superconducting transition
temperature

The superconducting transition temperature Tc is commonly determined using a physical
property measurement system (ppms) by means of the sudden change in resistivity or
magnetization. The ppms however does not accommodate the large single crystal samples
used in this work, which is why the nrse-tas setup is used instead to determine Tc [20].
Since magnetic fields are acutely expelled from the sample below Tc because of the Meissner
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effect, the Larmor precession phase of the neutrons makes a jump at this temperature
when there is a weak field applied at the sample area. A magnetic field in the z-direction is
created by winding a Helmholtz coil on the outside of the cryostat. If each of the two coils
consists of N = 10 loops of copper wire with � = 0.75mm carrying a current of I ≈ 10A,
the field is B = (4/5)3/2µ0NI/R ≈ 9 G where µ0 is the permeability constant and R is the
radius of the coils. The accumulated Larmor precession phase in this field is roughly 100◦
for k = 2.51Å−1 neutrons. Since below Tc the field lines are only expelled from the sample
itself and compressed around it, the relative phase change is a fraction of this value.

2.6. The spectrometer trisp @ frm ii

Worldwide, there are only a couple of unique triple-axis nrse spectrometers, e.g. the IN22
with Zeta at the Institut Laue-Langevin and the cold neutron spectrometer Flexx at
the Helmholtz Zentrum Berlin. The neutron source frm ii supplies a thermal beam line
to the instrument trisp (Fig. 2.13), which is located at the end of a 10m long polarizing
guide with a lower critical wavelength λc = 0.8Å, followed by a velocity selector. The
pyrolytic graphite (pg) monochromator crystals, set for the (002) reflection, allow for
variable vertical and horizontal focusing. Coupling coils guide the polarization to the first
resonance coil and from the last coil to the analyzer. The sizes of the beam windows are
50 × 120mm2. The surfaces of the resonance coils (shown in Fig. 2.14) are flat within
10−2 mm so that the length and shape of the precession regions are precisely defined.
Relative accuracies of the Larmor precession angle of 10−6 are possible. Surrounding
mu-metal shields reduce the residual field along the flight paths to less than 5mG (ca. 100
times less than the earth magnetic field). Horizontal and vertical compensating coils are
used to cancel the residual field around the sample for each spectrometer alignment. A
closed cycle cryogen-free pulse tube cryostat with a sample stick is used to cool the sample
to temperatures as low as 3K [48]. While early measurements were made using a pg(002)
analyzer and a polarizing bender, most measurements featured in this work are made with
a polarizing Heusler alloy analyzer.

The range of spin-echo times at which the polarization can be measured is limited by the
accessible range of coil frequencies 50 kHz ≤ ν < 400 kHz. Because this frequency must be
in resonance with the static field, magnitudes for the latter range from ca. 170G to 1.4 kG.
The rotating field strength that is needed to complete the spin π-flips for coil lengths
d = 5 cm and neutrons with wavevector k = 2.51Å−1 can be estimated to be Brf ≈ 50G.
Consequently, below the minimum frequency (minimum spin-echo time), the direct beam
polarization starts to suffer due to random spin flips that come with a violation of the
rotating-wave approximation for Brf � B0.
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Figure 2.13.: The nrse-tas instrument trisp at the neutron source frm ii, side view (with
cryostat) and top view. The monochromator is enclosed in the cyan-colored concrete
shielding. Photos from Ref. 20.

38



2 Neutron resonance spin-echo spectroscopy 2013

Figure 2.14.: The mu-metal shielding here is removed to reveal the rf coils of the instrument
trisp. Photo from Ref. 20.
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3. Superconductivity-induced phonon
lineshape asymmetry and the
spin-echo polarization decay

3.1. Introduction

Spin-echo measurements give access to the cosine Fourier transform of the spectral lineshape
of the excitation in question. Harmonic excitations have a Lorentzian lineshape, leading
to an exponential polarization decay. The half-width at half-maximum (hwhm) of the
Lorentzian, Γ, can then be extracted from the data. If there are two nearby modes, the
polarization profile shows an oscillation. The oscillation gives information about the
relative weight of the peaks and the distance between their centers. Habicht et al. [49]
developed an analytic formalism to describe this and delivered experimental evidence by
creating an artificial magnon line split-up using two misplaced grains of RbMnF3. Lately,
Nafradi et al. [50] observed an intrinsic magnon mode splitting in a spin−1/2 ladder
compound.

Previously, linewidths in the transverse acoustic phonon branches in the conventional
bcs-type superconductors Nb and Pb were measured in the normal and superconducting
state, respectively. The latest work is covered in the PhD thesis of Aynajian [20]. The
phonon linewidth broadening was assumed to be due solely to electron-phonon interaction.
Deviations from exponential spin-echo decay profiles were not found within the experimental
error. This means that single Lorentzian modes were apparently observed. The linewidths
could thus be directly extracted for various points on the phonon branches. In the
superconducting state, a discontinuity was observed in the linewidths at the phonon energy
corresponding to the energy gap 2∆(T ), as expected. In an effort to fit this “jump” with
a simple function, the electronic excitation spectrum function given by the bcs theory
was used [19]. The choice of this function can be understood in the following way: the
phonon linewidth in the normal state is proportional to the electronic density of states
at the Fermi energy, Nn(0) [51]. This is true under the assumption that the electronic
structure is constant for electron energies ε within the range of the phonon energy from
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the Fermi edge. In the bcs theory, this is not the case anymore, instead the electronic
density of states Nsc(ε) is given by the excitation spectrum function

Nsc(ε) = Nn(0) Re
 |ε− iΓbroad|√

(ε− iΓbroad)2 −∆2

 . (3.1)

The symbol Γbroad introduces a temperature-dependent smearing of the gap edge due to
the electron self-energy [52]. In a crude approach one could thus assume that a phonon
with energy ω foremost exciteps quasiparticles with energy −ω/2 to +ω/2 and that thus
the linewidth is proportional not to Nn(0) as in the normal state but to the density of
states Nsc(ε/2), though this is technically incorrect.

This approach conceals the more fundamental underlying situation that the broadened
acoustic phonon spectral function gradually moves through the abrupt change of state
at the superconducting energy gap, which causes a lineshape distortion. This was first
observed in the nickel borocarbides (see section 3.1.2) [24]. The effect was deemed not
to be significant under anything other than extreme conditions. However, from recent
neutron triple-axis scattering data on a transverse acoustic branch in Nb it transpired that
the lineshape alteration may in fact be more generally prevalent [26]. Since the energy
resolution of the spin-echo method is much better than that of conventional spectroscopy,
the question arises why no deviations of the exponential polarization decay have been
spotted.

Thus the aim of this chapter is to reconcile the neutron resonance spin-echo (nrse) data
with the given triple-axis data. For this purpose, spin-echo polarization decay profiles
were measured anew with improved momentum resolution and over a broader range of
spin-echo time. The simplified approximation previously used to fit the linewidths as a
function of wavevector in the superconducting state is replaced by a refined treatment.
Shifts of the energy expectation value of the spectral lineshape with respect to the normal
state are extracted from the nrse data for both Nb and Pb, making use of the fact that
the previously disregarded Larmor phase shift is directly proportional to the neutron
energy change. Together with the polarization decay profiles, the energy shifts give a full
picture of the phonon renormalization. Within this framework, the role of the previously
considered Kohn anomaly, which is situated exactly where phonons are most affected by
the opening of the superconducting energy gap, is discussed. Since the Kohn anomaly
in fact appeared less pronounced in the new measurements with improved accuracy, the
linewidths were again measured over an extended range in the [001] transverse phonon
branch to resolve the characteristics.

3.1.1. Electron-phonon coupling and normal state phonon spectra

A brief look at the mathematical framework to describe the normal state is required to
understand the changes that occur upon entering the superconducting state.
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At low temperatures, just above the superconducting transition temperature Tc, the
“playground” of phonons is dominated by interaction with electrons, which screen out the
field of the ions in their coupled motion. After all, the phonon occupation number is so low
that phonons hardly interact with each other. Spontaneous decay of low energy phonons
into two or more phonons is also kinetically difficult (see e.g. [53]). Further, it is assumed
that lattice defects and disorder can be neglected for the single crystals of niobium, which
consists of one isotope only, that are used in the experiment. Consequently, impurity
scattering is assumed to be negligible. Thus only the electron-phonon (e-ph) interaction is
of further interest.

In a neutron inelastic scattering experiment the one-phonon spectral function S(q, ω)
is measured. The phonon is labeled by its wavevector q, the notation ν for the branch
under consideration is omitted for clarity unless it deserves special attention. Though
classically ω represents an angular frequency and Planck’s constant ~ transforms it into
energy, we shed ~ here and refer to ω directly as energy. The spectral function is linked to
the phonon’s bare Green’s function D0 and its self-energy (polarizability) Π due to the
e-ph interactions by the Dyson equation:

S(q, ω) = −ImD(q, ω) (3.2)

with
D(q, ω)−1 = D0(q, ω)−1 − Π(q, ω) (3.3)

and
D0(q, ω)−1 =

ω2 − Ω2
q

2Ωq
. (3.4)

Thus, if interactions would be switched off, the phonon would have energy Ωq and infinite
lifetime.

Now, the self-energy of a particle, in general, represents the contribution to its total energy
due to all interactions with the system it is part of. While the probability of phonon decay
is described by the imaginary part of the complex self-energy function Π(q, ω), the real
part of the self-energy is associated with a frequency shift. The two are interconnected by
the Kramers-Kronig dispersion relations [54, 55]

Re Π(ω) = 2
π
P
∫ ∞

0
dω′ω

′ Im Π(ω′)
ω′2 − ω2 (3.5)

Im Π(ω) = − 2
π
P
∫ ∞

0
dω′ωRe Π(ω′)

ω′2 − ω2 (3.6)

with P the Cauchy principal value of the integral. The Kramers-Kronig relations are
generally valid for all complex functions that are meromorph (=analytic with isolated
poles) in the upper half-plane. Since response functions in physical systems are subject to
causality, the analyticity condition is automatically satisfied [56].

The contributions of e-ph interaction that are to be considered in the calculation of the
phonon self-energy are illustrated in the Feynman diagrams of Fig. 3.1. The lowest-order
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Figure 3.1.: Feynman diagrams illustrating the contributions of e-ph interaction that are to be
considered in the calculation of the phonon self-energy. (a) Creation and subsequent
destruction of a bare electron-hole pair. (b) Second-order vertex correction. (c)
Electronic self-energy term. (d) Higher order corrections due the Coulomb interaction.
From Butler, Pinski and Allen [57].

interaction is the creation and subsequent destruction of an electron-hole pair, as depicted
in Fig. 3.1(a). Panel (b) depicts a second order vertex correction. Corrections of this type
are negligible as long as the phonon momentum is larger than the ratio of phonon and
electron velocities, q[r.l.u.]� vph/vF [57]. Usually this is the case, and one speaks of the
“Migdal approximation”. In essence, it means that the bare coupling constant is already a
good approximation of the vertex function. This follows from the quickness of the electron
motion compared to the phonon motion. For the transverse phonon branch in niobium,
this is well satisfied: vph < 1.8 · 105 cm/s, the shear sound velocity in [100] direction [58],
is much smaller than the Fermi velocity vF = 0.57 · 108 cm/s [59]. Corrections of the type
shown in panel (c) are due to the effect that the phonons in turn have on the electrons.
They can be discarded at low T as there are few phonons the electrons can interact
with. The effectiveness of the screening does depend on the electron-electron interaction
though, which is why the Coulomb interactions of panel (d) do need to be included in the
calculations.

Next, Fermi’s golden rule for the lowest-order electron-hole pair creation and destruction
(Fig. 3.1(a)) gives the phonon self-energy. It is obtained by integrating over all electron
energies ε and over all electron momenta k. The electron-phonon coupling constant for a
transition from electron band n to n′ and state k to k′ is denoted by gn,k;n′,k+q. Herewith
one can write the self-energy

Π(q, ω) = −2i
∑
n,n′

∫ Va
(2π)3 d3k

∫
dεG0(k, ε)G0(k + q, ε− ω)|gn,k;n′,k+q|2 (3.7)

where (2π)3/Va is the Brillouin zone volume and G0 is the electron propagator

G0(k, ε) = 1
ε− ε0

k + iδsign(k− kF) (3.8)
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with ε0
k the electron band dispersion. The standard definition of the electron-phonon

matrix element is [60, 9]

gq,ν
n,k;n′,k′ = 〈ψ0

n′,k′ |
ε̂q,ν√
Mωq,ν

· ∇Veff |ψ0
n,k〉δ(k− k′ − q) (3.9)

with M the (averaged) atomic mass and ψ0
nk is the electron Bloch wave function for

band n and state k for the undistorted crystal. The phonon polarization comes in at
ε̂q,ν (not to be confused with the electron energy ε); herewith, the coupling constant can
be markedly different for transverse and longitudinal phonons. For transverse phonons,
the coupling to direct processes is generally very small, so that processes from higher
Brillouin zones may contribute disproportionately. The quantity ∇Veff is the self-consistent
change of the crystal potential caused by a phonon distortion. A fully screened potential
is adopted to include the Coulomb interactions between the electrons, Fig. 3.1(d). Though
calculating the coupling element |gk,k+q|2 is a difficult task, its behavior is generally
“slower” than the structure-rich integral over the electron propagators. It may then in a
first approximation be assumed that the coupling is constant for a phonon branch so that
it can be removed from the integral. Then, the self-energy is directly proportional to the
electron susceptibility. This static electron response is also called the nesting function.
It is, put simply, the overlap with the original Fermi surface after a translation by the
wavevector q. It will come to use in section 3.2 to confirm the electronic nature of the
normal state anomaly in the (ξ00)T phonon branch in Nb.

Plugging Eq. 3.7 into Eq. 3.2 gives

S(q, ω) = −Im Π(q, ω)(
ω2−Ω2

q
2Ωq

− Re Π(q, ω)
)2

+
(
Im Π(q, ω)

)2 . (3.10)

Now it is apparent that indeed the real part of the self-energy renormalizes the phonon
energy whereas the imaginary part causes the linewidth broadening. For well-defined
phonons, the linewidth is much smaller than the phonon energy and the lineshape is
nearly Lorentzian. Note that the anti-Stokes term is included in the equation above,
whereas a simple Lorentzian would violate the positive/negative energy balance. Since the
bare phonon frequency Ωq cannot be measured, the real part of the self-energy is usually
incorporated so that one gets the real normal state “nominal” phonon energy ωq. Unlike
the self-energy, the linewidth is defined only on the dispersion surface in (q, ω)−space.
After all, the linewidth can only be measured there where the scattering function is
non-zero and thus has no meaning elsewhere in the momentum-energy continuum. The
self-energy and the linewidth are interconnected by [25]

− Im Π(q, ω) = ω

ωq
Γ(ωq), (3.11)

which means the imaginary part of the self-energy has the same value as the linewidth at
the dispersion energy, but goes to zero when ω does.
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3.1.2. Phonons near the superconducting gap edge

Before we turn to the phonon renormalization in the superconducting state, the historical
background of experimental and theoretical research of q 6= 0 phonons with energy near
that of the superconducting gap 2∆(T ) is recapitulated.

If the system undergoes a transition from normal to superconducting state, in a quasiparticle
description, the entire interaction is captured in the superconducting gap 2∆(T ) that
appears around the Fermi energy εF . This means that the electronic decay channel is
closed for phonons with energy smaller than 2∆(T ). They have no means to interact and
thus have zero linewidth. Phonons with higher energies can excite electrons from the
occupied states below εF −∆(T ) to empty states above εF + ∆(T ) (and in the Cooper pair
picture, break up pairs). The phonon linewidth is directly proportional to the densities of
the involved electronic states. Due to the pile-up of electronic states around the edges, the
linewidth is increased compared to the normal state for phonons just above 2∆(T ).

Phonons with energy ∼ 2∆(T ) require special attention whenever their linewidth broaden-
ing due to e-ph coupling is substantial in the normal state. Because of the large linewidth
of these phonons, they split into two parts; one just below the gap, which is narrow due
to the reduced e-ph coupling, and a broader remainder above the gap. This was first
observed in the intermetallic nickel borocarbide superconductor YNi11

2 B2C in 1996 [24]
(see Fig. 3.2). With a superconducting gap width of ∼ 4.3meV, a phonon peak energy of
∼ 7meV and hwhm ∼ 2.5meV, the extra mode could be distinguished relatively easily.
Fig. 3.2 also displays that the phonon is marked by anomalous behavior in the normal
state: it softens when the sample is cooled. This is typical of strong electron-phonon
coupling. The resonance at first eluded correct interpretation: though the authors note
that it had “phonon character” and that it absorbed the spectral weight of the above-lying
soft phonon mode, the fact that the peak energy of the phonon itself lies above 2∆ caused
confusion. The discontinuity at 2∆ later allowed for the superconducting energy gap to be
determined directly from triple-axis data on a single phonon in this material [61]. Before,
energy gaps had only been determined from neutron data by measuring multiple points
along the phonon branch with steadily increasing energy and observing a sudden change
in linewidth.

From such phonon scans in niobium in the superconducting state below Tc = 9.25K,
Shapiro et al. [14] had determined the saturated gap width in this material to be 2∆[100] =
3.20± 0.05 meV. In niobium, the phonon half widths in the normal state are more than
an order of magnitude smaller than in the nickel borocarbides and therewith comparable
to the neutron instrumental resolution. Recently, Weber and Pintschovius collected more
precise triple-axis data of acoustic phonons near the gap edge using cold neutrons [26].
They observed an increased asymmetry in the superconducting state at several q-points
in the (001) transverse phonon branch. The results are shown in Fig. 3.3. The normal
state data (red lines) are already asymmetric due to the instrumental resolution ellipsoid
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Figure 3.2.: Triple-axis scans from Kawano et al., Ref. [24], showing the emergence of a “res-
onance peak” upon entering the superconducting state for a phonon with energy
near 2∆0 ∼ 4.3meV in YNi11

2 B2C. The phonon at Q = (0.5, 0, 8) softens with
decreasing temperature as the strong e-ph coupling takes hold for T > Tc (top). For
T . Tc and the nearby wavevector Q = (0.55, 0, 8), a resonance was discovered
(bottom panel), the resolution of which was limited by the instrument.

traversing the cone-shaped dispersion during the energy scan. The theoretical fit to the
superconducting state data (blue symbols) consists of a convolution of a distorted lineshape
with the instrumental resolution (shown extra on the right-hand side). Though the split-up
of the phonon into a part above the gap and a resonance below the gap is largely obscured,
the increased asymmetry of the data supports an altered lineshape. In the paper, the best
agreement between calculation and experiment is found for 2∆0 = 3.20± 0.02 meV.

The lineshape effect was in fact qualitatively correctly predicted by Schuster in 1973 [62].
In subsequent years, numerical work on the superconducting state self-energy for q 6= 0
phonons was carried out by Zeyher [63] and Marsiglio [64]. After the experimental
work on the nickel borocarbide superconductor, Kee and Varma focused on the distorted
lineshape again, stressing the requirement for nesting [65]: they criticized the dimension
and momentum independence of the singularity directly at the gap edge in Schuster’s work.
Sure enough, kinematic constraints must be taken into account in addition to the energy
constraints in the superconducting state that we have regarded so far. If the normal state
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(a) (b)

Figure 3.3.: Figures from Weber and Pintschovius, Ref. [26]. (a) Triple-axis scans showing
the change in lineshape upon entering the superconducting state at T = 1.8K for
phonons with energy near and above 2∆0 in Nb (00ξ)T. The normal state data (red
open circles) are asymmetric due to instrumental resolution, specifically because
of the cone-shaped dispersion. While the maximum of the normal state phonon at
ξ = 0.16 r.l.u. is still below the gap (dashed vertical line), the phonons at ξ = 0.17
and 0.18 r.l.u. lie above the gap. The theoretical fit to the superconducting state data
(blue closed circles) consists of a convolution of the lineshape distortion by Allen’s
theory (see paragraph 3.1.3), shown as dashed lines in (b), with the instrumental
resolution.
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self-energy from Eq. 3.7 is low, because the electron susceptibility is small, there will be
hardly any change in the superconducting state.

While Kee and Varma perceived the resonance as an extra mode, set apart from the
phonon narrowing as the energy goes below 2∆, Allen, Kostur, Takesue and Shirane [25]
specifically link the two in a conventional bcs approach more in the line of Schuster’s
work. They explain that if the initial phonon energy is far below the gap, the sharp
peak contains the majority of the spectral weight and represents a phonon which cannot
decay. Counter-intuitively, this phonon softens, even though its lifetime increases, as was
noticed also by others. When the normal state phonon has a mean energy above 2∆ and
a tail stretching below, there is a sharp feature in the superconducting state pinned just
below the gap that can be regarded as a “mixed vibrational/superelectronic collective
excitation” [25].

Allen et al. deploy a quasi-isotropic model, whereas the calculations of Marsiglio, amongst
others, are suitable for systems ranging from quasi-isotropic to ideally nested. The quasi-
isotropic model makes use of the fact that for intricate Fermi surfaces in three dimensions,
the static transition possibilities are, other than in the one-dimensional case, not confined
to a single wavevector that equals the Fermi diameter 2kF . Thus, if the Fermi surface
topology is both convex and concave at places, the self-energy as a function of wavevector
is smoothed. In this case, the effects of the combination of simultaneous energy and
momentum constraints disappear. The advantage of this model is that the renormalization
in the superconducting state is described by few normal-state parameters instead of a
complete electronic bandstructure.

Karakozov and Maksimov revisit the problem in Ref. [66] and show that at a nesting
vector, the real part of the self-energy possesses a square-root singularity at 2∆(T ), exactly
of the same type as at q = 0. This directly contradicts the paper by Kee and Varma who
also assumed nesting conditions, and neither does it agree with the result of Allen et al.,
as both these groups find a logarithmic singularity. Notwithstanding, the predictions bear
an overall resemblance to one another.

The following analysis of the transverse acoustic phonons near the gap edge in the [001]
direction in niobium is based on the theory of Allen, which has the advantage of simplicity.
More than that, it allows for a direct comparison with the experimental findings of Weber
and Pintschovius, as they also used this theory as a guideline for the analysis.
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3.1.3. The spectral function in the superconducting state after Allen
et al.

From this short overview of the experimental and theoretical publications regarding the
phonon lineshape distortion at ∼ 2∆(T ), we introduce without further ado the explicit
formula for the spectral function in the superconducting state as used in Ref. [25]:

Ssc(q, ω) =
4ωrqω

2
q

Γs
Γn

(ω)[
ω2 − ω2

q − 2ω2
qrq

Re δΠ
Γn

(ωq, ω)
]2

+
[
2ωrqωq

Γs
Γn

(ω)
]2 (3.12)

where ωq, as mentioned before, is the nominal energy of the phonon with wavevector q in
the normal state just above Tc. The normal state linewidth enters via the parameter

rq = Γn(ωq)/ωq, (3.13)

and is multiplied with the ratio of the linewidths in the superconducting and the normal
state Γs/Γn. The latter is equal to the ratio of the imaginary parts of the self-energy
Im (Πs/Πn), because for both states Eq. 3.11 is valid. The real part of the self-energy
difference between normal and superconducting state, Re δΠ = Re (Πs − Πn), describes
the energy shift with respect to the normal state. If the linewidth ratio goes to one and
Re δΠ approaches zero, the normal state spectral function (Eq. 3.10) is retrieved. From
the similarity between these equations, it is clear that Eq. 3.12 on itself does not contain
any new information: one still needs a separate expression for the self-energy change.

As mentioned in the last section, a quasi-isotropic bcs approach is used, so that the ratio
of linewidths in the superconducting and normal state can be described by an integral over
the initial and final electron energies only. In the end, the linewidth ratio is re-written
entirely in terms of normalized energy ω/2∆0 and temperature T/Tc, irrespectively of ωq.
The lengthy but straightforward formula for the linewidth ratio reads

Γs/Γn = r1 + r2 (3.14)

with

r1 = 2
ν

∫ π/2

0

dθ
sin2 θ
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×
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(3.15)

and
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∫ π/2

0
dθ (1− a) + a2/2 cos2 θ√
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(
ω
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, (3.16)
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where ν is ω/∆(T ), a is 1− 2∆(T )/ω and

f(E) = 1
exp(E/kBT ) + 1 . (3.17)

Θ is the Heaviside step function. Mind a few minor errors in the paper [67]1. Within this
formula, the Clem description for the bcs gap ∆(T/Tc)/∆0 [68] is adopted:

∆(t) =
[
1− (0.4095− 1.362a2)(1− t)− (0.0626 + 0.318a2)(1− t)2

]
× 1.7367∆0(1− a2)

√
1− t, (3.18)

with t = T/Tc and a2 a factor to include anisotropy. The Clem formula is valid above
t = 0.2, below this temperature ∆(t) = ∆0. The coupling limit kBTc/(2∆0) is the only
material-specific parameter that enters the linewidth ratio. It is worth noting that the
ratio goes to one as T → Tc as anticipated.

The real part of the self-energy difference between normal and superconducting state,
Re δΠ = Re (Πs − Πn), is derived by the Kramers-Kronig transformation (see Eq. 3.5)

Re δΠ
Γn

(q, ω) = 1
ωq
· 2
π

∫ ∞
0

dω′
ω′2

(
1− Γs

Γn
(ω′)

)
ω′2 − ω2 . (3.19)

Note that the integration itself is independent of q and thus only needs to be executed
once.

The theory of Allen et al. is worked out and illustrated for the case of Nb (100)T phonons
in section 3.3. The normal state dispersion and linewidths are used as input information
to describe the superconducting state.

3.2. Nb (100)T: normal state phonon dispersion and
linewidths

Nakagawa and Woods realized early on that the dispersion of phonons for the high
symmetry directions in Nb displays many striking features [69]. Born-Von Kármán (BvK)
fits to the data require many parameters, meaning there are long-range forces in the ionic
displacement model. One striking feature can be found in the (ξ00) transverse phonon
branch, which has an unusual curvature, falling below the sound velocity for ξ & 0.1

1In Equation (3) and (4) of the paper, the factors β need to be removed, so that the explicit temperature
dependence is not immediately canceled from the Fermi-Dirac functions. A factor 2/ν = 2∆(T )/ω is
missing in r1. The integration limit used for Fig. 2 must have been ca. 15 instead of 1000 · 2∆0, which
is why the real part of the self-energy does not go to zero for ω → 0. The resonances below the gap
are in fact sharper than in the figures of the unbroadened lineshapes of the paper.
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and increasing above it later on. In 1975, Shapiro, Shirane and Axe [14] performed tas
measurements at low temperatures. They found an anomalous decrease in energy of
15% near ξ ∼ 0.2 when the temperature is lowered from 300K to Tc. Purely phononic
interactions would give an opposite temperature dependence. The phonon softening is
another indicator for the presence of a Kohn anomaly: at low temperatures, the Kohn
anomaly is fully developed, while at high temperatures the phonon frequency might be
stabilized by anharmonic interactions between the electrons.

Even though the dip in the dispersion is thus experimentally well-established, Aynajian et
al. measured a concomitant peak in the intrinsic linewidths only recently [20, 19]. During
the present work, incertitude over the distinctiveness of the normal state linewidth anomaly
arose. Thus, we measured a whole new set of linewidths. Experimental details and a
rigorous comparison between present and prior data is provided in the next section. The
comparison of different “runs” using the same sample may serve as a general indication of
the accuracy of trisp results irrespective of instrumental updates and individual-related
data analysis.

Since only the self-energy that is due to interaction with electrons is changed in the
superconducting state, it is important to corroborate the electronic nature of the normal
state linewidth anomaly. This is done in the subsequent section.

3.2.1. Compilation of present and prior linewidth data

Aynajian et al. measured intrinsic linewidths of the (ξ00)T phonon branch at trisp [20, 23].
The dispersion as measured at T = 3.5K and phonon linewidths at both 3.5 and 12K,
respectively, are shown in Fig. 3.4. Though the dispersion data are recorded in the
superconducting state and are thus renormalized, the energy shifts are only of the order
of 0.1meV, as will be shown later on in this chapter, and thus the observable features
in this picture are in fact normal state effects. The dip near ξ ∼ 0.2 that was pointed
out by Nakagawa and Woods is obvious. First-principles calculations for the dispersion
using the density functional theory (dft) framework in the local density approximation
(lda) are also shown. As can be seen, they are not viable at small wave vectors, because
in the calculation, the numerical values of the phonon frequencies are unstable due to
higher-order effects.

Though the 4-parameter Born-Von Kármán fit that is also shown in the graph gives a
decent approximation over the entire wavevector range, it does not capture the shoulder
at ξ = 0.17 r.l.u. ideally; using up to eight parameters does not improve the goodness of fit.
This is a consequence of the restricted applicability of the ionic displacement model: Kohn
anomalies theoretically require an infinitely long-range force. A 4-parameter Born-Von
Kármán fit over a shorter range ξ < 0.40 is therefore used to determine the normal state
phonon energy ωq (see Fig. 3.5). Furthermore, energy differences between the normal
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3.2 Nb (100)T: normal state phonon dispersion and linewidths

Figure 3.4.: Dispersion at T = 3.5K (top) and phonon linewidths (bottom) of the (ξ00)T branch
in Nb, measured at trisp and published by Aynajian et al. [19, 20]. The dispersion
merges with the velocity of sound that is derived from the elastic constants in Ref. [70]
(straight black line in top graph) in the long wavelength limit. Also shown are ab initio
density functional perturbation calculations (grey lines plus symbols). The linewidths
at T = 3.5K (blue triangles) and at T = 12K (red circles) were remeasured, leading
to the final values displayed in Fig. 3.8.

52



3 Sc-induced phonon lineshape asymmetry and the spin-echo polarization decay 2013

and the superconducting state measured by nrse (see paragraph 3.5) were added to the
dispersion data at T = 3.5K, so that dispersion values for T = 12K are obtained. As
mentioned before, this does not change the values by more than 0.1meV.

Aynajian et al. observed that the dip in the normal state dispersion is accompanied by a
peak in the linewidth at ξ = 0.17± 0.01 r.l.u., which corresponds to a normal state phonon
energy of 3.21 ± 0.15 meV. Though the dip in the dispersion is stretched, the position
where the slope is minimal is in fact right there, namely at ξ = 0.165 r.l.u. (see Fig. 3.5b).
It is immediately apparent from Fig. 3.4b that the dft calculations for the linewidths do
not capture the Kohn anomaly. dft calculations in general do capture Kohn anomalies,
and similar calculations for the longitudinal phonons in Pb proved that the absence of the
anomaly is not due to poor Fermi surface sampling.

The polarization decay profiles that were measured with the purpose of detecting a
lineshape distortion (to be presented in section 3.4.1) brought to light a smaller normal
state linewidth value for ξ = 0.18. Since the existence of the anomaly was called into
question by this, the linewidths from 0.09 up to 0.21 r.l.u. were remeasured in a single
run. The new set of phonon linewidths at T = 12K and T = 4K is shown in Fig. 3.6.
The same [110]-oriented sample with mosaicity η = 4.8′ was used as previously. The
sample was denoted “Nb-I” in Aynajian’s PhD thesis [20], where details can be found. The
transition temperature was checked before the new measurements and found to be the
same. The new measurements were performed using a horizontally flat Heusler analyzer
instead of the pg(002) analyzer and bender that were previously used. The same incident
neutron wavevector kI = 2.51Å−1 was adopted. The linewidths of Fig. 3.4b were measured
in several individual experiments, the most comprehensive of which was carried out in
April 2006. This run was re-evaluated using the same dispersion curvature correction
as for the new data to allow for direct comparison. In both cases, the linewidths were
determined by fitting the exponential polarization decay profiles in the superconducting
and normal state with shared initial polarization P0. The values obtained this way for the
previous experiment (Fig. 3.6, left-hand side) are within the error bars of the analysis of
Aynajian shown in Fig. 3.4, as is to be expected.

The differences between the T = 12K and T = 4K data agree well between the runs.
However, there is a smaller rise in linewidths for larger wavevectors in the new run. In
particular, the value at 0.18 r.l.u. is lower than previously reported, just as in the experiment
with the purpose of detecting a lineshape distortion. When looking for a potential cause
of differences between runs, a possible rotation of the sample in the scattering plane over a
multiple of 90◦ could be considered. Since the cylindrical sample is tilted by ca. 21.3◦ with
respect to the vertical plane, it is not rotationally invariant. However, the Popovici method
of instrumental resolution calculation does not predict a large influence, and neither does
the second-order nrse theory by Habicht and Keller [45].

Fig. 3.7 provides a closer look at the normal state polarization decay profiles at ξ = 0.17 r.l.u.
and at 0.18 r.l.u. The top graph shows previous data while the bottom graph shows new
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Figure 3.5.: (top) Dispersion data of Nb (00ξ)T at T = 12K in the range of interest (solid
symbols). The open symbols are values determined from triple-axis scans at T = 3.5K
to which the energy difference between the expectation values at T = 3.5K and
T = 12K measured by nrse were added (see paragraph 3.5). The Born-Von Kármán
fit (solid line) to the data up to 0.40 r.l.u. leaves residuals of less than 0.1meV, which
is of the same order as the uncertainty of the data. (bottom) Slope of the Born-Von
Kármán fit. The slope is minimal at ξ = 0.165. In the long wavelength limit, the
slope of the BvK fit converges with the velocity of sound that is derived from the
elastic constants in Ref. [70] (constant line).
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Figure 3.6.: Comparison of linewidths measured at trisp within single “runs” each, to perform a
rigorous check of continuity. (left) Phonon linewidths from the most extensive of all
previous experiments regarding the (ξ00)T branch in Nb, carried out in April 2006,
evaluated in the exact same manner as the new data on the same sample (right).

measurements. All polarizations are corrected for the respective instrumental effects,
the respective direct beam polarization and the effects due to dispersion curvature and
sample imperfections. Thus, ideally, the data should represent the same exponential curve
with initial polarization P0 = 1 and decay rate Γn(ξ). One can see how especially the
measurements with scan numbers 69 ∗ ∗ taken apart would lead to a larger linewidth than
the other data. These correspond to the April 2006 experiment. However, other than an
unverified variance when the sample is rotated by a multiple of 90◦, there is no reason
to assume that the linewidths were indeed inherently larger during this experiment. Any
time-related change of the sample can be excluded, given the other previous experiments
with scan numbers 58 ∗ ∗ and 125 ∗ ∗. It can thus be reasoned that the discrepancy is
due to statistics. The exponential decay fit of the entire data batch together would give
Γn = 60.0(30) µeV for ξ = 0.17 and Γn = 61.7(38) µeV for ξ = 0.18. It is preferable though
to unite the results at a less basic level, as there might be differences in the effective
polarization that are not accounted for that would become lost in a shared fit, e.g. a
direct beam polarization which differs somewhat from the reference value. Hence the
statistical average of the two experiments shown in Fig. 3.6 is taken. Solitary data from
other experiments are not used in this union to avoid systematic errors sneaking in.

In Fig. 3.8, the combined set of phonon linewidths is shown. For wavevectors where no
combined data are available, either data from one of the two experiments or solitary
data from other experiments are shown (open symbols). While the linewidths at 0.18
and 0.20 r.l.u. are revised to lower values, the high value at ξ = 0.16 is affirmed. Hence
the Kohn anomaly is less distinct than before and its position amended to the slightly
lower value of 0.16 r.l.u. Moreover, a new trend can be discovered: at 0.12 r.l.u., there is a
peak in the normal state data that does not disappear in the superconducting state. The
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Figure 3.7.: Comparison of all normal state nrse data of Nb [0,0,0.17]T (left hand side) and
[0,0,0.18]T (right hand side), taken at T = 12K. The top graphs show previous data
while the bottom graphs show new measurements. All polarizations were corrected
for the respective instrumental effects, dispersion curvature effects and sample im-
perfections. For ξ = 0.17, the simultaneous exponential decay fit of both previous
and recent runs gives Γn = 60.0(30) µeV, and for ξ = 0.18 Γn = 61.7(38) µeV was
obtained.

phonon energy 2.45meV is well below the superconducting gap 2∆(T = 3.5K) and thus
zero linewidth would be expected. The values at the two temperatures each stem from
two individual data sets which are consistent with each other. Thus it is unlikely to be a
statistical spike. Scattering from the sample holder can be excluded since the scattering
angle is not close to the Bragg angle of aluminum. Spurious scattering from the cryostat
would be a possibility if it were not for the consistent average count rate for progressive
positions on the phonon branch. Interestingly, despite the structure in the absolute data,
the difference between the normal and superconducting state linewidths is quite monotone
(Fig. 3.8b). A possibility for spontaneous phonon decay as found in Pb can be excluded
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too. There, the phonon velocity exceeds the velocity of sound before it falls below. This
makes spontaneous 3-phonon decay possible, where a phonon decays into two phonons
with the same direction into reciprocal space. This is clearly not the case though in Nb,
as is explicitly demonstrated in Fig. 3.5b.

Summarizing, the ab initio calculations do not capture the peak in the linewidth data. The
shrinking of the observed peak after subsequent measurements were taken into account
may raise doubt if there is a Kohn anomaly at all. That is to say: is there a topological
disposition to Fermi surface nesting at this wavevector, and is it coupled to the transverse
branch? Or is the dip in the phonon dispersion a consequence of Born-Von Kàrmàn
oscillations, due to general (quasi-isotropic) electron excitations? Since the phonon
lineshape distortion to be studied in the superconducting state is in the same wavevector
region as the anomaly, it is important to ascertain that the anomaly is indeed of electronic
origin as anticipated.

3.2.2. The nature of the normal state anomaly at the
superconducting gap edge

Recent ab initio electronic structure calculations on the group-V transition metals do
provide strong indications that the anomaly is indeed of Kohn nature [71, 72]. They were
carried out to answer the longer standing question of the anomalous Tc and sound velocity
measurements in Nb, Ta and V under pressure [73]. The transition temperature decreases
suddenly at a pressure of ∼ 60 GPa in Nb, which falls together with a softening in the
shear elastic constant c44. The elastic modulus is connected to the initial velocity of the
transverse phonons in [100] direction via the material density, c44 = ρv2

T . Albeit rather
indirectly, the softening of the elastic constant is thus a witness to the anomalous curvature
of Nb moving closer to the origin.

The effect can be explained by the fact that the Fermi sea rises under pressure, so that
nesting vectors change accordingly. If the dip in the dispersion is due to a Fermi surface
nesting vector which spans a hole-filled area and thus gets smaller with pressure, the shear
elastic constant would get smaller, too. This is indeed found to be the case, not only for
Nb, but also for V and Ta, which are in the same group of the periodic system of elements.
The latter materials also show dips in the [001]T phonon dispersion. Similarly in V at
∼ 200 GPa there is an instability. In Fig. 3.9a, the partial (3rd − 3rd intraband transition)
electron susceptibility χ of V, Nb, and Ta, calculated along Γ −H, which corresponds
to the crystallographic direction [001], are shown at ambient pressure. The loci of the
indicated maxima correspond to the observed anomalies in the respective materials, which
on itself already means there is a clear-cut link between nesting vectors and dispersion.
The maxima in χ indeed move towards Γ with increasing pressure, until they cause a
martensic transition as the nesting vector gets zero and the Fermi surface parts touch the
Brillouin zone boundary.
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Figure 3.8.: (top) Final linewidths at T = 4 and 12K for Nb [001]T, combining the data shown in
Fig. 3.6 in a statistical average (closed symbols) and adding solitary data wherever
combined data is unavailable (open symbols). (bottom) Difference between the normal
and superconducting state linewidths.
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Figure 3.9.: (a) Partial (third→third intraband transition) electron susceptibility of V, Nb, and Ta
calculated along the Γ−H direction. The indicated maxima correspond to observed
anomalies in the [100]T phonon branches of the respective materials. From Landa
et al. [72]. (b) Partial and total electron susceptibilities of Nb calculated along the
Γ−H direction by L. Boeri [74]. Note that the rise at small wavevectors is markedly
different from the behavior in (a). The increase of nesting phase space at ξ = 0.16 is
again there, though not that pronounced.
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(a) (b)

Figure 3.10.: Three-dimensional Fermi surface sheets (left) in the bcc Brillouin zone in Nb and
contours (right) in the symmetry planes. The arrow corresponds to half of the
nesting vector responsible for the Kohn anomaly under consideration, qKA/2. From
Ref. [75] after Ref. [59].

The arrow in the Fermi surface diagram of Fig. 3.10b gives the nesting vector position.
The Fermi surface in Nb consists of a Γ−centered hole octahedron in the second zone, as
drawn in Fig. 3.10, far left. In the third zone, there are hole-filled N−centered distorted
ellipsoids and there is an open hole surface along the [100] directions called “jungle gym”.
The arrow in Fig. 3.10b corresponds to half of the nesting vector. It spans the arms of
the jungle gym surface, approximately at one third of the Γ−H distance, rectangular to
it. The plane formed by Γ−H −N is the [001] plane. The three-dimensional shape of
the Fermi surface around the nesting vector resembles an hourglass figure with a nearly
square cross-section at its smallest point, and a diamond cross-section at the broader
parts [59, 75]. The Kohn anomaly associated with this nesting vector is indeed negative:
the nesting vector spans a hole-filled area.

From diagnosing the Fermi surface, one can see that the nesting function for the intraband
transitions should in fact diverge at small wavevectors, and not go to a finite number as
in Fig. 3.9a. The partial and total electron susceptibilities along Γ−H calculated by L.
Boeri describe this behavior correctly [74]. Moreover the verifiable partial nesting of the
second Brillouin zone band increases confidence in these results. As the data are a bit
“spiky”, the identification of a peak at 0.16 in both bands, as well as a smaller shoulder at
0.12 r.l.u. in the 3rd − 3rd channel, are somewhat less conclusive.

In both nesting function figures, the position of the maximum in χ is at 0.16 r.l.u. The
maximum of the phonon linewidth in Fig. 3.8a and the minimum of the dispersion slope
agree precisely with this value. In contrast to these results, Johnston et al. [22], who
identified the same nesting opportunity in their theoretical work, determined the vector to
be 0.196 r.l.u. long. This is more in line with the value 0.21 r.l.u. obtained by early Hall
measurements [76, 77] (see the comprehensive work of Mattheiss [59]).
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When comparing Fig. 3.9b with the linewidth data, the coincidence between the peaks at
0.12 r.l.u. is eye-catching as well. It raises questions that are yet to be answered, especially
if this is a Kohn anomaly as well. But if so, why does the linewidth not completely vanish
in the superconducting state, as this phonon lies well below the energy gap?

3.3. Theoretical change upon entering the
superconducting state

In paragraph 3.1.3, Allen’s formulas for the self-energy renormalization in the supercon-
ducting state with respect to the normal state were introduced. Using the experimental
data of the previous section, these formulas can be adopted for the case of Nb [001]T. The
variables that are relevant for the calculation are:

• Temperature: the experiments were conducted at T = 3.5K, well below Tc = 9.25K.

• Dispersion: the Born-Von Kármán fit in Fig. 3.5 gives the normal state dispersion ωq
at T = 12K, which will serve as the reference from which the renormalization is
calculated. The residuals of the BvK-fit and the uncertainty of the data are of the
order of 0.1meV.

• The superconducting gap: the Clem formula gives a gap width at the experimental
temperature of 3.5K that is as large as 98.8% of the saturated gap width. Judging
from the dispersion energy at the sudden change in the linewidth difference in
Fig. 3.8b, 2∆[100] = 3.15meV is chosen, so that 2∆(T = 3.5K) = 3.11meV. The
phonon wavevector at this energy is ξ2∆ = 0.163 r.l.u. This will prove to be a
good estimate once the detailed analysis is continued for the linewidths in the
superconducting state around ξ2∆. Though the relative determination of the values
in the following will be rather precise, the absolute gap width can be pinpointed
with no more accuracy than the triple-axis phonon energy data.

• The e-ph coupling strength: The electron-phonon interaction strength is contained in
the normal-state parameter rq, which is defined as the ratio between the normal state
linewidths and the phonon energy. As shown in Fig. 3.11, the shared experimental
values of Γn(ωq) at T = 12K (Fig. 3.8a) are divided by the BvK-fit to the dispersion
data at T = 12K. At 0.12 and at the position of the identified Kohn anomaly,
0.16 r.l.u., narrow peaks can be distinguished, which were discussed in the previous
section. Since the absolute values of the linewidth and therewith the structured
variation in rq dependent somewhat on the experimental run (compare Fig. 3.6),
though, it makes little sense to follow this curve down to the last detail. Hence, a
mean r = 0.02 is chosen. Disregarding the Kohn anomaly at the wavevector that
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Figure 3.11.: Parameter rq = Γn(ωq)/ωq reflecting the strength of the electron-phonon coupling
in the case of Nb[001]T. The combined linewidth data of all nrse experiments and
the BvK-fit to the dispersion data at T = 12K are used to create the scattering data.
The constant line represents the value r = 0.02 that is used for the calculations.

corresponds to the gap edge 2∆0 means that the lineshape effect at the gap edge
will in reality tend to be more pronounced than predicted in the following.

The difference in self-energy between the superconducting and the normal state is expressed
in Γs/Γn and in Re δΠ/rq, which are both functions of energy only, as given by Eq. 3.14
and 3.19, respectively. The linewidth ratio (shown in the top panel of Fig. 3.12) is virtually
zero below the gap energy, which means there are hardly any thermally excited electrons
at T = 3.5K that facilitate e-ph interaction. Above 2∆, the e-ph coupling is increased due
to the pile-up of density of electronic states around the gap edges. The curve looks slightly
different from the figure in Allen’s paper - not so much because of the temperature, but
rather because the actual value of 2∆0 = 3.952 kBTc is used instead of the weak-coupling
limit. Further, the dimensionless ratio Re δΠ/Γn is shown in Allen’s paper for ωq = 2∆0,
whereas here Re δΠ/r is shown in units of 2∆0 (bottom panel), which means the two curves
are essentially the same. Since the integrand of Eq. 3.19 converges slowly, an integration
limit of ω/(2∆0) = 1000 is chosen. Negative values of the real part of the self-energy mean
that the scattering function in the superconducting state is shifted towards lower energies
compared to the normal state.

A colored map of the scattering function Ssc(q, ω) (according to Eq. 3.12) is depicted
in Fig. 3.13, next to a map of the normal state function. Since the experimental q-
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Figure 3.12.: (a) Ratio of superconducting to normal values of the imaginary part of the self-energy
for Nb[001]T at T = 3.5K. (b) Difference between superconducting and normal
values of the real part of the self-energy divided by the normal state parameter r.
Negative values mean that the scattering function in the superconducting state is
shifted to lower energies compared to the normal state.

dependence of the parameter r is forsaken in favor of a clear depiction of the general
trend, the normal state scattering function shown in the graph has the slowly varying
energy width Γn(q) = r · ωq with r = 0.02. In the superconducting state, a clear border at
3.15meV is created. The scattering function above this border is not as intense as in the
normal state because of the linewidth broadening.

Fig. 3.14 shows several energy cuts through the scattering function maps. The resonance
peak clearly withdraws weight from the remaining phonon, which is broken off abruptly at
2∆(T ). Though the distances between the resonance and the remaining phonon diminish
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3.3 Theoretical change upon entering the superconducting state

(a)

(b)

Figure 3.13.: Map of the scattering function S(q, ω) of the Nb[00ξ]T phonon branch in the
normal state at T = 12K (top) and at T = 3.5K (bottom). Thin black lines
depict the nominal dispersion energy ωq (top panel) and the renormalized value in
the superconducting state (bottom panel). The noise is an artifact of the graphic
rendering.
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near the gap edge, the relative weight becomes comparable, so that the wavevector 0.17,
just above ξ2∆, displays the largest deviation from a single Lorentzian.

In Fig. 3.15, a few characteristics of the resonance peak below 2∆(T ) are plotted.
The energy position of the resonance peak, ωpeak(q) (black line in Fig. 3.13b), is given by
solving

ω2
peak − ω2

q − 2ω2
qrq

Re(δΠ)
Γn

(ωq, ωpeak) = 0 (3.20)

numerically. The height of the resonance peak (Fig. 3.15a) is

Speak ≡ S(ωq, ωpeak(ωq)) =
[
ωpeak(ωq) · rq ·

Γs

Γn
(ωpeak(ωq))

]−1

. (3.21)

Though the height of the resonance peak below the energy gap edge is large even as ξ
exceeds the wavevector that corresponds to the energy gap, ξ2∆ = 0.163 r.l.u., its weight
diminishes. This becomes apparent in panel (b), where the relative weight of the part
of the spectral function below 2∆(T ) is plotted. The total spectral weight is conserved
when entering the superconducting state [25]. Since all spectral weight is downshifted,
the transition of the phonon through the gap edge takes place at higher wavevectors
than ξ2∆, which is where the normal state dispersion ωq would be equal to the gap
energy. This explains why the phonon splitting is in fact most obvious at ξ = 0.171 r.l.u.
(ωq = 3.23meV), where the relative areas of the resonance and the residual phonon part
are exactly equal to each other.

3.4. Triple-axis resolution and polarization decay profiles

In the beginning of the chapter, it was stated that nrse measurements give access to
the cosine Fourier transform of the spectral lineshape. In practice, the finite momentum
resolution gives rise to second-order effects. These cannot be treated apart from the
wavevector-dependent phonon lineshape distortion that is induced by superconductivity.

Here, some basics of nrse from chapter 2 are repeated and elaborated. Generally, the
polarization measured by spin-echo is (Eq. 2.15)

< σx >= 1
2N

∫
S(q, ω)T (ki, kf ) exp[iφ(ki, kf )] d3ki d3kf + c.c.

where S(q, ω) is the scattering function, T the transmission probability, and φ is the sum of
Larmor precession angles before and after the sample. To be precise, the scattering function
actually depends on the total momentum transfer Q = G0 + q. For transverse phonons,
the lattice vector G0 is chosen perpendicular to the phonon momentum q. Specifically,
for the measurements of the (001)T branch in Nb at low wavevectors, G0 = (110) is used.
N is a normalization factor. The integration involves all incident neutron momenta ki
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.14.: Spectral lineshapes in the normal state (red lines) and in the superconducting (blue
lines) in Nb[00ξ]T for ξ = 0.15 to 0.19.
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Figure 3.15.: Height (a) and integrated area (b) of the resonance peak below ω = 2∆(T ) at
T = 3.5 K in the Nb [00ξ]T phonon branch. The characteristics are plotted as a
function of the normal state dispersion energy ωq, which is an invertible function
of ξ. The position where ωq equals 2∆ is indicated by black vertical lines.

and scattered neutron momenta kf around the pair of most probable wavevectors (kI,kF).
By adding the complex conjugate, the polarization becomes real and proportional to the
cosine of the Larmor precession angle.

The wavevectors are chosen in a way that the dispersion ω0(q) ≡ ωq is illuminated around
the central point ω0(q0). In the experiment, the tilt angles and the frequency ratio of the
rf -coils are adjusted so that the spin-echo conditions are fulfilled (see chapter 2). In this
case, the net Larmor precession phase is the same for neutrons that scatter from the center
of the dispersion as well as neutrons that scatter from (q, ω0(q0) + C · (q − q0)), where
C is the slope of the spin-echo surface in the direction of q0. The phase varies linearly
with increasing distance ∆ω from this surface. That is to say, the manifold of surfaces
of constant net Larmor phase are in a good approximation planar and parallel to each
other within the triple-axis instrumental resolution. Thus, for a single excitation mode
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.16.: Schematic drawing clarifying the notations used to describe the phonon focusing
effect: the scattering function at any point in (q, ω) space can be described by the
momentum relative to the central momentum q0 and the energy difference ∆ω
to the dispersion surface ω0(q) (red line). The black line represents a surface of
constant Larmor precession phase.

with a plane dispersion, the spin-echo conditions are perfectly fulfilled if the slope of the
surface matches the slope of the dispersion, C != ∇q ω0(q0) (“phonon focusing”). This
case is visualized in Fig. 3.16.

The driving force behind the neutron spin precessions in the spectrometer arms is conveyed
by the spin echo time τ . For neutrons that are scattered from the center ω0(q) of the
dispersion, the spin echo time does not have any influence. These neutrons arrive with the
phase φ0. Yet, the higher the spin echo time is, the more the final phase changes when
a neutron loses an additional energy ∆ω in the sample. Thus one can substitute φ in
Eq. 2.15 for

φ(ki, kf ) = φ0(kI,kF)− τ ·∆ω. (3.22)

In the experiment, the spin echo time in the second spectrometer arm is varied, which
leads to a cosine variation of the detected neutron intensity. While Eq. 2.15 gives the
general polarization at any point of this scan, taking the “spin echo” means that the
absolute value of the maximal polarization P is extracted from the scans. Thus instead of
the real part of the complex function in Eq. 2.15, usually only the absolute value of the
envelope is recorded. The factor exp(iφ0) drops out from the equation.

Using energy and momentum conservation, the integrals over the incident and scattered
neutron energies can be recast into integrations over the respective momentum and energy
loss [31, 46]. The transmission function then can be simply expressed in terms of the
triple-axis resolution matrix M according to Popovici [38]. In this matrix notation, the
four-component vector X = (∆Q, ∆ω + C · ∆Q) is used with ∆Q = Q − Q0. Q0 is
the most probable total momentum transfer equivalently to q0. The basis of Q0/|Q0| is
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often used to express M, with the second coordinate axis perpendicular to Q0 within the
scattering plane. The polarization can then be written as (Eq. 2.17)

P = 1
N
|
∫ ∫

S(Q0 + ∆Q−G0, ω0(Q0 + ∆Q−G0) + ∆ω)F (∆Q, ∆ω) d∆ω d3∆Q|

with the nrse resolution function

F (∆Q, ∆ω) = exp(−i∆ωτ) exp
(
−1

2XTMX
)
. (3.23)

We define the effective spectral function

STAS (ω0(q0) + ∆ω ) =
√

det MRL

(2π)4

×
∫

d3∆q {S (q, ω0(q0) + C∆q + ∆ω)

× exp
−1

2

(
∆q

∆ω + C∆q

)T

·MRL ·
(

∆q
∆ω + C∆q

)}
(3.24)

so that the polarization is given by

P (τ) = P0 |
∫
STAS (ω0(q0) + ∆ω ) exp(−iτ∆ω) d∆ω|. (3.25)

Care must be taken that the resolution matrix is rotated from the basis of Q0 into the
basis of the reciprocal lattice, in which q is expressed,

MRL = RQ→RL
T·M ·RQ→RL. (3.26)

The effective spectral function is thus built up by integrating the triple-axis resolution
times S along the spin echo surfaces, as illustrated in Fig. 3.17. Note that dispersion
characteristics beyond the first order, such as curvature, are contained within this equation.
Normally, one would go on to assume that the shape of the spectral function is independent
of q within the triple-axis resolution. Further, the energy resolution would be taken to
be much larger than the linewidth. Then STAS would reduce to S for a planar dispersion.
However, since the spectral function changes shape swiftly at the superconducting gap
edge, no such shortcut can be used.

3.4.1. Experiment

We continue to discuss the case for the experiment on niobium that is carried out with
the aim of detecting the phonon lineshape distortion as described by the theory of Allen.
In this experiment at trisp, again the same sample of Nb is used as introduced in
section 3.2. The final neutron momentum is fixed to kF = 1.7Å. A horizontally focusing
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.17.: Schematic drawing illustrating the construction of the effective spectral function
measured by nrse, STAS (bold black curve). The absolute value of the nrse
resolution function F gives the triple-axis resolution (green dashed oval) around the
central point ω0(q0). STAS(ω0(q0) + ∆ω) is constructed by integrating S(q, ω0(q)
times the resolution (red curves) along the surface of constant spin-echo phase
belonging to ∆ω) (black lines).

Heusler analyzer with reciprocal radius ra = 0.3m−1 is used. The tas transmission
probability distribution for this instrumental configuration at one exemplary position
Q0 = (1,1,0.17), ω0 = 3.21meV is shown in Fig. 3.18. The ellipsoid describes the fwhm of
the Gaussian resolution. As usual in spin-echo experiments, an anti-focusing configuration
is chosen for the tas resolution with respect to the phonon slope in order to minimize the
effective q-resolution. The red surface gives the normal state dispersion ωq. The axis qx
points in the main phonon direction (001), qy points in the reciprocal lattice direction (100)
perpendicular to it. The smooth transition to other directions in reciprocal space is chosen
so that it is consistent with off-symmetric dispersion data [20] and gradually crosses over
to the dispersion in the {110} and {111} transverse branches. It must be noted that the
curvature is less strong than the one used by Weber and Pintschovius in Ref. [26].

In the previous section it was demonstrated how, in the superconducting state, the phonon
is split into a sharp resonance peak at the energy ωpeak and a residual phonon part above
2∆(T = 3.5K) = 3.11meV. The position of the resonance peak is indicated by the blue
surface in Fig. 3.18. As the phonon moves to higher energies, the peak becomes bound to
the gap edge while losing weight quickly (cf. Fig. 3.15b).

More practicable are the cutouts of the resolution ellipsoid shown in Fig. 3.19. Apart
from the cut-away view along the high symmetry axis of the phonon dispersion, one
intersection crosses the scattering plane and the other lies perpendicular to it, which
means these graphs are rotated by 45◦ with respect to the three-dimensional plot. Red
lines again indicate the normal state dispersion, blue lines the resonance position ωpeak
in the superconducting state. The lines of constant spin echo phase are shown for the
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Figure 3.18.: Visualization of the resolution at Q0 = (1,1,0.17), ω0 = 3.21meV in Nb at trisp,
kF = 1.7Å. The ellipsoid describes the fwhm of the gaussian resolution calculated
using the Popovici method [38]. The red surface is the normal state dispersion while
the blue surface gives the resonance peak position ωpeak. The axis qx is in the main
phonon direction (001), qy ‖ (100) perpendicular to it.

arbitrary value of τ = 21ps. The slope C of the spin echo surfaces is adapted to the
normal state dispersion ∇q ω0(q0). This means that the spin-echo is not ideally focussed
in the superconducting state, neither for the resonance nor the residual phonon part above
the gap. If the spin-echo conditions would be strongly violated for one of these two modes,
then this would tend to create a constant background that would decrease the overall
polarization. A mild violation of the spin-echo conditions for one of the two modes leads
to a gaussian damping of the modulation [49]. The influence of the choice of spin-echo
focusing is discussed later.

The shown curvature of ωpeak demonstrates that the sharpness of the resonance in the
effective spectral function will be significantly affected by the finite q-resolution. Though
perpendicular to the main phonon direction, the curvature of the sharp peak is flattened
compared to the normal state curvature, it folds strongly at the gap edge. Armed with
this expectation, the effective spectral function and the resulting polarization for ξ = 0.17
and 0.18 are calculated according to Eq. 3.24 and 3.25, respectively. In the normal state
just above Tc, the ξ = 0.17 and 0.18 correspond to nominal phonon energies of 3.24meV
and 3.44meV, respectively. On the one hand, the dispersion curves upward away from
the high-symmetry axis, so that the average illuminated phonon energy is slightly higher
than the nominal energy. On the other hand, in the superconducting state, the energies
are softened, so that these phonons cut the superconducting gap edge. The results are
plotted in Fig. 3.20 and Fig. 3.21. In the top left panels, the pure scattering functions for
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.19.: Cutouts of the resolution at ξ = 0.17 r.l.u. perpendicular to the phonon direction in
the scattering plane (left), out-of-plane (middle) and parallel to the phonon direction
(right). Red lines indicate the normal state dispersion, blue lines the resonance
position ωpeak in the superconducting state. The lines of constant spin echo phase
for τ = 21 ps are shown in green.

the normal and superconducting state shown in Fig. 3.14 are recapped. Next, the Fourier
transforms of these pure functions,

P (τ) = |
∫ 10·2∆
0 dωS(q, ω)ei(ω−E[S])τ∫ 10·2∆

0 dωS(q, ω)
|, (3.27)

are shown (top right panels). Though the expectation value of the spectral function E[S]
technically must be included in the equation to form the spin-echo energy ∆ω, taking
the absolute value in the end makes it redundant. The “real” spectral functions and
polarization profiles, with the effect of the q-resolution included, are shown in the bottom
panels. The three-dimensional integration of Eq. 3.24 was in practice limited to the
region ±9σi with σi the gaussian width of the resolution intersection in each direction
i = qx,y,z. Mind that the depolarization decay caused by sample mosaicity is not included
in the equation, but is still non-negligible. Under the assumption that the effects of the
mosaicity can be described by a convolution with the effective scattering function, the
Fourier transformations can be separated and the the decay due to mosaicity PM(τ) is
multiplied to the profiles seen here.

Conversely, the theoretical profiles may be divided by the calculated polarization decay
caused by the normal state dispersion curvature in case of an infinitely small linewidth,
PC(τ), to compare them with the fully corrected polarization data. This gives the curves
shown on the left-hand side of Fig. 3.22. The normal state polarization decay is almost
exponential. The only difference is that PC(τ) does not correct for the cut-off of the mode
by the energy resolution - for that, one would have to have prior knowledge of the mode.
Since the phonon spectral function is multiplied with a relatively broad gaussian energy
resolution, the Fourier transform is a convolution with a small gaussian. Thus an initial
“hovering” of the polarization value before its descent is a tell-tale sign that the mode
width is in the range of the energy resolution. The normal state data (red circles) agree
with the predicted decay within the error marge. It should be kept in mind though that
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Figure 3.20.: Top left: calculated scattering function S(q, ω) in the normal state (red) and at
T = 3.5K (blue) in the Nb[00ξ]T phonon branch at ξ = 0.17 r.l.u. Top right:
absolute values of the Fourier transforms of the respective scattering functions.
The polarization in the superconducting state converges to the value of the relative
spectral weight below the gap (black line). Bottom left: effective spectral function in
the normal state (red) and at T = 3.5K (blue line plus symbols) after a convolution
with the instrumental resolution of the kF = 1.7Å-experiment. Bottom right:
Fourier transform of the effective spectral functions.

for the normal state linewidth, Γn = rq · ωq = 0.02ωq instead of the exact experimental
value. Thus only the general trend is to be paid regard to, not the exact match of the
decays even in the normal state. The data are however not refined enough to allow for a
recognition of the lineshape distortion in the superconducting state.

Since the data shown in Fig. 3.22 depend strongly on the correction, the correction-
independent ratios of the polarizations in the normal and superconducting state are shown
on the right hand side. The influence of the choice of rq is demonstrated in Fig. 3.23.
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.21.: Same as in Fig. 3.20 for ξ = 0.18 r.l.u.

Increasing r leads to more pronounced non-exponential decay of the polarization. In the
figure both the exponential polarization and a non-exponential fit of this curve are shown.

Finally, we discuss why the non-Lorentzian lineshapes were not visible in previous spin-echo
measurements. The reason is that a finite momentum resolution and a finite linewidth in
the superconducting state smear out the differences. The influence of the finite q-resolution
is illustrated in Figs. 3.24, 3.25 and 3.26. Fig. 3.24 shows the instrumental resolution
ellipsoid for ξ = 0.16, slightly below 2∆0 in three q-directions together with the lines of
constant spin-echo phase. It is obvious that the phase varies across the resolution ellipsoid
due to the curved dispersion. This effect is shown in Fig. 3.25. The upper left panel shows
the phonon in the normal conducting and the superconducting state assuming perfect
momentum resolution (no resolution broadening), and the upper right panel shows the
corresponding spin-echo curve. There is a clear difference between the decay profiles in the
two states. The sharp excitation is dominant and leads to a nearly constant polarization.
the broad part above 2∆ adds a small oscillation. The relative weights of these two
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Figure 3.22.: Experimental polarization decay data P (τ) corrected for instrumental resolution,
normal state dispersion curvature and sample mosaicity in the Nb[00ξ]T phonon
branch at ξ = 0.17 (top) and 0.18 r.l.u. (bottom). The decay profiles at T = 3.5K
are compared to normal state profiles at 12K. The data belong to the kF = 1.7Å
experiment. The theoretical polarization profiles from Figs. 3.20 and 3.21 are divided
by the normal state dispersion curvature term PC(τ) to give the curves above. The
respective ratios between the normal and superconducting state polarizations (top
panel) and the inverse value (bottom panel) are shown on the right hand side.

contributions lower the polarization at higher τ to about 0.8. The situation changes
dramatically when the finite momentum resolution is taken into account, as shown in the
lower two panels of the figure. On the left side, the normal conducting state is broadened.
In the superconducting state, the sharp excitation is also broadened and connected to
the remainder above 2∆. Although this line is also clearly non-Lorentzian, the difference
to the Lorentzian line in the normal-conducting state in the spin-echo curve is not very
pronounced (lower left panel) and only visible at higher τ -values, where the polarization is
already quite low. Not included in these plots is the fact that the experimental linewidth in
the superconducting state is not zero, even if the mentioned finite q-resolution is corrected
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3.4 Triple-axis resolution and polarization decay profiles

Figure 3.23.: Polarization profiles at ξ = 0.17 r.l.u. in the superconducting state for rq = 0.02
and 0.03, resp.

for. This leads to an additional washing-out of the differences between the spin-echo curves.
The experimental spin-echo data are compared with the spin-echo curves for ξ = 0.16,
0.17 and 0.18 r.l.u. in Fig. 3.26. On the left side, the experimental data and the calculated
curves as shown in the previous figure are shown together. At the lowest ξ = 0.16, a large
difference between superconducting and normal state is expected but not visible in the
experimental data. The superconducting linewidth is much broader than predicted by the
calculation. The reason is presently unknown, but might be related to lattice distortions
or impurities. For higher ξ values the difference is expected to be small and can hardly be
resolved with the given statistical error. On the right side, the ratio between normal and
superconducting polarization is plotted. This ratio agrees well with the calculation (line).
The small oscillations for the high τ -values are due to numerical noise in the calculations.

In Fig. 3.27 we discuss an alternative measurement mode. As in the superconducting state
the resonance stays dispersionless at 2∆, the idea is to focus on the resonance instead
of the sloping normal state phonon. The left panels show N and sc state under these
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Figure 3.24.: Cutouts of the resolution at ξ = 0.16 r.l.u. perpendicular to the phonon direction
and in the scattering plane (left), out-of-plane (middle) and parallel to the phonon
direction (right) as in the experiment carried out in April 2006. Red lines indicate
the normal state dispersion, blue lines the resonance position in the superconducting
state. The lines of constant spin echo phase for τ = 21 ps are shown in green.

conditions, the right panels show the corresponding spin-echo curves. This could be a
useful measurement mode as the split mode effects are more pronounced.
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Figure 3.25.: Top left: calculated scattering function S(q, ω) in the normal state (red) and at
T = 3.5K (blue) in the Nb[00ξ]T phonon branch at ξ = 0.16 r.l.u. Top right:
absolute values of the Fourier transforms of the respective scattering functions.
The polarization in the superconducting state converges to the value of the relative
spectral weight below the gap (black line). Bottom left: effective spectral function in
the normal state (red) and at T = 3.5K (blue line plus symbols) after a convolution
with the instrumental resolution of the April 2006-experiment (kI = 2.51Å). Bottom
right: Fourier transform of the effective spectral functions.
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Figure 3.26.: (left) Polarization decay P (τ) in the Nb [00ξ]T phonon branch at ξ = 0.16 (top),
ξ = 0.17 (middle) and 0.18 r.l.u. (bottom). The data (symbols) belong to the April
2006 experiment, where kI = 2.51Å and the pg(002) analyzer were used. The
theoretical profiles (curves) are divided by the normal state dispersion curvature
term PC(τ). (right) Ratio between the normal and sc state polarization for ξ = 0.16,
ξ = 0.17 (top and middle) and inverse ratio for ξ = 0.18 (bottom).
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Figure 3.27.: Effective spectral function (left) and polarization decay (right) at ξ = 0.16 and for
a resolution that corresponds to the April 2006 experiment (top) and at ξ = 0.17
for a resolution that corresponds to the kF = 1.7Å−1 experiment (bottom) in case
of a flat spin-echo surface.
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3.5. Linewidth ratios and energy shifts
In this section, we show in detail the measured linewidths and energy shifts and the
related data analysis based on Allen’s theory. In Fig. 3.28, the linewidths and energy shifts
for Nb (001)T are shown. The linewidth renormalization is less pronounced than expected.
The energy shift deviates from the simulated curve. The simulated curve does not converge
with the non-resolution broadened curve for small ξ values, which is an artefact due to
resolution effects and dispersion curvature.

The relative energy shift between two temperatures is directly proportional to the trans-
lation of the last rf-coil, ∆L, that is necessary to match the phases of the spin-echo
signal:

E[S1(ω)]− E[S2(ω)] = −2π~feff,2∆L
τ |vF |

. (3.28)

If the last coil moves closer to the previous one (∆L < 0), it means that the neutrons got
slower: they can perform the same number of Larmor precessions as before within a shorter
flight path. Thus the energy loss is larger (∆E > 0). In the experiment, the condition is
fulfilled that the phase shift is smaller than 2π and thus uniquely distinguishable. The
spin echo time is determined by the same approximation of a planar dispersion for both
temperatures. The energy shift that is measured in the case of a simple Lorentzian
excitation which changes into a split excitation is to be understood as the energy difference
between the respective center of gravity of each spectral function. This is evident since the
beam average is measured; since the energy resolution of the transmission function is so
large (and constant, since no instrumental changes are made between the measurements)
the most probable neutron energy transfer is completely determined by the expected value
of the energy for the particular spectral function.

In the next figure, we address the question of how the finite number of τ -points and
the limited τ -range of the experiment affect the results. The upper panel simulates
an experiment by taking spin-echo data over the range of typical τmin ≈ 3.7 ps up to
τmax = 18 ps and fitting these simulated data. The fitted value of P0 shows a clear
difference between sc and N states. The middle and the lower panel show these values
for two experimental runs. In the experimental data no clear trend is visible due to the
statistical error.

The next figure shows χ2 values, again for a simulated experiment (top panel) and two
corresponding experimental runs (lower panels). The top panel shows that close to the
gap, χ2 becomes large because the decay deviates from an exponential. This is again not
really visible in the experimental data.

The next figures (Fig. 3.31, 3.32, 3.33 and 3.34) show the situation for T = 0.8Tc = 7.4K,
where the energy gap is 2∆ = 2.24meV. The normal state phonon dispersion is equal to
this value at ξ2∆ = 0.107 r.l.u. The elevated temperature broadens the resonance below
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Figure 3.28.: Experimental versus calculated energy shifts between the superconducting and the
normal state in the Nb(001)T phonon branch.
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(a)

(b)

(c)
Figure 3.29.: Fitted parameter P0 of the exponential fits to the polarization profiles in Nb.
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(a)

(b)

(c)
Figure 3.30.: Experimental and theoretical goodness of the exponential fits to the polarization

profiles in Nb.
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Figure 3.31.: Calculated scattering functions at T = 12K (red) and 7.4K (blue) (top left) and
their Fourier transforms (top right) in the Nb[00ξ]T phonon branch at ξ = 0.10.
The scattering functions are shown on a logarithmic scale. (bottom left and right)
Effective scattering functions and their Fourier transforms, assuming a resolution
as in the April 2006-experiment.

the gap: phonons may now interact with electrons that are excited beyond the gap in the
electronic density of states. The overall phonon renormalization becomes less strong.
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Figure 3.32.: Same as Fig. 3.31 for ξ = 0.11.
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Figure 3.33.: Same as Fig. 3.31 for ξ = 0.12.
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3.5 Linewidth ratios and energy shifts

Figure 3.34.: Energy shifts and linewidth ratio at T/Tc = 0.8.
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In the previous discussion, we observed several times that the absolute values of the
linewidths deviate from the prediction of Allen’s theory. The main reasons are a finite
linewidth below the gap in the superconducting state and the Kohn anomaly, which adds
an additional broadening to the N state values. The situation is summarized in Fig. 3.35,
which shows the linewidths for both Nb and Pb for different q-directions. The situation
becomes much clearer if only the differences of the linewidths and the energy shifts between
sc and N state are regarded. These are shown in Fig. 3.36 and Fig. 3.37. These differences
agree very well with Allen’s predictions if one chooses a model for the linewidths that
neglects the broadening at finite ξ in the sc state (the red curve in Fig. 3.35). This in
turn again is an indication that the broadening in the sc state has a different origin, not
captured Allen’s theory based on e-ph coupling and bcs theory.

From the linewidth and energy shift data values for 2∆(T ) were extracted. These data
are shown in Fig. 3.38 together with the standard bcs gap function. In Nb there is only
a small difference between the (100) and the (110) directions. In lead, this difference is
quite pronounced. This effect was already observed in tunneling experiments. As already
pointed out earlier [20], this gap anisotropy might result from a variation of the Kohn
anomaly along different crystallographic directions.
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Figure 3.35.: Intrinsic linewidth data below and above Tc (blue and red symbols, resp.) in niobium
and lead, panels as in Fig. 3.36. Since the experimental linewidths of phonons that
are well below the gap edge obviously do not take part in the renormalization, a
phenomenological model for the share of the normal state linewidths that is affected
is taken (green lines). The superconducting state simulations based on Allen’s theory
with finite nrse resolution (black lines) agree well with the data.
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Figure 3.36.: Difference between superconducting and normal state linewidths well below and just
above Tc, respectively, in Nb (100)T (top left), Nb (110)T1 (bottom left), Pb (100)T
(top right) and Pb (110)T1 (bottom right). The dispersion energy corresponding to
the wavevectors is displayed on the top axes. Blue symbols denote experimental data,
while black connected symbols denote the results of simulations based on Allen’s
theory that take the nrse resolution into account. The grey thin lines give the local
linewidth ratio at the dispersion energies according to theory.
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Figure 3.37.: Energy shifts between superconducting and normal state phonons in niobium and
lead, panels as in Fig. 3.36. Blue symbols denote nrse data, while black connected
dots denote the results of simulations based upon the normal state linewidth models
shown in Fig. 3.35. Thin grey lines depict the local energy shifts at the dispersion
energy according to theory.
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Figure 3.38.: Temperature dependence of the energy gap in niobium (left panel) and lead (right
panel), as determined from the lowest transverse acoustic phonon linewidths and
energy shifts along (001) (green) and along (110) (red) and as a function of temper-
ature. The lines represent the bcs expression for the energy gap.
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3.6. Summary and conclusions

From the analysis of the phonon renormalization in the superconducting state in different
crystallographic directions in niobium and lead, respectively, the following conclusions can
be drawn:

1. The qualitative behavior agrees with the predictions that come from the bcs theory,
namely that a) phonons become sharper below the gap and broaden above the gap
energy, while b) the dispersion softens at all times.

2. The linewidths are not reduced to zero in any of the cases even far below the
gap edge. Most measurements were carried out at 3.5K, the only 0.5K data are
taken along the (110)T1 branch in Pb. This is a special case where the linewidths
below the gap show a peak which is attributed to a three-phonon decay process.
Other than this, the linewidths do not reduce to zero because: a) any other than
electronic interaction. b) imperfect correction of the data c) the density-of-states
in the gap is in fact not zero. In the tunneling density of states measurement, a
Dynes gap is commonly used because of the finite temperature. A small current
leakage that is linear in voltage persists, which is typically attributed to Andreev
current, smeared density of states (dos), nonvanishing dos in the insulator within the
gap, nonequilibrium quasiparticles, physical imperfections in the junction, or most
recently, the electromagnetic environment of a tunnel junction (stray photon-assisted
tunneling) [78]. Though the dos is reduced, a superconductor with such a pseudogap
is technically gapless. It was more recently argued that the Eliashberg complex gap
function justifies such an alteration to the bcs gap function microscopically [79, 80].

3. While the relative broadening of the linewidths above the gap edge is consistent
with prediction in three out of four cases, it is suspiciously low in Pb (110)T1. The
relative broadening Γe−ph

s /Γe−ph
n (ωq & 2∆(T )) in Allen’s theory depends on the gap

to Tc ratio and the relative temperature T/Tc. Thus there is no other free parameter.
It can only be suspected a) that part of the actual observed linewidth is not due to
electron-phonon coupling and is unchanged in the superconducting state. This would
mean that the Kohn anomaly actually does not extend beyond q ∼ q2∆. b) that
there is ideal nesting here and the Allen approach does not capture the kinematic
constraints.

4. In Nb (100)T, the energy shift below the gap edge is not as strongly curved in the
simulation as in the simplified theory (which does not contain q resolution) and the
experiment, because the increasing dispersion curvature makes the center of weight
for different linewidths larger.

5. Apart from the oddity mentioned in (iv), the energy shifts in Nb match the simula-
tions. This means that the e-ph coupling strength r is well chosen (i.e. the normal
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state linewidths are exclusively due to e-ph interaction), and the gap width is well
chosen in both cases. This speaks against solution a) and b) to point (ii).

6. The transitions in q-space at 3.5K (less than half of Tc) are nearly as acute as at
0.5K and only broadened by the q-resolution. The data are not inconsistent with
the simulations, but they would be consistent with broader transitions as well.

7. From the linewidths at higher temperatures T/Tc 0.7,0.8 in Pb (110)T1 and from
the temperature dependence at single points in Nb (110) and Pb (110) it follows
that the transition is indeed broadened, and not only because the jump in Γs/Γn
is less strong, but also intrinsically broadened. This means the Dynes gap is not a
consequence of tunneling alone. More data are needed.

8. Concerning the pinpointing of 2∆ from the linewidth structure, the best method is
to use the point where Γs changes from below to above Γn. This is different to using
the peak position of the dos, which is often done in arpes and leads to slightly
larger results.

Do these lineshape changes influence the congruence of the Kohn anomaly and the
superconducting energy gap, as was found in several independent experiments? The
answer is no: even if the gap estimate is smaller, still, the linewidth peak position of the
Kohn anomaly coincides with the shoulder of the dip-hump structure in the superconducting
state.

An open issue is to why the linewidth change for phonons across the energy gap go to zero
much faster than predicted. Impurities tend to wash out the difference in the imaginary
part of the self-energy [81]. Further, even low amounts of impurities reduce the energy
shift below 2∆. This could refine the match with the experimental results just as well
as assuming a larger experimental broadening does. Square-root singularities drop faster
than logarithmic ones do.

One dominant impurity in niobium might be hydrogen, which is easily dissolved in niobium.
Hydrogen or deuterium atoms are distributed among the six tetrahedral interstitial sites.
As deuterium is added to Nb, the anomalies in the dispersion curves of pure Nb are reduced
because the loading with deuterium strongly affects the electron-phonon interaction which
is responsible for the anomalies. A similar effect has been observed in the Nb-Mo alloy’
where the anomalies are washed out as Mo is added, due to changes in the electronic
structure, consistent with the rigid band model of Nb and Mo metal. The acoustic phonons
at 473K, which are very soft in pure Nb, tend to harden up when 15% H or more is present,
especially around the Kohn anomalies [82]. However, such an effect was not observed here.
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4. Superconductivity and
electron-phonon interaction in
Tl-Pb-Bi alloys

Inelastic neutron resonance spin-echo spectroscopy is used to measure acoustic phonon
linewidths in lead alloyed with dilute concentrations of bismuth and thallium, respectively.
The doping concentration is determined by prompt gamma activation analysis. The
linewidths of the phonons, together with their dispersion, provide insight into the detailed
electron-phonon (e-ph) interaction. Previous linewidth measurements in pure Pb and in Nb
revealed Kohn anomalies in the lowest transverse acoustic branches that are not reproduced
by ab initio calculations. A coincidence of the saturated superconducting energy gap
magnitude 2∆0 with the energies of these anomalous phonons was found in both materials
and in different crystallographic directions. Here we focus on the anomaly in Pb at the
wavevector qKA ≈ (0.36, 0.36, 0), where the phonon energy is ~ωKA = 2.85 ± 0.10 meV.
This is equal to 2∆(110), which was extracted from the same data by exploiting the change
in e-ph coupling in the superconducting state with respect to the normal state. We show
that the anomaly shifts to higher wavevectors when the electron-per-atom ratio increases.
The energy gap rises with ~ωKA, giving a further incentive to the notion that the two may
be directly connected. Further we note that due to force constant and local environment
disorder, the phonon linewidths in the alloys increase dramatically as a function of q with
respect to the pure material [83].

4.1. Introduction

Though conventional bcs superconductors with s-wave symmetry are thought to be
well-understood, the calculation of transition temperatures Tc from first principles is not
straightforward. The exact value of Tc depends profoundly on the anisotropy of the energy
gap on different parts of the Fermi surface (fs), which may be intricate [84]. Yet, a
phenomenon observed by neutron inelastic scattering gives hope that the saturated energy
gap 2∆0 may actually be tied to the Fermi surface topology in a surprisingly easy manner.
A central role is taken by Kohn anomalies (KA), which appear as kinks in the phonon
dispersion and peaks in the linewidth due to increased interaction with valence electrons
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whenever the phonon wavevector qKA connects substantial parts of the Fermi surface.
Whenever acoustic phonons with energy close to 2∆0 are subject to a Kohn anomaly, the
gap at the corresponding parts of the Fermi surface might conform to the energy of these
phonons, ~ωKA. This was revealed by neutron resonance spin-echo (nrse) measurements of
the lowest transverse acoustic phonon linewidths in Pb and Nb [19, 23]. Just as remarkably,
the Kohn anomalies that are involved are not reproduced by ab initio density-functional
theory (dft) calculations within the local-density approximation (lda). The certainty that
they are in fact due to the Kohn effect stems mainly from the temperature-independence
of qKA and the strong q-dependence of the linewidths. Appropriate fs nesting conditions
are present [22]. It was suggested that electronic correlations beyond the lda might be
responsible for making the phonons more prone to a Kohn anomaly [19], though this
hypothesis has not been circumstantiated to date.

Here we study the phonon dispersion and linewidths of the (110)T1 lowest transverse
acoustic phonon in lead with dilute concentrations of bismuth and thallium, respectively.
Tl, Pb and Bi are neighbors in the periodic table, so that their alloys offer a gradually
increasing electron concentration and electron-phonon (e-ph) coupling strength. The
Tl-Pb-Bi substitutional system crystallizes in the face-centered cubic structure over an
extended range from 80%Tl up to 20%Bi [85]. Since knowledge of the exact ratio of
components in the studied parts of the samples is crucial to this study, prompt-gamma
activation analysis (pgaa) was used to measure the doping concentration. Arbitrary
force-constants in the randomly disordered alloys give rise to larger phonon linewidths
with respect to pure Pb, which makes the identification of the Kohn anomaly harder.
Nonetheless, the accompanying kink in the phonon dispersion is distinctly recognizable.
We show that the nesting vector increases gradually as the number of electrons per atom
increases. The energy of the phonon at the Kohn anomaly changes as much as the energy
gap itself, giving further evidence that the two may be linked beyond the Eliashberg
theory.

4.2. Experimental

One single lead-based crystal with thallium and two crystals with bismuth were grown
with a nominal solute concentration of 15% each. Lesser-quality parts of the crystals
were covered with neutron-absorbing cadmium during the experiment. To determine the
true alloying concentrations and the homogeneity in the irradiated crystal parts, prompt-
gamma activation upon neutron irradiation was used to measure the concentrations in
10mm sections along the axial direction of the rods, as shown in Fig. 4.1. The relative
concentrations of the neutron-capturing elements is revealed by the integrated area of
each of the isotope-characteristic prompt-gamma peaks, divided by the respective cross
section of the peak and detector efficiency at the peak energy. The lowest-energy peaks of
Tl were not used, since the self-absorption by the lead in the sample is significant at these
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Figure 4.1.: Schematic drawing of pgaa-illuminated areas (red) of the samples. Parts that were
covered with Cadmium (light grey) in the neutron spectroscopic measurements at
trisp hence are not sampled; only the composition of the uncovered parts are of
interest.

Peak energy (keV)
Tl Bi Pb
5180.38 4054.57 6729.38a

6737.62a
}

doublet5279.86 4101.76
5641.57 4165.36b

4171.05

}
doublet6166.61 7367.78

6514.57
aOnly used in first experiment.
bNot used.

Table 4.1.: Characteristic energies of prompt gamma rays used for calculation of the composition
of the samples.

energies. The peaks that were used are listed in Table 4.1. The cross sections of Bi were
taken from the relatively recent publication of Borella and coworkers [86]. Results are
listed in Table 4.2 and summarized in the end (Table 4.3). Since Tl, Pb and Bi have 3, 4,
and 5 valence electrons, resp., the atomic ratio is simply expressed by the average number
of valence electrons per atom n in the table. The thallium concentration of approx. 7%
is considerably lower than that of the solution from which it was grown. The bismuth
concentration in the effective volume of the smaller crystal (Veff = (�6.3 × 11)mm3)
is ca. 9% and that in the larger crystal (Veff = (�8 × 44)mm3) is ca. 13%. While the
distribution of thallium in lead is homogeneous, the concentration of bismuth in the large
crystal varies up to a few atomic percent from one 10mm-section to the next.

Neutron Larmor diffraction [34] was used to determine the gaussian full width at half-
maximum (fwhm) of the mosaicity of the effective volume in the large Bi-crystal, η =
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Crystal x of entire crystala
(wt.%)

Average x of
sections (wt.%)

Section name x (wt.%)

Pb1-xTlx
- 6.68 (8)

top 6.41 (18)
(∅7.5x71 mm) middle 6.69 (10)

bottom 6.93 (10)
Pb1-xBix 7.8 (3) 9.25 (25) 9.25 (25)(∅6.3x36 mm)
Pb1-xBix

11.4 (5) 15.20 (22)
top 17.93 (44)

(∅8x61 mm) middle 14.67 (37)
bottom 12.99 (34)

a determined in first pgaa experiment.

Table 4.2.: Bismuth and thallium concentrations, respectively, in the three lead-based samples.

0.197± 0.005◦, and the fwhm of the lattice constant spread, ∆a/a = (7.6± 0.3) · 10−4.
The mosaicity of the Tl-doped specimen was estimated from neutron diffraction to be
nearly one degree, which made it unsuitable for nrse measurements.

The nrse measurements of the acoustic phonon linewidths were performed on the thermal
neutron spectrometer trisp at the frm ii as described in detail before [18, 19]. The
neutron beam is polarized with a supermirror guide and an energy is selected by a focusing
pyrolytic graphite monochromator. The spin-echo is achieved by two sets of radiofrequency
flipper coils, which can be tilted with respect to the beam direction to focus the spin-echo
group onto the slope of the phonon dispersion. A Heusler analyzer is used to detect the
final polarization and energy of the scattered neutrons. The linewidths are extracted from
the polarization as a function of spin-echo time, which equals the Fourier transform of the
Lorentzian spectral lineshape after correction for the instrumental resolution. Classic triple-
axis measurements of the phonon dispersions were carried out on the same spectrometer.
Higher-resolution dispersion measurements on the cold neutron spectrometer Panda at
the frm ii were consistent with the values of trisp for pure Pb up to 0.4 r.l.u. in the
(110)T1 phonon branch. For the Pb-Tl sample however, measurements at wavevectors up
to 0.44 r.l.u. at Panda yielded higher energies than at trisp. The origin of this discrepancy
could not be identified.

Since the samples were too large to fit into a regular physical property measurement
system (ppms), the Tc-measurements were carried out on trisp as well, as explained in
chapter 2. To this end, a magnetic field (roughly 10 Gauss) was applied in the sample
area. The Larmor phase Φ averaged over the scattered neutrons jumps at the transition
temperature since the magnetic field is expelled from the superconductor in the Meißner
phase. Since the absolute Larmor phase angle is not relevant, Φ is set to zero at the lowest
temperature. The results are shown in Fig. 4.2. The magnetic field in the sample region
was weaker in the case of panel (a), hence the smaller phase jump. As can be seen, the
onset of superconductivity occurred at 7.40 ± 0.10 K and 7.80 ± 0.06 K for the 9%-Bi
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and the 13%-Bi sample, respectively. In the 7%-Tl alloy, Tc decreased to 6.97± 0.01 K
compared to pure lead (Tc = 7.20K).

4.3. Results and discussion

The dispersion curves of the lowest transverse acoustic phonons in the (110) direction
in the two bismuth-doped samples at 10K, well above Tc, are shown in the top panel of
Fig. 4.3, next to the dispersion of pure lead [19]. The shape of each of the dispersion
curves is notably similar but translated to higher wavevectors with increasing bismuth
content. The curves appear to converge naturally near (0.55, 0.55, 0). The energy at the
zone boundary, not shown, tends to drop with increasing electron-per-atom ratio n in the
Tl-Pb-Bi alloy system, as already known from previous experiments [8, 87]. As the overall
phonon spectrum softens, the e-ph coupling constant λ rises [85].

The intrinsic linewidths measured by nrse, shown in the bottom panel, display three
distinct peaks for pure lead, as discussed in Ref. 19. The lowest-energy peak largely persists
in the superconducting state at T = 3.5K. Since the phonon energies around this point
are not large enough to excite quasiparticles across the superconducting gap 2∆(T ), the
phonon broadening was not associated with e-ph coupling, but with spontaneous nearly
collinear intra-branch phonon decay. Such decay processes are allowed under conservation
of momentum and energy only because the phase velocity of the phonons exceeds the
velocity of sound for small wavevectors [19]. The other peaks in the linewidth of pure Pb
are Kohn anomalies, resulting from Fermi surface nesting. None of the peaks are captured
by ab initio lda calculations [19].

The Kohn anomaly centered at 0.360± 0.010 r.l.u. and 2.85± 0.10 meV is reflected as an
upward kink in the dispersion. The point of highest slope in the dispersion, as determined
from the inset, is marked by the dotted lines that are drawn all the way through the lower
panel as well. It can be found at a slightly larger wavevector value than the center of the
linewidth peak, which is to be kept in mind while we will refer to it as qKA. The order of
magnitude of the modification of the dispersion induced by the KA can be estimated from
the energy difference with respect to a fit with less oscillations. It is roughly ten times
larger than the linewidth broadening, which implies that an ample scope in the energy
continuum of the phonon self-energy Π(q, ω) must be considered in the Kramers-Kronig
transformation [88]. For the same reason, a quantitative analysis on the basis of these
experimental data would be difficult. The kinks in both alloys are just as distinctive as in
the pure material, suggesting that the Fermi surface is sufficiently well-defined and the
nesting conditions remain pronounced.

However, the kinks in the dispersion are not accompanied by distinctive peaks in the
linewidths for the alloys. In both samples, the linewidths climb from ca. 40µeV up to
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ca. 100µeV in the range 0.36− 0.40 r.l.u. From the few data points at T = 3.5K it can be
concluded that the renormalization in the superconducting state is insubstantial, and thus
that most of the phonon decay does not stem from e-ph interaction. Randomly substituted
atoms destruct the translational symmetry and consequently wash out the electronic band
structure and the phonon dispersion. Since mass disorder plays no larger role in these
alloys than in pure Pb, which has several natural isotopes, the main sources of the phonon
broadening are force-constant differences and the influence of the local environment in
different random configurations of a super cell cluster. The density-functional super cell
approach as described by Haverkort et al. [89] allows for randomness in the impurity
contribution across super cell clusters. Regrettably, a feasibility study rendered that it is
at present not economic to calculate the phonon linewidths caused by the ∼ 10% share of
random bismuth substitutions adopting this approach [90].

Previously, it was unexpectedly found that ~ωKA is equal to the gap averaged over the
Fermi surface parts connected by the (110) phonons, 2∆(110) = 2.82± 6 meV, in pure Pb.
The gap 2∆(110) was extracted from the same linewidth data by exploiting the change in
e-ph coupling in the superconducting state with respect to the normal state. Here, the
aim is to establish whether or not the saturated energy gap stays linked to the energy at
the KA. Since the change of the linewidths in the superconducting state is insignificant
in the alloys, the momentum-averaged gap values listed in Ref. 85 are used for reference.
The momentum-averaged gap of Pb, 2.80meV, agrees with 2∆(110), so that gap anisotropy
does not need to be considered. The values of ~ωKA and 2∆0 versus the electron-per-atom
ratio in the samples are shown in Fig. 4.4. The upper value for the Tl-doped sample is
taken at trisp, while the lower value is taken from a fit to the dispersion recorded on
the cold neutron triple-axis spectrometer Panda. Though the qualitative behavior of the
two measured curves is identical, they drift apart for reasons unknown. The figure shows
that the energy gap magnitude tends to stay just below the point of maximal slope in the
dispersion curves measured on trisp.

The lower panel of Fig. 4.4 shows the onset of superconductivity as a function of n
compared to data from Ref. [85]. The error bars of Tc vary because of chosen temperature
gradients during the measurement. This does not indicate that the transition would be
less sudden. As can be seen, the values agree well with the literature.

The data are summarized in Table 4.3. Data on the KA from the Pb-Tl sample are not
included due to the ambiguity discussed above.

4.4. Summary

The Kohn anomaly with ~ωKA ≡ 2∆0 in the lowest transverse acoustic phonon branch
of pure lead was previously recognized by the distinct peak in the linewidth and upward
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Sample n Tc (K) 2∆0 (meV) ka (r.l.u.) ka (meV)
Pb0.93Tl0.07 3.933 (17) 6.97 (1) 2.72b - -
Pb 4 7.2a 2.82 (6) 0.371 (1) 2.96 (12)
Pb0.91Bi0.09 4.085 (10) 7.40 (10) 3.04b 0.390 (2) 3.02 (20)
Pb0.87Bi0.13 4.133 (27) 7.80 (6) 3.13b 0.437 (4) 3.32 (14)
a Tc from Ref. 91.
b Momentum-averaged gap, first order interpolation of data from Ref. 85.

Table 4.3.: Coincidence between Kohn anomalies in the (110)T1 phonon dispersion and the
energy gap in Pb-based alloys. The positions of the KAs are based on the kink in the
dispersion.

kink in the phonon dispersion. We found that as the Fermi level is modified by alloying
with either thallium or bismuth, the upward kink is still clearly recognizable, but shifted,
as expected. For each of the individual phonon dispersions, the energy at the Kohn
anomaly stays close to the momentum-averaged energy gap magnitude from tunneling
measurements for that alloying concentration. Of course, the energy gap shifts upward
with increasing electron concentration for this system in agreement with the Eliashberg
theory, just as the position of the upward Kohn anomaly is bound to shift upward. At the
same time though, if it were not for the overall softening of the phonon spectra, then the
energy at the Kohn anomaly would rise much faster than the energy gap. It is this delicate
balance which is remarkable and gives gentle support to the hypothesis of a lock-in effect
beyond, or hidden within, the accepted theory of superconductivity.

In principle, the strength of the lock-in effect could be tested under more adverse conditions
using e.g. niobium doped with molybdenum or zirconium, respectively, because in this
alloy system, the relevant nesting vector in the (001) direction moves to the origin as the
superconducting transition temperature rises. However, in order to separate e-ph coupling
from other effects, theoretical work is needed to quantify the increased acoustic phonon
linewidths in alloys as a function of wavevector, specifically regarding random substitutions
that are not dominated by mass difference.
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A. Erweiterte Deutsche
Zusammenfassung

In dieser Arbeit wurden Anomalien akustischer Phononen in den elementaren Supraleitern
Nb und Pb und in supraleitenden Blei-Thallium und Blei-Wismuth Legierungen untersucht.
Mittels hochauflösender Spin-Echo Neutronenspektroskopie wurden Auflösungen im Bereich
einiger µeV erreicht, was einer Verbesserung von mehreren Größenordnungen im Vergleich
zu konventioneller Neutronenspektroskopie entspricht. Bei Phononen-Energien nahe der
Energielücke 2∆ und bei Temperaturen um die Sprungtemperatur Tc treten verschiedene
Renormalisierungseffekte und Anomalien auf. Während die relativen Änderungen der
Linienbreiten und der Energien gut mit Vorhersagen basierend auf der bcs-Theorie
übereinstimmen, weichen die Absolutwerte signifikant davon ab. Überraschend ist die
Koinzidenz der zu einer Kohn-Anomalie gehörigen Phononenenergie mit 2∆(T = 0K),
sowohl in Nb als auch in Pb. Mittels Neutronenspektroskopie an verschiedenen Pb1−xBix
und Pb1−xTlx Legierungen konnte gezeigt werden, dass die Energielücke 2∆(T = 0K) der
Energie der sich mit x in den Legierungen ändernden Kohn Anomalie folgt.

A.1. Methode

Die Dispersion akustischer Phononen in Blei und Niob wurde schon in den sechziger
Jahren mit Hilfe der Dreiachsen-Neutronenspektrometrie gemessen. Die Messung der
zugehörigen Spektrallinienbreiten gestaltet sich jedoch schwieriger, da Phononen bei
niedrigen Temperaturen generell langlebig sind und ihre Linienbreiten einige mueV oder
weniger betragen. Diese Auflösung kann unter Ausnutzung des Spin-Echo Prinzips [31]
erreicht werden, das die Larmor-Präzession der Neutronenspins in einem Magnetfeld vor
der Probe und einem entgegengesetzten Magnetfeld nach der Probe als eine Art “innere
Uhr” des Neutrons nutzt. Wenn Neutronen mit unterschiedlichen Geschwindigkeiten die
gleiche Trajektorie und den gleichen Streuprozess durchlaufen, ist ihre Spinrichtung am
Ende gleich und die gemessene Polarisation maximal. Falls die übertragenen Energien
während des Streuprozesses jedoch unterschiedlich sind, so spreizen sich die Spinphasen
und die Polarisation sinkt. Demnach ist die Genauigkeit, mit der die Spektralverteilung
der Anregung bestimmt wird, von der Spektralverteilung des Neutronenstrahls entkoppelt
und sehr hohen Energieauflösungen werden möglich.
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A.2 Spektrallinien akustischer Phononen nahe der Energielücke in Nb und Pb

Eine ausgeklügelte Fokussierungstechnik, vorgeschlagen von Mezei [32, 31] und ausgear-
beitet von Roger Pynn [33], bietet zudem eine Lösung für die unerwünschte zusätzliche En-
ergieverteilung dispersiver Anregungen: Durch Verkippen der Magnetfeldgrenzen bezüglich
der Haupt-Neutronenstrahlrichtung können die Spinphasen unter verschiedenen Winkeln
gestreuter Neutronen aneinander angeglichen werden. Mit diesem Freiheitsgrad kann das
Spin-Echo der Steigung der Dispersionskurve angepasst werden. 1987 schlugen Golub
and Gähler die Neutronen Resonanz Spin-Echo (nrse) Technik vor, die die notwendigen
Kippwinkel technisch ermöglicht. Hierbei werden die Zylinderspulen zur Erzeugung des
homogenen Magnetfelds durch eine Folge aus Radiofrequenzspulen ersetzt, die die Spins
in der Streuebene umklappen (π-Flip) und die jeweiligen Bereiche ohne Magnetfeld scharf
begrenzen. In diesem Aufbau gibt es keine klassische Spin-Präzession, jedoch ergibt sich
aus der Wechselwirkung des Spins mit den oszillierenden Resonanzfeldern ein Phasenwinkel,
der zur Flugzeit des Neutrons im Nullfeldbereich im Verhältnis steht. Dieser Aufbau
wurde 2004 am Dreiachsenspektrometer trisp an der Forschungs-Neutronenquelle Heinz
Maier-Leibnitz (frm ii) realisiert und bietet damit das für diese Arbeit nötige nrse mit
thermischen Neutronen.

Nrse Messungen liefern im Ergebnis die Fourier-Transformierte der Spektrallinie einer
Anregung. Harmonische Anregungen haben eine lorentzförmige Spektralform mit voller
Halbwertsbreite 2Γ. In der Polarisation äußert sich dies als exponentieller Abfall derselben.
Gibt es zwei benachbarte Moden, so zeigt das Polarisationsprofil eine Schwebung, die
von der Gewichtsverteilung zwischen den Peaks und der Distanz zwischen deren Zentren
abhängt.

A.2. Spektrallinien akustischer Phononen nahe der
Energielücke in Nb und Pb

Bisher wurden mit der nrse-Methode Linienbreiten in den transversal-akustischen Pho-
nonenzweigen in den konventionellen bcs-Supraleitern Nb und Pb im normalleitenden
und supraleitenden Zustand gemessen [20]. Die Elektron-Phonon-Wechselwirkung ist bei
niedrigen Temperaturen die dominante Ursache der Linienverbreiterung. Im Suprazustand
wurde wie erwartet bei der Phononenenergie, die der Energielücke 2∆(T ) entspricht, eine
Diskontinuität in den Linienbreiten beobachtet. Phononen mit geringerer Energie sind
nicht imstande, Elektronen über die Energielücke hinweg anzuregen, und leben deshalb
länger als im Normalzustand.

Tatsächlich ist die Spektrallinie jedes einzelnen akustischen Phonons an verschiedenen
Stellen im Bezug auf 2∆(T ) unterschiedlich von der diskutierten Renormalisierung betroffen,
was eine Linienformänderung verursacht [25]. Dieser Energielückengrenzeffekt wurde
zuerst in den Nickelborokarbiden [24] beobachtet und als nicht signifikant eingestuft,
außer unter extremen Bedingungen. Da neuere Neutronenstreudaten aus konventioneller
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Dreiachsenspektroskopie an einem transversal-akustischen Zweig in Nb jedoch ebenfalls
eine entsprechende Asymmetrie zeigten (Weber und Pintschovius, Ref. 26), stellt sich die
Frage, wieso dies nicht schon früher in den nrse Messungen erkannt wurde: Hier wurden
keine Abweichungen des exponentiellen Abklingens der Polarisation beobachtet.

In dieser Arbeit werden nun diese nrse Daten mit den entsprechenden Dreiachsendaten
in Einklang gebracht. Zu diesem Zweck wurden Spin-Echo Polarisationsabklingprofile neu
gemessen, mit verbesserter Impulsauflösung und über eine größere Spin-Echo Zeitskala.
Die Polarisationsabklingprofile und Linienbreiten im Suprazustand werden anhand der
Beschreibung von Allen et al. [25], die auf der bcs-Theorie basiert, ausführlich analysiert.
Die Verschiebungen des Erwartungswerts der Spektrallinie im Vergleich zum Normalzustand
werden den bereits vorhandenen und neuen nrse Daten entnommen, sowohl für Nb als auch
Pb. Dies ergibt zusammengenommen ein vollständiges Bild der Phononenrenormalisierung,
anhand deren die Größe der Energielücke in verschiedenen kristallographischen Richtungen
bestimmt werden kann.

A.2.1. Ergebnisse und Diskussion

Abbildung A.1 zeigt die effektiven Spektrallinien der (ξ00)T Phononen in Nb für ξ = 0.16,
0.17 und 0.18 reziproke Gittereinheiten (r.l.u.) im Normal- und Suprazustand, nachdem
die dreidimensionale Dispersion und die Auflösung der nrse Messung mit berücksichtigt
wurden. Die Dispersion im Normalzustand, ωn, beruht auf Born-Von Kármán-Fits von
am trisp aufgenommenen Dreiachsendaten. Die Linienbreiten im Normalzustand wurden
in einer ersten Näherung proportional zu ωn gesetzt, Γn = 0.02ωn. Die effektiven Spek-
trallinien sind auch oberhalb der Sprungtemperatur Tc = 9.3K wegen der Krümmung der
Dispersion leicht asymmetrisch. Die Spektrallinien im Suprazustand wurden aus denen
des Normalzustands mit Hilfe der Theorie von Allen et al. [25] berechnet. Es wurde
eine typische bcs-Temperaturabhängigkeit der Energielücke mit einem Sättigungswert
2∆0 = 3.15meV angenommen. Die Resonanz unterhalb von 2∆ verschmilzt wegen der
endlichen Energieauflösung mit dem Rest-Phonon oberhalb von 2∆.

Während die zugehörigen Polarisationsprofile oberhalb von Tc ein Exponentialverhalten
zeigen, weicht die Kurve bei T = 3.5K vor allem für ξ = 0.17, bei dem die Energie des
akustischen Phonons den Energielückenrand kreuzt, von einer Exponentialkurve ab. Dies
macht sich deutlich im Verhältnis Psc/Pn zwischen den beiden Kurven bemerkbar. Psc/Pn
ist zudem unabhängig von Datenkorrekturen hinsichtlich der Probenkristallinität und der
instrumentellen Unvollkommenheit, da diese Faktoren sich im Quotient annulieren. Die
Simulation bei ξ = 0.16 im Suprazustand ist offensichtlich nicht im Einklang mit den Daten,
ebenso wie bei ξ < 0.16 (nicht gezeigt). Dies lässt sich mit einer Restlinienbreite unterhalb
der Energielücke erklären: Die Polarisation klingt dadurch schneller ab als vorhergesagt.
Die Quelle der Restlinienbreite ist uneindeutig. Bei ξ = 0.17 lässt die statistische Un-
genauigkeit der Daten keine Unterscheidung zwischen eine gerade Psc/Pn-Linie und der
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Figure A.1.: (a) Simulierte Linienform der (ξ00)T Phononen in Nb für ξ = 0.16, 0.17 und

0.18 r.l.u. im Normal- und Suprazustand unter Berücksichtigung der experimentellen
nrse-Auflösung. Rote (blaue) Kurven beziehen sich auf T = 12K (T = 3.5K). Für
die Simulation wurde Γn/ωn = 0.02 und 2∆0 = 3.15meV benutzt. (b) Zugehörige
Polarisationsprofile und experimentelle Daten (Symbole). Die Daten wurden um
den nicht durch die intrinsische Linienbreite verursachten Polarisationsabbau kor-
rigiert, z.B. die aus der Mosaizität der Probe und der Krümmung der Dispersion im
Normalzustand verursachten Effekte. (c) Verhältnis Psc/Pn der Polarisationsprofile
(logarithmische Skala).

gezeigten Kurve zu. Demnach können keine Rückschlüsse auf die Linienform gemacht
werden. Die nrse Daten stehen also zwar nicht im Widerspruch zu den Dreiachsendaten
von Weber und Pintschovius, sind aber auch nicht direkt bestätigend.

Abbildung A.2 zeigt die gemessenen Linienbreiten (zum Teil bereits in der Doktorarbeit von
P. Aynajian veröffentlicht [20]) und die Energieverschiebungen der niedrigsten akustischen
Phononen im Normal- und Suprazustand in verschiedenen kristallographischen Richtungen
in Niob und Blei. Die Linienbreiten in Nb (100)T wurden erneut gemessen. Da die
Linienformänderung im Suprazustand unerheblich ist, wurden die experimentellen Polari-
sationsdaten mit Exponentialfunktionen gefittet. Die simulierten Daten im Suprazustand
(durchgehende Kurve, Datenpunkte als Quadrate) wurden generiert, indem die effektive
Spektralfunktion und der Polarisationsabfall jeweils wie in Abb. A.1 gezeigt berechnet
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wurden. Die Polarisationskurve wurde im experimentell zugänglichen Bereich mit einer
Exponentialfunktion gefittet.

Das qualitative Verhalten stimmt mit den Voraussagen von Allen et al. überein. Während
die Linienbreite unterhalb der Energielücke schmäler als im Normalzustand und ober-
halb der Energielücke breiter ist, zeigt die Differenz der Schwerpunkte der jeweiligen
Spektralverteilungen ein Minimum in der Nähe von 2∆. Der Erwartungswert der Spek-
tralverteilung liegt im Suprazustand niemals höher als im Normalzustand.

Bei 3.5K ist der Sprung von Γs/Γn nahe dem Wellenvektor q2∆ scharf und nur durch die
Auflösung verbreitert. Für vereinzelte Messungen bei höheren Temperaturen < Tc stimmt
dies jedoch nicht mehr, hier versagt die Theorie von Allen et al. In Tunnelmessungen
wird gewöhnlicherweise die Dynes-Gleichung zur Beschreibung der Lücke benutzt, wobei
eine phänomenologische temperaturabhängige Verbreiterung eingesetzt wird. Neben einer
Reihe vorgeschlagener messtechnischer Begründungen wurde kürzlich demonstriert, dass
eine komplexwertige Energielücke, deren Imaginärteil der Lebensdauer der Quasiteilchen
am Lückenrand entspricht, eine solche Änderung der bcs-Energielücke mikroskopisch
rechtfertigt [79, 80].

Weit unterhalb des Rands der Energielücke sind die Linienbreiten sowohl in Nb als auch
Pb in verschiedenen Kristallrichtungen größer Null. Im (110)T1-Zweig in Pb zeigen die
Linienbreiten unterhalb der Energielücke einen Peak, der einem im Normalfall kinetisch
verbotenen Drei-Phononen Zerfall zugeschrieben wurde. Dies ist im Einklang mit einer
beobachteten anomalen Dispersion, ähnlich wie in 4He. Die sonstigen Linienbreiten könnten
bedingt durch nicht-elektronische Wechselwirkungen ebenfalls endlich sein. Verunreini-
gungen neigen dazu, die Differenzen in der Selbstenergie zu verwaschen [81]. Da die
Datenanalyse auf gemessenen Werten, u.A. der Dispersionskrümmung und der Mosaizität
der Probe, basiert und sich als Funktion von q tendenziell langsam ändert, ist es un-
wahrscheinlich, dass den endlichen Linienbreiten eine unvollständige Korrektur zugrunde
liegt. Eine tatsächlich vorhandene Zustandsdichte unterhalb 2∆ wäre nicht im Einklang
mit der Theorie von Allen et al.

Die relative Verbreiterung der Linienbreiten oberhalb der Energielücke ist bemerkenswert
niedrig im Falle von Pb (110)T1. Es kann nur vermutet werden, dass ein Teil der verzeich-
neten Linienbreite nicht durch Elektron-Phonon (e-ph) Wechselwirkungen verursacht wird.
Dies bedeutet, dass die Kohn-Anomalie weniger ausgeprägt ist als zunächst angenommen.

Die Energielücke 2∆ kann anhand des Sprungs in den Linienbreiten festgelegt werden, wobei
der Punkt benutzt wird, wo Γs(q) über Γn(q) hinaus schießt. Die Energie-Erwartungswert-
Änderung liefert einen zusätzlichen Anhaltspunkt.

Die Linienformänderungen haben keinen Einfluss auf die gefundene Gleichheit der Kohn-
Anomalien und der Energielücken im Suprazustand, die im nächsten Abschnitt besprochen
werden.
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Figure A.2.: (a-d) Experimentelle Linienbreiten bei T = 3.5K (Dreiecke), T = 0.5K (Diamanten)
und oberhalb von Tc, bei T = 12K und 10K in Nb resp. Pb (Kreise). V.l.n.r.: Nb
(100)T und (110)T1, Pb (100)T und (110)T1. Die zugehörige Phononenenergie im
Normalzustand ist auf den oberen Achsen eingezeichnet. Rote Linien sind Modelle für
den Teil der Linienbreiten, der im Suprazustand renormalisiert ist. Durchgezogene
Kurven mit Datenpunkten als Quadrate zeigen das entsprechende Verhalten nach
der bcs-Renormalisierung von Allen et al., wobei die nrse-Auflösung berücksichtigt
wurde. (e-h) Differenzen zwischen Supra- und Normalzustand. Verbundene Vierecke
richten sich nach dem Fall, dass nur der in den Modellen in (a-d) gezeigte Teil
der experimentellen Linienbreiten renormalisiert ist. Die grauen Linien lassen die
Auflösung außer Acht. (i-l) Energiedifferenz zwischen den spektralen Schwerpunkten
im Supra- und Normalzustand. Symbole und durchgezogene Linien beschreiben die
Energiedifferenz mit resp. ohne Auflösung.
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A.3. Kohn Anomalien und die Energielücke im
Suprazustand in Tl-Pb-Bi

Obwohl allgemein anerkannt wird, dass konventionelle bcs Supraleiter mit s-Wellen-
Symmetrie gut verstanden sind, wird die ab initio Berechnung der Sprungtemperatur Tc
dadurch erschwert, dass die Energielücke an verschiedenen Stellen der Fermioberfläche
verschiedene Werte annimmt [84]. Ein Phänomen, das mit nrse an den niedrigsten
transversal-akustischen Phononenlinienbreiten in Pb und Nb beobachtet wurde, deutet
jedoch darauf hin, dass die gesättigte Energielücke 2∆0 in einer unerwarteten Art mit der
Fermioberflächentopologie verbunden sein könnte. Eine zentrale Rolle nehmen dabei die
Kohn-Anomalien (ka) ein, die als Knickstelle in der Phononendispersion und als Peaks in
der Linienbreite auftauchen können. Sie entstehen durch erhöhte Wechselwirkung mit Valen-
zelektronen wenn der Wellenvektor qKA substanzielle Teile der Fermioberfläche verbindet.
Das von Aynajian [19] beobachtete Phänomen besagt, dass falls akustische Phononen
mit Energien nahe 2∆0 einer ka unterliegen, sich die Lücke auf den entsprechenden
Teilen der Fermioberfläche an die Energie ~ωKA dieser Phononen anpasst. Die beteiligten
Anomalien werden nicht von ab initio Dichtefunktionaltheorie-Rechnungen innerhalb der
lokale Dichtenäherung (engl. dft-lda) reproduziert. Die Temperaturunabhängigkeit von
qKA und die starke q-Abhängigkeit des Peaks in den Linienbreiten zeigen, dass es sich
dennoch um Kohn-Anomalien handelt. Es gibt geeignete Verschachtelungsmöglichkeiten
der Fermioberfläche (engl. nesting), die dies erklären [22].

Die Frage ist, ob das Phänomen des “Einrastens” der Energielücke allgemeingültig ist.
In dieser Arbeit werden dazu die Dispersion und Linienbreiten des niedrigsten (110)T1
transversal-akustischen Zweiges in Blei mit geringfügigen Beimischungen von Wismuth resp.
Thallium gezeigt. Tl, Pb and Bi sind Nachbarn im Periodensystem, so dass ihre Legierungen
eine allmählich zunehmende Elektronenkonzentration und damit einen steigenden Fermi-
See sowie eine zunehmende e-ph-Kopplungsstärke zeigen. Da die Energielücke in dieser
Arbeit aus Literaturdaten entnommen wird, ist es entscheidend, das präzise Verhältnis der
Komponenten in den untersuchten Teilen der Proben zu messen, weshalb diese mit einer
Prompten-Gamma Aktivierungsanalyse (pgaa) bestimmt wurden.

A.3.1. Ergebnisse und Diskussion

Die Dispersionskurven der niedrigsten transversal-akustischen Phononenzweige in Richtung
(110) in den beiden Bi-dotierten Proben im Vergleich mit reinem Pb [19] bei 10K, oberhalb
Tc, sind in Abb. A.3 gezeigt. Die Form der einzelnen Kurven ist ähnlich, jedoch mit
zunehmender Wismuthgehalt zu höheren Wellenvektoren hin verschoben. Die Kurven
fallen in der Nähe von (0.55, 0.55, 0) zusammen. Die Energie an der Zonengrenze (nicht
gezeigt), neigt im Tl-Pb-Bi-System wie schon aus früheren Experimenten bekannt [8, 87]
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Figure A.3.: Dispersion (oben) und intrinsische Linienbreiten (unten) des (110)T1 Phononen-

zweiges in reinem Pb und in den beiden Pb-Bi Proben. Die Dispersion wurde im
Bereich 0.2− 0.6 r.l.u. mit einem 5-Parameter Born-Von Kármán-Modell gefittet.
Die jeweilige Position der einzelnen Knickstellen nahe ξ ∼ 0.4 r.l.u. wurde anhand
der Steigung der Fits bestimmt (Inset).

dazu, mit zunehmender Anzahl an Elektronen n pro Atom abzunehmen. Während das
Phononenspektrum insgesamt weicher wird, nimmt die e-ph Kopplungskonstante λ zu [85].

Die mit nrse gemessenen Linienbreiten, unten im Bild, zeigen für reines Blei [19] drei
ausgeprägte Peaks (teilweise bereits gezeigt in Abb. A.2). Der Peak bei der niedrigsten
Energie bleibt im supraleitenden Zustand bei T = 3.5K weitgehend unverändert. Die
Energien sind hier nicht groß genug sind um Quasiteilchen über die Energielücke 2∆(T )
hinweg anzuregen. Diese Phononenverbreiterung stammt stattdessen aus spontanem (fast)
kollinearen innerzweiglichen Phononenzerfall. Die anderen beiden Peaks in der Linienbreite
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von reinem Blei sind Kohn-Anomalien, die sich aus einer Fermioberflächenverschachtelung
ergeben. Keiner der Peaks wird von ab initio lda-Rechnungen erfasst [19].

Die ka in reinem Pb, die um ξKA = 0.360 ± 0.010 r.l.u. und ~ωKA = 2.85 ± 0.10 meV
zentriert ist, zeichnet sich als aufwärts gerichtete Knickstelle in der Dispersion ab. Der
Punkt der größten Steigung ist von gepunkteten Linien markiert, die auch durch das untere
Panel gezogen sind. Die Knickstellen in beiden Legierungen sind genauso ausgeprägt
wie im reinen Material, was darauf hindeutet, dass die Fermioberfläche ausreichend gut
definiert ist und dass die Voraussetzungen für das Nesting weiterhin vorhanden sind. Indem
das Ferminiveau des Bleis durch Legieren mit Wismuth modifiziert wird, verschiebt sich
die Knickstelle erwartungsgemäß zu höheren ξ-Werten.

In den Legierungen sind die Knickstellen in der Dispersion jedoch nicht von deutlichen
Peaks in den Linienbreiten begleitet. In beiden Proben steigen die Linienbreiten im Bereich
0.36− 0.40 r.l.u. von ca. 40µeV bis ca. 100µeV an. Von den wenigen Datenpunkten bei
T = 3.5K kann rückgeschlossen werden, dass die Renormalisierung im Suprazustand
unerheblich ist, und folglich dass die Mehrzahl der Phononenzerfälle nicht von e-ph Wech-
selwirkung herstammt. Die willkürlich ersetzten Atome in den Legierungen brechen die
Translationssymmetrie, so dass die elektronische Bandstruktur und die Phononendispersion
verblassen. Weil Massenunordnung in den Legierungen keine größere Rolle spielt als in
reinem Blei, das mehrere natürliche Isotope hat, liegt die Hauptquelle der Verbreiterung
in Kraftkonstanten-Unterschieden und dem Einfluss von Verspannungen in der lokalen
Umgebung verschiedener willkürlicher Konfigurationen eines Clusters. Die von Haverkort
et al. [89] entwickelte Dichtefunktional-Superzellennäherung lässt Zufälligkeiten im Verun-
reinigungsanteil zwischen Multizellenclustern zu. Eine Machbarkeitsstudie hat gezeigt,
dass es zur Zeit nicht ökonomisch ist, mit dieser Methode die von einem ∼ 10%-Anteil von
zufallsbedingten Bi-Substitutionen verursachten Phononen-Linienbreiten zu berechnen [90].

Die Energielücke in reinem Blei, 2∆(110) = 2.82 ± 0.06 meV, wurde den Linienbreiten-
Daten entnommen, indem die Änderung der Linienbreiten im Suprazustand verglichen mit
dem normalleitenden Zustand ausgenutzt wurde. Da die Änderung der Linienbreiten im
Suprazustand in den Legierungen insignifikant ist, werden die impulsgemittelten Werte
der Lücke aus der Einelektron-Tunnelstrom durch dünnen Aluminium-Aluminiumoxid-
Bleilegierung-Schichten [85] benutzt. Die impulsgemittelte Lücke in Pb, 2.80meV, stimmt
mit 2∆(110) überein, so dass die Anisotropie nicht berücksichtigt werden muss. Die
Energielücke steigt mit zunehmender Elektronenkonzentration für dieses System in Übere-
instimmung mit der Eliashberg-Theorie. Die Werte von 2∆0 und ~ωKA in Vergleich mit
der Valenzelektronenzahl n in den Legierungen werden in Abb. A.4 gezeigt. Der untere
Wert der Tl-dotierten Probe für ~ωKA ist an trisp gemessen worden, während der obere
Wert am kalten-Neutronen-Dreiachsenspektrometer Panda gemessen wurde: Obwohl das
qualitative Verhalten der beiden gemessenen Dispersionskurven identisch ist, weichen
sie aus bisher unerklärtem Grund mit zunehmendem Quasi-Impuls voneinander ab. Für
jede der einzelnen Legierungen bleibt der impulsgemittelte Betrag der Energielücke aus
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Figure A.4.: Oben: Sprungtemperatur der Proben (schwarze Symbole) verglichen mit Daten aus
Ref. 85 (rote Linie). Die Zahl der Valenzelektronen n ergibt sich aus dem mittels
pgaa bestimmten Beimischungsverhältnis x (obere Skala). Unten: Vergleich der
Phononenenergie bei der ka aus Abb. A.3 (schwarze Symbole) mit der impuls-
gemittelten Energielücke 2∆0 [85] (rote Linie). Fehlerbalken der Daten aus der
Bezugsquelle sind auf der typischen Breite des Übergangs und der Reproduzierbarkeit
der Energielücke basiert.

Tunnelmessungen für die jeweilige Legierungskonzentration nahe der Energie an der Stelle
der Kohn-Anomalie im (110)T1-Zweig.

Abb. A.4 zeigt außerdem die anhand des Meißner-Effekts gemessene Temperatur Tc, bei
der die Supraleitung einsetzt, als Funktion von n verglichen mit Daten aus Ref. 85. Die
Fehlerbalken von Tc variieren wegen des gewählten Temperaturgradienten während der
Messung. Es bedeutet nicht, dass der eigentliche Übergang weniger rasch stattfindet. Die
Werte stimmen gut mit der Literatur überein.
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Ohne das insgesamte Erweichen der Phononenspektra würde die Energie der ka weiter
ansteigen als die Energielücke. Es ist dieses empfindliche Gleichgewicht, das die Hypothese
des “Einrasten” der Energielücke, möglicherweise jenseits der anerkannten Theorie der
Supraleitung, unterstützt. Prinzipiell könnte die Kraft dieses Einrastens unter widrigeren
Bedingungen getestet werden, z.B. in mit Molybden oder Zirkon dotiertem Niob, da sich der
relevante Nestingvektor in diesem System in Richtung (001) mit zunehmender Sprungtem-
peratur zum Ursprung hin bewegt. Die Herausforderung ist jedoch, die gesteigerten
Linienbreiten der akustischen Phononen in Legierungen als Funktion des Wellenvektors
quantitativ zu bestimmen, damit die e-ph-Wechselwirkung von anderen Effekten unter-
schieden werden kann.
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