
Phenomenological approach to
spin fluctuations in itinerant

magnets and superconductors
from ab initio calculations

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Luciano Ortenzi
aus Rom (Italien)

Hauptberichter: Prof. Dr. Ole Krogh Andersen
Mitberichter: Prof. Dr. Alejandro Muramatsu

Mitberichterin: Dr. Lilia Boeri

Tag der mündlichen Prüfung: 17. Oktober 2013

Max-Planck-Institut für Festkörperforschung

Stuttgart 2013





“Ex uno Verbo omnia et unum loquuntur omnia, et hoc est Principium quod et
loquitur nobis (Ioann. 8, 25). Nemo sine illo intelligit, aut recte judicat. Cui omnia
unam sunt et omnia ad unum trahit et omnia in uno videt potest stabilis corde
esse et in Deo pacificus permanere. O veritas Deus, fac me unum tecum in caritate
perpetua!”

De imitatione Christi Lib. I Cap. III, “De doctrina veritatis”.
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DFT density functional theory
DOS density of states
GGA generalized gradient approximation
LAPW linear augmented plane wave
LDA local density approximation
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Introduction

The discovery of superconductivity in a Fe compound by Kamihara et al. [1] and
the following success in improving the critical temperature Tc up to 26 K by par-
tial chemical substitution of O with F in the antiferromagnetic metal LaOFeAs, [2,
3] aroused the interest on itinerant magnetism in connection to superconductiv-
ity. Indeed early electron-phonon calculations [4] on this compound found the
electron-phonon mechanism to be inadequate for reproducing Tc . For this reason, a
mechanism for superconductivity based on the exchange of antiferromagnetic spin
fluctuations was proposed. [5, 6]

In contrast to the electron-phonon superconductors, for which a well defined
procedure for calculating the critical temperature starting from first-principles
has been established, [7–16] for spin fluctuations-mediated superconductors this
is not yet the case. The reason resides in the fact that spin fluctuations are a
purely electronic degree of freedom, and therefore their description requires a
good approximation for the electron-electron interaction, over a large energy scale.
In itinerant systems spin fluctuations affect in a crucial way also the magnetic
properties since the spin susceptibility gets selfconsistently renormalized. [17] On
the other hand, since in itinerant systems local correlations are usually negligible,
ground-state properties such as total energies and electronic structures, in the
paramagnetic state are usually well described by mean-field approximations like the
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local density approximation (LDA) within the density functional theory (DFT).

As a result a completely ab-initio description of real materials is possible for
electron-phonon superconductors and for weakly correlated metals. For itinerant
magnets and spin fluctuations superconductors ad hoc approximations must be
applied, and phenomenological models chosen.

The approach I adopted during my PhD activity, and presented in this thesis, uses
the discrepancies (whenever present) between DFT calculations and the experiments
in order to construct phenomenological models which explain the magnetic, super-
conducting and optical properties of four representative systems of superconductors
and itinerant magnets. In particular I will focus my attention on the superconducting
and normal state properties of the recently discovered APt3P superconductors, on
the interplay between magnetism and superconductivity of hole-doped CuBiSO, on
the optical properties of LaFePO and finally on the ferromagnetic-paramagnetic
transition of Ni3Al under pressure.

In the following, I will give a brief historical overview of the two main physical
phenomena investigated in the present thesis, itinerant electron magnetism and
superconductivity, introducing the aspects that are of particular interest for this
work.

Itinerant electron magnetism

The first attempt to explain the macroscopic magnetic properties of real materials
dates back to the end of the 19th century with the experimental work done by
Pierre Curie [18] and formalized by Langevin. [19] Assuming that every atom (or
molecule) in a given ensemble of N atoms behaves like a “small” magnet with fixed
magnetic moment m, whose absolute value is given by | m |= m, the interaction
of the atom with an external magnetic field H = hẑ is given by m ·H = mhcos(θ)
where θ is the angle between the magnetic moment m and the vector ẑ. The
average value of the magnetization component parallel to ẑ, 〈mz〉 is given by the

integral over the solid angle Ω of m cos(θ) times the Boltzmann factor e
mhcos(θ)

kB T ,
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where kB is the Boltzmann constant and T is the temperature. Dividing 〈mz〉 by
h and sending h to zero, Langevin [19] reproduced the experimental data for the
magnetic susceptibility χ measured by Curie [18] obtaining the following formula:

χ−1 = 3kB T/Nm2 = T/C

where C is the Curie constant. Afterwards Weiss [20] considered the interactions
among the atomic magnetic moments as an additional contribution h̃= Γm to the
external field, proportional by the factor Γ to the magnetization m. This is the
so-called Weiss mean field. [20] In this way he obtained a self-consistent equation
for the magnetization and a slightly modified form for the susceptibility:

χ−1 = (T − Tc)/C .

This is the Curie-Weiss law for the uniform susceptibility and it is obeyed by almost
all ferromagnets. The quantity Tc = m2Γ/3kB is the Curie temperature. Despite
the success of the theory in explaining the temperature dependence of χ and m,
the phenomenological assumption of atomic magnetic moment was hard to justify.
Indeed van Leeuwen [21] demonstrated the impossibility for a system to have
constant magnetization within classical statistical mechanics. Since in classical
electromagnetism every magnetic moment is associated with a moving charged
particle, assuming “pre-formed” magnetic moments and then averaging over the
solid angle corresponds to integrating over all the phase space with a particular
condition. The assumption is that some relevant part of the energy associated with
the degrees of freedom of the charged particles remains finite (even constant) while
the coordinates go to infinity. This restriction is not justified in classical mechanics,
but it is natural in quantum mechanics which assumes discrete occupation numbers
for the degrees of freedom of the charged particles. [22]

In quantum mechanics, [22] at low temperature, the atoms can actually be
regarded as having quantized and fixed magnetic moment and the electrons in the
atoms are governed by the Hund’s rules coupling. [23] The states with largest total
spin quantum number S have the lowest energy and, among these states, the state
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with the largest orbital quantum number L has the lowest energy. The result by
Heitler and London on the H2 molecule gave also a quantum mechanical origin
to the Weiss molecular field. [24] The two electrons in this molecule interact via
the Coulomb integral which is the quantum mechanical equivalent of the Coulomb
energy for two charged particles, plus a term which has no classical analog and takes
into account the fermionic nature of electrons. The latter is the exchange integral J
defined as the energy difference between the triplet and singlet configuration. If J is
positive, the spins align with respect to each other and the field felt by a spin is the
magnetic moment of the nearby electron plus the external field. If J is negative the
second electron screens the external field being antiparallel to the first one. In the
ground state of the H2 molecule J is negative and the electrons are in the singlet
state. Heisenberg pointed out that for some critical value of the interatomic distance,
the sign of J changes leading to the triplet state.

These concepts led to the first quantum mechanical model for ferromagnetism:
the Heisenberg model. [25] This model describes spins sitting on a lattice in d
dimensions interacting via the exchange mechanism. The exchange integral is
shown to be directly connected to the Weiss field. The Heisenberg model, depending
on the value of J , can describe both ferromagnetism and antiferromagnetism and
describes a new kind of elementary excitations emerging at finite temperature
called magnons. The most simplified version of the Heisenberg model is the Ising
model [26] which considered only spin 1/2 electrons with spins collinear to a given
direction ẑ. The first microscopically description of antiferromagnetism was done
by Néel [27] who considered two sublattices where an electron on one sublattice
interacts both with spins on the same sublattice and spins sitting on the other
sublattices.

All the models briefly reviewed up to now suppose the existence of well defined
local moment given by local spins or angular momenta. This physical picture is
realized in free atoms and molecules or in highly localized f electrons in solids.

In this thesis however I will treat metallic systems where electrons come from the
d shell (Cu, Ni, Fe, Pt) and may be hybridized with s or p electrons. In these systems
the measured magnetic moment are not integer numbers, i.e. they are quenched.
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A classical example of “quenched” magnetic moment is the experimental value of
the magnetic moment of bcc Fe mFe = 2.2µB . For these systems an itinerant model
must be considered. A big step towards an itinerant electron theory of magnetism
was given by the band model of Bloch. [28] In this model indeed the relevant
quantum numbers are the quasi-momentum k and the spin σ of the electrons. For
free electrons Pauli derived a formula for the susceptibility which appears to be
proportional to the density of states at the Fermi level N0. The idea of the metallic
state described as a gas of free electrons was developed by Slater, [29, 30]Mott, [31]
and finally by Stoner. [32, 33] He derived a model where the electrons are defined
by energy bands and the disproportion between spin up and spin down is created in
the reciprocal space (k-space) and not in real space. Under the effect of an external
magnetic field the spin up and spin down bands split by a quantity ∆ which is
equivalent to the Weiss field. This model explains non integer magnetic moment in
terms of the filling of d bands interacting with the s or p electrons. The paramagnetic
susceptibility is enhanced with respect to the Pauli (non interacting) one by the
factor Σ = (1− N0 I)−1 where I is the Stoner parameter which is the analog of
the exchange integral J .1 The Stoner enhancement factor Σ allows to extract a
microscopic criterion for ferromagnetism. If Σ < 0 indeed, the susceptibility is
negative and the paramagnetic state is a maximum of the energy.

In order to clarify the role of the exchange parameter and the one of the
exchange potential in metallic systems in general, many attempts were made using
tight binding and Hartree-fock calculations for the free electron gas. On this subject
see for example Ref. [34]. A step forward in this sense was made by Slater [35]
who proposed to approximate the exchange interaction by a local potential resulting
from an average over the occupied states of an homogeneous electron gas. This
potential vx depends only on the electron density n at position r :

vx (r) =−3ee2
�

3

8π

�
1
3

n
1
3 (r),

1The Stoner enhancement factor is usually indicated with S−1 = (1− α)−1 = (1− N0 I)−1 . For avoiding
confusion here I will refer to it as Σ, indeed I used S for indicating the total spin quantum number.
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where e is the Neper number. A significant improvement to the Slater potential
came by Schwarz [36] whose Xα-potential is constructed by multiplying the Slater
potential for a factor α fixed by the condition that the total energy of an isolated
atom must be equal to its Hartree-Fock value.

The definitive step towards the present way of treating the problem of itinerant
electron magnetism was given by the development of density functional theory
DFT by Hohenberg and Kohn. [37] In their original work they showed that for an
interacting electron system the total energy is a unique functional of the density, and
that this functional is minimum if the density is the ground state density. In a second
paper Kohn and Sham [38] reformulated the problem in such a way that the total
energy functional is expressed as the sum of the kinetic energy of a non interacting
system plus the electron-electron interaction term plus an exchange-correlation
potential vxc . Minimizing the total energy functional, Kohn and Sham arrived at a
set of single particle Schrödinger equations for a fictitious system having the same
ground state density as the full interacting one. [39] Kohn and Sham proposed
for vxc a local form which depends only on the density at position r: the so-called
local density approximation (LDA). The extension to a spin polarized electron gas is
called local spin density approximation (LSDA) and it is commonly used in actual
DFT calculations. [40–44]

Within LSDA the Stoner parameter can be evaluated as the average over the
ground state | Φ〉 of the difference between the exchange-correlation potential for
spin up and spin down electrons: [45]

∆= mI = 〈Φ | v↑xc − v↓xc | Φ〉,

where ∆ is the Weiss mean field, m is the total magnetization and I is the Stoner
parameter.

Despite their mean field nature, LDA and LSDA are quite successful in reproducing
the ground state properties of real materials. [46] This is proved by the amount
of papers which use these approximations for interpreting the ARPES or de Haas-
van Alphen experimental data, or use total energy minimization for predicting
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new crystal structures, or even use the LDA band structure for constructing low-
energy model Hamiltonians. The reason for this was found by Gunnarsson and
Lundqvist [40] who showed that these approximations satisfy the sum rule for the
exchange and correlation hole.2

In some cases, however, non local correlations are important. Their effect be-
comes dramatic in systems close to a quantum critical point (QCP) which recently
came back into interest. [47–49] In these circumstances the system develops spa-
tial correlations over distances comparable with the volume of the sample. As a
consequence, in itinerant systems such as FeAl, [50] Pd, [51] Ni3Al [52] or the
superconducting Fe pnictides, [53–56] LDA gives a very good description of the
high temperature paramagnetic properties, but as soon as a QCP is approached, the
disagreement becomes dramatic, causing a large overestimation of the tendency to
magnetism. [57] The reason for this overestimation was found by Moriya: [17] the
interaction of electrons with spin fluctuations is mediated by the spin susceptibility
which gets self-consistently renormalized by the interaction. Such a renormalization
of the susceptibility, with respect to the LSDA (mean-field) one, was observed for
example in Pd, [58] SrRu2O3, [59] Sr2Ru2O4 [60] and in BaCo2As2. [61] However
up to now it was taken into account only phenomenologically. [51, 61–63]

The present relevance of this problem is due to the fact that a correct description
of the magnetic properties close to a QCP can shed light on the relevant interaction
channels leading to spin fluctuations-mediated superconductivity. For this reason
indeed, a lot of research activity was recently dedicated to a correct description of
magnetism in Fe pnictides. [64–69] In these systems LSDA gives an almost material-
independent magnetic moment ∼ 2 µB/Fe atom while the experimental magnetic
moment is smaller than 1 µB/Fe atom. [53, 54, 57, 61, 68] This can be also seen
from a different point of view saying that LSDA gives good local moments but
underestimates the bondlengths. [57, 70]

2The fact that an electron sits at position r automatically reduces the probability of finding another electron
at point r′ . This can be seen as an interaction between an electron and its exchange-correlation hole and the
interaction energy is given by the exchange-correlation energy. LDA and LSDA satisfy the sum rule according to
which the pair correlation function g(r, r′) integrates to −1∀r. [40]
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A general argument is that fluctuations beyond mean field should go in the right
direction by suppressing the ordered moment. Ferber et al. [65] have shown that it
is possible to bring the LSDA magnetic moment in agreement with the experimental
value, using the LDA+ U method [71] with a negative value of the Hubbard
U parameter. However the physical interpretation of such an approach is quite
questionable. The effect of dynamical fluctuations on the magnetic properties were
also taken into account within LDA+DMFT by Yin et al. [68] and by Hansmann et
al. [66]. These works revealed the presence of high local moment of about∼ 2 µB/Fe
and fluctuating moment whose amplitude is strongly material dependent. The
Gutzwiller [69] approximation applied on a two-dimensional eight-band Hubbard
model model, [72] showed that the magnetic properties of LaOFeAs could be easily
explained within a Stoner picture.

However the fluctuations considered in these kind of approaches are local, there-
fore adopting local correlations à la Hubbard for correcting an effect coming from
near critical fluctuations appears hardly justified. [73] Moreover the computational
load in these methods is many times larger than a normal LSDA +U calculation.

In chapter 3 I will take into account near critical fluctuations by means of a
phenomenological reduction of the LSDA Stoner parameter, in order to describe the
superconductivity in hole-doped CuBiSO. In chapter 5 I will go towards an ab-initio
description of this effect by including the renormalization of the susceptibility inside
the LSDA functional. This method is complementary to the one adopted by Ferber et
al. but it has a much transparent physical meaning due to its connection to Moriya’s
theory.

Superconductivity

A superconductor is a material which, below a critical temperature Tc , has zero
electrical resistivity and behaves like a perfect diamagnet i.e. it expels completely the
magnetic field ( Meissner-Ochsenfeld effect). These effects were phenomenologically
explained by Ginzburg and Landau [74] assuming the presence of a charged order
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parameter which obeys a modified Schrödinger equation and is associated with
a non dissipative current for T < Tc . Seven years later Bardeen Cooper and
Schrieffer (BCS) [75] constructed a microscopic theory which explains the Meissner–
Ochsenfeld effect. [76] The theory is based on the fact that a Fermi gas in the
presence of an arbitrary small attractive potential is unstable against the formation
of bound states with energy Ec < EF which involve electrons with opposite spin
and momentum, where EF is the Fermi energy. This fact was demonstrated for the
first time by Cooper and the bound states are called Cooper pairs. [77] Below the
critical temperature the bound states extend to the entire Brillouin zone and a gap
is opened in the band dispersion.3 Gor’kov demonstrated that the amplitude of
the gap is proportional to the complex Ginzburg-Landau order parameter. [78] In
the BCS theory the attractive potential mimics the effect of phonons, however no
retardation effects were taken into account. Therefore the theory is valid only for
values of the gap functions which are small compared with the Debye frequency.

Retardation effects were considered by Migdal and Eliashberg and Scalapino,
Schrieffer and Wilkins [7, 79–81] who extended the BCS/electron-phonon theory
to the case of a frequency dependent interaction parameterized by the so-called
Eliashberg function which can be obtained by neutron scattering or by the inversion
of the tunneling data. [10] The central concept was in this case the possibility of
calculating the electronic self-energy up to an accuracy

p

m/M taking into account
only first order Feynman diagrams, being the parameter m/M the ratio between
the electronic and ionic mass. This result is the famous Migdal theorem. [79] Since
the expansion is valid for small m/M , and does not depend on the strength of
the interaction, this theory is called strong coupling theory for electron-phonon
superconductivity or Migdal- Eliashberg theory.

The strong coupling theory for electron-phonon superconductors turned out to
be very accurate when applied to real materials. [8–11] As a consequence, this
allows also to classify the superconductors into conventional and the unconven-

3This phenomenon is usually called condensation of the Cooper pairs, however I would like to avoid this
definition since the Cooper pairs are not bosons.
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tional superconductors.4 The most famous example of conventional superconductor
is magnesium diboride (MgB2), discovered by Nagamatsu et al. [83] which has
a superconducting critical temperature Tc = 39 K. This compound shows multi-
band superconductivity. Different electronic states couple to specific phonon modes
causing the existence of multiple gaps in this material. [15, 16, 84] Evidences
for this kind of pairing symmetry in MgB2 [85] were collected from specific heat
measurements, [86–88] point contact spectroscopy, [89] Raman scattering mea-
surement, [90] angle resolved photoemission spectroscopy (ARPES) [91, 92] and
magnetic susceptibility measurements. [88] The gap structure of MgB2 calculated
by Choi et al. is shown on the left panel of Fig. 1.

Figure 1: Left: Gap structure of MgB2 as calculated from Ref. [84]. The two gaps are associated
with specific phonon modes identified by the different colors.Right: Multigap structure of
optimally doped pnictide Ba0.6 K0.4Fe2 As2 and Fermi surface as measured by angle resolved
photoemission spectroscopy in Ref. [93]. The hole and electro sheets are connected by the
nesting vector Q= M = (π,π, 0) associated with the stripe antiferromagnetic instability. The
inset shows the temperature dependence of the different gaps associated with different colors.

In 1966, the same year the paper by Scalapino et al. [81] appeared, the effect

4More exactly unconventional superconductors are the ones whose order parameter has a different symmetry
with respect to the s−wave one obtained within the BCS theory. [82]
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of itinerant magnetism on strong-coupling electron-phonon superconductivity was
taken into account by Berk and Schrieffer. [94] They showed that itinerant mag-
netism can have a detrimental effect on superconductivity, through the exchange of
spin fluctuations. They treated this effect within the random phase approximation
(RPA). [95] In this approximation, at finite momentum q a broad peak appears in
the imaginary part of the susceptibility. These resonances are physical and called
paramagnons. This effect was used to explain the absence of superconductivity in
Pd and the overestimation of the critical temperature in calculations made for other
transition metal compounds. [96–98]

Later on, Fay and Appel [99] made a very interesting observation: paramagnons
can couple electrons with the same spin in a nearly ferromagnetic metal and lead to
triplet superconductivity. In this case, the gap has p-wave symmetry. The possibility
of having gaps with exotic symmetry (different from the s- wave emerging from
the BCS theory) is indeed characteristic of spin fluctuations. The authors proposed
this kind of pairing for superconductivity in Ni and ZrZn2. However none of these
compounds showed reproducible superconductivity. The electron-phonon and spin
fluctuations superconductivity, having different symmetry of the order parameter,
compete with each other and against the incipient ferromagnetic state, rendering
these materials non superconducting.

Later on several unconventional superconductors were discovered. The list is
very long and goes from the heavy fermion superconductors like CeCu2Si2, [100]
CeRhIn5,CeCoIn5 [101, 102] UPt3 [103] and URu2Si2, [104] including the CePt3Si
non centrosymmetric superconductor, [105] to the strontium ruthenates. [60] In
CePt3Si the large spin orbit coupling of Pt together with the lack of inversion sym-
metry lifts the spin degeneracy leading to exotic superconductivity. [105, 106]
The importance of spin orbit coupling in Sr2RuO4 has also been recently consid-
ered. [107, 108]

Finally, the most famous exotic superconductors because of their critical temper-
ature, are the cuprates (Cu oxides) discovered by Bednorz and Müller in 1986 [109]
and the more recent Fe pnictides. [1] In most exotic superconductors, superconduc-
tivity emerges in the vicinity of a magnetic instability that can be ferromagnetic, [62,
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110–112] antiferromagnetic, [101–105] characterized by local [113] or itinerant
magnetism. [68, 114] A sketch of a representative phase diagram for heavy fermion
materials, Cu-oxide superconductors and Fe-based superconductors is shown in
Fig. 2.

Figure 2: Phase diagram of some unconventional superconductors where superconductivity sets
in at the border with antiferromagnetism. From left to right: Phase diagram of CeRhIn5 heavy
fermion compound under pressure from specific heat (filled symbols) and electrical resistivity
measurements (crosses) of the superconducting Tc (blue symbols) and Néel temperature TN

(red symbols). The figure is taken from Ref. [102]. Schematic phase diagram of cuprate and
Fe pnictides superconductors describing the transitions from an antiferromagnetic (AFM) or
spin-density wave (SDW) state, to superconductivity (SC) with hole or electron doping. TN is
the Néel temperature, T ∗ is the onset of the pseudogap state (figure from Ref. [115]).

As representative of heavy fermions, the phase diagram of CeRhIn5 under pres-
sure P, extracted from specific heat and electrical resistivity measurements is shown
in panel a) of the figure. At zero pressure the system shows an antiferromagnetic
order whose Néel temperature TN decreases up to a pressure P1, where it equals
the superconducting critical temperature at zero applied magnetic field and a first
QCP appears. The second QCP appears at P = P2. In Cu oxide superconductors
the undoped compound is usually an antiferromagnetic Mott insulator. Doping
with holes and electrons, superconductivity emerges and above Tc a pseudogap
phase appears with an onset temperature T ∗ and whose origin is still controversial.
For small hole doping superconductivity coexists with antiferromagnetism. In Fe
pnictides the undoped system is metallic and in most cases shows antiferromagnetic
stripe order i. e. the spins are aligned ferromagnetically in one direction of the
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squared Fe plane and antiferromagnetically along the other.5 This magnetic order is
described by the vector Q= M = (π,π, 0) in the three dimensional Brillouin zone.
For T equal or larger than the Néel temperature TN a structural phase transition
happens. Superconductivity coexists with antiferromagnetism in the hole doped
part of the phase diagram and appears also for very strong doping regime.

In order to understand the nature of the superconducting state in unconventional
superconductors, several experiments were done in order to extract the pairing
symmetry and trace back the nature and the momentum dependence of the interac-
tion. For heavy fermion compounds the situation is still controversial concerning
both the pairing symmetry and the pairing mechanism. [116] In strontium ruthen-
ates the spin-triplet symmetry for the order parameter, which seemed to be well
established up to now, [62, 110–112] was recently questioned by scanning super-
conducting quantum Interference device (SQUID) microscopy [117] and ARPES
experiment, [108] after being questioned by Haverkort et al. [107]6

Up to now, the most studied family of unconventional superconductors is the one
of cuprates. The SQUID microscopy was used for the first time in these materials to
probe the pairing symmetry of the order parameter which was found to have dx2−y2

symmetry. [119–122] The dx2−y2 symmetry of the order parameter alone cannot
exclude the participations of phonon in the pairing mechanism, [123] but together
with the linear behavior of the resistivity above Tc [124] reduces the probability for
this pairing channel to dominate.

A strong rearrangement of the states near the Fermi level below Tc leads to
a resonance peak in the inelastic neutron scattering measurements in Cu oxides
superconductors. [125–129] This mode was found to be compatible with the
dx2−y2 symmetry for the order parameter in Cu oxides superconductors. [130] The
gap anisotropy in cuprates was also confirmed by ARPES measurements, [131] a
technique largely employed later on to investigate the low-energy bandstructure of

5This is actually the most common case but there are systems where the magnetic order is different from the
stripe one or even absent.

6For an update review about the superconductivity in strontium ruthenate compounds see for example [118]
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these materials. [132]
In order to explore the nature of the bosonic mode involved in superconductivity,

optical spectroscopy was also used. [133] This technique gives indeed informations
on the low-energy excitations and charge dynamics in correlated materials. The
degree of correlation is parameterized by an effective mass m∗ and an effective
scattering time τ∗ which enter the Drude formula for the optical conductivity of
metals. [133–135] In correlated materials, close to a Mott transitions these quanti-
ties get strongly renormalized due to local interaction. In superconductors, below
the critical temperature the Drude peak disappears and a gap 2∆ (being ∆ the
superconducting gap) in the optical spectrum reveals the formation of the supercon-
ducting order parameter built up by the rearrangement of the states in a range 2∆
around the Fermi level. A schematic example of the change in the real part of the
optical conductivity above and below Tc is shown in Fig. 3.

All the experimental techniques mentioned up to now were applied also to
Fe pnictides in order to investigate the pairing mechanism and the symmetry of
the order parameter. Early comparison between DFT calculations and ARPES
measurements revealed the multiband nature of these materials with a Fermi surface
composed by hole and electron sheets located around different points of the Brillouin
zone, as shown in Fig. 1, and connected by the nesting vector Q = M associated with
the stripe antiferromagnetic instability experimentally observed. [3, 93, 136] Given
the topology of the Fermi surface, [136] the vicinity with the antiferromagnetic
instability, [3] and the small value of the electron-phonon coupling constant, [4,
137] Mazin and coworkers [5] and Kuroki et al. [6] proposed the s± symmetry for
the order parameter. This proposal has been slightly extended for taking into account
the possibility of accidental nodes on the order parameter due to the different orbital
character of the states involved in the pairing, [138] which could lead to dx2−y2 [6]
pairing symmetry.

Experimentally, multiband superconductivity in Fe pnictides was observed by
early ARPES measurements [139, 140] and specific heat measurements. [141]
Nodes in the order parameter were observed in LaFePO [142, 143] and were defi-
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Figure 3: Schematics of the change in the real part of the optical conductivity due to the
condensate formation in a superconductor. The green shaded area represents the superfluid
density whose formation involves an energy scale of 2∆ around the Fermi level. The green area
in σ1(ω) can be estimated by σdc × 2∆. [115]

nitely excluded in NdFeAsO0.88F0.12. [144] For BaKFe2As2 [145] and BaCoFe2As2 [146]
the experiments are compatible with s-wave symmetry, while line nodes are present
in BaFe2(As1−x Px )2 system. [147] Finally, a remarkable experiment by Hanaguri, et
al. [148] showed that the Fe selenides and tellurides are most-likely s± supercon-
ductors. The gap structure of optimally doped Ba0.6 K0.4Fe2 As2 pnictide measured
by Ding et al. is shown on the right of Fig. 1. Two larger gaps are located on the hole
and electron Fermi surface sheets located respectively at Γ and M while a smaller
gap is located on the second hole Fermi surface around Γ.

Concerning the spin fluctuations modes involved in superconductivity, inelastic
neutron scattering (INS) experiments were also performed on pure and doped
BaFe2As2 and in LaFePO samples, [149–152] shedding light on the nature and
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on the energy scale of the bosonic mode involved in the coupling. A paramagnon
resonance was indeed found with characteristic energy scale ω0 evolving with
temperature like ω0(T) = ω00(T + θ), with ω00 = 0.14 ± 0.004 meV/K and
θ = 30± 10 K. This resonance broadens with temperature until it disappears above
Tc . The optical properties were also widely explored in these materials, but in the
following I will refer only to the works relevant for the present thesis. [153–159]

Unfortunately, despite a large theoretical effort, at the moment theory does not
permit to reach the same level of precision as experiments, but only to suggest
the main interaction channel. Therefore a corresponding theoretical image for the
gap structure of Ba0.6 K0.4Fe2 As2 as calculated for MgB2 and shown in Fig. 1 is
not yet available. The situation is the same for heavy fermion materials, strontium
ruthenates and cuprate superconductors. This is due to the complicated interplay
between magnetic and orbital degrees of freedom of the electrons (and holes)
involved in the superconductivity of these materials. In the following I briefly review
the most common theoretical methods employed in literature.

The first thing to notice is that, like a detailed theory of electron-phonon su-
perconductivity needs a detailed description of the phonon spectrum, an accurate
description of the Fermi surface, and a well controlled approximation on the inter-
action kernel (like the Migdal theorem [79]), in the same way a detailed theory
for spin fluctuations mediated superconductivity needs an accurate description of
the spin fluctuations modes observed by neutron scattering. However this is strictly
connected with the magnetic properties of the system. [17]

The spin susceptibility was first approximated within the random phase approxi-
mation. [95, 160–162] In this approximation all the ladder and bubble diagrams
are summed up under the assumption that no other diagrams are relevant. The first
model for superconductivity due to antiferromagnetic (zero range) correlations is
the spin-bag model by Schrieffer, Wen, and Zhang. [163, 164] This model aimed to
reproduce superconductivity experimentally observed by hole-doping an antiferro-
magnetic insulator (see the schematic phase diagram in Fig. 2). In this model, if the
Coulomb repulsion U is smaller than the bandwidth W , a hole is introduced in an
antiferromagnetically ordered two dimensional lattice. The hole locally suppresses
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the magnetic order and consequently also the pseudogap ∆SDW associated with
it. This suppression forms a bag where the hole remains self-consistently trapped.
Moreover if two trapped holes get close to each other an attractive potential is
generated among two sharing bag holes. In the opposite limit U � W it can be
shown that a similar result is obtained. Unfortunately Schrieffer et al. performed
calculations in the weak coupling regime, using simple model susceptibility and
ignoring the details of the Fermi surface topology. This yielded to nodeless p and
d-wave pairing in disagreement with the experiment. At the same time, Bickers,
Scalapino, and White developed a new technique for going beyond RPA in the
Bethe-Salpeter equation [165] and applied it to the Hubbard model: the so-called
fluctuations exchange (FLEX) approximation.

In 1992 Monthoux and Pines pointed out that for the description of spin
fluctuations-induced superconductivity it is crucial to take into account the mo-
mentum and frequency dependence of the interaction. [166, 167] Since the pairing
interaction for spin fluctuations involves the spin susceptibility, this led to several
efforts to model in a proper way this quantity which acts as a propagator of the
collective modes seen as the boson which mediates the interaction (boson mediator).

A phenomenological model for the spin susceptibility was first proposed by Millis
et al. [168] then by Monthoux, Balatsky, and Pines [169, 170] and finally generalized
by Millis, [171] who applied a Migdal Eliashberg approach to spin fluctuations-
mediated superconductivity using a model χ(q,ω). This was meant to reproduce
a broadened resonance seen in neutron scattering rather than the spin waves as
thought originally by Schrieffer, Wen, and Zhang. In this way Millis ascribed the
origin of superconductivity in non local correlations more then in the local ones. The
extreme consequence of this is represented by the spin-fermion model, [172, 173]
which is a microscopic model describing the interaction of low-energy fermions with
their own collective spin degrees of freedom. The latter are described by bosonic
operator whose spectrum is given by the bare susceptibility χ0(q) which is supposed
to have the Ornstein-Zernike form. In chapter 4 I will use the Millis-Eliashberg
phenomenological approach to describe the normal state properties of LaFePO. [171]
For a review on the non-phonon mediated superconductivity see Ref. [174].
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On the other hand the problem of correlation was also simplified by the work
on the Hubbard model in infinite dimensions by Metzner and Vollhardt, [175] and
Georges and Kotliar. [176] These discoveries led to dynamical mean field theory
(DMFT) [177, 178] which is still one of the more successful techniques for taking
into account local correlations in real materials. [177, 178] Finally, 20 years ago,
concepts coming from the renormalization group approach and the formalism of
functional integrals were put together by Wetterich [179] and brought to condensed
matter physics by Honerkamp et al. [180] in such a way that a new approach
to correlated systems came out: the functional renormalization group approach
(f-RG). [181]

With the advent of Fe pnictides, the phenomenological Eliashberg approach as
well as RPA, FLEX approximations and f-RG were combined with ab-initio meth-
ods (in particular, with realistic models of the electronic structure derived ab-
initio). [182–194] Indeed, since for many of these materials correlation effects are
less important than in cuprates, the bandstructure and Fermi surface obtained by
means of DFT calculations was found in decent agreement with ARPES and de
Haas-van Alphen measurements. Therefore the LDA or GGA band structure was
considered to be a good starting point for constructing low energy models for the
normal and superconducting state. [182, 183, 186, 194, 195] These works led to
important informations and understanding both on the normal state properties and
on the superconducting ones.

For example, this approach permitted to understand that the presence or absence
of nodes in the order parameter, and the variation of Tc between different classes of
compounds, was related to the changes in the electronic structure induced by the
change in pnictogen height. [186, 192]

However, the DFT starting point in its common implementations (LDA and
GGA), has some problems which makes it impossible to completely reproduce
the experimental data or predict new superconductors. In particular the usual
DFT implementations do not describe the contribution of local correlations to
the magnetic and non magnetic properties and, at the same time underestimate
the contribution to the local magnetic moment coming from near critical spin
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fluctuations in itinerant systems. The first kind of fluctuations are well taken into
account within LDA+ U [50] or LDA+ DM F T [67, 68, 196] approaches. The non
local spin fluctuations should be instead accessible within DFT itself by modifying
the exchange and correlation functional in an appropriate way.

The present thesis deals with electron-phonon superconductivity (chapter 2) and
spin fluctuations-mediated interaction concerning the superconducting properties
(chapter 3) as well as the paramagnetic (chapter 4) and magnetic ones (chapter 5)
of weakly correlated electron systems. In chapter 5 a method for correcting the LSDA
overestimation of the tendency to magnetism in these systems is also presented.

Investigated compounds: an overview

In the present thesis I use both ab-initio calculations and many-body techniques
such as Migdal Eliashberg theory and random phase approximation (RPA) in order
to describe the electronic, electron-phonon, magnetic and optical properties of four
systems, which present interesting problems in magnetism, superconductivity and
their interplay. They are the recently discovered APt3P compounds, the hole-doped
CuBiSO, superconducting LaFePO, and Ni3Al itinerant ferromagnet.

The APt3P compounds and the hole-doped CuBiSO, are recently discovered
superconductors, in which the origin of superconductivity was controversial. [197–
200] In APt3P compounds, an exotic pairing mechanism, standard electron-phonon
coupling, and charge density waves were proposed to play a role in superconduc-
tivity. The optical properties of LaFePO seem to be experimentally dominated by
the spin fluctuations dynamics, [153] however the role of interband transition
was unclear. [154–157] Finally Ni3Al undergoes a ferromagnetic-paramagnetic
transition under pressure [201] which is qualitatively reproduced by LSDA. How-
ever, both the zero-pressure magnetic moment and the critical pressure are highly
overestimated. [52]

In all these compounds, I used DFT calculations as a starting point to investigate
the electronic properties, phonon density of states and electron-phonon coupling.
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Indeed, DFT is usually a good starting point for understanding the low-energy
properties of itinerant systems. [46] Moreover, due to the high accuracy reached in
actual electron-phonon calculations, [12, 202] this technique can actually be used
to “probe” the electron-phonon coupling and used, together with the experiment, to
understand the physics of real materials. Spin fluctuations are taken into account
phenomenologically even if in chapter 5 a new method for suppressing the magnetic
moment in itinerant systems, within the LSDA functional, is discussed. In the
following I briefly introduce the systems I studied in the present thesis giving the
motivation of the work.

The new APt3P superconductors

The success in synthesizing new superconductors by substituting Fe for other tran-
sition metals in pnictide superconductors, [53–56] together with the renewed
interest in the effect of spin-orbit coupling on the superconductivity of Ru-based
compounds, [107, 108, 117] recently led to the discovery of several superconductors
based on Pt, Fe and As, [203–205] such as the 122 Pt-doped Fe pnictides. [206–208]
The large spin orbit coupling in Pt might lead to unconventional superconductiv-
ity, it has been speculated. Due to the lack of local inversion symmetry, exotic
superconductivity has been discussed in the hexagonal SrPtAs superconductor, for
example. [209–211] On the other hand, the ThCr2Si2-type of structure, [212] of
the 122 Fe pnictides recently offered interesting examples of emerging quantum
criticality by isoelectronic substitution of As with P, [47–49] and doping Fe with
Co, [213] or by substituting Ge with P in the SrCo2(Ge1−x Px )2 system. [214] Fi-
nally, the large spin orbit coupling of Pt in crystals without inversion symmetry like
CePt3Si, lifts the spin degeneracy of the states at the Fermi level leading to exotic
pairing. [105, 215, 216]

In trying to synthesize the isoelectronic counterpart of the SrPt2As2 supercon-
ductor, Takayama et al. [197] discovered the new family of APt3P (A= Sr, Ca, La)
superconductors while the desired SrPt2P2 phase was observed only in a minimal
part. [217]
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The APt3P family immediately attracted the interest of the scientific community
due to their relatively high critical temperatures (Tc = 8.4 K in SrPt3P, Tc = 6.6
K in CaPt3P and Tc = 1.5 K in LaPt3P) and to their crystal structure which is the
centrosymmetric counterpart of the CePt3Si one. [198, 199, 218] In the paper
reporting the discovery of the APt3P’s, [197] the authors indeed suggested that
the synthesis of these compounds could lead to new insight on superconductivity
in non centrosymmetric crystals, by studying isoelectronic compounds both in the
centrosymmetric and non centrosymmetric structural phase.

Moreover, for SrPt3P a very large value of the α ratio, i. e. the ratio between
the specific heat jump ∆C at Tc and the critical temperature, was experimentally
reported and for this reason superconductivity was proposed to be of multiband
character. [197] This proposal was also supported by the presence of multiple Fermi
surface pockets inferred from the Hall resistivity measurements and effectively
found in DFT calculations. [197, 198] Furthermore, due to the large spin orbit
coupling of Pt, the possibility of unconventional superconductivity could not be a
priori excluded and it was indeed proposed in Ref. [199] for LaPt3P.

Finally, even considering electron-phonon coupling as pairing mechanism, it was
not clear why SrPt3P shows a specific heat jump ∆C at Tc which is twice as large as
in CaPt3P, an isoelectronic compound belonging to the same family and having a
very similar critical temperature (Tc = 8.4 K in SrPt3P and Tc = 6.6 K in CaPt3P).
I will address these points by calculating ab-initio the electronic, vibrational and
electron-phonon properties of these materials and show that all these findings are
compatible with standard strong-coupling, single-band Midgdal Eliashberg theory
of electron-phonon superconductivity. Interestingly, I will also show that it might be
possible to realize the original proposal of Takayama, et al. [197] of synthesizing
centro and non-centro symmetric variants of electronically equivalent compounds.

Superconductivity in Cu1−x BiSO

At present, the highest superconducting critical temperature ever was observed in
copper oxides (highest Tc = 153 K in HgBa2Ca2Cu3O8+δ at high pressures [219])
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and in the Fe pnictides (highest Tc = 56 K in Gd1−x Thx FeAsO [220] and Sr1−x Smx FeAsF [221])
superconductors. [1, 109] In particular Fe superconductors, despite the lower criti-
cal temperatures, can be synthesized in many different structures, and doped and
modified in many different ways. [53–56] For example, doping can be done into the
FePn planes (Pn=As,P, N, Sb), substituting Fe with other transition metals, [206,
222, 223] or the Pn atom with another pnictogen atoms, or even chalchogen. [224]

Following this track, Ubaldini and coworkers synthesized a new superconductor
by substituting Fe and Pn with irespectively Cu and S in the ReOFePn (Re = rare
earth) structure of the 1111 Fe pnictides. [225] Other experiments did not confirm
superconductivity, [226, 227] on the contrary, optical conductivity measurements
found CuBiSO to be an insulator with a band gap of ∼ 1.1 eV. [226] Superconduc-
tivity in CuBiSO, was indeed found by doping with holes i. e. introducing vacancies
into the Cu planes. The nominal doping level was ∼ 10% but the sample was rather
dirty. [225] Hole-doped CuBiSO has a relatively high Tc = 5.8 K (in LaFePO, the first
Fe-based superconductor discovered, Tc = 7 K [1]). For this material early calcula-
tions by Mazin [200] showed a weak ferromagnetic instability and for this reason
spin fluctuations were proposed as the most likely pairing interaction with p-wave
symmetry. However no electron-phonon calculations were done and experiment
did not see any trace of magnetism. Moreover triplet p-wave superconductivity is
usually characterized by a much smaller critical temperature than 5.8 K. [105, 112]
CuBiSO has a bandstructure which is very similar to that of the Fe pnictides such as
LaFePO, but the Fermi level is shifted up by ∼ 1.5 eV due to the different electron
count of Cu d10 with respect to Fe d6. Therefore the Fermi level of Cu0.9BiSO
sits in a region of the bandstructure governed by a strong Cu d-S p antibonding
hybridization. This is in contrast to Fe pnictides where the Fermi level sits in the
non bonding region of the bandstructure dominated by the Fe d orbitals. [72] In
the latter compounds this is associated also with a depression of the density of
states and the nesting condition favors the stripe antiferromagnetic instability. [72]
In CuBiSO the Fermi level sits on a peak of the density of states which favors the
ferromagnetic instability found by Mazin. [200]

I will perform paramagnetic, spin polarized and electron-phonon calculations in
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order to “probe” the magnetic and superconducting properties of CuBiSO. Afterwards
I will phenomenologically take into account the effect of spin fluctuations and draw
a phase diagram describing the interplay between magnetism and superconductivity
in this material.

Optical spectrum of LaFePO

As shown in the schematic phase diagram of Fig. 2 superconductivity in Fe pnictides
usually occurs in the vicinity of an antiferromagnetic instability. For this reason
and due to the small value of the electron-phonon coupling, [4, 70, 137, 228]
superconductivity is most likely driven by spin fluctuations. [5, 6] Since this kind
of pairing interaction is coupled to the electronic degrees of freedom, a general
procedure for obtaining the coupling constant starting from the low energy band
structure has not yet been developed. Experimental techniques like infrared optical
spectroscopy for probing the electronic properties are quite useful in understanding
the nature of superconductivity and the strength of the interaction. [133–135]

This is done by analyzing the experimental data of the optical conductivity within
the extended Drude model (EDM). In this model the electron-boson interaction is
parameterized in terms of a frequency dependent renormalization of the scattering
life time τ and of the effective mass m∗ of the quasiparticles, which enter a modified
Drude formula for the intraband optical conductivity.

Optical conductivity measurements on LaFePO analyzed using the EDM found a
surprisingly large inverse time scattering rate τ−1(ω) with a significant frequency
dependence. [153] This was interpreted as an indication for strong many body
effects, due to a retarded interaction. However other experiments and theoretical
studies based on the derivation of low-energy Hamiltonian by down-folding the LDA
bandstructure, [194] agree in viewing LaFePO as a weakly correlated, compensated
metal. [136, 229–231] Moreover, both the superconducting Tc and the low-energy
properties of this material can be easily explained by using a frequency dependent
interaction in the weak coupling regime. [195]

This discrepancy could be due to the presence of interband optical transitions in
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the low-energy spectrum of LaFePO. Indeed, the underlying assumption of the EDM
analysis is that coherent electronic excitations, i. e. optical interband transitions,
are on an energy scale much larger than the width of the Drude peak.

However, in pnictides this assumption could be quite questionable as clearly
indicated by the experimental ellipsometry data by Charnukha et al. [158, 159] In
order to clarify the role of interband transitions on the optical spectrum of LaFePO
I will calculate both the interband and the intraband optical conductivity. The
former will be calculated using a low-energy model solved in the Migdal Eliashberg
approximation. [195] The latter will be estimated using DFT and modeled in a
phenomenological way in order to include correlation effects. My calculations
clearly show that the strong frequency dependence of τ−1(ω) for LaFePO comes
from the spurious contribution of low-energy interband transitions on the optical
spectrum rather than from spin fluctuations retarded interaction.

Accounting for spin fluctuations suppression of magnetic properties in itiner-
ant magnets

DFT is in principle the only way of accessing the ground state in real materials.
This is due to the reformulation of the many-body problem in terms of the ground
state electronic density, which is a three-dimensional variable, together with the
connection with the variational principle.

However, in order to perform the calculations, some approximations must be
applied, and this reduces the predictive power of the theory which, nevertheless,
offers a good starting point for understanding the material properties. The most
common implementations of DFT are the local (spin) density approximation -L(S)DA-
and the generalized gradient approximation (GGA). The drawback of the mean-field
nature of these approximations emerges in a special way when facing magnetism. In
localized systems indeed LSDA and GGA underestimate the tendency to magnetism.
This is due to an underestimation of the effect of correlations.

Considering for example LSDA, the superexchange mechanism for magnetism is
for example not included. [232] The origin of magnetism in LSDA has indeed an itin-
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erant nature as for the Stoner model. [45] On the other hand long-wavelength spin
fluctuations, happening for example in near critical systems, are also not included
in LSDA. In these systems indeed, the spin susceptibility gets self consistently renor-
malized by the interaction as suggested by Moriya, [17] and this renormalization is
not taken into account in LSDA.

For correcting the underestimation of the tendency to local magnetism, the
Hubbard U parameter has been efficiently included in the exchange and correlation
functional in the so called LDA+U method. [50, 71]

In itinerant systems, the renormalization of the spin susceptibility has been
taken into account in a phenomenological way, by reducing the static susceptibility
calculated in LSDA in order to reproduce the experiments. This method has been
applied for correcting the calculated magnetic properties in systems close to a
quantum critical point. [51, 52, 233, 234]

Recently, the overestimation of the tendency to magnetism revealed its impor-
tance in connections to the Fe-pnictides, where this is reflected in a underestimation
of the bondlengths if magnetism is suppressed. [57, 61, 64, 70]

In order to suppress the magnetic moment in pnictides, LDA+U with a negative
Hubbard parameter U has been also used [65] with the argument that negative
U should correct the overestimated Coulomb interaction in LDA and bring the
theoretical results in agreement with the experiments, by mimicking the effect of
long wavelength fluctuations. Although mimicking the effect of long wavelength
fluctuations by suppressing the local ones implies non trivial physical assumptions,
and the presence of an attractive local interaction is hard to justify, the fact of
including the suppression of the magnetic moment and susceptibility inside the
LSDA functional is a good idea. This could open the root towards a new method
for accounting for spin fluctuations beyond LSDA within density functional theory,
which will be actually presented in chapter 5.

A possible system for testing the method should be a nearly ferromagnetic
metal close to a phase transition. Indeed, given the connection between the local
spin density approximation and the Stoner theory, corrections made to the LSDA
functional can be compared with modifications of the Stoner model. Moreover the
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presence of a phase transition makes the effect of near critical fluctuations to be
important.

The perfect candidate for such a study is the Ni3Al itinerant ferromagnet under
pressure. [201] This system, indeed undergoes a ferromagnetic paramagnetic tran-
sition and LSDA overestimates both the magnetic moment at zero pressure and the
critical pressure. [52]

In order to reconcile the LSDA calculation and the experiment about the
ferromagnetic-paramagnetic transition in Ni3Al, I will apply a simple method for
suppressing the tendency to magnetism within the LSDA. The method consists in
scaling the spin polarized part of the exchange-correlation potential by a constant
factor s. This factor mimics the effect of long wavelength fluctuations in reducing the
Stoner parameter I and it is demonstrated to be the ratio between the renormalized
Stoner parameter and the bare one. For this reason I call this method Reduced
Stoner Theory (RST). The quantity s can be in principle calculated via the fluctu-
ation dissipation theorem rendering the method equivalent to the self-consistent
renormalization theory by Moriya. [17] In Ni3Al, due to a peculiar scaling property
of the bandstructure it is possible to obtain the pressure dependence of s ab initio.
The obtained phase diagram gives a pressure dependent Curie temperature in good
agreement with the experiment. The method is easy to implement and does not
carry any additional computational load with respect to a normal spin polarized
calculation.

Organization of the thesis

The following chapters describe in more details the topics mentioned above. From
chapter 2 on, the properties of the investigated materials are studied in comparison
with the experiment and, if necessary, the quantities calculated ab-initio are corrected
by suitable models. This is what I called phenomenological approach from ab-initio
calculations.

In chapter 1 a theoretical overview of magnetism and superconductivity is of-
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fered. These are indeed the topics around which the whole thesis is constructed.
The approaches to localized and itinerant magnetism are described together with
the main approximations, their limitations and successes. A short presentation of
density functional theory is included with particular attention to its connection with
the Stoner model. The self-consistent renormalization theory by Moriya [17] is
presented as a renormalization of the Landau functional as reported by Ref. [235].
Some recent developments of the spin fluctuations theory are also mentioned.
The Ginzburg and Landau [74] phenomenological model for superconductivity
is illustrated together with a short discussion on the BCS wave function and the
Migdal-Eliashberg theory for strong coupling superconductors. The theory of uncon-
ventional superconductors is also briefly mentioned.

In chapter 2 I present my theoretical results on the APt3P (A=Sr, Ca, La) com-
pounds, recently discovered by Takayama et al. [197] The structural, electronic and
electron-phonon properties are studied using first-principles calculations. The ther-
modynamical properties in the normal and superconducting states are accessed by
Migdal-Eliashberg theory and compared with the experiment. Given the remarkable
agreement with the experiment, some conclusive statements are possible and the
classifications of this new family of electron-phonon superconductors, along the
lines of Marsiglio and Carbotte is done. [236] Multiband superconductivity, [197,
198] exotic pairing, [199] and dynamical instabilities are excluded. [199] Moreover
the conjecture by Takayama et al. about the possibility of synthesizing the APt3P
compounds in the non centrosymmetric structure of CePt3Si is supported, being the
energy barrier between the two structure of ∼ 20 meV.

In chapter 3 the superconducting pairing mechanism of hole-doped CuBiSO is
studied. In order to examine the ferromagnetic instability found in Ref. [200] the
paramagnetic and ferromagnetic electronic properties of this material are calculated.
The ferromagnetic instability is reproduced and is due to a peak in the density
of states (DOS) which gets populated when the system is doped with holes (the
stoichiometric compound is indeed a band insulator). The phonon DOS and electron-
phonon coupling are then calculated and the obtained Tc is 5 times larger than
the experimental one. For this reason the effect of ferromagnetic fluctuations on
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superconductivity must be also considered. Through a suitable parameterization of
the interacting spin susceptibility at the RPA level, and the use of an appropriate
formula for Tc triplet superconductivity is also explored. The effect of fluctuations
is simulated by reducing phenomenologically the LSDA Stoner parameter. Due
to the uncertainty on the experimental doping level, this variable is considered
in the calculations in the rigid band approximation. As a result a phase diagram
is obtained, as a function of doping x and Stoner parameter I . At experimental
doping the critical temperature associated with triplet, spin fluctuations-mediated,
superconductivity and the one associated with singlet, spin fluctuations-suppressed,
superconductivity are found to be the same.

In chapter 4 the optical properties of LaFePO are studied by calculating both
the intraband and the interband contributions to optical conductivity. The former is
obtained from the low-energy model of Ref. [195] while the latter is calculated ab-
initio from DFT. After having recalled the general assumption of the extended Drude
model, experimentally used for interpreting the data, [153] the low-energy model
used for calculating the optical properties is described. After having shown that the
intraband contribution alone does not explain the experimental data, the interband
optical conductivity are calculated and their origin investigated. Afterwards the
optical conductivity is modeled in order to include the intraband contribution, the
interband one and the effect of local correlations, which is not included in the
ab-initio calculations. This analysis shows that low-energy interband transitions
dominate the optical spectrum of LaFePO, showing in this way the inadequacy of
the EDM analysis.

In chapter 5 a simple method for suppressing the magnetic properties of itinerant
systems is presented. The method aims to mimic the effect of long wavelength
fluctuations in reducing the tendency to magnetism. The magnetic and paramagnetic
results for Ni3Al under pressure are presented and, consistently with previous
calculations, [52] it is found that LSDA overestimates both the magnetic moment at
zero pressure and the critical pressure. It is found that the paramagnetic density of
states shows a particular scaling property with pressure. Afterwards it is shown that
the effect of spin fluctuations on the mean field magnetic properties is to renormalize
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the Stoner parameter I by a quantity s = Ĩ/I that can be obtained by applying the
fluctuation dissipation theorem. Finally the method for including s inside the
exchange and correlation functional as a phenomenological factor is shown. Closing
the equations for s by calculating the interacting spin susceptibility would render the
method completely ab-initio on the same lines by the self-consistent renormalization
theory by Moriya. [17] In Ni3Al under pressure this is possible due to the scaling
property of the density of states. The obtained phase diagram is in good agreement
with the experiment.

Conclusions and Outlook are given at the end.





Chapter 1

Theoretical overview

In this chapter I review the basic theoretical concepts used in the whole thesis. First
of all, I introduce the problem of magnetism and two viewpoints corresponding to the
localized and itinerant limits. I describe these two different approaches, their main ap-
proximations, limitations and their successes. After that I shortly introduce the Density
Functional Theory and the approximations used in the present thesis. In particular
I show the link between the local spin density approximation and Stoner theory of
magnetism. At this point the role of spin fluctuations in suppressing the tendency to
magnetism in itinerant systems is elucidated by means of the Shimizu-Moriya theory
and some recent developments on the theory of paramagnons is also shortly reviewed.
Finally I give a very basic introduction to the theory of superconductivity. Without
entering too much into the details of the formalism, I describe the most important
quantities in the theory, what is the effect of electron-phonon coupling and param-
agnons. In the end I shortly present an extension of the BCS theory to the case of the
spin fluctuations-mediated superconductors.
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1.1 Localized and itinerant electron magnetism

Despite almost two hundred years of systematic studies on magnetism, the magnetic
properties of metallic systems are still an open challenge. This is due to an apparent
duality of the d electrons in these systems: they are described by band theory in
their ground state, while at finite temperature they show temperature dependence
of the physical properties coming from the physics of local moment.

In this section I will review the most successful theories of magnetism starting
from the localized model in which the spins interact in real space and continue to
the Stoner model in which the electrons are described by bands, and therefore the
disproportion between spin up and spin down giving rise to the magnetization takes
place in reciprocal space.

1.1.1 Heisenberg model

The Heisenberg model is the first quantum mechanical formulation of the interaction
between two spins leading to magnetic order. In this model, two spins sitting on a
lattice in d dimensions interact with each other and with an external magnetic field
H according to the following Hamiltonian: [25]

H =−
1

2

∑

i, j

Ji jsi · s j −
∑

i

H · si (1.1)

where the spin operator si( j) acts on site i( j) and Ji j > 0 for ferromagnetic (FM)
coupling and Ji j < 0 for antiferromagnetic (AFM) coupling. I will first focus on the
FM case, and I will shortly treat the AFM one at the end of the present subsection.

Ferromagnetism

The Heisenberg model for ferromagnetism can be easily solved assuming a mean
field decoupling between the spin operators si and s j acting respectively on site
i and on site j, i.e. neglecting the second order term (si − 〈si〉)(s j − 〈s j〉) in the



1.1. Localized and itinerant electron magnetism 41

product si · s j :

si · s j ' si · 〈s j〉+ 〈si〉 · s j − 〈si〉 · 〈s j〉+((((((((hhhhhhhsi − 〈si〉)(s j − 〈s j〉) (1.2)

where 〈〉 indicates the ensamble statistical average. The mean field decoupling
(1.2) corresponds then to neglecting the statistical fluctuation of the quantity si(s j)
around its mean value. The substitution (1.2) leads to the following mean field
effective Hamiltonian:

He f f =
1

2

∑

i, j

Ji j m
2 −
∑

i

h̃szi (1.3)

where 〈si〉 = mẑ, H = hẑ, and szi is the z component of the spin operator si . The
quantity

h̃= h+
∑

j

Ji j m (1.4)

is the Weiss mean field acting on the spin szi due to the presence of the external
field and to the presence of the other N − 1 spins. Since at this level of the mean
field approximation only the z component of the spins plays a role, it is possible
to introduce a simpler model where the spins have unitary value and can be only
parallel or antiparallel to the external field. This is the Ising model, described by
the following Hamiltonian:

H =−
1

2

∑

i, j

Ji jσiσ j −
∑

i

hiσi . (1.5)

The spin σi sitting on the site i gains energy hi if it is aligned with the external
field, and energy Ji j if it is aligned with the spin σ j sitting on the site j. At zero
temperature the system is ordered. The direction of the total magnetization is
parallel to ẑ and the system remains polarized even if h→ 0. At finite temperature
the thermal energy tends to destroy the order increasing the entropy. Solving the
model in the mean field approximation leads to a selfconsistent equation for the
magnetization:

m(T ) = tanh
�

βh+ β j0m(T )
�

, (1.6)
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where β = (kB T)−1 and kB is the Boltzmann constant. This is the Curie-Weiss law
and N j0 =

∑

i j Ji j is, by definition, N times the Fourier transform at q = 0 of the
coupling constant Ji j .

1

Eq. (1.6) can be obtained applying the mean field decoupling (1.2) to the Ising
Hamiltonian (1.5), calculating the partition function: [237]

Z =
∑

{σ}
e−βHM F =

∑

{σ}

¨

e−β[
NJ0m2

2 −h̃
∑

i σi]

«

= e−β
NJ0m2

2

N
∏

i=1

�

e−β h̃+ eβ h̃
�

=

= e−β
NJ0m2

2
�

2cosh(βh+ βJ0m)
�N , (1.7)

then minimizing the free energy

F̄(T, h) =−kB T log Z =
N

β

¨

J0βm2

2
− log

�

2 cosh(βh+ βJ0m)
�

«

. (1.8)

1Assuming translational invariance, Ji j = J(ri − r j ) and the Fourier transform of the coupling constant Ji j is

defined as jq =
1
N

∑

i expiq·(ri−r j ) Ji j
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Figure 1.1: Graphical solution of the eq. (1.6). For a given temperature (corresponding to a
given β), the solution is given by the intersection between the straight line y(m) = m (magenta
line) and the function Γ(m) = tanh(βJ0m) (different colors). The figure shows three cases,
corresponding to three possible choices of the parameter βJ0. For βJ0 < 1 the function Γ(m)
is represented by the blue line and only the trivial solution m= 0 is possible. For βJ0 > 1 the
function Γ(m) is represented by the red line and the three solutions m= 0, m=±m0 6= 0 are
possible. For βJ0 = 1 the three solutions collapse on the trivial one since m0 = 0. Inset: Free
energy at zero magnetic field F(m, h= 0) for the Ising model for different values of temperature
kB T = 1/β . For βJ0 > 1 the function F(m, h= 0) has two minima at ±m0 6= 0 separated by a
maximum at m= 0. For βJ0 > 1 only one minimum is present. The condition βJ0 = 1 marks
the critical point where the two minima at ±m0 collapse into m0 = 0.
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For h= 0 the solution of eq. (1.6) can be graphically found by the intersection
between the straight line y = m(T) and the function y ′ = tanh(βJ0m(T)). From
Fig. 1.1 one sees that for βJ0 < 1 y intersects y ′ only at the trivial solution
m(T) = 0. This solution is associated with the paramagnetic state. For βJ0 > 1 eq.
(1.6) has three intersections with y ′: m(T) = ±m0(T) and m(T) = 0. βJ0 = 1 is
the critical point which separates the regimes with three solutions from the regime
with only one solution. The temperature Tc associated with βc = 1/J0 is the Curie
temperature. The free energy (1.8) reported in the inset of Fig. 1.1 has only one
minimum at m(T ) = 0 for T ≥ Tc and two minima at ±m0(T ) for T ≤ Tc . The two
minima are separated by a maximum, and the energy F̄(m0, 0) gives the energy
necessary to rotate all the spins for inverting the magnetization (from m(T) = m0

to m(T ) =−m0). The shape of the free energy in Fig. 1.1 it is actually quite general
and it occurs whenever the system is close to a second order phase transition.

Antiferromagnetism

If Ji j < 0 the spins in (1.5) prefer to be antialigned. The Ising model can be easily
solved by using a bipartite lattice.

Definition 1. A bipartite lattice is a lattice which can be divided into two sublattices,
called A and B, such that a site in the sublattice A is surrounded only by sites of
sublattice B and vice versa.

Assuming that the magnetization in the sublattice A is opposite to the magneti-
zation of lattice B i. e. mA =−mB , one gets:

mi(T ) = tanh
�

βh+ β j0m j(T )
�

(1.9)

with j = A, B.

By means of a gaussian transformation it can be shown that the Ising model,
treated at the mean field level, becomes equivalent to the Landau model for the
second order phase transitions. [238]
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Therefore, in the next subsection I introduce the Landau model and obtain the
temperature dependence of the physical observables, like the magnetization or the
susceptibility, in the vicinity of Tc . In this way I will collocate the phenomenon of
ferromagnetism in the broader and more natural landscape of second order phase
transitions to which also superconductivity belongs. At the same time I will also
introduce a compact formalism and the concept of order parameter that will be used
later on in the thesis.

1.1.2 Landau theory of second order phase transitions

The Ising model can be represented in terms of functional integrals. [238] Using
this representation it can be shown that, at the mean field level, the behavior of the
thermodynamic quantities close to the critical temperature, characterized by the
so-called critical exponents, is the same as for the Landau model of second order
phase transitions. [239] In this respect the Landau theory is a mean field theory in
the sense of eq. (1.2) i. e. it neglects spatial correlations.

By means of a Legendre transformation applied to the free energy F̄(T, h) it is
possible to introduce the order parameter φ(r) with respect to which the quantity

F[T,φ] = F̄(T, h) +

∫

d3r h(r)φ(r) =

∫

d3r f (T,φ(r)) (1.10)

is minimum. The quantity h(r) in eq. (1.10) is the conjugated field to the order
parameter φ(r). [240]

The order parameter for the paramagnetic-ferromagnetic transition driven by
temperature is the magnetization m(T ) while for the antiferromagnetic case is the
staggered magnetization m= mA−mB , where mA and mB are the magnetization
on the two A and B sublattices. For a general second order phase transition the
order parameter is defined by its properties which are repeated in the following
from Ref. [240]:

(a) It may vanish above the critical point but it must be non-zero in the region
just below Tc .
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(b) It can approach zero continuously at T → Tc , from below (for example, at
zero applied field the magnetization vanishes as the temperature is raised to
the Curie temperature). This condition ensures that the transition is not of
the first order.

(c) Below the phase transition, the order parameter is not fully determined
by the external conditions, but it can assume two or more different values
under physically identical conditions. For example, at zero applied magnetic
field, the magnetization may point in the plus or minus z direction with equal
facility below Tc . Similarly, in the liquid - gas phase transition, the appropriate
order parameter is the density minus the critical density: ρ−ρc . When the
liquid is in contact with the vapor, this order parameter takes two values:
positive value appropriate to the liquid phase and negative value appropriate
to the gaseous phase.

From points (a) and (b), Landau supposes that near the critical temperature Tc ,
φ(r) is small, so that it is possible to expand f (T,φ(r)) around Tc in the following
way:2 [239]

f (T,φ(r)) =
a2

2
φ2(r) +

a4

4
φ4(r) +

c′

2
| ∇φ(r) |2, (1.11)

where a4 is positive otherwise the transition becomes of the first order and c′ > 0
because to curl the order parameter must cost energy. [240]

By taking now the functional derivative to the left and to the right of eq. (1.10),

2Actually this assumption is not valid if the order parameter is a non trivial function of r since the word “small”
becomes meaningless. On the other hand the modern theory of critical phenomena justifies this assumption
a posteriori. Indeed the n-order coefficient of the expansion scales with negative exponent approaching the
critical point for n≥ 6. [237, 241]
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and using eq. (1.11), the following equation of state is obtained: 3

δF[T,φ]
δφ(r)

= a2φ(r) + a4φ
3(r)− c′∇2φ(r) = h(r). (1.12)

The homogeneous limit

In the limit of small spatial fluctuations and zero external field h(r), the condition
of minimum for F[T,φ] gives:

a2 + 3a4φ
2
0 > 0, (1.13)

where φ0 = limh→0φ(r). Given the definition of order parameter, [240] the condi-
tion (1.13) implies that a2 = r0(T − Tc) and

φ0 =

È

−r0(T − Tc)
a4

≈| Tc − T |β (1.14)

with r0 constant and β = 1/2.

In the same limit (c′ = 0), deriving eq. (1.12) again with respect to φ(r) at
h= 0 one obtains the uniform spin susceptibility:

χ0 =
∂ φ

∂ h

�

�

�

h=0
=

1

a2 + 3a4φ
2
0

(

= 1
a2

for T > Tc

= 1
−2a2

for T < Tc
(1.15)

which implies:

χ0 ≈| T − Tc |−γ (1.16)

with γ= 1.

For a ferromagnet eq. (1.14) describes how the spontaneous magnetization
vanishes as the temperature increases, and eq. (1.16) reflects the linear behavior

3Eq. (1.12) is obtained by considering F[φ + δφ] − F[φ] =
∫

d3r
�

a2φ(r) + a4φ
3(r)

�

δφ +
∫

d3r
�

c′ | ∇φ | ∇δφ
�

and integrating by part the last term. The underlying assumption is that δφ goes

to zero at infinity, so
∫

d3r
�

c′ | ∇φ | ∇δφ
�

= c′∇φδφ
�

�

�

+∞

−∞
− c′

∫

d3r∇2φδφ =−c′
∫

d3r∇2φδφ.
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of the Curie law for the susceptibility which is found to hold in a big variety of
compounds.

Approaching the transition the specific heat C , which is the second derivative
of the free energy with respect to the temperature, has a jump. This is the biggest
evidence that a second order phase transition is happening in the bulk. On the other
hand from the analysis of the specific heat jump is possible to deduce the volume
fraction of the sample involved in the transition.

From eq. (1.11) the expression of the specific heat below the transition C =

−T ∂
2 f (φ0)
∂ T2 ∝ T can be easily obtained, while above the transition C vanishes since

the order parameter vanishes as well. Therefore:

∆C(T ) = C(T → T+c )− C(T → T−c ) =| T − Tc |−α (1.17)

with α= 0.

The inhomogeneous case

Introducing now spatial fluctuations it is possible to calculate the correlation function
and the correlation length. Indeed the correlation function: [237]

Γ(R,R′) = 〈φ(R)φ(R′)〉 − 〈φ(R)〉〈φ(R′)〉 (1.18)

gives the probability of finding a given value of the order parameter at R given
a certain value of the order parameter at R′. In case of translational invariance,
Γ(R,R′) = Γ(R − R′) = Γ(r). The quantity Γ(r) can be related to the uniform
magnetic susceptibility χ by the fluctuation dissipation theorem4: [238, 242]

χ = β

∫

drΓ(r). (1.19)

In the linear response theory, the relation δφ(R) = β
∫

d3R′Γ(R−R′)δh(R′) holds
and allows us to calculate Γ(r) differentiating h(r) in eq. (1.12) and calculating the

4If h(R)→ 0 translation invariance is restored and Γ(R,R′) = Γ(R−R′) = Γ(r).
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following functional derivative:5

δh[φ]
δh

= δ(R′ −R) = βΓ(R,R′)[a2 + 3a4φ
2(R)− c′∇2].

Sending h(R) → 0 and doing the Fourier transformation, the Ornstein-Zernike
form for the correlation function is obtained:

Γ(q) =
1/β

a2 + 3a4φ
2
0 + c′q2

=
1

β c′
1

ξ−2 + q2−η (1.20)

with η = 0. The quantity ξ is the correlation length defined by the Fourier
transform of eq. (1.20) in d dimensions:

Γ(r)∼| r |2−d e−|r|/ξ (1.21)

that diverges close to Tc as:

ξ=

È

c′

a2 + 3a4φ
2
0

=
p

c′χ0 ∼

È

c′

r0
| Tc − T |−ν (1.22)

with ν = 1/2.
This indicates that the mean-field approximation in the form of eq. (1.2) breaks

down close to the critical point. In this respect, a cryterion on the applicability
of the mean-field approximation involving the temperature T can be obtained by
choosing c′ = 1 and evaluating the ratio Γ(ξ(T))/φ2

0(T) =−a4ξ
2−d/a2, which is

the ratio between the average fluctuations and the square of the mean value of the
order parameter. The mean field approximation in the sense of eq. (1.2) is a good
approximation as soon as this ratio is small, i. e. when:

a4[r0(Tc − T )]
d−4

2 � 1. (1.23)

5The result follows from the fact that

h(φ +δφ)− h(φ) = a2δφ(R) + 3a4φ
2(R)δφ(R)− c′∇2δφ(R) =

=

∫

�

a2 + 3a4φ
2(R′)− c′∇2

�

δφ(R′)
δh(R′)
δh(R)

dR′
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Eq. (1.23) is the Ginzburg criterion and gives the temperature range called critical
region, within which the mean-field approximation is applicable in terms of the
microscopic parameters of the model. The exponents α, β , γ, ν and η which define
the behavior of the macroscopic observables of the system close to the critical
point in eqs. (1.14), (1.16), (1.17), (1.20) and (1.22) respectively, are called
critical exponents.6 Experimentally these quantities were found to depend only
on the dimensionality of the problem d and on the number of components of the
order parameter n. [240] From the theoretical point of view they also depend
on the approximations made on the model and in this way they can be used
for classifying also the approximations made. The critical exponents that I have
obtained here are the critical exponents corresponding to d= 4 and n= 1 in the
gaussian approximation for the Wilson action. [237, 238, 241] These are the values
of d and n characterizing the collinear ferromagnetic transition and the liquid-gas
transition. For a superconductor n=2, indeed the superconducting order parameter
is a complex number characterized by an amplitude and a phase.

Up to now I treated models in which the presence of local moments was an
explicit (Heisenberg and Ising model) or implicit (Landau theory) assumption.
Approaching the critical point, thermal fluctuations make the local moments more
and more correlated. As a consequence, the mean field approximation becomes
more and more questionable up to a point where the entire system is correlated
over distances comparable with the coherence length of the electrons, and the order
is destroyed (created) coming from below (above) Tc .

In the next section I will introduce a model in which the formation of local
moment is instead linked to a condition on the non magnetic density of states at the
Fermi level.

6The additional critical exponent δ defines the behavior of the order parameter at T = Tc as a function of
the magnetic field: φ0 ∼ h1/δ with δ = 3.
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1.1.3 The Stoner-Wohlfarth model

The Stoner model considers electrons moving in a periodic potential V (r+R) = V (r)
under a uniform magnetic field H = hẑ along the ẑ direction. If h= 0 the energy
bands are degenerate for spin up and spin down electrons, therefore the spin index
in the single particle energy can be dropped. Under the effect of the magnetic field
the one-particle energy εn

k associated with wave vector k in the n− th band acquires
spin dependency and if the additional potential due to the spin polarization of the
other N − 1 electrons (Weiss field) is k independent, as Stoner assumes, the spin up
and spin down energy bands shift rigidly in opposite directions with respect to the
Fermi level:

εn
k → Ekσ = ε

n
k +σ

∆
2

(1.24)

where σ = ±1 is the electron spin orientation (up or down) with respect to the ẑ
direction and the wave vector independent quantity ∆ is defined as:

∆= Im+ 2µBh (1.25)

and it is the total band splitting. The quantity m in eq. 1.25 is the total magnetization,
µB = eħh/(2mc) is the Bohr magneton (being the gyromagnetic factor g = 2.0023)
and I is the so-called Stoner parameter. The kinetic energy of an electron system
increases with increasing magnetization, owing to splitting of the energy bands for
up and down spin electrons.

The quantity ∆ is equivalent to the Weiss field (1.4). In practice each electron
“feels” the effect of the external magnetic field h plus the mean field Im due to the
polarization of the other N − 1 electrons.

At finite temperature T the total number of electrons and the total magnetization
m are given respectively by:

N =

∫

dεN(ε)[ f (ε−∆)+ f (ε+∆)] (1.26)

and

m=

∫

dεN(ε)[ f (ε−∆)− f (ε+∆)] (1.27)
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where N(ε) =
∑

k δ(Ekσ − ε) is the paramagnetic density of states per spin, f (ε) =

1/[e
(ε−µ)
kB T + 1] is the Fermi function, and µ is the chemical potential.

The free energy for such a system can be written as:7

F(T, m) = Ω0(µ, T, m) +µN(T, m)− Im2 − hm, (1.28)

where the grand canonical potential Ω0(µ, T, m) in eq. (1.28) is given by:

Ω0(µ, T, m) =−kB T
∑

σ

∫

dεN(ε) ln[1+ e
−
(ε+σ ∆2 −µ)

kB T ] +∆m (1.29)

whose derivatives with respect to µ and ∆, given eqs. (1.26) and (1.27), are
respectively: −∂Ω0/∂ µ= N and ∂Ω0/∂∆= 0.

For small m the following expression for F(T, m) can be obtained from eqs.
(1.28-1.29): [17]

F(T, m) = F(T, 0) +
�

1

2χ0(T )
− I
�

m2

2
+ g(T )

m4

4
+ . . .− hm (1.30)

with

χ0(T ) =
1

2
N0

�

1−
π2

6
RT2 + . . .

�

and

g(T ) =
F1

N3
0

�

1+
π2

6
R1T2 + . . .

�

,

where the coefficients R, R1 and F1 depend on the density of states at the Fermi
level N(0) ≡ N0 and on its derivatives. [17] In the following I consider the T = 0
limit, for which eq. (1.30) reduces to the expression:

F(0, m) = F(0, 0) +
�

1

N0
− I
�

m2

2
+

F1

N3
0

m4

4
+ . . .− hm. (1.31)

7See for example Ref. [17]
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If α≡ N0 I > 1 the Stoner criterion is realized, and if F1 > 0 a finite magnetiza-
tion appears also in the limit h→ 0:

m=

È

−
�

1

N0
− I
� N3

0

F1
. (1.32)

If α < 1, although ferromagnetism is not realized, the magnetic susceptibility is
enhanced with respect to its Pauli value:

χ =
χ0

1− Iχ0
. (1.33)

The denominator of eq. (1.33) is called Stoner enhancement factor. When
combined with ab-initio calculations, the Stoner model gives a deep insight of the
zero-temperature properties of real materials. This will be shown better in the next
section.

However, at finite temperature the Stoner theory turned out to be unsatisfactory.
The most important disagreement with the experiments are listed below:

• The temperature dependence of the inverse magnetic susceptibility: χ−1(T )∝
T2−T2

c instead of χ−1(T )∝ T predicted by the Curie law and experimentally
observed.

• The Curie temperatures for 3d metals like Fe Co and Ni, calculated using
realistic density of states, [45] resulted to be overestimated from 3 to 5 times
with respect to the experiments.

• The low temperature dependence of the magnetization m(0)−m(T) ∝ T2

instead of m(0)−m(T )∝ T3/2 experimentally observed.

These discrepancies appear because the Stoner theory does not take into account
the thermal excitation of the quantum degrees of freedom such as spin density waves
(SDW) and neglects quantum fluctuations beyond the Hartree Fock approximation.
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Antiferromagnetism and nesting condition

The uniform non-interacting susceptibility χ0 in (1.33), defined as the derivative of
the magnetization m with respect to the uniform magnetic field h in the m→ 0 limit,
can be generalized to the case of a non uniform magnetic field h(r) =

∑

q h(q)eiq·r

by means of its Fourier component χ0(q) = δm(q)/δh(q) |m(q)→0. Equation (1.33)
can be then written in the following way:

χ(q) =
χ0(q)

1− I(q)χ0(q)
. (1.34)

Assuming translational invariance, χ0(q) can be expressed as:

χ0(q) =
∑

k,µ,ν

[ f (εk,ν )− f (εk−q,µ)]

εk−q,µ − εk,ν + iδ
· 〈| k,ν | eiq·r | k− q,µ〉 |2, (1.35)

where | k,ν〉 is the Bloch state with band index ν , wave vector k and energy εk,ν and
f (εk,ν ) = 1/(e(εk,ν−EF )/kB T + 1) is the Fermi function. For non interacting fermions
and small momentum q, eq. (1.35) coincides with the Lindhard function and has
a logarithmic divergence when | q | equals twice the Fermi vector kF . Actually,
Lomer [243] showed that this is the case also in three dimensions whenever the
Fermi surface has portions that can be superimposed by a translation vector Q
called nesting vector. This can be easily realized looking at eq. (1.35). At low
temperatures indeed, if εk−Q,µ ≈ εk,ν = EF the denominator is close to zero while
the numerator is close to one (it is zero if and only if εk,ν = εk−Q,µ). In this case
the generalized Stoner criterion I(q)χ0(q)≥ 1 is fulfilled even for arbitrary small
values of I(q), and χ(Q) is unstable.

1.2 Density functional theory and its approximations

Up to now I analyzed the general properties of a phenomenological model (the
Landau theory) and two microscopic ones without specifying the parameters in-
volved in those models. In this section I briefly introduce density functional theory
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(DFT) which gives a well defined procedure for obtaining the exact ground state
of a many-body problem in terms of single particle Schrödinger equations. In the
present thesis I will use this powerful tool for obtaining microscopic parameters like
band mass, band dispersion and density of states.

Let us consider the Hamiltonian of N electrons moving in a time independent
external potential Vext(r) (Born-Oppenheimer approximation) in Rydberg units:

H = T + U + V =
∑

i

(−∇2
i ) +

∑

i 6= j

r−1
i j +

∑

i

Vext(ri), (1.36)

The three terms in the Hamiltonian (1.36) represent respectively the kinetic energy
of the electrons, the electron-electron interaction and the interaction of the electrons
with an external potential which includes the electrostatic potential of the (fixed)
nuclei. The ground state wave function Φ(r1σ1, . . . , rNσN ) is defined by the secular
equation HΦ(r1σ1, . . . , rNσN ) = EΦ(r1σ1, . . . , rNσN ). Before presenting the den-
sity functional theory is useful to define the ground state density of the system rep-
resented by the Hamiltonian ( 1.36) as n(r) = N

∑

σ1

∑

σ2
. . .
∫

d3r2 . . .
∫

d3rN× |
Φ(r1σ1, . . . , rNσN ) |2 and to report here the basic lemma on which DFT hinges
on: [37, 39]

Lemma 1. The ground state density n(r) of a bound system of interacting electrons in
some external potential Vext determines this potential uniquely.

In stating the Lemma 1 additional remark are needed:

• the potential Vext is uniquely determined up to a constant,

• in case of degenerate ground state the lemma refers to any density n(r).

The proof of the lemma is easy and can be found in Refs. [37, 39].

1.2.1 Density functional theory

Density functional theory is based on the two Hohenberg-Kohn theorems:8 [37]
8A compact and useful presentation of the following arguments can be found in Refs. [39, 46] and [244]
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Theorem 1. For any system of interacting particles in an external potential Vext, for
specified operators T and U in (1.36) the ground state wave function Φ(r1σ1, . . . , rNσN )
is a unique functional of the ground-state electron density only.

The proof is based on lemma 1 which states that the density uniquely spec-
ifies the external potential Vext and hence the Hamiltonian, and consequently
Φ(r1σ1, . . . , rNσN ), too.

Since theorem 1 holds, the functional F[n(r)] = 〈Φ | T + U | Φ〉 is an universal
functional valid for any external potential and any number of particles.

The second theorem states that:

Theorem 2. The functional E[n(r)] = 〈Φ | T+U | Φ〉+
∫

d3r Vext(r)n(r) is minimum
if n(r) is the ground state electron density. The minimum of E[n(r)] is the ground state
electron energy.

From theorems 1 and 2 follows that once the universal functional F[n(r)] is
known, the system is specified only by the external potential Vext(r) and the ground
state wave function can be found by applying the variational principle.

Unfortunately F[n(r)] is not known and the complexity of the solution of the
many-body Hamiltonian (1.36) is reflected in an accurate determination of F[n(r)].
However the density functional scheme instead of using, as a basic variable, the
three-N dimensional quantity Φ(r1σ1, . . . , rNσN ) uses as a basic variable the three-
dimensional quantity n(r), notably reducing the computational complexity.

What permits to compute the total energy of the interacting system (1.36)
in practice, using DFT by minimizing the functional E[n(r)], is the Kohn-Sham
scheme. [37] Kohn and Sham showed indeed that the stationary property δE[n(r)]/δn(r) =
0 could lead to a set of one particle Schrödinger equations to be solved self-
consistently.

The result is obtained by considering, together with the real system (1.36), a
fictitious non interacting system whose Hamiltonian is given by:

H ′ =
∑

i

(−∇2
i ) +

∑

i

v(ri). (1.37)
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The potential v(r) in eq. (1.37) is determined in such a way that the ground-state
density of the system described by (1.37) is the same as the density of the real
system (1.36). Since according to lemma 1 the potential is uniquely determined
by the density, the Hamiltonian (1.37) is uniquely defined by n(r). The ground
state wave function of the non interacting system (1.37) is given by the Slater
determinant obtained by occupying the lowest lying one electron states labeled by k
and defined by the Schrödinger equation:

[(−∇2) + v(r)]ψ(k, r) = εkψ(k, r) (1.38)

whose density is given by:

n(r) =
∑

k

f (EF − εk) |ψ(k, r) |2 (1.39)

and the potential v(r) is determined in such a way that the density (1.39) is the
ground state density of the real system:

v(r) = 2

∫

d3r ′
n(r′)
| r− r′ |

+ Vext(r) + vxc, (1.40)

where vxc is the unknown exchange-correlation potential that will be defined
in the following. The Kohn-Sham scheme consists of solving eqs. (1.38)-(1.40)
self-consistently. The procedure for obtaininng eq. (1.40) is the following. As first
step the energy functional E[n(r)] in theorem 2 is rewritten in the following way:

E[n(r)]≡ 〈Φ | H | Φ〉=

= 〈Φ′ | T | Φ′〉+
∫ ∫

d3rd3r ′
n(r)n(r′)
| r− r′ |

+ Exc[n(r)] +

∫

d3r Vext(r)n(r). (1.41)

In the same way the energy functional E′[n(r)] associated with the non interacting
system described by the Hamiltonian H ′ ( 1.37) is given by:

E′[n(r)] = 〈Φ′ | T | Φ′〉+
∫

d3r v(r)n(r). (1.42)
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The term 〈Φ′ | T | Φ′〉=
∑

k

∫

d3r ψ∗(k, r)(−∇2)ψ(k, r) in eqs. (1.41) and (1.42)
is the kinetic energy of the non interacting system. The second term in eq. (1.41) is
the Coulomb energy of the electronic charge cloud. The third term is the exchange-
correlation energy: the difference between the true kinetic energy and that of the
non-interacting system, plus the difference between the true interaction energy and
that of the electronic charge cloud. This term is in principle rather small, [46] and
contains all the unknown part of the information about the many-body interaction.
Eq. (1.40) for v(r) is obtained by requiring that both the interacting system (1.41)
and the non interacting one (1.42), attain their respective minima for the same
ground-state density n0(r). This leads to the condition v(r) = δ

δn(r) {E[n(r)]− 〈Φ
′ |

T | Φ′〉}. Eq. (1.40) is obtained straightforwardly by defining the exchange and
correlation potential as:

vxc =
δExc[n(r)]
δn(r)

. (1.43)

The total energy (1.41) and the corresponding density n(r) obtained by applying
the Kohn-Sham scheme (1.38)-(1.40) are in principle exact, while the eigenvalues
of the single particle equations (1.38), the so-called Kohn-Sham eigenvalues, have
no particular physical meaning. Indeed, in order to describe the quasi-particle
excitations, the self-energy Σ(r, r′,εk) should be used. However, since Σ(r, r′,εk) is
a ground state property, it can be expressed as a function of the density and, close to
the Fermi level it becomes equivalent to vxc . [46, 245] This grants that the obtained
Fermi surface is the correct one. Several approximations exist of vxc and in the
following subsection I will present the ones employed in the present thesis.

1.2.2 LDA, LSDA and GGA Functionals

Local density approximation and generalized gradient approximation

For paramagnetic calculations, I will use mainly the local density approximation
(LDA). This approximation consists of writing:

ELDA
xc [n(r)]≈

∫

d3rεxc[n(r)]n(r) (1.44)
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where εxc[n] is the exchange-correlation energy per particle of a homogeneous
electron gas with density n. [38] Kohn and Sham showed that this form of Exc[n(r)]
becomes exact in the limit of slowly varying density. Moreover, in contrast to the
Thomas-Fermi approximation, [246, 247] the kinetic energy of the non-interacting
system is treated exactly, therefore the approximation (1.44) remains good also in
the limit of high density. [46]

Eq. (1.44) for Exc[n(r)] leads to the following expression for the exchange-
correlation potential:

vxc ≈
d[nεxc(n)]

dn
≡ µxc[n(r)], (1.45)

which is a local potential and coincides with the exchange-correlation part of the
chemical potential in a homogeneous electron gas. The exchange part of the
potential (1.45) is given by: [38, 41]

µx(n) =
4

3
εx(n) =−2(3π−1n)

1
3 (1.46)

with n≡ n(r).

Hedin and Lundqvist have shown that the exchange-correlation potential (1.45)
may be expressed as: [42]

vxc ≈
3

2
α(n)µx(n) (1.47)

where α(n) = 2
3

in the high density limit (where correlation effects can be neglected)
and ∼ 0.85 for (4/3πn)−1/3 ≡ rs = 4 (which corresponds to a value of the density
typical of the interatomic region in metals).

In actual calculations the functional form of the correlation part of vxc, first
estimated by Wigner, [248] is accessed via Montecarlo simulations. [249, 250] As
specified earlier, LDA becomes exact in the limit of slowly varying density, the only
source of error comes therefore form regions where the density varies rapidly. In
order to correct this behavior, gradient corrections in n(r) can be considered.
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When gradient correction in n(r) are taken into account in eq. (1.44) the gener-
alized gradient approximation for the exchange-correlation energy is obtained:

EGGA
xc [n(r), | ∇n(r) |]≈

∫

d3r fxc[n(r), | ∇n(r) |]n(r) (1.48)

In order to have access to eq. (1.44) the density n(r) needs to be calculated, while
eq. (1.48) requires to calculate independently n(r) and its gradient | ∇n(r) |. In the
following I will use the expression for EGGA

xc [n(r), | ∇n(r) |] given by Perdew, Burke,
and Ernzerhof. [251]

The Local spin density approximation

Although DFT can in principle lead to a spin polarized ground state, LDA cannot
describe spin polarized systems since it cannot generate a spin disparity. However
a rather simple generalization of eqs. (1.44) can be obtained by considering as
independent variable the space-diagonal matrix element of the first-order density
matrix, n(rσ, rσ′). In the following I will restrict the discussion to collinear mag-
netism, [252] therefore I assume that the quantization axis for the spin operator is
fixed and the variable σ can assume only two values: +1≡↑ parallel or −1≡↓ an-
tiparallel to the quantization axis z. As a consequence n(rσ, rσ′) can be considered
as a Pauli matrix:

�

n↑↑(r) n↑↓(r)
n↓↑(r) n↓↓(r)

�

(1.49)

and the off-diagonal elements nσσ′ (r) can be neglected. The quantity n(rσ, rσ′) is
therefore expressed in terms of the electron density

n(r) =
∑

σ

n(rσ, rσ) = n↑(r) + n↓(r) (1.50)

and spin density

m(r) =
∑

σ

sign(σ)n(rσ, rσ) = n↑(r)− n↓(r), (1.51)
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where I used the abbreviation nσσ ≡ nσ.

The generalization of eqs. (1.38)-(1.40) follows then as: [40]

∑

σ′
[(−∇2) + v(rσ, rσ′)]ψk(rσ

′) = εkψk(rσ) (1.52)

n(rσ, rσ′) =
∑

k

f (EF − εk)ψ
∗
k(rσ)ψk(rσ

′) (1.53)

v(rσ, rσ′) = 2

∫

d3r ′
n(r′)
| r− r′ |

+ Vext(rσ, rσ′) + vxc[n(rσ, rσ′)]. (1.54)

In local spin density approximation (LSDA), the expression (1.44) for Exc[n(r)]
is generalized in the following way: [40]

ELSDA
xc [n(rσ, rσ′)]≈

∑

σ

∫

εxc[n↑(r), n↓(r)]n(rσ, rσ′)d3r =

=

∫

εxc[n↑(r), n↓(r)]n(r)d
3r, (1.55)

where εxc[n↑, n↓] is the exchange-correlation energy per electron for a homogeneous
electron gas with density n = n↑ + n↓ and spin density m = n↑ − n↓, the latter
being created by an external magnetic field. In this approximation the exchange-
correlation potential is diagonal in spin:

δELSDA
xc [n(rσ, rσ′)]/δn↑↓(r) = δELSDA

xc [n(rσ, rσ′)]/δn↓↑(r) = 0

and

δELSDA
xc [n(rσ, rσ′)]

δnσ(r)
=
∂ εxc(n↑, n↓)(n↑ + n↓)

∂ nσ(r)
≡ µxcσ[n↑(r), n↓(r)]. (1.56)
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Expanding to the first order in m, one obtains:

µxcσ[n↑(r), n↓(r)] = µxc(n) + sign(σ)
1

3
δ(n)µx(n)

m

n
(1.57)

where δ(n) is 1 in the high density limit and gets reduced by correlation to ∼ 0.55
for rs = 4. Clearly eq. (1.57) reduces to eq. (1.45) when m(r) = 0, therefore
it is possible to use only one functional while performing DFT calculations in
LDA or LSDA. In particular von Barth and Hedin obtained the following form for
εxc(n↑, n↓): [43]

εxc(n,ζ) = εP
xc(n) + f (ζ)∆εxc(n), (1.58)

where ζ(r) = m(r)/n(r). In eq. (1.58) εP
xc(n) and ∆εxc(n) do not depend on

m, while f (ζ) is a known function of ζ. Therefore the response to magnetism is
entirely defined by the ∆εxc(n) functional, as the energy difference between the
fully polarized and unpolarized electron gas. I will use this result in chapter 5 while
in the rest of the thesis, when I will use LDA or LSDA, I will adopt the expression for
ELSDA

xc [n(rσ, rσ′)] obtained by Perdew and Wang. [44]

1.2.3 Extended Stoner theory for ferromagnetism

The local spin density approximation may be approximated by a Stoner formalism.
This can be done for example treating the spin polarized part of the potential (1.57)
by first order perturbation theory. [45, 253, 254] In this approximation the exchange
splitting is given by:

∆≡ Ek↑ − Ek↓ = 2µBh+m

*

ψ(k, r)

�

�

�

�

�

4

(9π)
1
3

δ[n(r)]

n
2
3 (r)

m(r)
m

�

�

�

�

�

ψ(k, r)

+

=

= 2µBh+mI (1.59)

which is equivalent to eq. (1.25), i. e. I and ∆ are strictly k-independent if both
the charge and spin density n(r) and m(r) are spherically symmetric. [45, 244, 253,
255]
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Figure 1.2: Stoner criterion for ferromagnetism illustrated for bcc Fe. Figure from Ref [255].

Based on the correspondence between LSDA and Stoner model, one can think of
describing the magnetic properties of metallic systems like bcc Fe by considering
the (LDA) paramagnetic density of states N(ε) (per spin) and then moving the spin
up and spin down Fermi level by a quantity ∆= 2µBh+mI , where I is the Stoner
parameter as coming from LSDA (1.59). In other words, under the effect of the
magnetic field a disparity between spin up and spin down is created by moving the
relative Fermi levels E↑F and E↓F . Selfconsistency requires that the integral over a
range ∆ around the Fermi level of the paramagnetic density of states equals the



64

magnetization m. If one considers a function Ñ(n, m) defined as the density of sates
averaged over the Fermi level corresponding to an occupancy of n/2 spins over a
range of m spins, the selfconsistency condition requires that Ñ(n, m) = m

∆ and by
considering eq. (1.59) this leads to: [244, 253, 254]

(I + 2µBh/m)Ñ(m) = 1, (1.60)

where I dropped the dependence on n, since I will consider always fixed occupation
when using this formalism (chapter 5). The function Ñ(m) defines the full material
dependent ferromagnetic response in terms of the paramagnetic bandstructure. An
example of how to construct the function Ñ(m) is shown for bcc Fe in Fig. 1.2.

Eq. (1.60) represents the magnetic equation of state of a ferromagnet from
which the Stoner uniform susceptibility can be obtained as:

µB
dm

dh

�

�

�

m=0
= χ =

2µ2
B Ñ(0)

1− I Ñ(0)
. (1.61)

The equilibrium magnetization m fulfills the condition dE(m)/dm−µBh= 0, there-
fore

E(m) =

∫ m

0
µBhdm′ =

1

2

∫ m

0

m′

Ñ(m′)
dm′ −

I

4
m2. (1.62)

This is the expression for the magnetic energy. From eqs. (1.61) and (1.62) the
extended Stoner criterion for ferromagnetism is obtained:

Ñ(m)I ≥ 1, (1.63)

which gives the condition for the realization of a spin polarized state with mag-
netization m in terms of the paramagnetic DOS of the real system calculated in
LDA.
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1.3 Effect of spin fluctuations on the magnetic proper-
ties

Spin fluctuations in itinerant systems are known, since long time, for being impor-
tant in influencing the low-energy properties [256, 257] and the thermodynamic
quantities like specific heat, [258] electrical resistivity [201] and Curie temper-
ature. [17] Moreover they can be responsible also for the complete suppression
of s-wave superconductivity like in Pd, [94] or for exotic pairing alternative to
phonons. [5, 6, 62, 105, 123, 174, 215, 259, 260] Here I will analyze the basics of
the underlying theoretical concepts while at the end of next section I will describe
the interplay with superconductivity.

1.3.1 Failure of the mean-field description

The approaches to magnetism described up to now, can be all associated with a
mean-field decoupling like in (1.2). In other words, the interaction among the spins
is described as the interaction of a single spin with an external potential, like the
Weiss field in (1.4), given by the sum of the external potential plus the polarization
of the other N − 1 spins. For the Landau theory this is shown by comparing the
critical exponents in eqs. (1.14), (1.16), (1.17), (1.20) and (1.22) with the gaussian
approximation for the Wilson action. [237, 238, 241] The mean field decoupling
corresponds to truncating the expansion for the action to quadratic terms. [238]

The Stoner model presented in section 1.1.3 is equivalent to the Hartree-Fock
approximation (HFA) applied to the four-body Hamiltonian: [17]

H = H0 + V =
∑

k

∑

σ

ε(k)a†
kσakσ +

∑

k

∑

k′

∑

q
V (q)a†

k+q↑a
†
k′−q↓ak′↓ak↑, (1.64)

where a†
kσ(akσ) creates (destroys) a Bloch state with momentum k and spin σ (for

simplicity only one band is considered). In this sense the Stoner model can be
viewed as a mean field approximation and the equivalent of the Weiss field is given
by ∆(m) in eq. (1.25).
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For the LSDA I showed in section 1.2.1 that, in case of spherically symmetric
spin density n(r) and magnetization m(r), this approximation can be mapped into a
Stoner model, elucidating in this way its mean field nature.9 The mean field ∆(m)
in this case is given by eq. (1.59).

Close to the critical region defined by the Ginzburg criterion (1.23) presented in
section 1.1.2, the mean field approximation breaks down. This is due to the fact
that the system starts to correlate over a distance ξ which is comparable with the
volume of the sample and, for magnetic systems, spin fluctuations over distances of
the order of ξ start to dominate the dynamics of the system. In section 1.1.2 I have
shown by this introducing the Ornstein-Zernike form for the correlation function
(1.20). Actually I did this for the static case in classical phase transitions but the
argument used there can be generalized to quantum phase transitions by using the
argument by Hertz, Millis and Abanov and Chubukov. [172, 261, 262]

The break-down of the mean-field approach shows up as an overestimation of
the tendency to magnetism close to the transition. For the Stoner model, calculations
done using realistic density of states have indeed shown an overestimation of the
Curie temperature in 3 d metals by a factor which goes from 3 to 5 times, [45] and
LSDA usually overestimates the susceptibility and magnetic moment of system close
to a QCP. [51, 52, 263] In the Stoner model this is due to an underestimations of
thermal fluctuations, like in the gaussian approximation for the Wilson action or for
the Landau theory of second order phase transitions (see section 1.1.2). In LSDA
the effect is due to quantum and dynamical fluctuations which are important within
the critical region.

9This doesn’t mean however that the Hartree-Fock approximation is equivalent to LSDA. The Stoner parameter
obtained in HFA is indeed substantially larger than the one estimated in LSDA. One reason for this difference is
the underestimation of correlation in HFA. In this approximation indeed, electrons with equal spin are kept
apart, while unequal spin electrons are not. This results in a large Stoner parameter. If correlation effects are
included, also unequal spin electrons are kept apart, although less efficiently. The correlation of unequal spin
electrons causes a reduction of the Stoner parameter. For a better understanding of the difference between HFA
and LSDA see for example [45, 46] and reference therein.
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1.3.2 Dynamical susceptibility and spin fluctuations

In order to describe the effect of spin fluctuations, I start considering here the case
of a nearly ferromagnetic metal. An electron at position r and time t with spin
S(r, t) polarizes the surrounding electrons acting as a local magnetic field H(r, t)
which has the following form:

H(r, t) =−
I

ħhµB
S(r, t). (1.65)

In eq. (1.65), the coupling constant I corresponds to a local exchange interaction in
(1.64) and is defined by the exchange integral:

Hexch = Ω

∫

d3r d3r ′ Iδ(r− r′)n↑(r)n↓(r
′) (1.66)

where nσ(r) is the electron density with spin σ and Ω is the volume of the system.
In linear response theory the magnetization m at a point r′ and time t ′ caused by a
magnetic field at (r, t) is given by:

m(r′, t ′) = µB

∫

d3r d tχ(r′ − r, t ′ − t)H(r, t). (1.67)

where χ(r− r′, t − t ′) is the isotropic dynamical susceptibility.10 The molecular
field at (r′, t ′) is proportional to m(r′, t ′). Therefore the gain in energy of one spin
S(r′, t ′) due to the presence of the molecular field H(r′, t ′) is given by: [260, 264]

∆E =−µBS(r′, t ′) ·H(r′, t ′) =

=
I

ħh
S(r′, t ′)µB

∫

d3r d tχ(r′ − r, t ′ − t)H(r, t) =

=
I

ħh
S(r′, t ′)µB

∫

d3r d tχ(r′ − r, t ′ − t)
�

−
I

ħhµB

�

S(r, t).

(1.68)

10I assume here time and spatial invariance such that χ(r, r′ , t, t′) = χ(r− r′ , t − t′)
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Integrating over all the possible (r′, t ′), eq. (1.68) can be written in Fourier space
as:

V = HSF =

=−
I2

4V

∫

dω
∑

k,k′ ,q

Re[χ(q,ω)]×

×
∑

S1S2S3S4

n

c†
k+q,S1

~σS1S2
ck,S2

o

·
n

c†
−k′−qS3

~σS3S4
ck′ ,S4

o

. (1.69)

The Hamiltonian (1.69) represents the scattering process characterized by the
exchange of spin fluctuations, being ~σSi S j

the spin operator whose components
are the Pauli matrices. Finding a reliable approximation for χ(q,ω) is still an
open problem. Indeed this quantity involves energy scales comparable with the
characteristic energy scale of electrons for which no ”small” parameter can be
individuated, therefore the perturbative approach is not appropriate.

1.3.3 Random phase approximation and paramagnons

The first attempt in this sense is given by the random phase approximation [95,
160–162] (RPA) where a diagrammatic expansion is applied to the four legs vertex
and, summing up all the cross (Fock) and ladder (Hartree) diagrams, the following
approximated expression for χ(q,ω) was found:

χ(q,ω)≈ χRPA(q,ω) =
χ0(q,ω)

1− Iχ0(q,ω)
. (1.70)

Here χ0(q,ω) =
∑

k
f (εk)− f (εk−q)
εk−q−εk−ω

is the bare dynamical susceptibility of the isotropic

electron gas. For | q |� kF and ω� εF an approximated form for χ0(q,ω) leads to:

χ0(q,ω)≈ N0

�

1−
| q |

12k2
F

+ i
π

2

ω

vF | q |

�

. (1.71)

For a parabolic band (no nesting features) the static susceptibility χ(q,ω= 0) has
its maximum for q= 0 where the divergence happens for N0 I = 1 and recovers the
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Stoner criterion for ferromagnetism. The imaginary part of χ(q,ω) in eq. (1.70)
at fixed q has instead a broad peak indicating the presence of a resonance called
paramagnon whose dispersion for small | q | is given by:

ωq =
2

πN0 I
(1− N0 I)vF | q | (1.72)

Although the RPA represents a step forward with respect to the mean field level,
close to the transition temperature this approximation fails since the effect of spin
fluctuations to the thermal equilibrium is neglected. This effect is important when
the Curie temperature is very small and the transition is driven by pressure or
doping. At this point a further renormalization of the susceptibility must be taken
into account. In practice electrons interact via spin fluctuations exchange and the
susceptibility gets self-consistently renormalized by the interaction.

1.3.4 Self-consistent renormalization theory

This effect has been discussed within the self-consistent renormalization (SCR)
theory by Moriya, [17] where a self-consistent scheme for χ(q,ω) is described.
Here I discuss this approach as considered by Shimizu [235] since this will be the
starting point for the new approach developed in chapter 5. The Moriya-Shimizu
approach to spin fluctuations starts with expanding the free energy in terms of the
square of the uniform magnetization m2 =

∑n
i m2

i where the index i = x , y, z.

F(m) =
a2

2
m2 +

a4

4
m4 +

a6

6
m6 . . .

Here a2 = ∂ 2F/∂m2 |m=0 is the bare uniform susceptibility. Under the effect of spin
correlations the average magnetization fluctuates around its mean value and the free
energy functional gets renormalized by the fluctuations. If ξ2

iq = 〈δmiqδmi−q〉 is the
average value of the spin fluctuations amplitude and miq is the Fourier component
of the fluctuating magnetization, the renormalized free energy functional can be
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expressed as:

F̃ = F0 +
1

2

∑

i,q

c′q2ξ2
iq +

1

2
ã2m2 +

1

4
ã4m4 +

1

6
ã6m6 + . . . (1.73)

The bare coefficients and the renormalized ones are related by the following recur-
sive relations:

ã2 = a2 + (n+ 2)n−1[a4ξ
2 + (n+ 4)n−1a6ξ

4 + (n+ 4)(n+ 6)n−2a8ξ
6 + . . .]

ã4 = a4 + 2(n+ 4)n−1a6ξ
2 + (n+ 4)(n+ 6)n−2a8ξ

4 + . . .

ã6 = a6 + 3(n+ 6)n−1a8ξ
2 + . . .

...

with ξ2 =
∑

i,q ξ
2
iq, and for n= 3 this leads to:

ã2 = a2 +
5

3
a4ξ

2 +
35

9
a6ξ

4 +
35

3
a8ξ

6 + . . . (1.74)

ã4 = a4 +
14

3
a6ξ

2 + 21a8ξ
4 + . . .

ã6 = a6 + 9a8ξ
2 + . . .

and the quantity ξ2 can be calculated by the quantum formulation of the fluctuation
dissipation theorem (1.19):

ξ2 =
3ħh
Ω

∫

dq

∫

dω

2π

1

2
Imχ(q,ω),

following the lines suggested by Moriya [17] and elaborated by other authors. [265–
267] In the broken symmetry phase both a2 < 0 and ã2 < 0, while a4 > 0; therefore
eq. (1.74) leads to a net reduction of the uniform susceptibility. Although the con-
nection between ξ and the microscopic band parameters is well defined, calculating
χ(q,ω) is very complicated since it involves large energy scales. For this reason
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in the past the approach described up to now was applied either approximating χ
with the non interacting spin susceptibility or assuming ξ as a phenomenological
parameter. [51, 52, 268] Moreover, as I will show in chapter 5 the spin fluctuations
parameterized by ξ act as a detrimental agent on the Stoner parameter I as esti-
mated in LSDA. Therefore the renormalization of the uniform susceptibility was
sometimes achieved by reducing I phenomenologically. [62]

1.3.5 Recent developments on the spin fluctuations theory in
itinerant systems

As I stressed more than once, the difficulty of evaluating the full interacting χ(q,ω)
ab-initio, resides in the fact that it involves large energy scales. The DFT scheme
that I have shown in the previous subsection is a ground state, time-independent
approach and does not allow to treat frequency dependent phenomena, unless by
calculating the transition rate among states connected by the exchange of quantized
normal modes like phonons or magnons. Since the energy range involved is very
large, the calculations become prohibitive apart from some simple cases. [269]
Moreover, due to the approximation made on the exchange and correlation potential
Exc[n↑(r), n↓(r)], some part of the spin fluctuations are already included, and the
consequent approximation on χ(q,ω) is not transparent. A first attempt to go be-
yond the DFT approach in order to include the time dependence in Exc[n↑(r), n↓(r)]
was made by Savrasov [270] who used the time dependent density functional theory
(TD-DFT) developed by Runge and Gross [271] within the adiabatic local density
approximation (ALDA) by Gross and Kohn. [272] However the calculations are very
demanding and for a long time they were restricted to simple bulk systems. [270,
273] Recently, Lounis et al. [274, 275] used the Korringa-Kohn-Rostoker (KKR)
method [276, 277] for calculating the dynamical susceptibility starting from an
empirical tight-binding scheme and making several simplifications like neglecting
the energy dependence of the electronic wave functions and restricting the analysis
only to the d electron states.

In the meanwhile also the approximation made on the ω-dependent exchange
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and correlation energy functional and the approach on the two-body problem via
TD-DFT were substantially improved, [278–281] and a new method for calculat-
ing χ(q,ω) by means of the KKR Green’s function was implemented by Buczek
et al. [282–285] This developed and efficient computational scheme allowed to
calculate the paramagnon spectrum of FeSe opening new perspectives towards the
understanding of superconductivity in this material. [286] Although, up to now
I implicitly considered only the particle-hole channel for the Hamiltonian (1.68),
which in RPA leads to particle-hole excitations via paramagnon exchange (1.72), one
could consider also the particle-particle or Cooper channel for which, under certain
conditions an effective attractive potential can be obtained. Therefore the lack
of accuracy in determining the spin fluctuations interaction in the normal (nearly
magnetic) state is reflected in the inaccuracy in evaluating the superconducting gap
∆ and the critical temperature Tc .

1.4 Superconductivity

1.4.1 Ginzburg-Landau phenomenological theory

Superconductivity is characterized essentially by two phenomena happening at the
same time below a certain critical temperature Tc :

• the expulsion of the magnetic field called Meissner-Ochsenfeld effect,

• zero electrical resistivity.

Moreover the superconducting transition is a second order phase transition, it is
therefore accompanied also by a divergence in the second order thermodynamic
derivative of the free energy as I showed in section 1.1.2. In order to account for all
these effects, Ginzburg and Landau [74, 287] generalized the theory of second order
phase transitions to the case of a complex order parameter ψ(r). When ψ(r) 6= 0
both the effects listed above are present, when ψ(r) = 0 they vanish as well. Close
to Tc the order parameter is small and the free energy can be expanded in terms of
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ψ(r).11

F(T,ψ) = Fn +

∫

d3r
�

α |ψ(r) |2 +
β

2
|ψ(r) |4 +

+
1

2m∗

�

�

�

�

�

�

−iħh∇−
e∗

c
A

�

ψ(r)

�

�

�

�

�

2

+
h2

8π







. (1.76)

In eq. (1.76) Fn is the free energy in the normal state, the coefficient c is the
velocity of light and A is the vector potential, defined in terms of the magnetic field
H= hẑ as H=∇×A.

By minimizing the difference F(T,ψ)− Fn between the free energy in the super-
conducting state and that in the normal state, the Ginzburg-Landau equations for
superconductivity can be derived:

1

2m∗

�

−iħh∇−
e∗

c
A

�

ψ(r) + β |ψ(r) |2 ψ(r) =−α(T )ψ(r)

Js =
e∗ħh

i2m∗
[(ψ∗(r)∇ψ(r)−ψ(r)∇ψ∗(r)]−

e∗2

m∗c
|ψ(r) |2 A. (1.77)

These two equations represent respectively the equation of motion of the order
parameter ψ(r) and the non dissipating current Js associated with it. The order
parameter has a charge e∗ and mass m∗. From eq. (1.77) two characteristic
length scale, called respectively the coherence length ξ and the penetration depth
λ, can be obtained. They represent respectively the length associated with the
spatial fluctuations of the order parameter and the length of the region, inside the
superconductor, where the magnetic field is still finite. As the temperature T → Tc ,
λ→∞ and the Meissner-Ochsenfeld effect disappears. At the same time the order
parameter vanishes and the non dissipative current vanishes as well.

11 The minimal substitution
c′

2
∇→

1

2m∗

�

−iħh∇−
e∗

c
A

�

(1.75)

in eq. (1.11) is necessary since the order parameter ψ is assumed to be charged.
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The superconductors can be classified in the following way according to their
values of the ratio k = λ/ξ called Ginzburg landau parameter. The classification
is the following:

• type I superconductors: 0< k < 1/
p

2,

• type I I superconductors: k > 1/
p

2.

For the type I superconductors the superconducting transition is of first order in
the magnetic field H, in the type I I superconductors the transition is anticipated by
a regime called Shubnikov phase in which the magnetic field penetrates into the
superconductor by means of non superconducting domains. [288]

1.4.2 Microscopic theory of superconductivity

Seven years after the Ginzburg-Landau theory for superconductors, Bardeen Cooper
and Schrieffer (BCS) [75] constructed the ground state wave function for a su-
perconductor | ΦG〉 by making use of the result by Cooper. [77] Cooper indeed
found that the Fermi gas, in the presence of an attractive potential Vkl, no matters
how weak, is unstable against the formation of bound states with energy E below
the Fermi level. The quantities k and l are the momenta of the fermions (having
opposite spins) involved in the bound state called Cooper pair.

The BCS wave function has the following form:

| ΦG〉=
∏

k=k1 ,...,kN

(uk + vkc†
k↑c

†
−k↓) | Φ0〉 (1.78)

with the normalization constraint | uk |2 + | vk |2= 1.

Averaging the two-body Hamiltonian

H =
∑

kσ

εknkσ +
∑

kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑ (1.79)
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with the wave function (1.78) and applying the minimal principle, the following
self-consistent equation was obtained:

∆k =−
1

2

∑

l

Vkl∆l

El
=−

1

2

∑

l

Vkl∆l
Æ

ξ2
l +∆

2
l

(1.80)

provided the definition of ∆k and ξk to be: ∆k = −
∑

l Vklulvl and ξk = εk − µ,
where µ is the chemical potential and εk is the bare fermionic energy. Ek is in-
deed the quasi-particle energy and ∆k is the minimal excitation energy or zero-
temperature energy gap that can be observed, for example, by low temperature
optical spectroscopy measurements. In 1959 (two years later the BCS paper ap-
peared) Gor’kov [78] finally showed the connection between the Ginzburg-Landau
phenomenological theory and the BCS theory. The Ginzburg-Landau theory is
indeed the limit of the BCS theory for T ≈ Tc and the order parameter ψ(r) is
proportional by a factor eiφ to the gap ∆. The phase φ is a phase factor hidden in
(1.78) which characterizes the superconductor. The coefficient uk and vk are indeed
complex and φ is their phase difference: ukvk =| uk || vk | eiφ . The value of e∗ and
m∗ where found to be twice the electron charge and electron mass respectively.

At finite temperature eq. (1.80) becomes: [289]

∆k =−
1

2

∑

l

Vkl∆l

El
tanh(

El

2kB T
). (1.81)

An approximate solution of eq. (1.81) can be found by choosing a particular form
for the potential Vkl:

Vkl =−V for | ξk |≤ ħhωc and | ξl |≤ ħhωc

Vkl = 0 otherwise. (1.82)

Here V > 0 and ħhωc is an energy cut-off representing the energy scale of the
attracting potential V . The condition (1.82) implies:

∆k =∆ for | ξk |≤ ħhωc
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∆k = 0 otherwise. (1.83)

Therefore eq. (1.81) reduces to 1/V = 1/2
∑

k tanh(Ek/2kB T)/Ek. Transforming

the sum over k in an integral over ξk (
∑

k →
∫ ħhωc

0
N(ξ)dξ) and assuming that

the density of states N(ξ) doesn’t change much within the range of integration, an
approximate expression for ∆ and for Tc can be easily obtained:12

∆≈ 2ħhωc e−1/N0V (1.84)

kB Tc = 1.13ħhωc e−1/N0V (1.85)

where N0 is the density of states at the Fermi level. From eqs. (1.84) and (1.85) the
universal ratio

α=
∆

kB Tc
= 1.77 (1.86)

is obtained.
Notice that eq. (1.84) is valid only in the weak coupling regime when N0V � 1.

In the BCS approximation another universal ratio can be obtained and is the ratio
between the specific heat jump ∆C at the critical temperature and the normal state
specific heat C(Tc), namely:

∆C(Tc)
C(Tc)

= 1.43. (1.87)

If the weak coupling approximation is not valid these two ratios change and therefore
the measure of these ratios gives an indication about the strength of the coupling
constant λ = N0V . In chapter 2 I will analyze the case of the recently discovered
APt3P superconductor where the ratios (1.86) and (1.87) will be analyzed.

1.4.3 Migdal-Eliashberg theory for electron-phonon supercon-
ductivity

Up to now I showed that in the presence of an attractive potential, a macroscopic
quantum state leading to the Meissner-Ochsenfeld effect and to the loss of electrical

12One has to take into account that at ∆(T = Tc ) = 0
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resistivity can be realized at finite temperature T < Tc . However I have not specified
anything about the potential and I only showed the link between some microscopic
parameters and a phenomenological theory close to Tc . On the other hand, the
BCS theory implicitly assumes the coupling due to phonons but completely neglects
retardation effects. As I will show in chapter 2 retardation effects can be sometimes
crucial in understanding material properties.

The Migdal-Eliashberg theory, [79, 80] accurately treats the electron-phonon
interaction and offers a way to calculate the critical temperature. The equation for
the gap ∆ appears as a generalization of eq. (1.81):

φ(ωn) = πT
∑

m
[λep(ωn −ωm)−µ∗]×

×
φ(ωm)

p

ω2
mZ2(ωm) +φ2(ωm)

(1.88)

Z(ωn)ωn =ωn +πT
∑

m
λep(ωn −ωm)×

Z(ωm)ωm
p

ω2
mZ2(ωm) +φ2(ωm)

(1.89)

λep(ωn −ωm) = 2

∫ ∞

0

Ωα2F(Ω)dΩ

(ωn −ωm)2 +Ω2 , (1.90)

where φ(ωn) = ∆(ωn)Z(ωn), ∆(ωn) is the superconducting order parameter,
Z(ωn) is the mass enhancement factor and ωn are the Matsubara frequencies; here
and in the following ∆(0) = ∆. The quantity µ∗ is the Coulomb pseudopotential
which accounts for the Coulomb repulsion among the electrons and acts as a pair-
braking potential. Since evaluating this term requires to solve the electron-electron
interaction problem, this term is usually fixed phenomenologically and its typical
value varies from 0.1 to ∼ 0.13. Eq. (1.90) defines the kernel of the interaction and
if λep(ωn −ωm)→ 0, the retardation effects are neglected, Z(ωn)→ 1 and eqs.
(1.88) reduces to eq. (1.81).
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The quantity α2F(Ω) is the Eliashberg function and represents the spectrum
of the interaction. It can be experimentally accessed by neutron scattering or via
the inversion of the tunneling data. [10] This quantity is obtained by evaluating
the electron-phonon matrix element gν ,n,m

k,k+q between the Bloch states ψk,n(r) and
ψk+q,m(r), and then summing the transition rate | gν ,n,m

k,k+q |
2 over the exchanged

momentum q associated with the phonon frequencies ωνq , the electron momentum
k and the phonon and electron band indeces ν , n and m respectively, provided the
Fermi golden rule. The final expression for α2F(Ω) is:

α2F(Ω) =
1

N0

∑

k,q,ν ,n,m

δ(εn
k)δ(ε

m
k+q)|g

ν ,n,m
k,k+q|

2δ(Ω−ωνq). (1.91)

The electron-phonon matrix element gν ,n,m
k,k+q can be calculated ab-initio by means

of the Kohn-Sham orbitals obtained from the solution of eqs. (1.38)-(1.40). The
quantity α2F(Ω) completely defines the microscopic properties of electron-phonon
superconductors also at finite temperature, indeed eqs. (1.88)-(1.90) are still
valid above Tc where ∆= 0. The self-consistent eqs. (1.88)-(1.90) where obtained
perturbatively by Eliashberg [80] by using the Migdal theorem [79]which states that
if the parameter λep(0)/ωD EF � 1, i.e. the ratio between the typical phonon energy
scale ωD and the Fermi energy EF times the coupling constant λep ≡ λep(0) is small,
and the contributions coming from the second (and higher) order diagrams can
be neglected. The Migdal-Eliashberg theory for electron-phonon superconductors
turned out to be very accurate when applied to real materials. [8–11] This together
with the large degree of accuracy reached in actual calculation for the phonon
spectrum F(ω) =

∑

q,ν δ(Ω − ω
ν
q) and the Eliashberg function, [12] allows to

consider the problem of electron-phonon superconductivity solvable in most of the
cases. [7, 12–16, 236, 290] In this respect I will show in chapter 2 my results on
the superconducting properties of the APt3P compounds (A = Sr, Ca, La) where
the agreement with the experiment concerning the thermodynamic properties is
really remarkable. As a step further toward a completely ab-initio description of
electron-phonon-mediated superconductivity there is the development of a DFT for
the superconducting order parameter where the basic variable is not the electron
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density n(r) but is the order parameterψ(r). As a consequence the electron-electron
interaction enters the theory on the same footing as electron-phonon one with no
need for its parameterization via µ∗. For further details and results see Refs. [291–
297]

As I showed in the previous subsection, such a well defined approximation
like the Migdal-Eliashberg approximation is not yet available for spin fluctuations-
mediated interaction (1.69). As a consequence, evaluating the full interacting sus-
ceptibility χ(q,ω) which enters in the Hamiltonian (1.69) and gets self-consistently
renormalized by the interaction is still a challenge. The same difficulty is then
reflected in the calculation of the kernel (1.90) for spin fluctuations-mediated
superconductors for which suitable approximations must be found.

1.4.4 Paramagnons and unconventional superconductivity

The BCS interaction only takes into account the coupling between antiparallel spins.
Moreover ∆q in eq. (1.81), in the form (1.83), is basically q= k− l independent.
This is usually valid for electron-phonon coupling which is implicitly assumed to
be the “glue” of the cooper pairs and is explicitly parameterized in the Migdal-
Eliashberg formulation (1.88)-(1.90).

Superconductivity suppressed by paramagnons

Early calculations on d metals, tended to overestimate the critical temperature. [96–
98] The problem was individuated in the fact that some of these materials have a
substantial tendency to ferromagnetism and at low temperatures medium-range
spin order with moderate time scale act as an attractive potential for electrons with
aligned spins and as a repulsive potential for electrons with antialigned spins. [96]
In other words, in nearly ferromagnetic metals the interaction (1.69) in the particle-
hole channel works against the electron-phonon coupling in the particle-particle
channel. Within RPA (1.70) electrons interact via paramagnon exchange (1.72) in
the particle-hole channel and the spectrum of the interaction (the corresponding
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α2F(Ω)) is given by the interacting spin susceptibility χRPA(q,ω). The detrimental
effect on superconductivity was pointed out by Berk and Schrieffer, [94] who
modified the Migdal-Eliashberg equations (1.88)-(1.90), by adding a term Ks(ωn −
ωm) to the electron-phonon kernel λep(ωn −ωm). Neglecting retardation effects
and considering a spherical Fermi surface, the authors evaluated the electron-
paramagnon coupling constant in the singlet channel as given by:

λSF = N0Ks(0,0) = (2k2
F )
−1

∫ 2kF

0
qdq I2χRPA(q, 0), (1.92)

where

I2χRPA(q, 0) =
I2N0u(q)

1− IN0u(q)
. (1.93)

Here N0 is the electronic DOS at the Fermi level, u(q) is the Lindhard function
in three dimensions and q =| q | . In this way they found that superconductivity
in the singlet channel could occur only if the electron-phonon coupling constant
λep ≡ λep(0) exceeds the coupling to spin fluctuations λSF . The RPA form of the
spin susceptibility and the assumption of spherical Fermi surface can be considered
satisfactory for getting the rough physical picture about the competition between
magnetism and electron-phonon superconductivity. Moreover it can be regarded as
a reasonable degree of approximation if the electron-phonon coupling is considered
to involve an Einstein phonon as done by the author of Ref. [94]. However the
above approximations for λSF result to be extremely poor if compared with the
degree of accuracy that can be obtained in actual electron-phonon calculations. [12]
In chapter 3 I will try to overcome this problem by making the q average of χ(q, 0)
in a suitable way, being aware that further improvement are needed.

Ferromagnetic spin fluctuations and triplet superconductivity

After the work by Berk and Schrieffer, Fay and Appel [99] realized that since the
paramagnons act as an attracting potential for spin parallel electrons, they could
favor the formation of a superconducting order parameter with different symmetry
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with respect to the one expected by BCS: the p-wave triplet order parameter.
Indeed the Hamiltonian (1.69) for the electron-paramagnon interaction limited to
the Cooper (particle-particle) channel can be rewritten as: [260]

HSF =
∑

k,l

∑

S1S2S3S4

VklS1S2S3S4
c†
kS1

c†
−kS2

c−lS3
clS4

(1.94)

where VklS1S2S3S4
=−

I2

4
Reχ(q= k− l,ω= εk − εl)~σS1S4

· ~σS2S3
,

and ~σS1S4
is the spin operator whose components are the Pauli matrices and I is

a coupling constant. In RPA approximation (1.70) (consistent with paramagnon
exchange) I can be taken as the Stoner parameter.

Due to the spin dependency of VklS1S2S3S4
different values for spin singlet and

spin triplet configurations are obtained:

V S
kl =

3I2

4
Reχ(q= k− l,ω= εk − εl) for S = 0

V t
kl =−

I2

4
Reχ(q= k− l,ω= εk − εl) for S = 1. (1.95)

The spin fluctuations interaction is repulsive in the singlet channel (S = 0) and
attractive in the triplet channel (S = 1). Moreover it gets weakened by a factor
of 3 going from one channel to the other. For the gap function ∆k a similar form
like (1.81) can be obtained and it is easy to see that the order parameter has p-
wave (l = 1) symmetry. Due to the factor of 3 of reduction in (1.95) the triplet
superconductors have usually lower critical temperature than singlet ones.

As I already explained at the end of section 1.3, the effect of spin fluctuations is
to renormalize the susceptibility in a self-consistent way. Indeed the spin fluctua-
tions interaction is governed by the spin susceptibility which gets self-consistently
renormalized by the interaction. Since the magnetic properties and the supercon-
ducting ones are governed by the same kind of interaction but in different channels
(particle-particle and particle-hole respectively), the uncertainty on χ(q,ω) affects
at the same time both the predictions of the magnetic properties (magnetization and
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Curie temperature) and those on the superconducting ones (superconducting gap ∆
and critical temperature). A transparent example of this will be offered in chapter 3.
There I will show that in order to get a consistent physical understanding of the
system a renormalization of the spin susceptibility is needed both in the particle-hole
channel, in order to avoid the ferromagnetic instability, and in the particle-particle
(singlet and triplet) channel in order to reproduce the critical temperature. One of
the most important cases where magnetic degrees of freedom are highly entangled
with the superconducting ones is the case of Fe pnictides. I will briefly introduce the
problem in the following.

Antiferromagnetic spin fluctuations and s± superconductivity

The first model for superconductivity driven by antiferromagnetic correlations was
introduced by Schrieffer, Wen, and Zhang [163, 164] for explaining the superconduc-
tivity in hole-doped antiferromagnetic insulators like some cuprate superconductors.
This model is called the spin bag model since it considers an hole introduced in an
antiferromagnetically ordered two dimensional lattice which remains trapped into a
bag given by a depression of the nearby staggered magnetization. If two trapped
holes get close enough, an attractive potential can be generated leading to a kind
of Cooper phenomenon. Schrieffer et al., however did not succeed in explaining
the superconductivity in Cu oxide superconductors which is still an open challenge.
Moreover their model was thought for system close to a Mott transition, therefore
dominated by short range correlations, while the present thesis is focused on itiner-
ant systems. Itinerant models were introduced later on after Monthoux and Pines
pointed out that for the description of spin fluctuations induced superconductivity
it is crucial to take into account the momentum and frequency dependence of the
interaction. [166, 167]

Due to the momentum dependence of the pairing potential, additional sym-
metries with respect to s and p can emerge. In subsection 1.1.3 I showed that
some portions of the Fermi surface can be sometimes brought into overlap by a
translational vector Q called nesting vector. If this is the case, the susceptibility at
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q= Q is enhanced. If electron-phonon coupling can be neglected and the pairing
can be supposed to be mediated only by spin fluctuations (1.94), a solution for the
BCS equation for the order parameter can still be found if the order parameter has
opposite sign in the two portions of the Fermi surface connected by Q. The simplest
form for the order parameter fulfilling eq. (1.80) that can be found is the dx2−y2

symmetry, [123] with

∆(k) =
∆0

2

�

cos(kx )− cos(ky )
�

.

Notice that an s-wave order parameter, possibly with nodes, never satisfies eq. (1.80)
with repulsive (spin fluctuations-mediated) interaction i. e. the order parameter
needs to change from one portion of the Fermi surface to the other connected by
the vector Q (see [82, 123] and reference therein).

An interesting case, of present interest, is however represented by the ex-
tended s-wave symmetry of the order parameter realized in Fe pnictides and chalco-
genides: [144–146, 148] the so-called s± symmetry. The Fermi surface of these
materials is formed by several portions connected by the nesting vector Q associated
with the antiferromagnetic stripe instability. [53–56]

In such a situation a solution of eq. (1.80) in the single channel can be found,
provided that the coupling is purely interband -i.e in V S

kl l and k belong to two
different portions of the Fermi surface- and the order parameter on the two portions
of the Fermi surface has opposite sign.

In this way eq. (1.81) is decomposed as follows: [298]

∆1 =−
1

2

∑

k

V∆2

E2,k
tanh(

E2,k

2kB T
)

∆2 =−
1

2

∑

k

V∆1

E1,k
tanh(

E1,k

2kB T
) (1.96)

where Ei,k =
p

ξi,k +∆i is the quasiparticle energy in the band i giving rise to the
i− th portion of the Fermi surface. Such a model was suggested for the first time by
Mazin et al. [5] for the superconductivity in Fe pnictides and chalcogenides.
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This proposal has been slightly extended for taking into account the possibility
of accidental nodes on the order parameter due to the different orbital character
of the states involved in the pairing, [138] which could lead to dx2−y2 [6] pairing
symmetry. This case is realized in LaFePO, [142, 143] the first discovered Fe
compound whose optical properties I will analyze in chapter 4.



Chapter 2

Electron-phonon superconductivity

in APt3P (A= Sr, Ca, La) compounds

In this chapter I report the results of Ref. [299] where the Pt phosphides APt3P (A=Sr,
Ca, La), recently discovered by T. Takayama et al., [197] are studied using first-
principles calculations and Migdal-Eliashberg theory. The agreement is so remarkable
that I can draw several definitive conclusions about the superconductivity in these
materials. In particular, I can rule out the charge-density wave (CDW) scenario
proposed by Ref. [199]. Also spin orbit coupling has a minor effect on the electronic
states at the Fermi level, ruling out exotic effects on superconductivity. Migdal Eliashberg
Theory for single gap s-wave superconductors describes the three compounds; the large
differences in Tc (8.4 K in SrPt3P, 6.6 K in CaPt3P and 1.5 K in LaPt3P), come from
changes in the electron-phonon matrix elements and phonon softening. Preliminary
total energy calculations further show that this class of compounds could open new
perspectives towards the understanding of unconventional superconductivity.
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Introduction

Having introduced the methods that I will use along the whole thesis, in this and in
the following chapters I will describe the topics which my PhD activity was dedicated
to.

I start with the APt3P (A =Sr, Ca, La) superconductors recently discovered
by T. Takayama et al. [197] This class of materials immediately attracted the in-
terest of the scientific community for their relatively high critical temperatures
(Tc = 8.4, 6.6, 1.5 K for SrPt3P, CaPt3P and LaPt3P respectively), but also for the
peculiarity of their crystal structure and for the presence of Pt with a high spin orbit
coupling (SOC). Indeed the crystal structure of these compounds is the centrosym-
metric counterpart of the structure of CePt3Si heavy fermion superconductor, where
the high spin orbit coupling of Pt together with the lack of inversion symmetry lifts
the spin degeneracy leading to exotic superconductivity. [105, 106] In this respect
the APt3P series is important because, as proposed by the author of Ref. [197],
the possibility of synthesizing them both in the centrosymmetric and in the non
centrosymmetric variants could allow to study the effect of the lack of inversion
symmetry on superconductivity in electronically equivalent compounds.

Concerning the origin of superconductivity, the analysis of the specific heat
data revealed the presence of low-energy phonons in these materials, focusing
the attention on the electron-phonon mechanism in the strong coupling regime.
However the presence of multiple Fermi surface pockets inferred from Hall resistivity
measurements and effectively found in DFT calculations [197, 198] left also some
room for multiband superconductivity. The main experimental argument in favor
of multiband superconductivity was the very large ratio of ∼ 2.5 between the
superconducting gap ∆ and the critical temperature Tc (1.4 times larger than the
BCS value). [197]

A previous density functional theory (DFT) study [199] found a dynamical insta-
bility in the phonon dispersion of SrPt3P. The authors argued that superconductivity
in this compound could have an exotic origin and could be enhanced by the presence
of charge density wave. The same authors also proposed that the large difference
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in the critical temperatures between LaPt3P and the other two compounds could
be due to the different electron count - La+3 instead of Sr+2 and Ca+2 - which
changes the nature of the bands at the Fermi level (EF ). According to the authors
of Ref. [199] indeed, in LaPt3P these bands get split by the SOC of Pt and the
spin symmetry is broken. As a consequence the pairing strength of the electrons is
reduced. [199]

In this chapter I present first-principles calculations of the electronic structure,
phonon dispersions and electron-phonon coupling on the APt3P compounds. Ther-
modynamical properties (superconducting gap, specific heat jump, Tc) are then
calculated within Migdal-Eliashberg theory for a direct comparison with the ex-
periment. The superconducting gap, the critical temperature and the specific heat
jump are in very good agreement with the experiment, and this allows to give some
definitive conclusions about the APt3P series and exclude any route for multiband
or exotic superconductivity. These compounds indeed turn out to be a textbook
example of electron-phonon superconductors in which the electron phonon cou-
pling varies from strong coupling in the Sr compound (SrPt3P) to weak coupling in
the La compound (LaPt3P) through the moderate regime in the Ca one (CaPt3P).
The variation from strong/moderate to weak coupling is due to the change in the
electron count going from Sr+2 and Ca+2 to La+3. In the A+2 compounds, albeit the
similar critical temperatures -Tc = 8.4 K in SrPt3P and Tc = 6.6 K in CaPt3P- the
ratio between the specific heat jump and Tc and the ratio between the supercon-
ducting gap ∆ and Tc are very different and place the two compounds in the strong
and in the moderate coupling regime respectively. This is due to a shift towards
lower frequencies of the phonon modes involved in superconductivity of SrPt3P
with respect to CaPt3P. As a result the electron-phonon coupling increases and the
thermodynamic observables (specific heat jump and superconducting gap) increase
as well. However, in the formula for the critical temperature the increase of the
coupling is compensated by the decrease of the characteristic frequency associated
with the bosonic mode involved, therefore it is less affected. Indeed, the critical tem-
perature of CaPt3P and SrPt3P are very close to each other. The shift towards lower
frequency from the Ca to Sr compound, turns out to be almost entirely a structural
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effect. Indeed, in the two compounds the electron-phonon matrix element is very
similar, whereas the frequency of the breathing modes involved in superconductivity
increases (decreases) with decreasing (increasing) the in-plane lattice constant.

The structure of the chapter is the following. In section 2.1 I present in detail
the crystal structure of the APt3P superconductors and describe its relation with its
non-centrosymmetric variant, the CePt3Si structure. Both structures are tetragonal
antiperovskites, which contain distorted octahedra formed by the Pt atoms occupying
two inequivalent positions (4e and 2c) in the unit cell. I will call Pt(1) the Pt atoms
sitting in the basal plane and Pt(2) the atoms sitting in the apical edges of the
octahedra. The two structures differ for the in-plane arrangement of the octahedra.
A polar arrangement gives rise to a non-centrosymmetric structure (CePt3Si), an
antipolar arrangement gives rise to the centrosymmetric variant (APt3P). With
total energy calculations I show that the proposal by Takayama, et al. [197] of
synthesizing the APt3P compounds in both crystal structures could likely be realized.

In section 2.2 I discuss the electronic structure of the APt3P compounds with
a particular focus on the energies around the Fermi level. The electron count is
different in SrPt3P, CaPt3P and LaPt3P. The Fermi surface is modified by the change
in the electron count from Sr and Ca to La. In the first two compounds the Fermi
surface is indeed formed by two different sheets with different character and the
Pt(1) dx2−y2 character is the dominant one. The Fermi surface of LaPt3P is instead
composed of highly dispersive sheets with strongly mixed characters. The difference
in electronic states contributing to the Fermi surface has important consequences on
the electron-phonon coupling. In all compounds, the effect of SOC is negligible.

In section 2.3 I present the results for phonon dispersions and electron-phonon
coupling. The phonon dispersions appear to be stable at ambient pressure and very
similar among the three compounds. In-plane breathing motions of the Pt(1) atoms
form low-energy branches. These branches couple mostly to Pt in-plane electronic
states. Their presence or absence at the Fermi level results in an enhanced/decreased
electron-phonon coupling.

In section 2.4 I use the calculated phonon DOSs (PDOS) and Eliashberg functions
to calculate the thermodynamic quantities to compare them with the experiment. I
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find a perfect agreement between the theoretical results and the experimental data
and in section 2.5 I draw my conclusions.

Technical details are listed at the end of the chapter in section 2.6.

2.1 Crystal structure

The three APt3P compounds (A= Sr, Ca, La) crystallize in the antiperovskite tetrag-
onal structure (space group P4/nmm). The antiperovskite or inverse perovskite is
commonly defined as a perovskite structure with cations replaced by anions and
vice versa.

The simplest example of perovskite structure is the cubic one with chemical
formula BCX3 where B and C are cations and X is an anion. In this structure, C is
a small cation such as Ti+4 and sits in the center of an octahedron formed by the X
anion like O−2, while the bigger cations B (e.g Sr+2) enclose the octahedron sitting
at the edges of a cube as shown on the left panel of in Fig. 2.1.

The antiperovskite structure is obtained from this by exchanging the anions
with cations and vice versa and has chemical formula B3XA or AB3X , where A can
be an anion or a cation which sits at the edge of a cube (or parallelepiped) and
encloses the X B6 corner-sharing octahedra. A typical example is the structure of
Na3OCl [300] made by ONa6 oxocentered corner-sharing octahedra with cavities
occupied by large Cl− anions. The Cl− anion at the edge of the cube can be replaced
by a cation as in CePt3Si.

In this material, since the Pt cation and the Si anion have comparable size, Si
moves out of the Pt plane and gets close to one of the two apical Pt’s as shown
in the right panel of Fig. 2.1. Finally the other apical Pt cation gets closer to the
basal plane to ensure closer packing. This causes a distortion of the octahedron
which loses inversion symmetry. Indeed the apical Pt cation and the basal ones are
not equivalent anymore and occupy the 2c and 1a inequivalent Wyckoff positions
respectively. The space group of such a structure is P4mm.

If the unit cell contains only one octahedron, as in the case of CePt3Si, the
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 X B C

Figure 2.1: Left:unit cell of a cubic perovskite structure like CaTiO3 having chemical formula
BCX3. B is the bigger cation, C is the smaller one and X is the anion (see text). The antiper-
ovskites have chemical formula B3XA as for Na3OCl or AB3X , where A sits at the edge of a
cube (or parallelepiped) enclosing the X B6 corner-sharing octahedra. A can be either a cation,
as for CePt3Si or an anion as for Na3OCl. Right: tetragonal antiperovskite structure with the
octahedral distortion causing the lack of inversion symmetry in CePt3Si.

local lack of inversion symmetry is transferred from the octahedron to the whole
solid. We call this a polar arrangement. Hovever, if the unit cell contains an even
number of octahedra, arranged in an antipolar fashion (i.e with the X anion in
the right panel of Fig. 2.1 sitting above and below the octahedral basal plane
in two corner-sharing octahedra), the global inversion symmetry is recovered.
This situation is the one actually realized in the APt3P compounds whose crystal
structure is shown in Fig. 2.2(a). In the phosphides the distorted octahedra shown
in Fig. 2.2(b) point alternatingly up and down and are arranged in a checkerboard
fashion. As a consequence, the in-plane lattice parameter is

p
2 times larger than

the Pt(1)-Pt(1) distance and the unit cell contains two formula units. The A atoms
sit in the 2a Wyckoff position while the P atoms sit in the 2c one and occupy the
central position of the distorted Pt6P octahedra. Pt atoms occupy two inequivalent
Wyckoff positions (4e) and (2c), corresponding to in-plane and apical positions.
As anticipated before, the in plane arrangement of the distorted octahedra makes
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b*
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Figure 2.2: Figure adapted from Ref. [299]. (a) Crystal structure of APt3P, space group P4/nmm.
The
p

2×
p

2 in-plane arrangement of the distorted X Pt6 octahedra (b) distinguishes the APt3P
compounds from the non-centrosymmetric CePt3Si superconductor (space group P4mm); the
corresponding unit cells are shown as full and dashed lines in panel (c).(d) Brillouin zone used
to plot the band structure in Figs. 2.4 and 2.5. The reciprocal lattice vectors are also shown
(blue arrows).

the difference between this structure and the one of the tetragonal antiperovskites
CePt3Si non-centrosymmetric superconductor. In this sense both the phosphides
and the silicides can be seen as two different variants of a more general APt3X type
of structure. Note that the antipolar structure was reported for the first time in the
work of Takayama et al., who proposed that this could be used as a viable way to
study the effect of inversion symmetry on superconductivity in non-centrosymmetric
crystals. [197]

The unit cell of the APt3X type of structure for both the P4/nmm and P4mm
space groups is plotted in Fig. 2.2 (c). Both the phosphides with antipolar cen-
trosymmetic structure and the silicides with polar non centrosymmetic structure are
superconductors and, as stated by the authors of Ref. [197], it would be interesting
to synthesize the APt3P compounds in the noncentrosymmetric polar structure to
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Figure 2.3: Figure from Ref. [299]. Total energy difference between the antipolar and polar struc-
ture for phosphides APt3P (full symbols) and silicides APt3Si (empty symbols) superconductors,
with A=Sr, Ca, La. The fully relaxed GGA structure at zero pressure were used.

study the effect of the inversion symmetry on superconductivity in electronically
equivalent systems. Therefore it is important to see whether this would be possible.

For this reason, I present in Fig. 2.3 total energy calculations for the APt3P
compounds both in the antipolar and in the polar structure. The same total energy
differences were also-calculated for the corresponding silicides (APt3Si). Actually,
among all the 12 possible structures -APt3X with A= Sr, Ca, La and X =P, Si both
in the P4/nmm and P4mm space groups- analyzed here, only 4 were experimen-
tally synthesized. Only for La indeed, both a non-centrosymmetric silicide and a
centrosymmetric phosphide have been synthesized.

In our calculations, the structures were fully relaxed in the generalized gradient
approximation (GGA) -see section 2.6 for technical details- and, for the existing
compounds, the agreement between the calculated structural parameters and the
experimental ones was within ∼ 2%. The relaxed parameters are given in table 2.1
and the results of the calculations are plotted in Fig. 2.3.

The difference in total energies between the antipolar and polar structures
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Table 2.1: Fully relaxed structural parameters (GGA) for the APt3P compounds in the experi-
mental P4/nmm structure from Ref. [299].

a(�A) c(�A) zP t2 zP

SrPt3P 5.898 5.470 0.1362 0.7227
CaPt3P 5.758 5.494 0.1357 0.7303
LaPt3P 5.838 5.553 0.1418 0.7719

(EAP−EP ) is negative for phosphides (full symbols), and positive for silicides (empty
symbols). Its absolute value varies, between the two cases, approximately by one
order of magnitude.

The calculations indicate that while the silicides strongly favor a polar arrange-
ment, which allows neighboring Si atoms to form partly covalent bonds, the phos-
phides prefer an antipolar arrangement. For the phosphides, the energy differences
between the centro and non-centro symmetric structures are small (∼ 20− 100
meV) and it might also be possible to tune the polar arrangement of the octahedra,
choosing appropriate synthesis conditions. This is very unlikely, in turn, for the
silicides.

2.2 Electronic structure

After having analyzed the structural properties of the APt3P series both in the cen-
trosymmetric and non centrosymmetric variants, I now focus on the centrosymmetric
experimental crystal structure and analyze the electronic properties of all three
compounds. Since I’m interested in explaining the origin and nature of superconduc-
tivity in this class of materials, my analysis will be particularly focused on energies
around the Fermi level.

The electronic structure calculations presented here are in very good agreement
with previous calculations. [198, 199, 218] For all three APt3P compounds, the
bandstructure from −8 eV to 2 eV around the Fermi level EF originates from the
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Pt(1) and Pt(2) d orbitals hybridized with the P p ones, which form bonding states
around -7 eV below the Fermi level and partially occupied antibonding states around
EF . [218] Since La+3 has a different oxidation number with respect to Sr+2 and
Ca+2, the electron count of LaPt3P is different from the other two compounds and
its Fermi level is shifted up by ∼ 0.5 eV. As a consequence, the band in Fig. 2.4
which is flat along the M −Γ direction is completely full and the double degenerate
electron band around the M point is partially occupied.
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Figure 2.4: Figure adapted from Ref. [299]. Electronic structure of APt3P in an energy range of
2 eV around the Fermi level EF . With red, dashed line (black, solid line) is indicated the band
structure with (without) spin orbit coupling; the zero of the energy is the Fermi level.

In Fig. 2.4 a blow-up of the bandstructure about 2 eV around the Fermi level is
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shown and, as it can been clearly seen, the band splitting caused by the SOC of Pt is
negligible both in the Sr and in Ca compounds and it vanishes at the Fermi level.
This means that the SOC is not relevant for superconductivity, as supposed instead
in Ref. [199]. For the La compound a small splitting at EF is present, however it
does not lift the spin degeneracy. This is in contrast to what was claimed by the
authors of Ref. [199]. The densities of states (DOS) at EF are N0 ∼ 2.36 st/eV f.u.
in Sr, 2.37 st/eV f.u. in Ca, and 1.94 st/eV f.u. in La, and the SOC changes them
by less than 5 %. Since the SOC plays only a marginal role on the electronic states
near EF , I will neglect it in the following.

Fig. 2.5 shows the “fat” bands without the SOC of the three APt3P compounds,
highlighting the orbital characters which give the highest contribution to the elec-
tronic states at the Fermi surface. The axes are oriented along the shortest in-plane
Pt-Pt distance. The bands at the Fermi level have mainly pdπ antibonding character
while the pair of Pt(2) dz2 and P pz orbitals and that of Pt(1) dx y and P px ,y orbitals
form pdσ bonding states and therefore are located far below EF . [218] The pdπ
antibonding bands can be grouped in two:

• the bands that originate from the Pt(1) dx2−y2 and Pt(2) dxz,yz orbitals
hybridized with the P px ,y ones: among these bands a low dispersive band
along the Γ− Z direction is present,

• the bands that originate from the Pt(1) dyz hybridized with P py ones.

As shown in Fig. 2.5 (the P character is not shown), in the A+2 compounds (SrPt3P,
CaPt3P) only the first group of bands is partially filled while the second one is empty.
In LaPt3P instead the first group of bands is completely filled and the second one
gets partially occupied.

The Fermi surface in the A+2 compounds is formed by the Pt(1) dx2−y2 hole
pocket around the X point and two other free electron-like bands with prevalent
Pt(2) and interstitial character. These bands cross EF along the Z − R − A line
and form two more dispersive pockets, i.e. a large, flat, structure centered around
the Γ point, and a small cigar-shaped hole pocket around the Z point. [199] This
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Figure 2.5: “Fat bands” of APt3P from Ref. [299], decorated with partial orbital characters.
x2− y2(1) and yz(1) stand for in-plane Pt (Pt(1)) dx2−y2 and dyz partial characters; xz+ yz(2)
refers to Pt apical (Pt(2)) atomic dxz+yz character; Int. stands for interstitial.

unequal distribution of orbital characters on the Fermi surface suggests that the
superconducting gap may be anisotropic.

Given the presence of one more electron per formula unit, the Fermi level of
LaPt3P is shifted up by ∼ 0.5 eV with respect to the other compounds. Therefore
this compound has two electron pockets around the M point with mixed Pt(1) dyz

and dx2−y2 characters, while the band with low dispersion along M −Γ direction
is completely full. The Fermi surface is composed of highly dispersive sheets, with
strongly mixed orbital contributions of Pt(2), P and Pt(1) characters. [198]

The different band character at the Fermi level influences the way in which the
electrons couple to the phonon modes. I will focus on this point in the next section.
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2.3 Phonon dispersions and electron-phonon coupling

The moderate critical temperature and the experimental analysis of the magnetic
susceptibility and the specific heat suggested, since the beginning, that superconduc-
tivity in APt3P compounds is most likely due to electron-phonon mechanism. [197]
However some questions remained open. In particular CaPt3P and SrPt3P, despite
having similar critical temperatures Tc ( 8.4 K in SrPt3P and 6.6 K in CaPt3P), show
very different ∆C/γTc ratios, where ∆C is the specific heat jump at the supercon-
ducting transition and γTc is the linear contribution to the normal state specific heat
at Tc . This quantity and the ratio α=∆/kB Tc are associated with the entropy and
energy gain relative to the transition respectively, and can be used to characterize
the coupling regime (strong or weak) of electron-phonon superconductors. [236]

The experimental value of α, extracted by fitting the data using the αmodel, [301]
is α∼ 2.55 in SrPt3P and the corresponding value of ∆C/γTc is larger than 2: both
quantities are well beyond their weak coupling BCS values of 1.76 and 1.42 respec-
tively. For the CaPt3P compound, the value of∆C/γTc appears sensibly smaller than
in SrPt3P, also because the experimental estimate of γ suffers the poorer homogeneity
of the sample which tends to overestimate it.1 [197]

Takayama et al. [197] suggested that the strong coupling regime, manifested in
SrPt3P by the large value of the α ratio, could be due to the presence of low energy
phonons which enhance the electron-phonon coupling λ in the same way discussed
for KOs2O6, [302] and the Chevrel compounds. [303] Indeed, being N0 the DOS
at the Fermi level, ω the frequency of the phonons involved in superconductivity
and M its mass, the electron-phonon coupling constant can be expressed as λ =
N0〈g2〉/〈Mω2〉 where 〈g2〉 is the average of the square of the electronic matrix
element over the Fermi surface and 〈〉 in the denominator indicates an appropriate
average. [8, 304] Therefore λ is large if the characteristic frequency of the phonons
involved in superconductivity is small. The experimental evidence for these kind
of modes in SrPt3P comes from the linear temperature behavior of the resistivity
and from the non linear behavior of the C/T vs T2 plot. [197] In particular, the

1The calculated value of γ shown in table 2.3 is indeed significantly smaller.
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linear temperature behavior of the resistivity down to 20 K indicates the presence
of modes, in this energy range (tenth of cm−1), responsible for the scattering. The
non-linear behaviour in C/T vs T2 indicates the presence of low-energy Einstein
modes in the phonon spectrum. According to the same authors, the large value of
α could be also due to multiband effects which affect this ratio already at the BCS
level. [305] Indeed the Hall conductivity shows contributions from both positive
and negative carriers, indicating the presence of both hole and electron bands at
the Fermi level. This argument together with the large value of α are the strongest
experimental argument fo multiband superconductivity in SrPt3P.

LaPt3P is instead a weak coupling superconductor and this is due to the different
electron count which modifies the Fermi surface and therefore the electron-phonon
coupling. [197]

The presence of low energy phonon branches was also found in previous cal-
culations [199, 218] and in Ref. [199] a charge density wave (CDW) instability
with wave vector X = (π,π, 0) in the phonon branches was also found. The same
authors argued that the different Tc ’s in the A+2 compounds (SrPt3P and CaPt3P)
with respect to LaPt3P, could be due to the effect of the SOC of Pt which splits the Pt
bands populated in LaPt3P and empty in the A+2Pt3P. [199]

In oder to check the presence of low-lying phonons, [197, 199] possible dy-
namical instabilities, [199] and understand the differences in the electron-phonon
coupling in the three compounds, I present here ab initio calculations of the phonon
dispersions and the electron-phonon coupling for the APt3P series. A direct compari-
son with the experiment based on these calculations will be presented in the next
section.

The calculated phonon dispersions of the APt3P compounds are shown in the left
panel of Fig. 2.6. The first thing to notice is that they are stable. The convergence
of the phonon spectra were indeed carefully checked, in particular at the X -point,
where the authors of Ref. [199] found a dynamical instability at ambient pressure.
However no indications of instabilities were found. 2

2The difference most likely stems from the different pseudopotentials employed in that work (See technical
details summarized in section 2.6).
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Figure 2.6: Figure from Ref. [299]. Phonon dispersions, densities of states and Eliashberg
functions α2 F(ω) of the APt3P (A = Sr, Ca, La) compounds. The phonon dispersions are
decorated with symbols, proportional to the partial EP coupling λqν ; for readability, the λ’s
for Sr have been rescaled by a factor of 2. The logarithmically averaged phonon frequencies
ωln, the EP coupling constants λ, and the corresponding critical temperatures Tc ’s are given in
Table 2.3.
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The phonon bands are very similar for all the three compounds and are formed
by thirty phonon branches extending up to ∼450 cm−1. These branches can be
easily grouped in three sets as done in the following:

• two upper branches originated mostly by the out-of-plane P vibrations,

• four intermediate branches at ∼300 cm−1 mostly coming from the in-plane
vibration of P,

• a lower manyfold of the remaining twenty-four strongly intertwined branches,
with mixed A, Pt(1) and Pt(2) character at lower energy.

The phonon dispersions are decorated with red symbols which indicate the intensity
of the EP coupling λνq associated with the phonon band ν and momentum q.
The figure shows that, while the coupling is uniform in LaPt3P, in the two A2+

compounds it is strongly enhanced at low frequencies and is more q dependent. The
phonon density of states at low frequencies is dominated by the Pt(1) (mainly in
plane) character. The breathing modes of Pt couple more strongly to Pt(1) in-plane
electronic states, and less to other characters.

Since the phonon dispersions are very similar among the three APt3P compounds,
the coarse difference in λνq must come from the different electronic states at the
Fermi level. In particular the Pt(1) in-plane character contributes to a large part
of the A2+Pt3P Fermi surface but not in a uniform way. On the other hand, due to
the different electron count, in the Fermi surface of LaPt3P the Pt(1) dyz character
is also present. This character can couple to out-of-plane vibrations of the atoms
which involve higher phonon frequencies.

As a result, the coupling in LaPt3P is smaller and more uniform while in the
A2+Pt3P is larger and more anisotropic. The total electron-phonon coupling (EPC),
λ=

∑

q,ν λ
ν
q , is large in SrPt3P, intermediate in CaPt3P and small in LaPt3P (see

table 2.2).

In order to better explain the similarities and differences among the APt3P
compounds, and to clarify the role of the electron count and the importance of the
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N0 λ ωln ωbr λbr Ibr a(�A)
SrPt3P 2.36 1.33 77 53.0 1.90 5337 5.898
CaPt3P 2.37 0.85 110 85.5 0.63 4605 5.758
LaPt3P 1.94 0.57 118 91.5 0.14 1172 5.838

Table 2.2: Some calculated results for APt3P: Electronic density of states at the Fermi level N0 in
states/eV/spin/unit cell; ωln in K; frequency ωbr in cm−1, e-ph coupling λbr, and e-ph coupling
strength Ibr in cm−2 for the in-plane Pt(1) breathing mode at Γ. In the last column the values of
the in plane lattice constants are also reported.

Pt(1) breathing modes for the superconductivity of these compounds, it is useful to
analyze the Eliashberg functions defined as follows:

α2F(ω) =
1

N0

∑

k,q,ν ,n,m

δ(εn
k)δ(ε

m
k+q)|g

ν ,n,m
k,k+q|

2δ(ω−ωνq), (2.1)

where ωνq are phonon frequencies, εn
k electronic energies, and gν ,n,m

k,k+q are the EP
matrix elements. Due to their structure, the α2F(ω) yield indeed informations on the
nature of the bonding and on the character of the superconducting state. In general,
an α2F(ω) roughly proportional to the PDOS is characteristic of metals with a weak
to moderate total coupling and low T ′c s ® 5 K. The best EP superconductors, such
as MgB2 and A15’s, are instead characterized by α2F(ω) which display sharp peaks
only at specific parts of the phonon spectrum, reflecting a strong coupling between
specific electron and phonon states. This characteristic requires (partly) covalent
bonding. Concerning the Eliashberg functions of the three APt3P compounds (plotted
on the right panel of Fig. 2.6 ) there is a substantial difference: for the SrPt3P indeed
α2F(ω) has only one large peak around∼ 50 cm−1, while in LaPt3P the shape of that
function resembles the PDOS. The Ca compound is in a intermediate situation where
α2F(ω) has two broad features at ∼ 300 and ∼ 100 cm−1. This simple analysis
already gives an insight about the different regime in LaPt3P (weak coupling) with
respect to the A+2 compounds (strong/intermediate coupling ).

While in the La and Sr compounds the change in λ is explained with the change
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in the electron count from La to Sr, the reason why the total EPC increases by
∼ 50% from CaPt3P to SrPt3P needs instead a more detailed analysis.

As already pointed out, for the A+2 compounds the EPC is not only larger than
in LaPt3P, but also almost entirely concentrated in the low-lying phonon branches of
the phonon dispersion. These branches have substantial Pt(1) in-plane breathing
character (green color in Fig. 2.6) and the most coupled mode has B2u symmetry at
the Γ point; I will refer to these modes as ωbr

q in the following. [199, 218]
In SrPt3P the energy of these modes is very low and their dispersion almost

flat, in CaPt3P their energy sightly increases and their dispersion extends up to
∼100 cm−1. The evolution of these modes from one compound to the other can be
captured by following the largest red circles in the left panel of Fig. 2.6 or the green
line in the central panel of the same figure. The red dots represent indeed the value
of λνq and the green line in the phonon DOS highlights the Pt(1) character.

The total EPC constant can be written in terms of the Eliashberg function as
λ = 2

∫∞
0

α2 F(ω)
ω

dω. In SrPt3P α2F(ω) has a very sharp peak at∼ 50 cm−1 which in
CaPt3P broadens and shifts up by ∼ 50 cm−1. Therefore, due to the 1/ω factor, the
EPC is strongly enhanced in SrPt3P with respect to CaPt3P. A similar softening of the
breathing branch is discussed by Chen et al. [199] In that case this softening brings
even a dynamical instability which is absent in the phonon dispersion presented
here.

In order to understand where this softening of the phonon frequencies comes
from, I now focus on the differences between the two A+2 compounds in the Pt(1)
breathing modes. If ωbr

q is the frequency of the breathing mode associated with
a given q point, the EPC constant associated with that particular mode acquires
a simple form which gives the q distribution of the coupling of the electrons with
the breathing modes, over the phonon Brillouin zone: λbr

q = const × Ibr
q /(ω

br
q )

2

where Ibr
q is the electron-phonon matrix element. Graphically, the quantity λbr

q can
be individuated by looking at the largest red dots in the right panel of Fig. 2.6
while the values at the Γ point are given in table 2.2 for all three APt3P compounds
together with the values of Ibr

q and ωbr
q . Going from SrPt3P to CaPt3P, the value of

λbr
q decreases by about a factor of three despite a difference of about 10% in Ibr

q .
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Figure 2.7: Calculated frequency of the B2u mode of SrPt3P (top) and in-plane lattice constant
(bottom) as a function of pressure.

Indeed the electronic states involved in superconductivity are the same while the
characteristic frequency of the modes involved increases by∼ 40%.

Adding one electron to the electron count changes the nature of the electronic
states selected by the two δ functions in eq. (2.1) and reduces drastically Ibr

q . This
together with the hardening of ωbr

q , makes λbr
q more than ten times smaller in

LaPt3P than in SrPt3P.

Since among the A+2 compounds the difference in the EP matrix elements is
small, the lowering of the breathing mode frequencies in Sr with respect to Ca is
not due to an increase in the EP coupling. Rather this could be due to a structural
effect. In fact, as shown in table 2.2, decreasing the in plane lattice constant a,
ωbr

q increases and the coupling λbr
q decreases. In order to verify this hypothesis the

phonon frequencies at the Γ point for SrPt3P were calculated under hydrostatic
pressure using the theoretical structures and the results for the B2u mode are shown
in Fig. 2.7 The pressure dependence of a is also shown. For pressures −4≤ P ≤ 4
GPa, the frequency ωbr(P) of the B2u mode shows a linear dependence and the
slope can be estimated to be 5 cm−1/GPa. Since a scales also linearly with pressure
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with a slope ∼ −0.019 �A/GPa, the relation ωbr(a) ≈ (−260 cm−1/�A) a(�A) can be
extracted. The latter relation is in very good agreement with the 33 cm−1 shift in
ωbr going from SrPt3P to CaPt3P whose in plane lattice constants differ by 0.14 �A.

2.3.1 Strong coupling and weak coupling superconductivity
in APt3P compounds

From the experimental point of view SrPt3P and CaPt3P, despite having very similar
critical temperature Tc , show very different thermodynamic properties. In particular
the specific heat jump appears to be much larger in the former compound than
in the latter. Moreover, by fitting the specific heat of SrPt3P with the so called α
model, [301] the author of Ref. [197] extracted a value of the ratio 2∆/kB Tc ∼ 5
well beyond the BCS value of 3.53. For this reason they propose that multiband
effects could be important in this material. Indeed for multiband systems the
2∆/kB Tc is increased already at the BCS level.3 [305] From the analysis of the
resistivity they also proposed the presence of low energy phonons that are supposed
to enhance the coupling in SrPt3P. Previous calculations by H. Chen et al. [199]
proposed that the difference in the critical temperature and between SrPt3P and
CaPt3P are given by a CDW instability present in the first compound and absent in
the latter one. They argued that superconductivity could benefit of this instability
and consequently Tc could be enhanced. [199]

In the phonon dispersion I have presented this instability is not seen, while low
energy phonons are present and I have shown that they affect significantly the cou-
pling constant. The reason why they also affect the ∆C(Tc)/γTc and the 2∆/kB Tc

but leave Tc almost unchanged is explained in the following. By fitting the numeri-
cal solution of the Eliashberg equations [7], Marsiglio and Carbotte obtained the
following expressions for the BCS ratios of strong-coupling superconductors: [236]

2α=
2∆

kB Tc
= 3.53

�

1+ 12.5
�

Tc

ωln

�2

log
�

ωln

2Tc

�

�

(2.2)

3This phenomenon doesn’t involve all the gaps in the same way. In a two band system for example the larger
gap is increased with respect to the single band case while the smaller gets reduced.
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α1 =
∆C(Tc)
γTc

= 1.43

�

1+ 53
�

Tc

ωln

�2

log
�

ωln

3Tc

�

�

(2.3)

where ωln = exp
�

2
λ

∫∞
0

dω/ωα2F(ω) lnω
�

, i.e. the strong-coupling corrections
to the BCS value depend on the ratio Tc/ωln.

Strong-coupling electron-phonon superconductors can thus be classified ac-
cording to the value of the parameter Tc/ωln, into strong (Tc/ωln � 1), weak
(Tc/ωln� 1), or intermediate (Tc/ωln ≈ 1) coupling superconductors. This is done
in the Marsiglio-Carbotte plots. [236] However, by plotting these ratios as a function
of ωln/Tc , a characteristic of these quantities emerges which is particularly impor-
tant for the APt3P series. Indeed the two A+2Pt3P have almost the same Tc but quite
different and relatively low ωln (see table 2.2). For small values of ωln compared
to Tc these ratios have a larger value with respect to the BCS one. Moreover a
softening of the phonons involved in superconductivity has big consequences on
these ratios. On the other hand, if the phonons involved in superconductivity are at
larger energies compared to Tc , the quantities in eqs. (2.2) and (2.3) approach the
BCS value and do not depend on ωln/Tc anymore.

Eqs. (2.2) and (2.3) are plotted in Fig. 2.8 as a function of ωln/Tc . The values
of 2α and α1 for the APt3P compounds where obtained using the calculated values
of ωln reported in table 2.2 and the experimental critical temperatures.

As it can be easily seen, due to their small ωln, SrPt3P and CaPt3P sit in the most
sensitive region of the parameter space and even if the critical temperatures are very
similar a small shift in the frequency of the phonons involved in superconductivity
affects the value of α and α1 a lot. Note that the value of 2α = 4.33 found in
this way for SrPt3P is smaller than 5.1 experimentally claimed. [197] However
the comparison should be done using the calculated values of ∆, ∆C(Tc) and Tc

obtained from the Eliashberg function, and density of states calculated before. I will
do this in the next section.

LaPt3P has a larger ωln/Tc ratio and therefore is located in the weak coupling
regime region where a change in ωln doesn’t affect the values of α and α1 rations,
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Figure 2.8: 2∆
kB Tc

(black dotted line) and ∆C(Tc )
γTc

(black continuous line) extracted from eqs.(2.2)
and (2.3) plotted as a function of ωln/Tc . The values of ωln for SrPt3P (blue dots), CaPt3P (red
dots) and LaPt3P (green dots) are the calculated ones while the values of Tc are the experimental
values taken from Ref. [197].

whose values are close to the BCS one.

Concerning the dependence of the critical temperature on the spectrum of
the phonons involved in superconductivity, I showed that a shift towards lower
frequencies of α2F(ω) causes a substantial increase in the electron-phonon coupling
constant λ. However this makes also ωln to decrease and, since ωln appears as a
prefactor in the Allen-Dynes expression for Tc :

Tc =
ωln

1.20
exp
�

−
1.04(1+λ)

λ−µ∗ − 0.62λµ∗

�

,

one can see that the increase in λ does not correspond to an increase in Tc .
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2.4 Migdal-Eliashberg Theory

As seen in the last part of the previous section, in order to define the type of
superconducting regime i.e. weak or strong coupling, one has to look at the α and
α1 ratios between the superconducting gap ∆ and Tc or between the specific heat
jump at Tc , ∆C(Tc) over the critical temperature. However in the previous analysis
I used the calculated values of ωln and the experimental values of Tc to extract the
α and α1 ratios, finding a value for α smaller than the one experimentally found.

Indeed, superconductivity in the APt3P series was experimentally claimed and
characterized by measuring the specific heat and fitting the data with the αmodel [301]
in order to infer the superconducting gap magnitude which in SrPt3P was found
to be ∆ ∼ 1.85 meV corresponding to α ∼ 2.55. [197] This was the strongest
experimental argument towards multiband superconductivity.

For these reasons the direct comparison with the experiment must be done by
comparing the theoretical results with the thermodynamical quantities ∆, ∆C(Tc)
and Tc . In order to access these quantities I solved the Migdal Eliashberg equations
in the single-band approximation: [7]

φ(ωn) = πT
m=M
∑

m=−M

[λ(ωn −ωm)−µ∗]
φ(ωm)

p

ω2
mZ2(ωm) +φ2(ωm)

(2.4)

Z(ωn)ωn =ωn +πT
m=M
∑

m=−M

λ(ωn −ωm)
Z(ωm)ωm

p

ω2
mZ2(ωm) +φ2(ωm)

(2.5)

λ(ωn −ωm) = 2

∫ ∞

0

Ωα2F(Ω)dΩ

(ωn −ωm)2 +Ω2 ,

where φ(ωn) = ∆(ωn)Z(ωn), ∆(ωn) is the superconducting order parameter,
Z(ωn) is the mass enhancement factor and M is the number of Matsubara frequen-
cies ωn used in the calculations; here and in the following ∆(0) = ∆. As input
parameters I used the electronic density of states calculated in section 2.2 and listed
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in table 2.2 and the Eliashberg functions coming from the same calculations and plot-
ted in Fig. 2.6. The value of µ∗ was chosen in order to reproduce the experimental
Tc and kept fixed in the calculations of the specific heat jump and superconducting
gap. Its values are listed in table 2.3 and vary about 10% around µ∗ = 0.1 for all
three compounds. To obtain the specific heat, I calculated numerically the difference
∆F(T) between the normal state (N) and superconducting (S) free energy in the
Migdal Eliashberg approximation: [86]

∆F(T ) = −πT
m=M
∑

m=−M

�

|ωn|(ZN (ωn)− 1)

−
2ω2

n[Z
2
S (ωn)− 1] + 2φ2(ωn)

|ωn|+
p

ω2
nZ2

S (ωn) +φ2(ωn)

+
ω2

nZS(ωn)(ZS(ωn − 1)) +φ2(ωn)
p

ω2
nZ2

S (ωn) +φ2(ωn)







.

After fitting the obtained numerical curve with a 12th order polynomial expansion,
I extracted the difference between the normal and superconducting specific heat
from the second derivative of the free energy. The phonon contribution to the
normal state specific heat was obtained by integrating the phonon density of states,
weighted with the Einstein factor x2ex/(ex − 1)2, where x is the ratio between the
phonon frequency ω and the temperature T . [306]

The linear coefficient of the normal state specific heat, the BCS ratio and the
critical temperature of the three APt3P compounds are reported in table 2.3 and
Fig. 2.9 shows the comparison between the calculated electronic specific heat
(continuous lines) and the experimental one (symbols) from Ref. [197].

One can appreciate the almost perfect agreement for SrPt3P and CaPt3P. For
LaPt3P instead, even if the agreement for Tc and the normal state properties was
found to be pretty good, the experimental data for the jump in the specific heat are
too noisy for a meaningful comparison. The inset of Fig. 2.9 shows the normal state
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Figure 2.9: Figure from Ref. [299] Comparison between experimental data from Ref. [197]
(colored dots) and Migdal Eliashberg theory (colored lines) for the heat capacities of APt3P (A=
Sr, Ca and La). Inset: Comparison between experimental data from Ref. [197] (blue dots) and
first-principles calculations (blue line) for the normal state specific heat of SrPt3P.

specific heat of SrPt3P. The lattice specific heat is fitted with a fifth order polynomial
Cph(T) = bT3 + dT5, b = 1.29(1.26) mJ/mol K4, d=8.9(13.0) mJ/mol K6 for
theoretical (experimental) data, respectively. For this compound the remarkable
agreement between the theoretical curves and the experimental data, reflects the
agreement between the calculated phonon spectra and the measured ones. This
allow to definitely exclude any possibility of structural instability like the one found
in Ref. [199].

For the superconducting specific heat of SrPt3P, the single band analysis gives
already a perfect agreement with the experiment, leaving in this way no route
for exotic pairing as proposed by Ref. [198], unconventional superconductivity as
proposed by Ref. [199] or multiband superconductivity as proposed by Ref. [197].



110

γN (mJ/mol K2) Tc (K) 2∆/kB Tc

Sr 12.9 (12.7) 8.5 (8.4) 4.06
Ca 10.3 (17.4) 6.34 (6.6) 3.66
La 7.18 (6.7) 1.56 (1.5) 3.53

Tc/ωln µ∗ ∆ C/Tc (mJ/mol K2)

Sr 0.110 0.11 29.0 (28 )
Ca 0.058 0.09 16.8 (11 )
La 0.013 0.11 10.5 (2 )

Table 2.3: Superconducting properties of APt3P, from first-principles calculations and Migdal-
Eliashberg theory; γN is the electronic normal-state specific heat, ∆ is the value of the super-
conducting gap measured in K, ∆C is the specific heat jump at Tc . Experimental data from
Ref. [197] are in parentheses. The Coulomb pseudopotential µ∗ was fixed to reproduce the
experimental Tc .

Strong coupling superconductivity is instead found in this compound as indicated by
the large value of ratio 2∆

kB Tc
∼ 4.06 but still lower than 5 as proposed by Takayama

et al. [197] This was their strongest argument for multiband superconductivity in
SrPt3P and I will come back later on this point.

The agreement is also very good for CaPt3P but the mass enhancement factor
in the normal state results to be 1.7 times larger than the calculated one. This
is probably due to the presence of additional superconducting phases during the
measurement. All the other quantities are instead in very good agreement with the
experiment.

For all three compounds the critical temperature was obtained by the condition
∆(Tc) = 0 in eqs. (2.4) and (2.5) and a very good agreement was found for µ∗ ∼ 0.1,
which confirms the reliability of the single band analysis and gives therefore a strong
indication of conventional superconductivity in these compounds.

The remarkable agreement with the experiment allows to make some conclusive
statement concerning the nature of superconductivity in the APt3P compounds. In
particular, by using the α and α1 ratios it is possible to classify these materials
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and place them in the wide class of EP superconductors according to their weak
moderate or strong coupling regime. In Ref. [236] Marsiglio and Carbotte have
indeed shown that these ratios, for all known EP superconductors, fall on a universal
curve when plotted as a function of Tc/ωln. It is then possible to better characterize
the APt3P superconductors, by comparing their α and α1 ratios with the ones already
known for other EP superconductors. I do this using the Marsiglio-Carbotte plot
reported in Fig. 2.10 where the dotted and continuous lines are 2α and α1 extracted
from eqs. (2.2) and (2.3) plotted as a function of Tc/ωln.
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Figure 2.10: Figure from Ref. [299]. Location of the APt3P compounds on the Marsiglio-Carbotte
plots for strong-coupling superconductors. ∆ is the superconducting gap at zero temperature,
Tc is the critical temperature, ∆C(Tc) is the jump in the electronic specific heat at Tc , γ is the
linear coefficient of the normal-state specific heat, obtained from DFT and single-band Migdal-
Eliashberg theory and ωln is the logarithmic averaged phonon frequency (see text). Lines are
obtained by fitting the numerical solution of the Migdal-Eliashberg equations. In increasing
order the black points correspond to the following systems: Al, V, Ta, Sn, Tl, In, Nb (Butler), Nb
(Arnold), Nb (Robinson), Nb0.75Zr0.25, V3Ga,Nb3Al, Nb3Ge, Pb, Pb0.8Tl0.2, Pb0.9Bi0.1, Pb0.8Bi0.2,
Pb0.7Bi0.3 and Pb0.65Bi0.35. Data taken from Ref. [236] and references cited therein.
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Fig. 2.10 clearly shows that the theoretical α and α1 values obtained for all
three APt3P compounds are fully in line with other EP superconductors. In this
plot LaPt3P and CaPt3P, with Tc/ωln=0.013 and 0.058, respectively, lie together
with elemental metals, while SrPt3P (Tc/ωln = 0.110) sits, together with the A15
and Chevrel compounds, at the lower end of a broad class of low-phonon, strong-
coupling superconductors. At this point the very large ratio 2∆/kB Tc = 5.0 reported
from Takayama et al.[197] can be definitely excluded for SrPt3P. This value indeed
definitely lies out of the general trend. More precisely, from Fig. 2.10 one sees that
2α= 5.0 corresponds to Tc/ωln ∼ 0.18. Given the calculated ωln, this value leads
to a Tc ∼ 14 K and λ∼ 3 which is clearly inconsistent with the experiment. Since
in Ref. [197] the value 2α = 5.1 is one of the strongest arguments for multiband
superconductivity, one could think that this inconsistency comes form not having
taken into account multi band effects in the calculations. However, given the very
good agreement between the single band Migdal Eliashberg calculations and the
experiment shown in Fig. 2.9 one has to conclude that the α model is inaccurate and
retarded interaction effects must be taken into account rather than multiband effects.

2.5 Conclusions

In this chapter I presented the results of Ref. [299] about the electronic structure,
phonon dispersion, electron-phonon properties and superconductivity in the re-
cently discovered APt3P superconductors. The total energy calculations presented
in section 2.1 showed that these compounds are potentially very interesting since,
given the small energy difference between the polar and antipolar version of their
structure, they could be synthesized in both configurations realizing in this way the
idea of Takayama et al., [197] of studying the effect of the lack of inversion sym-
metry on superconductivity in a controlled way. The electronic structure presented
in section 2.2 showed that the effect of the SOC of Pt can be neglected in studying
superconductivity and the Fermi surface is significatively different in the A+2 (Ca+2,



2.5. Conclusions 113

Sr+2) compounds with respect to LaPt3P due to the different electron count. This
has consequences on the electron-phonon properties examined in section 2.3. I
showed that the phonon dispersions are very similar among the three compounds
and in contrast to what was found in Ref. [199], they are stable. The Eliashberg
functions instead change sensibly going from SrPt3P to LaPt3P and the drop in the
critical temperature is not given by the effect of the SOC of Pt, as proposed by
Chen et al., [199] but is simply due to the different electronic states involved in
the expression of the Eliashberg function (different electron count). The change in
the critical temperature among the A+2 compound is instead demonstrated to be a
structural effect due to the softening of the phonon frequencies with increasing the
in-plane lattice parameter. The stability of the phonon dispersions and the negligible
effect of the SOC of Pt rules definitely out any possible route for unconventional
superconductivity. An a posteriori test of the validity of this analysis is given in
section 2.4 where I used the calculated phonon DOSs and Eliashberg functions to
calculate thermodynamical observables to be compared with the experiment. I did
this in the single band Migdal Eliashberg approximation. The perfect agreement
between the experimental data and the calculated curves rules out also the pos-
sibility of multiband superconductivity and allows to classify all the three APt3P
compounds according to their different superconducting regime. In conclusion the
APt3P superconductor result to be a textbook example of electron-phonon supercon-
ductors. The electron-phonon coupling is weak in LaPt3P with respect to SrPt3P
and CaPt3P because of different electron count. In the A+2 compounds supercon-
ductivity originates from the coupling of the Pt(1) in-plane breathing modes with
the Pt(1) mainly in plane electronic states and the frequency of these breathing
modes changes by changing the in plane lattice constant. This suggests that in this
case the EP coupling can be tuned by applying pressure while in the former case it
can be increased by doping. Moreover it is important to stress that changing in an
appropriate way the synthesis conditions or partial replacement of P with Si, one
could synthesize these compounds in the CePt3Si kind of structure with dramatic
consequences on the symmetry of the order parameter.
While an extensive study of this effect for these materials is beyond the scope of
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the thesis, in the next chapter I will analyze the case of hole doped CuBiSO. In this
material the presence of a ferromagnetic instability near by conventional s−wave EP
superconductivity, breaks the inversion symmetry and can tune the superconducting
order parameter from singlet to triplet p-wave type.

2.6 Technical details

The electron-phonon calculations presented in this chapter employ density func-
tional perturbation theory,[202] within the generalized gradient approximation
(GGA) as implemented in the Quantum-ESPRESSO package, [251, 307] while the
band structure shown in Figs. 2.4 and 2.5 were obtained with the linearly aug-
mented plane wave methods, [308] as implemented in the Wien2K code. [309]
The structures were fully relaxed in GGA such that the force on each atom is less
than 10−5 Ry/Bohr, and the results of the structural relaxation were tested with the
all-electron code Wien2k, which employs the full potential linear augmented plane
wave method. [308, 309] The electron-phonon calculations in section 2.3 were
done using ultrasoft pseudopotentials [310] and basis set cutoffs of 40 Ry and 400
Ry for wave function and charge density, respectively. The Brillouin zone integration
was done by using an 8 × 8 × 8 grid in the self-consistent calculations, while a
denser 16×16×16 grid was used in the electron-phonon coupling calculations. The
dynamical matrices were calculated on an 8× 8× 8 grid, and phonon dispersions
and DOS were then obtained by Fourier interpolation.



Chapter 3

Spin fluctuations and

electron-phonon coupling in

superconducting Cu1−xBiSO

In this chapter I report the results of Ref. [311] on the interplay between magnetism
and superconductivity in hole-doped CuBiSO. For this material ab-initio calculations
predict a ground state characterized by weak ferromagnetism and electron-phonon
superconductivity with a high critical temperature Tc = 33 K. The experimental sample
is instead non magnetic and its Tc = 5.8 K. In order to bring the theoretical results in
agreement with experiment, ferromagnetic spin fluctuations must be taken into account
by modeling the electron paramagnon interaction in a semi-phenomenological way.
The ad-hoc model I derive treats both doping and the Stoner parameter as adjustable
parameters to study the competition of magnetism, singlet and triplet superconductivity
in the phase diagram.
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Introduction

In the previous chapter, I studied the superconducting properties of a textbook
example of electron-phonon (EP) superconductors. In this way I could show how
effective is DFT in reproducing the experiment and how extremely reliable is density
functional perturbation theory (DFPT) within the Migdal Eliashberg approximation
in describing EP superconductivity. [7]

However, while for EP superconductors such a detailed first-principles theory,
albeit computational expensive, has been developed in the last 20 years, [12] for
spin fluctuations (SF) superconductors, even if the earliest works date back to the
60’s, [94, 99] the state of the art is far less advanced. [270] Therefore SF are
usually taken into account as a phenomenological detrimental agent against EP
superconductivity. [312] In fact in itinerant systems close to a quantum critical point
(QCP), like Pd or ZrZn, [51, 234, 313] ferromagnetic SF (paramagnons) compete
against EP coupling in the singlet channel, making the material non superconducting
or reducing substantially the superconducting Tc . [233, 312, 314] On the other
hand, since in the triplet channel EP coupling cancels out, strong ferromagnetic
SF could also be responsible for triplet superconductivity, as it was proposed for
Sr2RuO4. [62] In any case a quantitative theory is still missing.

As for the case of SF superconductivity, also the problem of itinerant magnetism,
where spin fluctuations tend to reduce the tendency to static magnetism, has not
yet been completely clarified. [17]

In this chapter I show the results of Ref. [311] concerning the specific case of
hole-doped CuBiSO (HCBSO). This compound was synthesized for the first time
by Hiramatsu et al. [226] and superconductivity with a Tc = 5.8 K was reported
by Ubaldini et al. [225] under 10 % of Cu vacancies. Due to the vicinity to a
ferromagnetic instability, superconductivity was conjectured to be driven by spin
fluctuations and being of unconventional triplet p-wave type. [200] However this
proposal was not supported by any quantitative studies and the electron-phonon
coupling was never calculated for this material. Moreover, the relatively high
experimental Tc and the strong Cu-d S-p hybridization which characterizes the band
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structure could be, in principle, compatible also with EP mediated superconductivity.
In the following I present the calculated electron-phonon coupling and a quan-

titative theory for the effect of spin fluctuations on superconductivity both in the
singlet channel, where they compete against phonons, and in the triplet channel,
were they are responsible for superconductivity. Due to the importance of doping
in inducing superconductivity, I take into account this variable within the rigid
band approximation (RBA) in order to make the EP calculations feasible. The effect
of SF is evaluated using a spin density functional version of the random phase
approximation (RPA).

This is the first quantitative approach for the competition between EP coupling
and spin fluctuations in superconducting HCBSO.

The chapter is structured in the following way. In section 3.1 I analyze the
electronic structure in relation to both the tendency to magnetism and the possibility
of having EP superconductivity in Cu1−x BiSO. Since introducing Cu vacancies into
the system is equivalent to dope it with holes, in the following I will use indifferently
the acronym HCBSO and Cu1−x BiSO. Concerning the magnetic properties of this
material, I also give an estimate of the Cu-d S-p hybridization contribution in
reducing the Stoner parameter of atomic Cu. However this effect is not sufficient to
bring the doped material out of the ferromagnetic instability, therefore SF must be
invoked in order to justify the absence of magnetism in the experiment.

In section 3.2, I calculate ab-initio the EP properties of Cu1−x BiSO. Because of
the importance of hole doping in turning CuBiSO into the metallic phase and, the
experimental uncertainty about the doping level, I take into account the doping
in the RBA. The EP coupling is found to be overestimated with respect to the
experiment. Indeed the calculated critical temperature is found to be 6 times larger
than the experimental one. This calls again for an important role of ferromagnetic
SF in reducing the critical temperature in the singlet channel. The EP matrix element
is found to be almost doping-independent and this allows to obtain a simplified
expression for the doping dependence of the EP coupling constant.

Given the important role of SF in reducing both the tendency to static magnetism
and to EP superconductivity, in section 3.3 I give an approximate expression for
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the electron paramagnon coupling constant in the singlet channel as a function of
doping and Stoner parameter.

Finally in section 3.4, I study the phase diagram of Cu1−x BiSO as a function
of doping and Stoner parameter. In this way I can draw some conclusions, in
section 3.5, about the competition between magnetism and superconductivity in
HCBSO. Technical details are presented in section 3.6.

3.1 Electronic structure and weak ferromagnetism

The crystal structure of CuBiSO is the ZrCuAsSi-type one (space group P4/nmm).
The

�

Cu+1S−2
�−1

and
�

Bi+3O−2
�+1

layers alternate along the c axis and play the
role to the Fe-Pn and Re-O one in Fe pnictides, where Re is rare earth and Pn is a
pnictogen atom (As, P). Cu(O) atoms form a square lattice surrounded by distorted
S(Bi) tetrahedra as shown in Fig. 3.1 (a).

The unit cell is tetragonal and contains two formula units - see Fig. 3.1 (b). The
lattice parameters are a = 3.8726 �A and c = 8.5878 �A . [225] Since Ref. [225]
reports superconductivity but does not give the internal parameters, in the following
calculations I use the internal coordinates given by Ref. [226]: ZS = 0.6710 and
ZBi = 14829. On the other hand the sensitivity of the bandstructure to these
parameters is very small in comparison to the approximations I will adopt later on
in this chapter. 1

The electron count of CuBiSO can be understood from a simple chemical point of
view, by looking at the electronic configurations and oxidation numbers in table 3.1.

S and O take two electrons each for closing their p shells. These electrons are
provided from 4s and 6p orbitals of Cu and Bi respectively. In this way all the d
orbitals of Cu are completely filled and the p orbitals of Bi remain empty.

A sketch of the calculated electronic structure and electronic DOS of CuBiSO,
along the path indicated in Fig. 3.1 (c), is shown in Fig. 3.2 for a wide energy

1This can be seen by comparing the bandstructure obtained in literature for this compound. [200, 226, 315]
with the one presented in section 3.1.
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Figure 3.1: ZrCuAsSi-type crystal structure of CuBiSO. (a) The Cu(red)-S(green) layers and
Bi(yellow)-O(Blue) ones alternate along the c axis. The Cu (O) atoms form square lattice in
which the Cu(O) atoms are tetrahedrally coordinated with the S(Bi) ones. (b) The unit cell
of CuBiSO contains two formula units per unit cell. (c) Path (green line) in the Brillouin zone
along with the band structure is plotted. The reciprocal lattice vectors (blue arrows) are also
marked.

range around the valence band maximum (VBM). The stoichiometric compound is
indeed found to be a band insulator with an indirect band gap ∆≈ 0.5 eV. This is in
agreement with previous calculations. [200, 226, 315] The VBM occurs along the
Γ−M line and this is chosen as the zero of the energy in the following.

As expected from the simple chemical analysis, the O p orbitals are all below the
Fermi level (all filled) while the Bi ones form the conduction band (all empty). Below
the VBM the band structure of CuBiSO is very similar to that of the Fe pnictides. 16
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Element Electronic configuration Oxidation number

Cu 3d10 4s1 +1
Bi 6s2 6p3 +3
S 2s2 2p4 -2
O 3s2 3p4 -2

Table 3.1: Electronic configuration and oxidation numbers of Cu, Bi, S and O in stoichiometric
CuBiSO.

Figure 3.2: GGA band structure of CuBiSO from Ref. [311], plotted along the path shown in
Fig. 3.1 (c) and shaded according to the partial Cu dxz+yz (left) and S px+y (right) characters:
the continuous and dashed-dotted lines mark respectively the position of the Fermi level in
the undoped compound and that corresponding to the filling d6 of Fe pnictides ( see text); the
corresponding DOS is also shown.

bands, completely derived by the Cu d and S p states, can be identified and grouped
into three main regions: a low-lying region, centered around −5 eV, where 6 bands
have essentially S p character; an intermediate region, from −3 eV to −1. eV, where
6 Cu d bands are located and are separated by a pseudogap from the last region,
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where the remaining 4 bands with mixed S p Cu d character sit.
From the DOS plotted for several atomic characters in Fig. 3.2 it appears indeed

that, for a wide energy range (∼ 7 eV) below the VBM, the bandstructure is
completely derived from the Cu d and S p states. They strongly hybridize and form
bonding and antibonding states at energy E ∼−3.5 eV and E ∼−1 eV respectively.

The antibonding states originate mainly from the S px+y orbitals hybridized with
Cu dxz+yz and dx2−y2 ones, and from S pz orbitals hybridized with Cu dxz+yz and
dx y ones. The bonding states are instead mainly originated from the S pz orbitals
hybridized with the Cu dx y orbitals and from the S px+y orbitals hybridized with
Cu dxz+yz ones. Finally the non bonding states of Cu are centered at E ∼ −2 eV
and are mainly derived from the Cu dxz+yz , dx y and dz2 orbitals.

I describe now the whole band structure, and the expected physical properties,
within a rigid band scheme. Where the Cu d-S p hybridization is strong one
expects strong EP coupling while, whenever the Cu d character is predominant, a
strong tendency to magnetism is expected. [200] Starting from zero energy and
imagining to move “rigidly” the Fermi level along the band structure and DOS for
x ≤ 0, the reader would meet a region, close to the VBM, where the states are
strongly antibonding and the DOS has a pronounced peak due to the flat band
along the Γ− M line. This region would be then characterized by both a large
electron lattice susceptibility and a possible tendency to ferromagnetism. Indeed,
due to the large Stoner parameter of Cu (ICu ≈ 0.9 eV ), magnetism is favored
through the entire Cu d bands. However, pure CuBiSO is an insulator and Cu is
in a nominal d10 state (thus non magnetic), therefore doping is crucial to drive
the system into the magnetic (and the superconducting) instability. Moving EF

further down, the electron lattice susceptibility will be substantially decreased due
to the reduced degree of p-d hybridization, and ferromagnetism will be suppressed
by the vicinity to the pseudogap which separate the Cu-S antibonding states from
the Cu d non bonding ones. In this range of energies antiferromagnetism is more
favored. At E ∼−1.4 eV indeed, the electron filling, marked by the dashed-dotted
line in Fig. 3.2, is d6 and the low-energy band structure of Fe pnictides can be
individuated. [72] The Cu dxz and Cu dyz bands -degenerate due to the tetragonal
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symmetry- are highlighted in the left panel of Fig. 3.2 as “fat bands”. These bands,
in the energy range marked by the dashed-dotted line, form two almost degenerate
electron pockets around the M point nested with the two hole-like pockets located
around the Γ point. This kind of nesting favors the antiferromagnetic stripe order
with the spins ferromagnetically aligned along the a axis and antiferromagnetically
aligned along the b axis. This is, actually, the same kind of instability that the reader
will encounter in chapter 4 when talking about LaFePO. [53, 54] Shifting even
further down the Fermi level, the electron lattice coupling would be enhanced again
due to the bonding character of the states around E ∼−3 eV.

Since experimentally the superconducting instability appears in Cu1−x BiSO
under Cu vacancies (x = 0.1), and there is a certain degree of uncertainty about
the doping level in the experimental sample, [225] in the following I will realize
this idea of shifting the Fermi level by making calculations in RBA for 0< x ≤ 0.5
(doping up to 1 hole per unit cell). This approximation is justified because the
considered levels of doping are very small, and the Fermi level moves within a
single, doubly-degenerate band, whose character does not change appreciably in
the energy range explored. Since the character of the band doesn’t change, both the
magnetic and the EP properties stay constant as a function of doping. 2

I focus the discussion first on the magnetic properties and then, in the next
section, on the electron-phonon coupling.

The top of Fig. 3.3 shows a blow-up of the band structure of CuBiSO around
zero energy. Increasing x in RBA corresponds to move the Fermi level towards
negative energies. The stoichiometric compound, as already said, appears to be a
band insulator and is therefore non magnetic. Increasing x , also the DOS at the
Fermi level N0(x) increases, up to the peak (N0(0.1) = 1.93 states/eV/spin) caused
by the flat band located at energy corresponding to hole doping x = 0.1 and marked
by the red dotted line. Increasing the doping further, N0(x) decreases again. The
red dashed line marks the energy corresponding to the lowest filling (x = 0.5)
considered in my calculations.

2An “a posteriori” test will be given later in the chapter when considering the doping dependence of the
Stoner parameter I and of the EP matrix element Vep .
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Figure 3.3: top: A blow-up of the low-energy band structure of CuBiSO; the dotted and dashed
red lines mark the position of the Fermi level, corresponding to a hole doping x = 0.1 and
x = 0.5 respectively, in RBA. bottom: GGA Majority (red) and minority (black) spin DOS in the
ferromagnetic state for Cu1−x BiSO for the experimental value of x = 0.1, calculated in virtual
crystal approximation (VCA). The magnetic moment for this value of x is m = 0.03 µB/ Cu
and the splitting between majority and minority DOS is ∆E ≈ 20 meV. The Stoner parameter is
obtained by the relation I =∆E/m= 0.67 eV.

Under hole doping the Cu state is reduced from d10 to d9, it is therefore magnetic
and its large Stoner parameter in the atomic configuration (ICu = 0.9 eV) would
bring the system well above the Stoner criterion for ferromagnetism N0(0.1) ∗ ICu =
1.74. For x ≥ 0.1 the ground state of the system is indeed ferromagnetic both in GGA
and in LSDA, while Cu0.9BiSO experimentally doesn’t show instability against any
kind of commensurate antiferromagnetism. [200] On the other hand, for x = 0.1
the magnetic moment in GGA is m = 0.03 µB and the gain in energy calculated
from fixed spin moment calculations was found to be very small. [200] Moreover,
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as it was pointed out before, the bandstructure is characterized by a strong Cu d-S
p hybridization which points toward a dilution of the Stoner parameter. Indeed if
several atoms contribute to the states at the Fermi level, each one with a partial DOS
νi , the total Stoner parameter is I =

∑

i Iiν
2
i where Ii is the individual (quasiatomic)

Stoner parameter. [52, 63] It is therefore important, in order to understand the
magnetic properties of HCBSO, to give a more reliable estimate of I , also because
this compound was suggested to be a new spin fluctuations superconductor. [200]

The effect of hybridization in reducing the Stoner parameter I can be estimated
by calculating it from the split between the majority and minority bands in the
ferromagnetic state. The GGA splitting in VCA is shown for x = 0.1 at the bottom
of Fig. 3.3. When the magnetic interaction is turned on, the bands spin polarize
and split by a quantity ∆E which, for small values of the self-consistent magnetic
moment m, is proportional to m and the proportionality constant is the Stoner
parameter I . In my calculations the GGA Stoner parameter is I = 0.67 eV, larger
than the LSDA one I = 0.53 eV, as expected for itinerant magnetism [51, 52, 57]. In
both cases I < ICu which confirms the expected importance of the role played the
Cu-d S-p hybridization in affecting the magnetic properties of HCBSO. Moreover in
virtual crystal approximation I is found to be doping independent and this gives an
“a posteriori” test of the validity of RBA.

Both the LSDA and GGA values of the Stoner parameter are overestimated with
respect to experiments. Indeed the experimental sample is non magnetic. This is
typically observed in compounds close to a magnetic quantum critical point (QCP),
where long wavelength (spin) fluctuations are strong and suppress the value of the
magnetic moment. [263]

These spin fluctuations can couple to electrons and provide a mechanism for
superconductivity, alternative to phonons. In fact SF near a ferromagnetic instability
are in general pair-breaking in the singlet channel, i.e. they suppress the attractive
coupling to phonons, and pairing in the triplet channel. This mechanism for the
origin of superconductivity in HCBSO was conjectured in Ref. [200] and in this
respect my calculations confirm the importance of a mechanism, beyond mean-field,
necessary to explain the magnetic properties of this material but they are not suf-
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ficient to answer the most important question: Is Cu0.9BiSO a spin fluctuations
mediated superconductor? In order to answer this question indeed, one has to
calculate the electron paramagnon coupling constant. Even if there is not yet a
standard theory for calculating it, in section 3.3 I will use the spin density functional
version of the RPA in order to give an approximate expression for this quantity.
In the next section I will instead focus the attention on the EP properties. Indeed
the important role played by the Cu-d S-p hybridization and the relatively high
experimental Tc make the EP properties worth exploring.

In this section I showed that DFT calculations found stoichiometric CuBiSO to
be a band insulator whose band structure is characterized by a strong Cu d-S p
hybridization. When holes are introduced into the system the Fermi level moves into
a double degenerate flat band with mixed Cu dxz+yz and S px+y character. This
causes a peak in the DOS at EF at the experimental doping x = 0.1 which makes
the system slightly unstable against ferromagnetism, even if the Stoner parameter is
reduced by the hybridization. The fact that so far experiment have not shown any
trace of static magnetism calls for a significant role of spin fluctuations in reducing
the tendency to magnetism. I will come back later to this point in the next sections.
Moreover the problem of finding a reliable description of magnetism in itinerant
magnets close to a QCP will be the focus of chapter 5.

3.2 Phonons and electron-phonon properties

In order to have a clear idea of the ground state properties of superconducting
HCBSO I analyzed, in the previous section, the electronic properties, and I found that
spin fluctuations could play an important role in this material, above all in reducing
the tendency to magnetism and, may be also, in driving superconductivity. [200]

On the other hand, the relatively high experimental Tc of Cu0.9BiSO, the fact that
EP superconductivity was excluded only by means of qualitative arguments [200]
and the strong Cu d-S p hybridization found in the previous section, make the
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phonon and electron-phonon (EP) properties of HCBSO worth calculating ab-initio.
Furthermore, given the doping uncertainty in the experiment, is also important
to take into account the doping dependence of these quantities. Therefore in this
section I show the results of Ref. [311] concerning the vibrational properties of
Cu1−x BiSO as a function of doping x in RBA. For the reasons explained in the
previous section -i.e. the doping value is small and the band character remains
constant under hole doping-, indeed, I suppose the RBA to be valid.

Note that calculating the EP coupling selfconsistently for each doping, would
be computationally prohibitive. Indeed, as explained below, the calculations imply
an integration over the Fermi surface and a double δ function is also involved.
Since the Fermi level moves into a flat band, the calculations could become strongly
dependent on the electron filling and the resolution needed in k space could make
the computational load too large also for an high-performance computer. In order to
make the calculations feasible I assume the RBA to be valid and I verify a posteriori
that this is the case by looking at the ratio between the EP coupling constant and
the DOS at the Fermi level as a function of doping. This gives indeed an indication
of the doping dependence of the EP matrix element.

Within RBA the partial phonon density of states (PDOS) used to calculate the
EP properties is calculated only for the stoichiometric compound while the doping
dependent EP coupling constant λep(x) is computed from the integral of the first
inverse moment of the Eliashberg function α2F(ω, x) obtained by averaging the
EP matrix element gν ,n,m

k,k+q(x), which in principle depends on x , over the doping
dependent Fermi surface δ(εn

k , x) obtained by a rigid-band shift corresponding to
the doping level. Namely:

α2F(ω, x) =
1

N0(x)

∑

k,q,ν ,n,m

δ(εn
k , x)δ(εm

k+q, x)|gν ,n,m
k,k+q(x)|

2δ(ω−ωνq) (3.1)

and λep(x) = 2
∫∞

0
dΩα2F(Ω, x)/Ω.

The electron-phonon properties of Cu1−x BiSO are summed up in Fig. 3.4. The
upper panel shows the PDOS of the undoped compound. The spectrum extends
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Figure 3.4: From top to bottom: Partial phonon density of states (PDOS), Eliashberg spectral
function for x = 0.1, in RBA, and (inset) ratio between the coupling constant and N0(x) as a
function of doping.

up to 65 meV; modes involving vibrations of the Bi-O layers are concentrated at
energies ≤ 20 meV, while modes involving the Cu-S layers are found at higher
energies. The light S atoms give rise to a very broad feature in the DOS, from 35 to
65 meV.

For all values of doping, I found that only two groups of phonon modes, corre-
sponding to the out-of-plane vibrations of the Cu-S layers, have sizable EP matrix
elements gν ,n,m

k,k+q(x): these give rise to two narrow peaks in α2F(ω), centered at 32
meV and 48 meV. As an example, the α2F(ω, x = 0.1) is shown at the bottom panel
of Fig. 3.4. In my calculations I found that the shape of the Eliashberg function,
and hence the spectral distribution of the EP coupling, does not depend on doping
for x ≤ 0.5. Therefore the total EP coupling constant λep(x) depends on doping
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only through the value of the DOS at EF N0(x). In the inset of the bottom panel of
Fig. 3.4 I plotted the ratio Vep(x), between λep(x), numerically calculated from eq.
(3.1), and N0(x). Vep appears to be constant and ∼ 0.9 eV spin f.u. in the entire
range of doping considered (x ≤ 0.5). Together with a simplified expression for the
EP coupling constant, this gives also a further confirmation of the validity of the
RBA. I thus rewrite λep(x) as:

λep(x) = N0(x)Vep. (3.2)

For x = 0.1, N0(x = 0.1) = N0 = 1.93 st/eV spin f.u., λep(x = 0.1) = λep = 1.74,
ωln = 263 K and Tc , estimated from Mc Millan’s formula (with µ∗ = 0.1):

T McM
c =

ωln

1.2
exp

−1.04(1+λep)

λep − (1+ 0.62λep)µ∗
= 33 K. (3.3)

This value is sensibly larger than the experimental value Tc = 5.8 K, therefore a
deeper understanding is needed. Indeed this discrepancy is much larger than the
typical uncertainity of Tc in similar calculations, coming from the computational
uncertainity on λep - typically 10 %, or from the arbitrary value of µ∗ in the McMillan
formula. In fact, keeping all the parameters in eq. (3.3) the same, I would have to
use λep = 0.6 to reproduce the experimental Tc .

The ab-initio parameters involved in formula (3.3) are the coupling constant λep

and the logarithmic average of the phonon frequencies ωln. Using eq. (3.2) end eq.
(3.3) it is possible to separate the contribution to the critical temperature coming
from phonons (by means of ωln), electrons (via N0) and the interaction among
them (through Vep). Therefore in table 3.2 I report the material trend involving
the mentioned parameters for several materials. From top to bottom I start with
magnetic materials like LaOFeAs and Pd. In these materials SF play against EP
superconductivity, and the EP coupling is very weak due to the small value of Vep.
Then come Al, Nb and Pb which are “classical” example of EP superconductors
respectively in the weak, moderate and strong coupling regime. Finally I examine
CuBiSO and then MgB2 which is the EP superconductor with the highest critical
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material λep N0 Vep ωln(K) µ∗ T McM
c (K)

LaOFeAs [4] 0.21 2.100 0.1 206 0.00 < 0.4
Pd [12] 0.35 1.255 0.3 180 0.10 0.3
Al [12] 0.44 0.202 2.2 270 0.12 1.2
Pb [12] 1.68 0.253 6.6 65 0.17 6.2
Nb [12] 1.26 0.750 1.7 185 0.21 10.5
CuBiSO 1.74 1.93 0.9 263 0.10 33.0

MgB2[15] 0.87 0.355 2.5 719 0.10 39.7

Table 3.2: Different values of the quantities involved in the McMillan formula (3.3) for different
materials listed with respect the critical temperature. N0 is the DOS at EF expressed in (st./eV
spin f. u.), Vep is the ratio betweenλep and N0 and is expressed in (eV spin f.u./st.)

temperature. In magnetic materials, the major contribution to the EP coupling comes
from the DOS at the Fermi level. However this is a fictitious contribution. Indeed an
high value of N0 makes the material highly sensitive to several interaction channels
(e.g. EP superconductivity, magnetism and, as I will show later on, interaction with
SF) sometimes also competing against each other. For EP superconductors like Al,
Nb and Pb instead, even if there are few electrons at the Fermi level available for
the interaction, the values of Vep are at least one order of magnitude larger than the
previous ones.

Once the instability channel is selected, ωln enters as a prefactor in the formula
for the critical temperature. For this reason Pb has a lower Tc then Nb even if λep is
∼ 30% larger. In this respect, the quite substantial value of Vep and the very large
value of ωln make MgB2 to have the highest Tc among the EP superconductors.

CuBiSO has the smallest Vep among the EP superconductors, while it has the
highest value of N0. This means that is very likely unstable but the EP channel may
be or may not be the favored one. For this reason, even if its Tc associated with
EP superconductivity is almost the highest among the considered compounds, SF
driven superconductivity cannot been yet excluded for this material.
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This can be rationalized a posteriori thinking about the nature of the bonds in-
volved. In MgB2, like in B-doped diamond, the bands involved in superconductivity
are indeed the bonding p− p σ bands which have a large EP matrix element and
no tendency to magnetism. [14, 15] While the p-d bands involved in the super-
conductivity of CuBiSO have quite substantial Vep but bring also the tendency to
magnetism. For these reasons in HCBSO the SF origin of superconductivity cannot
be completely excluded.

In this section I showed that the EP properties of HCBSO are dominated by the
Cu-S out-of-plane vibrational modes. These modes are indeed sensibly coupled
to the electrons and hardly doping dependent. The Eliashberg function is indeed
characterized by two high peaks in correspondence of the out-of-plane vibrations
of the Cu-S layer and is doping independent. This allows to write the doping
dependence of the EP coupling constant in a particularly simple way. The critical
temperature, calculated using the ab-initio parameters, is ∼ 6 times larger than the
experimental one and the biggest contribution to λep comes from the large value of
the DOS at the Fermi level.

This, together with the findings of section 3.1, indicates that in HCBSO the
suppression of phonon-mediated pairing comes from the strong ferromagnetic spin
fluctuations (paramagnons), due to the vicinity to a ferromagnetic QCP. The high
value of N0(x) indeed, places this compound in a region of the phase space very
sensitive both to the magnetic and to the EP superconducting instability. In both
cases fluctuations beyond mean field must be invoked in order to better understand
the underlying physics. In the next section I will therefore try to give an estimate of
the electron paramagnon coupling in order to address the reduction of such a big
EP coupling and to understand the origin of superconductivity in HCBSO.
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3.3 Paramagnons and electron-paramagnon coupling con-
stant

The conclusions of sections 3.1 and 3.2 indicate that in Cu1−x BiSO ab-initio cal-
culations performed in LSDA and GGA overestimate both the tendency to static
magnetism and the electron-phonon superconducting Tc . The simplest hypothesis
that gives reasons for these two effects happening at the same time, is that HCBSO
is close to a QCP and strong spin fluctuations, on one hand reduce the Stoner
parameter, on the other hand reduce the EP coupling constant.

In order to describe in a quantitative way the competition between the magnetic
driven superconductivity and the EP one, gaining in this way a better understanding
on the origin of superconductivity in Cu1−x BiSO, one has to evaluate the electron-
paramagnon coupling constant λSF . Such an interaction in metals was studied with
respect to possible superconductivity in Pd and applied later in Sr2RuO4. [62, 99]
The first approach appears more qualitative and not very suitable for applications
to real materials. The second one makes use of the informations coming from DFT
but does not give a general “recipe”. Indeed several effects must be taken into
account, overall the fact that part of the electron-paramagnon interaction is already
included in the actual implementations of DFT. For this reasons, I will construct a
theory for λSF in HCBSO which is an RPA version of the LSDA. In this way I will
be able to express the coupling constant λSF in terms of the Stoner parameter I
which is the parameter that governs the magnetic interaction in LSDA. However, in
my calculations the Stoner parameter is overestimated with respect to experiment.
Therefore I will leave the latter quantity as a free parameter in the following.

Since the electron paramagnon coupling constants for singlet λs
sf and triplet

(λt
sf) superconductivity are simply proportional to each other (λt

sf =
1
3
λs

sf), in the
following I will concentrate myself only on the singlet channel. [316]

The irreducible interaction in the particle-particle singlet channel, evaluated
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within RPA, in the paramagnetic case [99] is given by:

V s
sf(q,ω) =−I −

3

2

�

I2χ0(q,ω)
1− Iχ0(q,ω)

�

−
1

2

�

I2χ0(q,ω)
1+ Iχ0(q,ω)

�

, (3.4)

where χ0(q,ω) is the non interacting spin susceptibility at frequency ω and momen-
tum trasferred q. Close to a magnetic instability, the second term dominates so that
eq. (3.4) reduces to: [316]

V s
sf(q,ω) =−

3

2

I2χ0(q,ω)
1− Iχ0(q,ω)

=−
3

2
I2χRPA(q,ω) (3.5)

where χRPA(q,ω), defined by:

χRPA(q,ω) = χ0(q,ω) +χ0(q,ω)IχRPA(q,ω), (3.6)

is the interacting spin susceptibility evaluated within RPA. Here I assume I to be
independent both of q and of the band indices. The ferromagnetic instability happens
when lim(q,ω)→(0,0) χ0(q,ω)I = N0 I = 1 i.e. the Stoner condition is fulfilled.

The electron paramagnon coupling constant in the singlet channel λs
sf, is defined

as an average over the Fermi surface of V s
sf(q, 0) times the DOS at the Fermi level

N0:

λs
sf =−N0

∫ ∞

0

〈Im V s
sf(q,ω)〉
ω

dω=−N0 Re〈V s
sf(q, 0)〉, (3.7)

where the brackets 〈 〉 indicate an average of the momentum transfer over the
(spherical) Fermi surface. [94, 99, 316] A common approximation is to take
χ0(q, 0) ≡ χ0(q) = N0uσ(q) where uσ(q) is the Lindhard function. [94, 99] This
implies the underlying assumption of spherical Fermi surface.

In order to calculate λs
sf for HCBSO, I could applying the scheme illustrated

above with the approximation of a spherical Fermi surface, and inserting in eq. (3.7)
the value of N0 coming from LDA. In this way however, I would obtain a λs

sf greatly
overestimated. Indeed, as it can be seen from Fig. 3.5, the Fermi surface of HCBSO,
evaluated in LDA is far from being spherical and the LDA susceptibility doesn’t
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Figure 3.5: Left: Fermi surface of Cu0.9BiSO adapted form Ref. [200]. The four small red arrows
indicated the nesting vectors q̄= (±π/8,±π/8). Right: Real part of the LDA spin susceptibility
χ0(q, 0) for Cu0.9BiSO. The large peak at q= 0 is due to intraband processes. The four smaller
peaks at q̄∼ (π/8,π/8), emphasized by the red circles, are due to interband transitions.

look as the Lindhard function at all. On the other hand, performing numerically
the integral would be computational expensive without giving a sizable gain in
accuracy, due to the uncertainty on doping and on the Stoner parameter I . On the
other hand, in HCBSO the LDA spin susceptibility has a large peak at q = 0, due
to intraband processes, and four smaller peaks at q̄∼ (π/8,π/8), due to interband
transitions; the relative weight is such that χ0(0, 0)≈ 2χ0(q̄, 0). Near the instability
it is reasonable to keep only the contribution at q = 0. Indeed χRPA(q, 0) in eq.
(3.6) can be separated into two parts: χ int ra = χRPA(0,0) = N0/(1− N0 I) and
χ inter = 4χRPA(π/8, 0) = 4N0/(2− IN0). Close to the Stoner condition the second
term is negligible. Therefore, in the ω= 0 limit I finally obtain:

λs
sf(x , I) =

3

2

N2
0 (x)I

2

1− IN0(x)
. (3.8)

This is what I called spin density functional version of the RPA. In the last expres-
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sion I have taken into account the doping dependence of N0 obtained in RBA.

Eq. (3.8) is very similar to the well-known expression for the SF induced
interaction in the singlet channel, [316] averaged over the Fermi surface. Moreover
it diverges at the LDA Stoner condition i.e. I expect the system to be consistently
ferromagnetic for the LDA value of I .

Given this expression for the SF coupling it is now possible to study the effect
of paramagnons on the EP superconductivity of Cu1−x BiSO and even to establish
whether for some parameter range this material could be a SF superconductor as
already conjectured in previous calculations. [200] Indeed the expression of the
coupling constant in the triplet channel, λt

sf, can be easily obtained from λs
sf. [316]

I will do this in the next section where, using appropriately modified formula
for Tc with respect to eq. (3.3), and the expression for the doping dependent EP
coupling constant derived in the previous section, I will study the phase diagram of
Cu1−x BiSO by studying the behavior of λ∆ = λep − λs

sf as a function of doping x
and Stoner parameter I .

3.4 Phase diagram of Cu1−xBiSO

Sections 3.1 and 3.2 have shown that the calculated ground state of HCBSO is
characterized by both weak itinerant magnetism and strong EP coupling. These
two characteristics of the ground state compete with each other and SF make the
experimental sample to be non magnetic and to have a reduced Tc with respect to
the calculated one. In sections 3.2 and 3.3 I also obtained simple expressions for
λep and λs

sf as a function of doping x and Stoner parameter I . The uncertainty on
doping comes from the experiment while the uncertainty on I comes from the fact
that, due to their mean-field character, LSDA and GGA overestimate the tendency to
static magnetism in systems close to a QCP. [51]

The scope of this section is to collect all these informations and analyze the phase
diagram of Cu1−x BiSO as a function of the latter two variables, in order to draw
some conclusions about the interplay between superconductivity and magnetism
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in this material. The effect of paramagnons is to suppress superconductivity in the
singlet channel by depressing the effective coupling constant λ∆(x , I) = λep(x)−
λs

sf(x , I) and increasing the effective mass of the carriers by the factor 1+λZ (x , I) =
1+λep(x)+λs

sf(x , I). This effect has been studied in Ref. [317] where the following
expression for Tc was derived (and verified by comparison with numerical solutions
of the Eliashberg equations):

Tc(x , I) =
ωln

1.2
exp







−
1+λZ (x , I)

λ∆(x , I)−µ∗
h

1+ 0.5 λ∆(x ,I)
1+λZ (x ,I)

i







. (3.9)

Here I assume for simplicity that the characteristic frequencies of phonons and
paramagnons are the same and equal to ωln, while µ∗ is the usual Coulomb pseu-
dopotential and is fixed at 0.1.

Eq. (3.9) can also be generalized to triplet superconductivity. In this case
phonons participate only in the mass enhancement factor, while their contribution
to the pairing is canceled out, and superconductivity is completely built up by SF.
The generalization of eq. (3.9) to this case is obtained by the substitution:

λ∆(x , I)→ λt
sf(x , I);

λZ (x , I)→ λt
Z (x , I) = λep(x) +λt

sf(x , I),
(3.10)

where λt
sf(x , I) = 1

3
λs

sf(x , I) is the coupling to spin fluctuations in the triplet chan-
nel. [316] In this way it is possible to study the x and I dependence of the effective
coupling constant, and the related Tc both in the singlet and in the triplet channel. I
will call T s

c the critical temperature associated with the singlet channel and T t
c the

critical temperature associated with the triplet channel. This allows to obtain a sim-
ple estimate of the critical temperature for both symmetries of the superconducting
order parameter.

Eq. (3.9) gives an appreciable Tc only if the denominator in the exponential is
positive. For small µ∗, this is the case, when λ∆ > 0. I therefore use λ∆(x , I) to
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define the phase diagram of HCBSO. Moreover, given eq. (3.10), one can obtain
information on both the singlet and the triplet channel.

The phase diagram of Cu1−x BiSO is presented in Fig. 3.6 where I plot isocontours
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Figure 3.6: Phase diagram of Cu1−x BiSO as a function of doping (x) and Stoner parameter I .
The color scale gives the value of λ∆. The two horizontal dashed lines correspond to ILDA=0.53
eV and IGGA=0.67 eV. The vertical dashed line indicates the doping for which superconductivity
was observed in Ref. [225]. In the region (FM) the system shows a FM instability, defined by
the condition (N0(x)I ≥ 1); elsewhere the system is paramagnetic (PM). Below the green line
(which marks the condition T s

c = T t
c ) the ground state is a conventional singlet superconductor.

Above the green line a triplet superconducting state is more stable. The isolines λ∆ = 0.6 and
λt

sf = 0.6 indicate the values of I , x which reproduce the experimental Tc = 5.8 K of Ref. [225]
in the singlet and triplet channel respectively.

of λ∆(x , I) in the I , x plane in which several phases can be outlined.
For small values of x and I , also the value of the DOS at the Fermi level is small

and the system is paramagnetic and non superconducting. With increasing doping,
the DOS at EF also encreases and, if λ∆� µ∗ a conventional EP superconductivity,
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albeit suppressed by spin fluctuations, is a stable zero-temperature ground state.
This region is the one indicated by SC and delimited by the isoline λ∆ = 0.6.
This is indeed the value of λ∆ needed to reproduce the experimental Tc = 5.8 K.
At experimental doping x = 0.1, if the Stoner parameter is increased, λ∆ goes
down and a competing instability against a triplet state emerges when the critical
temperature in the singlet channel T s

c , becomes equal to the critical tempreature
T t

c in the triplet channel. This condition is graphically indicated by the green line.
Finally, as the tendency to magnetism is increased even further, the Stoner criterion
N0 I > 1 is fulfilled, and the system becomes ferromagnetic. This region of the phase
diagram is indicated in Fig. 3.6 by FM.

The LSDA or GGA value for I are indicated by the two horizontal white dashed
lines. For dopings close to x = 0.1 these values of I consistently bring Cu1−x BiSO
inside the FM region. However, at x = 0.1 experiments see no trace of static FM
order, a sign of inadequacy of the mean-field character of magnetism in LSDA and
GGA. Reducing the LSDA value of I to Ieff = 0.51 eV suppresses the magnetic
instability at x = 0.1; a reduction to Ieff = 0.39 eV brings the estimated triplet Tc in
agreement with the experimental one, and a reduction to 0.30 eV does the same
with the conventional singlet Tc . One way of modeling the effect of fluctuations,
and, at the same time, retaining the ab-initio information on the dependence of
N0 on x , is to replace the Stoner parameter in eq. (3.8) with a lower, effective
value, Ieff. This reduction is supposed to account phenomenologically for spin
fluctuations. This phenomenological reduction of I , as I showed in chapter 1,
has a precise physical justification, and is usually obtained by the comparison
with the experimental quantity (spin susceptibility or magnetic moment). Since
for Cu1−x BiSO these quantities are not yet available, Ieff can estimated to be
0.30 eV ® I < 0.51 eV. Indeed for typical itinerant magnets renormalizing I
by ∼ 30 − 40% with respect to LSDA provides reasonable agreement with the
experimental magnetic susceptibilities. [51]

Concerning the nature of superconductivity in Cu0.9BiSO my calculations, give a
quite surprising result. Indeed superconductivity was first supposed to be made by
spin fluctuations [200] then, in section 3.2 I showed that actually the EP coupling
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is extremely large in this compound and therefore superconductivity could be,
most likely, mediated by phonons and eventually suppressed by paramagnons.
Finally, in this section, looking at the phase diagram it is clear that both triplet
and singlet T s

c and T t
c are of the same magnitude and both sizable at experimental

doping. Therefore no definite answer can be given on this topic, but a complete
new perspective is open. Indeed, given the rich phase diagram of Cu1−x BiSO, in
principle one could easily switch from one pairing symmetry to another or from
ferromagnetism to metallic or insulating state by playing with doping or pressure,
making Cu1−x BiSO extremely fascinating material.

3.5 Conclusion and outlook

In order to close this chapter and to point towards to the next ones, it is useful to
summarize the results obtained up to now, and collocate this chapter in the wider
context of the whole thesis.

In this chapter I presented the results published in Ref. [311] on magnetism and
superconductivity in HCBSO.

In section 3.1 I presented DFT calculations concerning the electronic structure
of this material. The stoichiometric compound is a band insulator and, for a wide
energy range below the VBM, the band structure is characterized by a strong Cu d-S
p hybridization. When holes are introduced into the system it becomes metallic and,
at experimental doping x = 0.1, the Fermi level sits on a flat band which causes
a peak in the DOS, making the system slightly instable against ferromagnetism.
However the experimental compound is not magnetic therefore SF must be invoked
in order to reproduce the experiment. This SF could lead to superconductivity in
the triplet channel. This hypothesis was also considered in Ref. [200]. On the other
hand the strong Cu d-S p hybridization and the relatively high critical temperature
made EP properties worth calculating. Therefore in section 3.2 I calculated the
EP coupling and I discovered that also Tc associated with EP superconductivity is
overestimated with respect to the experimental one. Therefore SF must be invoked
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to reduce the Tc in the singlet channel. For these reasons, in section 3.3 I estimated
the electron paramagnon coupling constant both in the singlet and in the triplet
channel and I obtained a simple analytical expression for SF-induced interaction as
a fuction of doping x and Stoner parameter I . Finally , in the last section I collected
all the informations obtained concerning λep, λs

sf and λt
sf in the resulting phase

diagram.
The obtained results sound particularly interesting especially concerning the

superconducting state of HCBSO. Indeed this material appears as a unique example
where a spin fluctuations-driven superconductivity in the triplet channel and phonon-
driven superconductivity in the singlet one are nearly degenerate. The critical
temperature is sizable for both symmetries. This fact can be rationalized a posteriori
in terms of the strong S p-Cu d covalency that characterizes the band structure:
the presence of anti-bonding p states at the Fermi level leads to large EP matrix
elements, whereas the large susceptibility and the strong magnetic tendency of Cu
enhances spin fluctuations. Moreover the flat band in the VBM of the stoichiometric
compounds enhances the DOS at the Fermi level and places HCBSO in a region
of the phase space particularly sensitive to instability involving both the charge
and the spin degrees of freedom. This seems to be confirmed by the experiment
in which superconductivity appears to be particularly sensitive with respect to the
experimental conditions. [225]

If on one hand this doesn’t allow me to give a definitive answer concerning the
actual symmetry of the order parameter, on the other hand renders this material
particularly interesting and suitable for applications. One could indeed tune, in
principle, the pairing symmetry by applying pressure or magnetic field.

However, the uncertainty on the bare interaction parameter I remains an issue.
Indeed, concerning the magnetic properties of Cu1−x BiSO I showed that the mean-
field nature of LSDA and GGA is inappropriate for describing them and therefore,
in order to reproduce the experiment, a phenomenological reduction of the Stoner
parameter I is needed. The question that arises at the end of this chapter, and
project us towards to the next ones is then the following. Could it be possible to
reduce the Phase diagram of Cu1−x BiSO to only one line? In other words, could
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it be possible to make a completely ab-initio prediction of the Tc vs x phase diagram
fixing once for all the Stoner parameter I? In chapter 5 I will face exactly this point
for a material whose physical properties change under pressure instead of doping.
Using a simple method I will be able to tune the Stoner parameter within DFT and,
given the peculiar behavior of the DOS under applied pressure, I will be able to
derive ab-initio the pressure dependence of the magnetic moment.

3.6 Technical Details

For the band structure and density of states (DOS) calculations shown in Fig. 3.2, I
employed the Linearly Augmented Plane Wave methods [308], as implemented in
the Wien2K code. [309] I used atomic spheres of 2.4, 2.0, 2.0 and 1.8 a.u. for Bi, Cu,
S and O respectively; the electronic integration was carried out on as many as 8000
k-points in the full Brillouin zone, using the improved tetrahedron method [318];
similar setups were used for the spin-polarized calculations discussed in the text.

For the EP coupling calculations presented in this chapter, I used the linear
response method; all calculations were performed in the generalized gradient
approximation [251] using plane waves [307] and ultra-soft pseudopotentials [310],
except for the Bi atom for which I employed a Martin-Trouillers norm-conserving
pseudopotential. I employed a cut-off of 100 (800) Ryd for the wave functions
(charge densities). The electronic integration in the self-consistent cycles was
performed over a 4 × 4 × 2 k-mesh. Finer grids (48 × 48 × 24) were used for
evaluating the EP linewidths, and the densities of states (DOS) in the doped regime.
Dynamical matrices and EP linewidths were calculated on a 8× 8× 2 uniform grid
in q-space. Phonon frequencies throughout the Brillouin zone were obtained by
Fourier interpolation. The (perturbed) potentials and charge densities, as well as
the phonon frequencies, were calculated self-consistently at zero doping (x = 0);
the effect of doping on the EP coupling was then estimated using the rigid-band
approximation. 3

3The rigid band routine was developed with the help of Matteo Calandra.



Chapter 4

Phenomenological approach to the

optical properties of LaFePO

In this chapter I present the results of Ref. [319] concerning the optical properties of
LaFePO. Both the intraband and the interband contributions to the optical conduc-
tivity are calculated. A phenomenological model is applied to the interband optical
conductivity in order to account for the overestimation of the overall bandwidth in
generalized gradient approximation (GGA). The agreement with the experimental data
from Qazilbash et al. [153] is remarkable. The analysis presented here allows to
estimate the spurious effect introduced by low-energy optical interband transitions
when the spin fluctuations coupling is extracted from an extended Drude model analysis
of the experimental data. I show that the coupling constant for spin fluctuations, which
is usually overestimated by optical experiments, is found to be consistent with the one
obtained from other experimental probes.
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Introduction

The last example of a phenomenological analysis based on density functional theory
(DFT) presented in this thesis, is applied to the interpretation of the optical spectrum
of LaFePO, one of the earliest Fe based superconductors discovered. [1] All Fe
pnictides have a layered crystal structure and are grouped in different families
according to the details of the crystal structure. Most of them share same common
features such as the shape of the Fermi surface and the vicinity to a magnetic
instability. [53, 54, 72] Given the tendency to magnetism and the low value of the
calculated electron-phonon coupling constant, [4, 70, 228] spin fluctuations are
thought since the beginning to be the most likely paring interaction. [5, 6]

LaFePO is non magnetic and the critical temperature is relatively low (Tc = 7
K), [1] compared to the largest Tc of 56 K found in Gd1x Thx FeAsO [220] and
in Sr0.5Sm0.5FFeAs. [221] Fermi surface measurements via de Haas-van Alphen
effect, angle-resolved photoemission spectroscopy (ARPES) experiments and ther-
modynamic specific heat measurements all consistently point to LaFePO as a mod-
erately/weakly correlated compensated metal. [136, 229–231] However optical
conductivity measurement analyzed using the extended Drude model (EDM), found
a surprisingly large inverse time scattering rate τ−1(ω) with a significant frequency
dependence. [153] This was interpreted by the authors as an indication for strong
many body effects, due to a retarded interaction mediated by spin fluctuations.
Within the EDM indeed, under certain conditions and assuming that the interband
optical transitions involve energy scales larger than the cut-off frequency ωc be-
low which the data are analyzed, the ω dependent scattering rate can be linked
to the shape of the spectrum of the retarded interaction and consequently to the
coupling constant λ. [134] According to Qazilbash et al., for LaFePO the EDM
analysis finds λ ≈ 0.5 and an additional renormalization of the bandwidth by a
factor of 1+λW ∼ 2 is also present. [153] In practice the bare band mass mb gets
renormalized twice:

m∗ = (1+λ)mb(1+λW ) = mb(1+λ+λW +λλW ).
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In this way the total coupling constant λTOT = λ+λW +λλW ≈ 2.

After the report of Ref. [153], the same kind of experiments were made also on
different Fe pnictides, [154–157] and also in that case the same large ω dependence
of τ−1(ω) was found and interpreted as due to electron-boson interaction in the
strong coupling regime (λ≈ 3− 4). [156, 157]

In LaFePO this leads to a contradiction since a large coupling constant of 2
corresponds also to large effective mass at low-energies in contrast to what measured
by de Haas-van Alphen effect, [229] ARPES experiment [136, 229] and specific
heat measurement. [230] These measurements all consistently indicate indeed a
mass enhancement m∗/mb = 1+λ® 2, i. e total coupling constant lambda ≤ 1.1

This inconsistency could be caused by the presence of low-energy interband
optical transitions which give a fictitious contribution to the frequency dependence
of τ−1(ω). The use of the EDM analysis in pnictides indeed, corresponds to implicitly
assume that these transitions set in at ωc ∼ 2000 cm−1, [153, 320] even if some
authors suggested that this value could be smaller. [155–158]

The analysis of the role of low-energy interband transitions that I carried out in
Ref. [319] aimed to clarify how accurate this assumption is.

In this reference, I calculated the effect of low-energy interband transitions on
the optical conductivity. For the intraband part, I used a simple low-energy model,
introduced in Ref. [195]. Since the model employed for calculating the intraband
optical transitions accurately reproduces the low-energy and thermodynamic prop-
erties of LaFePO, [185, 195] the comparison with the experiment allows to make a
reliable estimate of the location and amplitude of the contribution coming from the
interband optical transitions. From this analysis I found that in LaFePO interband
transitions give a sizable contribution to the optical conductivity already at low
energy. This causes an overestimation of the spin fluctuations coupling constant with
respect to other experiments. Therefore the use of the EDM analysis in pnictides is
questionable. A consistent estimate of the spin fluctuations coupling constant was

1A large mass enhancement factor of 2.63 was found in Ref. [231] but this is probably due to the poor
homogeneity of the sample. Indeed the measured critical temperature was Tc ≈ 3 K, about half of the value
measured in other samples. [229]
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also obtained.
For the interband part, I used a phenomenological form, made up of two

Lorentzian peaks, with variable width, position and weight.
The structure of the chapter is the following. In section 4.1 I present the crystal

and electronic structure of LaFePO. In section 4.2, after giving a basic introduction
to the EDM analysis, I introduce the low-energy model employed for calculating
the Migdal Eliashberg self-energy used for the calculation of the intraband optical
conductivity of LaFePO. In section 4.3 I present a preliminary comparison of
the calculated intraband optical conductivity with the experiment which permits
to define an upper boundary frequency ωB above which the calculation fails in
describing the experiment and an additional contribution must be taken into account.
This contribution, which comes from low-energy interband optical transitions, is
modeled as a Lorentzian peak characterized by spectral weight S0, width γ and
frequency ωL . A study of the parameter space of this simple model is also presented
and is found that, in order to reproduce the experiment, γ/ωL ≈ 1. In section
4.4 the origin of this contribution is addressed calculating the interband optical
conductivity of LaFePO within density functional theory. It turns out that the low-
energy real part of the interband optical conductivity in GGA is formed by two
peaks: one at very low-energy which does not contribute to τ(ω) and a broader
feature which gives a large contribution. However, while GGA allows to calculate
the interband part of the spectrum, due to the underestimation of correlation effects
that renormalize the bandwidth in pnictides, [93, 136] the position in frequency of
the transitions is overestimated. In an ellipsometry study, Charnukha et al. [159]
found that in K-doped BaFe2As2 there is a factor 3 discrepancy between the location
of the optical transitions predicted by the LDA calculations and the experiment.
Therefore from the DFT calculations I estimated the position of the transitions
and their intensity while the final form of the optical conductivity for LaFePO was
estimated phenomenologically from the comparison with the experimental data.

This comparison is presented in section 4.5 and the interband optical conductivity
is parameterized as a double Lorentzian peak. Finally, given the good agreement
with the experiment, some conclusions are drawn in section 4.6. Technical details
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are presented in section 4.7.
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P
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Figure 4.1: ZrCuAsSi-type crystal structure of LaFePO. (a) The Fe(red)-P(green) layers and
La(yellow)-O(Blue) ones alternate along the c axis. The Fe (O) atoms form a square lattice in
which the Fe(O) atoms are tetrahedrally coordinated with the P(La) ones. (b) The unit cell of
LaFePO contains two formula units per unit cell. (c) Path (green line) in the Brillouin zone
along which the band structure of Figs 4.2 and 4.7 are plotted. The reciprocal lattice vectors
(blue arrows) are also shown.
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4.1 Crystal and electronic structure

LaFePO belongs to the 1111 family of the Fe pnictides. The compounds belonging
to this family have the general formula ReFePnO where Re is a rare earth atom and
Pn is a pnictogen atom (As, P). [54] Their crystal structure is the ZrCuAsSi-type
one (space group P4/nmm) and is made by ReO layers alternating to FePn ones in
the same fashion of CuBiSO already described in chapter 3 and shown in Fig. 4.1
(a): in the FePn (ReO) layer the Fe (O) atoms form a square lattice in which the Pn
(Re) atoms sit in the center of the square alternatively above and below the Fe (O)
plane. As a result, the Fe (O) atoms are tetrahedrally coordinated with the Pn (Re)
ones whose distance from the Fe (O) plane is hPn (hRe). The value of hPn is related
to the internal Wyckoff position of the pnictogen (rare earth) atoms through the
relation zPn = hPn/c (zRe = hRe/c) where c is the length of the lattice vector parallel
to the z axis. The Wyckoff positions for the atoms in LaFePO are 2c for La and P, 2b
for Fe and 2a for O.

The unit cell shown in Fig. 4.1 (b) is tetragonal and contains two formula units.
For LaFePO the formal ionic states are La+3 O−2 Fe+2 P−3 and, as for most parent
compounds of Fe pnictides, Fe is in the d6 configuration. In my calculations I used
the experimental lattice parameters a = 3.964 �A and c = 8.512 �A and internal
coordinates zP = 0.3661 zLa = 0.1487. [1]

The bandstructure of LaFePO, calculated using the experimental lattice param-
eters and internal coordinates, is shown on the top of Fig. 4.2 together with the
corresponding Fermi surface. The LaO-FeP interaction is strongly ionic, indeed the
LaO and FeP partial density of states (DOS) -not shown- remain almost unchanged
in LaFePO with respect to LaO and FeP 2D lattices. [321] On the other hand the FeP
interaction is pretty covalent and the bandstructure depends crucially on hP as for
pnictides in general. [57, 61, 72, 322]

Two main energy regions, separated by a small gap around ∼ 2.5 eV below EF ,
can be distinguished in the plot. The states with energy −5 eV < E <−2.5 eV have
mostly P p character. They strongly hybridize with Fe d states and have bonding
character. The antibonding counterpart is located instead at ∼ 1.5 eV above the
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Fermi level. Above the mentioned small gap, in a region of ∼ 5 eV around the
Fermi level the bandstructure of LaFePO is constituted by 10 bands with mainly
Fe 3d character slightly mixed with the P p one. [72, 321, 322] The low-energy
bandstructure of LaFePO is plotted along the path highlighted in Fig. 4.1 (c) and is
shown in the bottom of Fig. 4.2. The choice of local coordinates is such that the x
axis points towards the Fe-Fe bond. In this way the dx y orbital points towards the P
atom while the dx2−y2 one points towards the nearest neighbor Fe.

In a range of 1 eV around EF (taken as reference for the energy) the electronic
structure is characterized by two hole bands with dxz/dyz character crossing the
Fermi level around the Γ point and two almost degenerate parabolic electron bands
with dxz/dx y and dyz/dx y character located around the M point. An additional
band with d3z2−r2 character is also present and crosses the Fermi level along the Γ−Z
direction, but experimentally it is not observed. Finally a band with dx y character is
also present and is located at ∼ 0.2 eV below the Fermi level. The presence of this
band at the Fermi level depends crucially on the internal coordinate hPn and seems
to be responsible for the antiferromagnetic instability in Fe pnictides. [194, 322] In
LaFePO hPn is such that this band lies below the Fermi level and this compound is
consistently non magnetic.

The Fermi surface is shown at the top left panel of Fig. 4.2 and is made of
five sheets. Two concentric and almost cylindrical sheets are centered around the
M point and other two are centered around the Γ point. These portions of the
Fermi surface are almost bidimensional as can be understood by looking at the flat
dispersions along the Γ−Z and M−A directions in Fig. 4.2. The fifth sheet centered
around the Γ point is instead almost spherical due to the large dispersion along the
Γ− Z direction of the corresponding d3z2−r2 band. [321, 322]

In Fig. 4.2 the nesting vector QAF M = (π/a,π/a, 0) -where a is the in plane
lattice parameter- is shown with the gray arrow connecting the two electron like
cylinders around the M point and the two hole like cylinders around the M point.
The Fermi surface topology is an almost universal property of Fe-based supercon-
ductors. In some compounds the coupling between the FePn layers is weak, and
can be safely neglected. One can then use a smaller, one Fe-atom unit cell, with
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Figure 4.2: Top: Band structure of LaFePO calculated with the experimental lattice parameters
and internal coordinates (left) and relative Fermi surface (right) adapted from Ref. [323].
Bottom:Blow up of the low-energy electronic structure of LaFePO: it is composed by a dispersive
hole band with d3z2−r2 character -green color in (a)- around the Γ point, four almost bidimen-
sional hole and electron bands with dxz and dyz character -red color in (b) and dx y character
-blue color in (c)-. Finally a band with dx y character is located at 0.2 eV below the Fermi level.
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lattice vector d = a/
p

2. The corresponding Brillouin zone is bidimensional and its
area is twice larger than the Γ-X -M plane of the three dimensional one. For those
compounds in which the interlayer interaction is weak, the M point unfolds into two
inequivalent X̄ and Ȳ points hosting the dxz and the dyz electron-like Fermi surface
sheet respectively, while the three hole like Fermi surface sheets get distributed
in the two inequivalent Γ̄ and M̄ points where respectively the d3z2−r2 and the
two dxz/yz and dx y hole pockets sit. As a result the nesting vector is Q̄= (0,π/d)
-d = a/

p
2 is the Fe-Fe distance-. [72]

Early ARPES experiment on LaFePO presented in Fig. 4.3 (a), [136] showed that
the agreement with LDA calculations is obtained when the experimental bandwidth
is renormalized by a factor 2.2 and the band shifted up by ∼ 0.11 eV. The renor-
malization of the bands is due to the effect of local correlations and is a general
feature of Fe pnictides. The amount of this factor is instead a peculiarity of the
single compound and is found to vary in a large range between 2 and 7. [324–328]

Also the shift of the measured band dispersion with respect to the calculated
one is a quite general property of Fe pnictides. [93, 324–335] However these shifts
are not rigid as the one presented in Fig. 4.3 (a), rather they have opposite sign for
electron and hole bands close to the Fermi level. Concerning this effect in LaFePO,
Coldea et al., [229] compared the Fermi surface measured by de Haas-van Alphen
experiment with LDA calculations performed using the experimental coordinates
and found that the bands close to the Fermi level appear shifted in a selective way,
with respect to the LDA ones, according to their particle or hole character. In Fig 4.3
the calculated and the measured de Haas-van Alphen orbits are shown together with
the corresponding Fermi surface. In LaFePO the two electron bands giving rise to
the electron sheets in Fig. 4.3 (c) are shifted up by −83 and −30 meV respectively
and the hole bands are instead shifted down by 53 meV. As a result the Fermi surface
volume appears reduced with respect to the LDA one. The calculated yellow orbit in
Fig. 4.3 (b) is experimentally not observed.

In the next section I will introduce a model which was used to show that the
band shifts observed in Fe pnictides are an indirect evidence of the prevalence of
the interband coupling over the intraband one in these materials. [195] I will then
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a) b)

c) d)

Figure 4.3: Figure from Refs. [136] and [229]. (a) The band dispersion measured by ARPES
experiment (color scale) is compared with the LDA band structure obtained using the experi-
mental lattice parameters but relaxed internal coordinates. The bandwidth of the calculated
bandstructure was renormalized by a factor of 2.2 and the bands shifted rigidly up by ∼ 0.11 eV.
(b) The de Haas-van Alphen hole and electron orbits are shifted in a different way. As a results
the LDA volume of the Fermi surface (c) results bigger than the one actually measured (d).

use this model to calculate the intraband optical conductivity in LaFePO.
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4.2 Intraband transitions

4.2.1 The extended Drude model

The extended Drude model (EDM) analysis is based on the fact that the retarded in-
teraction modifies the Drude formula for the optical conductivity introducing a com-
plex and frequency-dependent relaxation rate Γ→ Γ̃(ω) = Γ1(ω) + iΓ2(ω). [133–
135] As a consequence, the complex optical conductivity σ̃(ω) = σ1(ω) + iσ2(ω)
assumes the following form:[134]

σ̃(ω) =
ne2

[Γ1(ω) + iΓ2(ω)]m
1

1− iω
[Γ1(ω)+iΓ2(ω)]

=
ne2

m[1+λ(ω)]
1

Γ1(ω)
1+λ(ω) − iω

(4.1)
where n is the carrier density, m is the band mass and I have introduced the

quantity λ(ω) =−Γ2(ω)/ω.
For λ(ω)→ 0, eq. (4.1) reduces to the well known Drude formula for the optical

conductivity, otherwise it gives origin to a frequency-dependent scattering rate and
a frequency-dependent mass enhancement factor:

m∗(ω)
m

=
ω2

P

4πω

σ2(ω)

σ2
1(ω) +σ

2
2(ω)

(4.2)

τ−1(ω) =
ω2

P

4π

σ1(ω)

σ2
1(ω) +σ

2
2(ω)

, (4.3)

where both the electron mass m and the inverse time scattering rate τ−1 are
renormalized by the factor 1+λ(ω). Eqs.(4.1)-(4.3) define the extended Drude
model for the complex optical conductivity. The renormalization effect characterizes
the low-energy part of the spectrum and, with increasing frequency, λ(ω)→ 0, m∗

approaches the band mass and Γ1(ω) approaches the inverse impurity scattering
time present in the Drude formula. [134]

Both τ−1(ω) = Γ1(ω) and 1+λ(ω) = m∗(ω)/m can be computed by calculating
or measuring the complex optical conductivity σ̃(ω) and the plasma frequency
ω2

P = 4πne2/m.
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Since both Γ̃(ω) and σ̃(ω) obey the causality principle it is sufficient to calculate
or to measure σ1(ω): the other quantities follow then from the Kramers-Kronig
relations. Notice that the EDM analysis implicitly assumes two hypothesis:

• Interband transitions are negligible at low energies. For Fe pnictides a lower
cut-off ωc ∼ 2000− 3000 cm−1 was estimated. [153–157]

• Validity of the Luttinger theorem (i.e. the interacting system has the same
Fermi surface volume as the non interacting one).

In compensated metals the decrease in the number of holes can be compensated by
a decrease in the number of electrons. As a result, the decrease in σ1(ω) does not
come from the factor 1+λ(ω) in eq. (4.1) only, but also from the reduction of the
charge density n under the effect of the interaction. [336]

4.2.2 The microscopic model

In order to calculate the intraband contribution to the optical conductivity due to
the interaction of holes and electrons at the Fermi level, I use the model presented in
Ref. [195]. The model was already used for describing the low-energy properties of
LaFePO and reproduced the experimentally observed Fermi surface reduction with
respect to LDA calculations. [195] The low-energy non-interacting bandstructure is
approximated by two parabolic hole bands placed at the Γ point and two parabolic
degenerate electron bands located at the M point. The fifth d3z2−r2 band lies
experimentally below the Fermi level and is therefore not considered. The band
dispersions can be expressed in the following way:

εk,α = Emax ,α −
ħh2 | k |2

2mα
, α= 1, 2 (hole bands) (4.4)

εk,α = Emin,α +
ħh2 | k |2

2mα
, α= 3, 4 (electron bands). (4.5)

The band parameters Emax ,α, Emin,α and band masses mα are taken from the DFT
calculations made by Lebégue. [321] More explicitly, since the hole (electron) bands
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Figure 4.4: Figure from Ref. [195] Sketch of the band structure for LaFePO (a) and Fermi
surface (b) as represented by eqs. (4.5). The non zero element of the interaction matrix Vαβ are
also shown.

do not disperse along the Γ−Z ( M−A) direction, I focus on the kz = 0 plane. From
the Γ− X ( M − X ) cut of the Fermi surface I extract the Fermi vector kF,α for the
hole (electron) bands. Setting the chemical potential µ = 0, I also extract from DFT
calculations the hole (electron) band edges Emax ,α (Emin,α). The non interacting
band mass mα is estimated from Emax ,α (Emin,α), namely mα = ħh2k2

F,α/2Emax(min),α.
Within the parabolic approximation the density of states (DOS) is flat and can be
obtained from the band mass and the lattice parameter a as N0,α = mαa2/2πħh2.
The effective band edges far from the Fermi level are obtained from the relation
N0,α = 1/(Emax ,α − Emin,α). 2 Finally the band dispersions are renormalized by a
factor of two in order to account for local correlation effects not included in the
model. [136] The values of the band parameters are reported in table 4.1.

The interaction is considered to be purely interband and mediated by spin
fluctuations treated within the Migdal-Eliashberg approximation. The retarded local

2This value does not represent the true band edge as given in DFT calculations, rather an effective one
needed to guarantee the total number of states.
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Band parameters for LaFePO

α mα/me Emax,α Emin,α N0,α

(eV) (eV) (st. /eV)

1 1.16 0.102 -2.516 0.382
2 2.28 0.102 -1.231 0.750

3,4 1.58 1.776 -0.147 0.520

Table 4.1: Microscopic band parameters entering the four-band model used for calculating
the intraband optical conductivity of LaFePO. [195, 319] The parameters are obtained by
renormalizing by a factor of two the band parameters obtained in DFT from Ref. [321].

self-energy in the Matsubara space can be expressed in the following way:

Σα(iωn) =−T
∑

m,β

VαβD(ωn −ωm)Gβ (iωm) (4.6)

where Vαβ is the interaction matrix and Gβ (iωm) is the local one particle Green’s

function defined as
∫

dk2

4π2 Gβ (k, iωm) and

Gβ (k, iωm) =
1

iωm − εk,β −Σβ (iωm) +µ
. (4.7)

The integral over k in the definition of Gβ (iωm) can be replaced by an energy
integral over ε:

Gβ (iωm) = N0,β

∫ Eβmax

Eβ ,min

dε
1

iωm − ε−Σβ (iωm) +µ

where I used the fact that a two dimensional parabolic band has a flat density of
states N0,β . In this way the adimensional matrix elements λαβ = VαβN0β can be
defined. In eq. (4.6) D(ωn−ωm) is the bosonic propagator which mimics the effect
of antiferromagnetic spin fluctuations in LaFePO and requires further discussion.



4.2. Intraband transitions 155

For a nearly antiferromagnetic Fermi liquid the spin susceptibility can be written
as: [17, 169]

χ(q,ω)∝
ω0

Γq − iω
(4.8)

where Γq =ω0[1+(q−Q)2]ξ2/(ξ/a)2, ξ is the spin fluctuations correlation length,
ω0 is their characteristic energy scale, Q is their characteristic q vector and a is the
lattice parameter.

The imaginary part of the susceptibility defined by (4.8) is given by:

χ ′′(q,ω)∝
ω0ω

Γ2
q +ω

2 (4.9)

and does not obey the sum rule giving the total number of spins at T = 0:

∑

q,ω
χ ′′(q,ω)< S(S+ 1) = 3/4. (4.10)

Indeed χ ′′(q,ω) vanishes as 1/ω at high ω, therefore the left side of eq. (4.10)
diverges logarithmically.

For this reason Millis introduced a cut-offωD which makes the spin susceptibility
in eq. (4.8) fulfill the condition (4.10) and applied the Eliashberg scheme for
obtaining the retarded self-energy for a system of electrons with dispersion εk

interacting with spin fluctuations. [171]

The modified expression for χ(q,ω) in the Matsubara space is the following:

χ(q,Ωn,ωD)∝

−ω0
| Ωn | −(2Ωn/π) tan−1(Ωn/ωD)−Γq + (2Γq/π) tan−1(Γq/ωD)

Γ2
q− | Ωn |2

. (4.11)

Eq. (4.8) is recovered in the limit of large ωD and with the substitution Ωn→
−iω.
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In the following calculations, the bosonic propagator D(ωn −ωm) is the propa-
gator of spin fluctuations. Therefore it is chosen as the dynamical spin susceptibility
in eq. (4.11) in the limit of large cut-off ωD:

D(Ωn) = lim
ωD→∞

χ(q,Ωn,ωD).

Indeed I’m not interested in calculating the T = 0 properties and moreover the total
number of spins does not enter the calculations. Moreover the propagator in eq.
(4.11) is found to converge quite fast increasing the cut-off ωD .

The q-dependent energy scale Γq is assumed to be constant and equal to the
characteristic energy scale ω0 of spin fluctuations in LaFePO measured by neutron
scattering. This is equivalent to setting q= Q and ξ∼ a in the expression for Γq.

Indeed the q dependence of the interaction is modeled by choosing only the
interband terms in the coupling constant λαβ .3 With all these assumptions the final
expression for the bosonic propagator times the scattering matrix Vαβ used in the
calculations has the following form:

VαβD(ωn −ωm) = Vαβ
ω0

ω0+ |ωn −ωm |
. (4.12)

For reproducing the low temperature properties of LaFePO close to Tc , the value
of ω0 was fixed at 20 meV in order to resemble the spin fluctuations spectrum
revealed by neutron scattering experiment on pnictides. [149–151]

In Fig. 4.4 a sketch of the non interacting low-energy band structure of LaFePO
is shown, and the arrows indicate the non zero elements of Vαβ which represent
the interaction between the two hole pockets at the Γ point and the two electron
pockets at the M point, namely V1,3,V1,4,V2,3,V2,4 and their symmetric elements
(Vαβ is indeed symmetric). The non zero element of Vαβ are all fixed at the same

3 Spin fluctuations in pnictides are strongly enhanced at QAF M = (π/a,π/a, 0) due to the nesting condition
between the hole pockets at Γ and the electron pockets at M . Therefore, by assuming a separable form of the
bosonic propagator D̃(Ωn ,q) = V (q)D(Ωn), the q dependence of the propagator D(Ωn ,q) is transferred to the
coupling matrix Vα,β and consequently to the coupling constant λα,β .
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Figure 4.5: Figure from Ref. [152]. Temperature dependence of χ ′′(QAF M ,ω) measured by
neutron scattering. The solid lines are guides to the eye. The dashed lines represent global fits
with the eq. (4.9). The error bars represent the statistical error.

value V = 0.46 meV. This choice of V gives indeed the best agreement with the
experiments. [1, 185, 195, 229–231, 336]

At this point, instead of V is convenient to introduce the adimensional quantity
λav =

∑

αβ λαβ/4 which is an average of the dimensionless coupling constant in
each of the four bands included in the microscopic model. I found that the value of
λav ∼ 0.5 needed to reproduce the experimental Fermi surface volume measured at
low temperature, [229] was found to reproduce also the superconducting Tc = 7
K [1] and the specific heat measurements. [230, 231] At higher temperature, both
the coupling constant λav and the characteristic energy scale of the spin fluctuations
mode ω0 change. In particular ω0 shifts towards higher energy (ω0 ∼ 60 meV),
as measured by Inosov et al. [152] in BaFeCo. They measured the imaginary part
of the spin susceptibility of BaFe1.85Co0.15 and fit the experimental results with
formula 4.9 as shown in Fig. 4.5. The temperature dependence of ω0 was estimated
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to be: [152]
ω0(T ) =ω00(T + θ), (4.13)

with ω00 = 0.14± 0.004 meV/K and θ = 30± 10 K. This means that ω0(T ∼
300 K)≈ 3ω0(T ∼ 7 K). This increasing of ω0 is accompanied by the weakening of
the antiferromagnetic correlations which can be parameterized as a reduction by a
factor of 3 in λav, whose value at T = 300 K can be estimated as λav(T ∼ 300 K)∼
0.17.

4.2.3 Intraband optical conductivity

Since the self-energy in eq. (4.6) is q independent, the vertex corrections vanish
and the intraband optical conductivity σintra(ω) can be computed in the simple-
bubble approximation. [337–339] Its real part can be thus written as σintra

1 (ω) =
∑

ασ1α(ω), where

σ1α(ω) =
−2πe2

ħh

∫ ∞

∞
dz

f (z−µ+ω)− f (z−µ)
ω

×

×
∫

dk2

4π2 v2
k,αAα(εk,α, z+ω)Aα(εk,α, z). (4.14)

In eq. (4.14) f (z) = 1/(exp−z/T +1) is the Fermi function, vk,α = ∂ εk,α/∂ kx

is the quasi particle velocity and the spectral function, defined as Aα(εk,α, z) =
− 1
π

ImGα(k,ω+ i0+), [340] can be written in the following way: [336]

Aα(εk,α, z) =
1

π

Γqp
α (ω)

�

ω− εk,α −χα(ω)
�2
+
�

Γqp
α (ω)

�2 . (4.15)

In eq. (4.15) χα(ω) is the real part of the self-energy and Γqp
α (ω) = Γα(ω)+Γ0,

where Γα(ω) = −ImΣα(ω) and Γ0 = 10 meV is an impurity finite quasiparticle
scattering rate obtained by estimating the approximate width of the low-energy
optical spectra from the experiment in Ref. [153].
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The analytic continuation for Gα(k, iωn)→ Gα(k,ω+ i0+) and Σα(k, iωn)→
Σα(k,ω+i0+)was obtained with the Marsiglio-Schossmann-Carbotte procedure. [341]

The imaginary part of the of the optical conductivity can be obtained from the
Kramers-Kronig relations. Finally τ−1(ω) is calculated from eq. (4.3).

In this section I introduced the model and the basic assumptions for the intraband
optical properties of LaFePO. First I presented the extended Drude model which
assumes a frequency-dependent inverse time scattering τ−1(ω) due to retarded
interaction. This quantity can be obtained by calculating the real part of the complex
optical conductivity σ1(ω), once the low-energy band structure is modeled. The
low-energy bandstructure was modeled with two hole bands sitting at the Γ point
and two degenerate electron bands sitting at the M point. The interaction was
assumed to be purely interband and mediated by spin fluctuations. The propagator
of the retarded interaction was supposed to be proportional to the spin susceptibility
modeled by Millis. [171] The self-energy was obtained in the Migdal Eliashberg
approximation with a local approximation on the dressed Green’s function. Since
the obtained self-energy is q independent the optical conductivity was calculated by
neglecting vertex corrections.

4.3 Role of interband transitions

In this section I compare the intraband optical conductivity calculated from the
many-body model introduced in the previous section with the experimental data of
Ref. [153]. The large difference between the optical conductivities can be explained
by assuming low-energy interband transitions (ω® 1000 cm−1).

The real part of the intraband optical conductivity, and the corresponding ω
dependent inverse time scattering are shown in Fig. 4.6 and compared with the
experimental data from Ref. [153]. From the experimental data two regimes can be
clearly distinguished. At low frequencies (ω® 500 cm−1), σ1(ω) shows a narrow
Drude-like behavior and τ−1(ω) is constant ∼ 400 cm−1. Above this frequency,
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σ1(ω) appears to be flat while τ−1(ω) increases linearly.
I remark that impurity scattering gives rise to a constant τ−1(ω) while collective

modes like phonons make this quantity grow up to a saturation point above the
characteristic energy scale of the excitations involved. [342] For these reasons at
first glance the experimental data seem to indicate the presence of collective modes
with typical energy scales well beyond 500 cm−1. Therefore phonons were ruled
out since their energy scale in pnictides does not exceed 500 cm−1. [4, 153] The
collective modes responsible for the observed behavior of the optical properties in
LaFePO could be due to spin fluctuations. [153] Indeed, since χ ′′ in eq. (4.9) decays
slowly with ω, [171] the spectrum of spin fluctuations extends well beyond 500
cm−1.

In the previous section I presented an effective low-energy model for LaFePO,
which describes the low-energy properties of this material in a consistent framework.
The basic ingredient is the exchange of antiferromagnetic spin fluctuations among
holes and electrons located in different parts of the Brillouin zone, connected
by the QAF M = (π/a,π/a, 0) nesting vector. In Fig. 4.6 I show as blue dots the
experimental data from Ref. [153] and the lines represent the calculations using
two different values of λav. With red dashed line the theoretical curves obtained by
using λav = λ1 ≡ 0.55 are indicated.

This value is chosen in order to reproduce the linear behavior of the experimental
inverse lifetime scattering τ−1(ω) and it is slightly larger than λav = 0.5 used to
reproduce the low-energy properties. [1, 229–231]

The black continuous lines are obtained by using a value of the average coupling
constant λav reduced by a factor of 3 with respect to the one used at T ∼ Tc ,
which takes into account the temperature-dependence of the spectrum: λav = λ2 ≡
0.5/3= 0.17.

The optical conductivity was calculated according to section 4.2.3 and the in-
verse scattering time τ−1(ω) was calculated with formula (4.3) of section 4.2.1
using the experimental value of ωP = 14900 cm−1. [153] The comparison between
the theoretical results and the experimental data shown in Fig. 4.6 is unsatisfactory
and inconsistent in terms of the used parameters. Indeed the value of the average
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Figure 4.6: Figure from Ref. [319]. Comparison between the experimental data (filled blue
circles) at T = 300 K from Ref. [153] and theoretical calculations of the intraband contribution
(black continuous and red dashed lines) for (a) the optical conductivity and (b) the correspond-
ing τ−1(ω) as extracted from the extended Drude model analysis of LaFePO. Different values of
the average coupling λav are considered here (see text).

coupling constant λav = λ1 required to reproduce the linear behavior of τ−1(ω),
is too large compared to the one used for reproducing the de Haas-van Alphen
Fermi surface volume and the thermodynamic properties at low temperature and
is completely out of the experimental curve for the optical conductivity. Moreover,
limω→0 τ(ω,λ1) is more than twice as large as the experimental one. The exper-
imental spectrum is taken at T = 300 K. [319] Taking into account the effect of
temperature on λav, i. e. using the reduced value λ2 (black lines in Fig. 4.6),
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improves definitely the agreement between the theoretical and the experimental
curve for the low frequency optical conductivity. However, above 500 cm−1 the two
curves completely depart from each other and the theoretical results for τ−1(ω)
above 500 cm−1 are definitely in disagreement with the experiment. On the other
hand, below 500 cm−1, the agreement with the experiment is satisfactory. The
question why the low-energy model fails above this limit remains, even assuming
for spin fluctuations the long tailed energy spectrum of eq. (4.9). [171]

The answer could reside in the definition of “low-energy” range and in the
assumption of absence of interband transitions below 2000 cm−1 implicit in the
use of the extended Drude model analysis -see end of subsection 4.2.1. [134] Low-
energy interband transitions, within the range where the EDM is applied, could
indeed give a contribution that makes the real part of the optical conductivity flat
in the mid-infrared region (500 cm−1 ® ω ® 2500 cm−1) and causes the linear
behavior of the inverse time scattering. The experimentally observed flat behavior
of the optical conductivity in the mid-infrared region, [153, 320] could be then
misinterpreted as coming from spin fluctuations. Some authors indeed suggested
that interband transitions in pnictides could be present already in the low-energy
range (ω< 2000 cm−1). [154–158]

In order to investigate quantitatively their role on the optical conductivity
of LaFePO, I introduce a phenomenological model in which these transitions are
approximated as a Lorentzian peak with characteristic frequencyωL , spectral weight
S0 and width γ. The resulting optical conductivity σtry(ω) is given by:

σtry(ω) =
∑

α

σ1α(ω) +
S2

0

4π

ω

ωγ+ i(ω2
L −ω

2)
. (4.16)

In eq. (4.16) σ1α(ω) are the intraband contributions given from eqs. (4.14) and
(4.15). Fig. 4.7 shows the results for σ1(ω) = Re[σtry(ω)] and for the correspond-
ing τ−1(ω) using different values of ωL , S0 and γ. For γ/ωL � 1 (red and green
curves) interband transitions appear as a sharp peak centered at the respective ωL

both in σ1(ω) and in τ−1(ω). On the other hand, when γ/ωL ≈ 1, the Lorentzian
contribution adds smoothly to σintra

1 (ω) =
∑

ασ1α(ω), and this causes a smooth
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increase of τ−1(ω) which is more pronounced as soon as S0 approaches ω2
P (light

and dark blue curves). An interesting thing is that, for a given value of S0, the height
of the peak in τ−1(ω) grows with increasing ωL , therefore very low frequency
contributions in σt r y

1 (ω) do not affect τ−1(ω) at all.
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Figure 4.7: Figure from Ref. [319]. Scattering rate (a) resulting from the EDM analysis of the
optical conductivity σ(ω) from Eq. (4.16), and its real part σ1(ω) (b). The intraband term
is computed here with λav = 0.17 and the microscopic parameters reported in section 4.2.2.
The Lorentzian parameters are: (1) ωL = 1500 cm−1, γ = 400 cm−1, S0 = 2400 cm−1; (2)
ωL = 3000 cm−1, γ = 400 cm−1, S0 = 2400 cm−1; (3) ωL = 3000 cm−1, γ = 8000 cm−1,
S0 = 2400 cm−1; (4) ωL = 3000 cm−1, γ= 8000 cm−1, S0 = 24000 cm−1.

From this analysis it emerges that the experimental data in Fig. 4.6 could be fit-
ted with a Lorentzian contribution like the one shown in light blue in Fig. 4.7 added
to the calculated intraband optical conductivity shown by the black dashed line. The
origin of such a contribution and its estimate by means of density functional theory
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(DFT) calculations will be the topic of the next section.

In this section I made a preliminary comparison between the intraband optical
conductivity calculated in the previous section and the experimental results of
Ref. [153]. A boundary frequency ωB ≈ 500 cm−1 emerges below which the optical
spectrum is in agreement with the calculated optical conductivity. Above ωB instead
the agreement disappears. Since the calculated intraband contribution alone is
not sufficient for reproducing the experiment, I explored the possibility of having
low-energy optical interband transitions in the spectrum of LaFePO. I modeled their
contribution as an additional Lorentzian peak. The result of this investigation shows
that the flat feature of σ1(ω) and linear behavior of τ−1(ω) observed in Refs. [153,
320] could be captured by a Lorentzian contribution located at ωL ∼ 3000 cm−1

and having width γ= 8000 cm−1.

4.4 Origin of interband transitions

In order to understand where the mid-infrared contribution to the optical spectrum
of LaFePO comes from, I calculate the complex dielectric function ε̃(ω) = ε1(ω) +
iε2(ω) for this material within density functional theory (DFT). The diagonal terms
of the imaginary part of the dielectric tensor can be indeed calculated from the
eigenvalues and the wave functions of a band calculation according to the following
formula: [343]

εαα2 (ω) =
4πe2

m2ω2

∑

i, f

∫

2dk3

(2π)3
| 〈ik | Pα | f k〉 |2 f k

i (1− f k
f )δ(E

k
f − Ek

i −ħhω) (4.17)

where i and f indicate the initial and the final state (sitting below and above the
Fermi level EF ) respectively, | ik〉 indicates the ket associated with the eigenstate
with wave vector k and band index i, and Ek

i is the corresponding eigenvalue. Finally

f k
i = 1/(exp(E

k
i −EF )/kB T +1) is the Fermi function, kB the Boltzmann’s constant and

Pα the α component of the momentum operator. From now on I will abandon the
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index α since I consider only α= x . The real part of the dielectric function ε1(ω)
was obtained by Kramers Kronig transformation. The interband contribution to the
real part of the optical conductivity is given by σinter

1 (ω) =ωε2(ω)/4π. Technical
details of the calculations are given in section 4.7. The calculated σinter

1 (ω) is shown
in the upper part of Fig. 4.8 and it is found in very good agreement with previous
calculations. [153] The spectrum shows a peak at very low-energy indicated with
“A” and a broader feature at higher energies labeled with “B”. The origin of such
contributions can be qualitatively understood by looking at the low-energy band
structure of LaFePO plotted at the bottom of Fig. 4.8. Here, in order to allow a
direct comparison with the upper part of the figure, the energy is measured in cm−1

which is the natural unit for optical experiments. [134]
The relatively sharp peak at low-energy comes from interband transitions in-

volving the hole pockets around the Γ point and the electron pockets around the M
point as indicated by the blue arrows. Since the electron pockets are degenerate
along the X −M direction and split along the Γ−M one, their contribution goes
down to zero energy. Note that if the band character are purely d these transitions
are not allowed. Moreover, as explained in section 4.1, if one considers the unit
cell with only one Fe per unit cell (neglecting the interlayer coupling), the Brillouin
zone volume is doubled and the electron pockets which in Fig. 4.8 sit at the M point
are located around two different point of the extended Brillouin zone. Therefore
the transition is not optical anymore. [72] For this reason the intensity of the very
low-energy interband transition can be somehow related to the intensity of the
interlayer coupling in Fe pnictides. Furthermore, since almost all the Fe pnictides
show very similar band structures compared to LaFePO, the general shape of the
feature in the optical spectrum is expected to be also quite general.

From the analysis made in section 4.3, the presence of this low-energy feature
is expected to modify only slightly the shape of the real part of the total optical
conductivity while it does not affect the scattering rate τ−1(ω) at all. What instead
influences crucially the shape of τ−1(ω) is the broader feature which starts at
∼ 2500 cm−1 indicated with “B” in Fig. 4.8 (a). This contribution comes from the
transitions involving Fe 3d bands and indicated by the golden arrow in Fig. 4.8.
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Figure 4.8: Figure from Ref. [319]. Real part of the interband optical conductivity of LaFePO
evaluated in DFT calculations (a), and the corresponding bandstructure (b). The arrows in
panel (b) indicate a few representative optical transitions contributing to the structures in the
real part of the optical conductivity labeled as A and B in panel (a).

Due to correlation effects described in section 4.1 it is expected to affect the optical
conductivity even at lower energies. However in Ref. [153] these transitions are
located at 7000 cm−1 and completely neglected while performing the EDM analysis.

A systematic assignment of the optical interband transitions in Fe pnictides was
made, after my work [319] appeared, by Charnukha et al. [159] and they are shown
in Fig. 4.9. By comparing the ellipsometry measurement on Ba0.68K0.32Fe2As2

(belonging to another family of Fe pnictides with respect to LaFePO) with LDA
calculations, they showed that the interband transitions among the Fe 3d bands,
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which in LDA start around 2500 cm−1 and have their maximal intensity at ∼ 12000
cm−1, in the experiment are found at much lower energies. Due to correlation
effects indeed the Fe d bands get renormalized and the maximal intensity for these
transitions is found at energy E ∼ 4000 cm−1 i.e. a factor of ∼ 3 smaller than
LDA. [159] Note that this number is sensibly larger that the renormalization factor
of 2 found in LaFePO by ARPES measurement [136] and discussed in section 4.1.
Indeed correlation effects are found to be smaller in LaFePO than in other families
of pnictides. [68]

Figure 4.9: Figure from Ref. [159]. Real part of interband optical conductivity from ellipsom-
etry experiment on K-doped Ba0.68K0.32Fe2As2.The different contribution to the total optical
conductivity where assigned by the comparison with LDA calculations. Fe-de indicates the Fe d
electron bands, Fe dh indicates the Fe d hole bands.

The results shown in Fig. 4.9 bring to the conclusion that the low-energy inter-
band optical transitions actually affect the optical properties of pnictides but they
cannot be estimated simply by the bare LDA calculations. Indeed LDA calculations
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can give an indication about the position and the intensity of these transitions but
a renormalization factor must be introduced and, at the end, only the comparison
with the experiment can give a conclusive answer concerning this effect.

In this section I calculated the optical spectrum of LaFePO within DFT in order
to investigate the origin of the flat behavior of the experimental σ1(ω). Optical
interband transitions are actually present at very low-energy and involve the hole
bands and the electron bands around the Fermi level. The optical conductivity
shows a peak around ≈ 500 cm−1 and a broader feature starting from ≈ 2500 cm−1

but, due to the overestimation of the bandwidth in GGA, these transitions should be
observed at lower energies.

4.5 Phenomenological model and comparison with the
experiment

The analysis of the experimental data [153] made up to now, shows clearly two
regimes in the optical spectrum of LaFePO. The boundary between these two regions
can be fixed at ωB ∼ 500 cm−1 where the real part of the optical conductivity
shows an upturn and becomes flat and τ−1(ω) starts to increase roughly linearly
with ω. The two regimes are characterized by two different contributions to the
optical spectrum. At low frequency the interaction effects are predominant and
the main consequence is a reduction of the optical spectral weight transferred to
higher energies. [336] However this kind of physics has basically no consequences
on the scattering rate and τ−1(ω) approaches its constant Drude limit. Above ωB

the intraband contribution to σ1(ω) drops rapidly but the interband transitions
start to set in. In order to get a complete description of the optical properties
of LaFePO in the far/mid-infrared (100 ® ω ® 2500 cm−1) regime it is then
sufficient to merge the theoretical results obtained up to now by adding the interband
optical conductivity to the intraband one. However the comparison between the
experimental and theoretical results made in Ref. [159] for the K doped BaFe2As2
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S1 ω1 γ1 S2 ω2 γ2 εhigh

2300 750 40 33500 4500 20200 15

Table 4.2: Interband parameters of the model (4.18) expressed in units of cm−1 (Si ,ωi ,γi) and
in dimensionless units (εhigh).

system, showed that DFT locates the d-d transitions at higher energy with respect
to the experiment and this is consistent with the bandwidth overestimation by
roughly a factor of 2 found by the comparison of DFT calculations with ARPES
experiment. [136] For this reason the DFT interband optical conductivity calculated
in section 4.4 cannot be directly used to construct the theoretical curve. In order to
use all the informations encoded in the DFT optical conductivity, overcoming at the
same time the problem associated with the underestimation of correlation effects, I
model the interband optical conductivity in the following way. I add two Lorentzian
peaks to the intraband optical conductivity calculated by means of the microscopic
model presented in section 4.2.2:

σ(ω) = σintra(ω) +
∑

i=1,2

S2
i

4π

ω

ωγi + i(ω2
i −ω

2)
, (4.18)

plus a high energy dielectric constant εhigh to account for processes at higher
energies. The parameters of the model are the same as the one used to calculate the
intraband conductivity in section 4.2.2 and shown in Figs. 4.6 and 4.7: λav = 0.17
and ω0 = 60 meV. The Lorentzian parameters Si ,γi and ωi , were instead chosen
in order to reproduce the two feature characterizing the DFT interband optical
conductivity of Fig. 4.8 and the frequencies were adjusted for reaching the best
agreement with the experimental curve. The values of Si ,γi and ωi are listed in
table 4.2 and the comparison with the experiment is shown in Fig. 4.10.

The first thing to notice is the very good agreement with the experimental
data from Ref. [153]. The effect of interband transitions is to enhance the optical
conductivity shown in panel (a) above 500 cm−1 and, as a consequence, to reinforce
the magnitude and the frequency dependence of τ−1(ω). The comparison made in
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Figure 4.10: Figure from Ref. [319]. (a) Real part of the optical conductivity σ1(ω) computed
using Eq. (4.18) (red dashed line, labeled as “total” in the caption), along with the intraband
part (solid black line) and the interband part (solid green line). The symbols represent the
experimental data of Ref. [153]. (b) τ−1(ω) extracted from the extended-Drude-model using
the total conductivity (dashed red line) or the intraband part only (solid black line), along with
the experimental data (symbols) (c) Approximate electron-boson Eliashberg function W (ω)
extracted from τ−1(ω) with the second-derivative method (see text) using either the total
conductivity (dashed red line) or the intraband part only (solid black line).

panel (b) shows indeed that, due to the contribution of low-energy interband optical
transitions the slope increases about 4 times. The comparison with the experiment
is limited to frequencies up to 2000 cm−1; in order to get a perfect fit to experiment
also interband transitions at higher energies could have been included. However
this was not done for two main reasons. First because interband transition are
expected above 2000 cm−1. The second reason is because the main scope of this
work was to explain the linear behavior of τ−1(ω) at low frequency.



4.5. Phenomenological model and comparison with the experiment 171

If interband transitions are neglected, there is a severe misinterpretation of the
experimental data. Indeed, the ω dependence of τ−1(ω) can be connected with
the spectrum of the retarded interaction α2F(ω) from which it is generated. This
connection is made, under certain conditions, by assuming that: [134]

1

τ(ω)
≈

2π

ω

∫ ω

0
(ω−Ω)α2F(Ω)dΩ

and then identifying the quantity W (ω) = 1
2π

d2[ωτ−1(ω)]/dω2 with the electron-
boson Eliashberg function α2F(ω). For spin fluctuations-mediated superconductors
α2F(ω) is given by χ ′′(ω) in eq. (4.9). The coupling constant λ is then obtained as
the integral λe f f = 2

∫ωc

0
dωW (ω)/ωwhereωc is a cut-off beyond which interband

transitions are supposed to be important.
In the following, I use the full (inter and intra-band) theoretical model derived in

the previous section to demonstrate that neglecting low-energy interband transitions
can lead to a severe misinterpretation of the experimental data in LaFePO and in Fe
pnictides in general. In fig. 4.10 I compare several quantities, calculated for the full
model (red lines), and for the intraband contribution alone (black lines).

In panel c, the two sets of data are used to estimate W (ω), and hence the
Eliashberg spectrum α2F(ω). The figure clearly shows that the spectra estimated in
the two cases are very different, and also give rise to very different values of the
effective coupling constant λe f f . In particular, when the analysis is made on the
black curve (considering only σintra), one obtains λe f f = 0.27 larger than the input
value for our model λav = 0.17, but the order of magnitude is the same. On the
other hand considering only this contribution does not reproduce the experimental
data in panel (a) and (b) of Fig. 4.10. In order to reach the agreement with the
experiment the contribution to σ(ω) coming from the interband transitions must
be added. However, if these are not properly subtracted from the spectrum, they
give a large spurious contribution to W (ω),leading to an effecting coupling constant
λe f f = 1.31, much larger than the input λav.

This analysis demonstrates that it is not possible to reproduce the experiment
without including the contribution coming from low-energy optical interband transi-
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tions to the optical conductivity of LaFePO. At the same time I showed that, due to
this contribution, the coupling obtained from the EDM analysis of the experimental
data gives a value of the coupling constant, associated with the electron-boson inter-
action, which is one order of magnitude larger than the one actually generated by
the fluctuating modes. This analysis explains why the coupling constants extracted
from optical measurements in Fe pnictides [156, 157] are usually much larger than
the one extracted from other experimental probes. [136, 229–231]

4.6 Conclusion

In this chapter I studied the effect of low-energy interband optical transitions on the
optical properties of LaFePO. This material belongs to the wide class of the Fe-based
superconductors. As shown in section 4.1, these are layered materials characterized
by the presence of many bands at the Fermi level. Moreover the hole and the
electron bands, connected by the nesting vector QAF M = (π/a,π/a, 0), interact
via the exchange of antiferromagnetic spin fluctuations. These features have two
main consequences on the optical properties. The intraband optical conductivity is
affected by the retarded interaction with spin fluctuations and, at the same time,
interband optical transitions set in at lower energy with respect to single band
metals. The latter effect gets even reinforced whenever the overall bandwidth
is renormalized under the effect of correlation. In order to extract informations
about the spectrum of the bosonic mode involved in the interaction and about the
relative coupling constant, the EDM is often used for analyzing the experimental
data. This model introduces both a frequency-dependent scattering rate τ−1(ω) and
a mass enhancement factor m∗(ω)/m = 1+λ(ω) into the Drude formula for the
low frequency optical conductivity. The same two quantities can also be calculated
by computing the complex optical conductivity σ̃(ω) within an appropriate model.
In section 4.2 I illustrated the EDM and I presented the low-energy model used
for calculating σ̃(ω). In section 4.3 I showed, through a preliminary comparison
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with the experimental results of Ref. [319], that the calculated intraband optical
conductivity, cannot reproduce alone the low-energy optical properties of LaFePO.
For this reason I explored the possibility of adding low-energy interband transitions
modeled by a Lorentzian peak to the calculated intraband optical conductivity and
studying the behavior of τ−1(ω) for different values of frequency ωL of the peak,
width γ and its spectral weight S0. The result of such a study is that the features in
the experimental optical properties of LaFePO could be originated by the presence
of low-energy interband transition with ωL/γ∼ 1 and ωL ∼ 3000 cm−1. In order
to verify the actual presence of these transitions and to have a better understanding
about their origin I calculated, in section 4.4, the interband optical conductivity
of LaFePO in GGA, and it turned out that these transitions are actually present
and come from the hole bands placed around the Γ point and the electron bands
around the M point. The real part of the optical conductivity shows one peak at
very low-energy which does not contribute to τ−1(ω) at all, and a broader feature
at higher energy which strongly affects this quantity.

Since in GGA the bandwidth is overestimated with respect to the experiment, the
total optical conductivity cannot be calculated simply by summing together the inter-
band contribution calculated in GGA and the intraband one calculated in section 4.2.
For this reason in section 4.5 I modeled the contribution to Re[σ̃(ω)] coming from
the interband optical transitions as two Lorentzian peaks: a narrow peak at low-
energy and wider one at higher energy. The result is in perfect agreement with the
experiment both for Re[σ̃(ω)] and τ−1(ω). This has important consequences on
the physical understanding of LaFePO and of pnictides in general. In fact, in the
previous section I have shown that the presence of low energy interband transitions
introduces spurious effects in the EDM analysis resulting in a ficticious contribution
to the amplitude of the coupling constant. Since all the pnictides have similar low-
energy bandstructure, the presence of low-energy interband optical transitions is
expected to be a quite general feature in this class of materials. As a consequence the
spin fluctuations coupling constant estimated via optical experiment are generally
overestimated. The phenomenological model for the interband optical conductivity
shown in section 4.5 allows instead to describe the low-energy optical spectrum
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of LaFePO with an average coupling constant λav perfectly consistent with the one
extracted from other experimental probes.

4.7 Technical details

The interband optical conductivity σ̃inter(ω) of LaFePO was calculated using the
full-potential linearized plane wave (LAPW) method as implemented in the WIEN2K

package. [251, 308, 309, 344] The Brillouin zone sampling for the optical calcula-
tions was done using a very dense gride of more than 5000 k points in the symmetry
irreducible wedge. σ̃inter(ω) was evaluated usng a broadening factor η= 1 meV.



Chapter 5

Toward an ab-initio estimate of the

Stoner I

In this chapter I present a new and simple method for correcting the magnetic proper-
ties of itinerant magnets within DFT. The method, developed in Ref. [345] and called
reduced Stoner theory (RST), is computationally inexpensive and easy to implement.
In the following, using the extended Stoner theory by Andersen et al., [253] I show
that this new method is in direct connection with the selfconsistent renormalization
theory by Moriya. [17] Finally, I apply it to the ferromagnetic-paramagnetic transition
of Ni3Al under pressure, as a prototypical example of itinerant ferromagnet. I find that
in this material the near-critical spin fluctuations renormalize the Stoner parameter
by an almost pressure independent quantity. The transition from ferromagnetic to
paramagnetic state is thus entirely driven by a bandstructure effect. Exploiting the
perfect scaling of the band structure with pressure, I describe the magnetic moment
vs pressure curve completely ab initio. Moreover I compare my results with the ex-
perimental data concerning the Curie temperature as a function of pressure reported
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in Ref. [201]. The agreement is remarkable and I also give a microscopic justifica-
tion to the phenomenological model used therein for interpreting the experimental data.

Introduction

As shown for the systems studied in chapters 2 and 4, DFT is a very accurate
theoretical tool for obtaining the ground state of real materials. The secret resides in
the variational nature of the method. [46] However the mean field approximations
needed to implement DFT reduce a lot its power.

A well known problem in LSDA (and GGA) is for example the overestimation of
the tendency to magnetism in systems close to a quantum critical point (QCP). [263]
Indeed the mean field nature of LSDA (and GGA) does not allow to take into account
the detrimental effect of near critical fluctuations on the long-range magnetism,
so that the calculated magnetic moment is sensibly larger than the experimental
one. Typical examples of materials where this happens are, together with CuBiSO
analyzed in chapter 3, FeAl [50], Pd [51] and the more recent, Fe pnictides. [54,
57, 72] In the latter case it was shown that a reduction of the magnetic moment
can be achieved within the LDA+ U method, [50] by means of a negative Hubbard
interaction U . [65] The underlying idea is that in itinerant systems the local interac-
tion U is overestimated at the LDA level and the local moment as well. Therefore
a negative U should correct the overestimated Coulomb interaction in LDA and
bring the theoretical results in agreement with the experiments, by mimicking the
effect of long wavelength fluctuations. However the physical meaning of a negative
Coulomb interaction among the electrons is rather questionable. Other approaches
which go in the direction of adding fluctuations -beyond L(S)DA- into the system by
considering Hubbard type of local interaction are DMFT [66–68] and the Gutzwiller
approach. [69] However the Hubbard type of interaction U , is a local interaction and
is highly unlikely that a phenomenon due to non local fluctuations can be captured
by a local type of interaction. [73] Moreover, in all these cases, the computational
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load is well beyond the typical one of an L(S)DA calculation.
An alternative way of treating the effect of non local fluctuations in itinerant

magnets is given by the selfconsistent renormalization (SCR) theory by Moriya. [17]
However this theory involves quantities, like the spin susceptibility, which are
difficult to evaluate numerically within the standard band structure calculations,
even when an approximated form is used. [51] Therefore it would be important to
include the corrections due to the effect of non local spin fluctuations directly in a
more accurate DFT functional than LSDA or GGA.

For these reasons in this chapter I present a new method which corrects the LSDA
within DFT. It takes into account the effect of non local fluctuations in suppressing
the tendency to magnetism in itinerant systems. The method is easy to implement,
computationally as expensive as a normal spin polarized LDA calculation, and has
its justification in the connection with the SCR theory by Moriya. The basic concept
is that non local fluctuations tend to reduce the gain in energy due to the spin
polarization. In the LSDA formalism this is the Stoner interaction. Therefore it is
possible to start from the LSDA and build up a more accurate functional simply
by scaling the Stoner parameter as much as suggested by the Moriya’s theory. For
this reason the method is called reduced Stoner theory (RST). As an example I
apply this method to the ferromagnetic-paramagnetic transition of Ni3Al under
pressure, which is a typical example of itinerant ferromagnet. For the first time in
this material, the magnetic moment as a function of pressure calculated ab initio, is
in agreement with the experiment.

Ni3Al is a classic example of itinerant ferromagnet and the importance of non
local spin fluctuations in suppressing the tendency to magnetism in this material
was demonstrated both theoretically and experimentally. [52, 201, 346, 347] At
ambient pressure Ni3Al is a ferromagnet with a low magnetic moment. Under
pressure it undergoes a transition to a paramagnetic state. The behavior of the Curie
temperature with pressure is in agreement with the scaling law Tc ∝ (P − Pc)3/4

proposed by Moriya, if the static inverse susceptibility is supposed to be linear in
(P − Pc), where Pc is the critical pressure. [201]

I show that this scaling law is a consequence of a peculiar property of the
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bandstructure and I use it as an information on the pressure dependence of the
LSDA Stoner parameter.

The present chapter is structured in the following way.
In section 5.1 I present standard DFT results on Ni3Al under pressure. The

magnetic moment at zero pressure is 3 times larger than the experimental one.
Under pressure it decreases linearly up to a critical pressure Pc , which is also
overestimated with respect to experiment. The band structure in an energy interval
of ∼ 4 eV around the Fermi level scales almost exactly with pressure, with a linear
increase of the bandwidth. Since the Stoner parameter is found to be pressure
independent and given the scaling of the density of states with pressure, the LSDA
ferromagnetic-paramagnetic transition can be explained simply within the Stoner
theory. However, in order to bring the DFT results in agreement with the experiment,
the LSDA Stoner parameter must be reduced.

In section 5.2, I describe the origin of this overestimation by means of a phe-
nomenological application of Moriya’s theory, i.e taking the average amplitude of
spin fluctuations as a parameter instead of calculating it via the fluctuation dissipa-
tion theorem. Using the extended Stoner theory (EST), [45, 253] I show that the
renormalization of the coefficients of the energy expansion in terms of the magne-
tization m obtained with LSDA is equivalent to a reduction the Stoner parameter
in LSDA by a quantity proportional to the square of the average amplitude of spin
fluctuations (ξ2). I define s as the ratio between the “reduced” Stoner parameter
and the bare one.

In section 5.3 I apply the RST to Ni3Al at zero pressure. The method consists
in scaling the spin polarized part of the exchange and correlation potential by a
quantity s. By comparing the magnetic moment as a function of the Stoner parameter
obtained both in RST and in EST I give an a posteriori proof of the equivalence of
these two methods. However, RST is more accurate because the magnetic moment
is obtained self-consistently, and not through a rigid-band shift of the paramagnetic
DOS.

In section 5.4 I apply the RST to the ferromagnetic-paramagnetic transition of
Ni3Al under pressure. Here, exploiting the scaling property of the bandstructure,
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Figure 5.1: Cu3Au cP4 crystal structure of Ni3Al. (Left) Unit cell is simple cubic and contains one
formula unit. (Right) Brillouin zone used to plot the band structure in Fig. 5.2. The reciprocal
lattice vectors are also shown (blue arrows).

I give a completely ab initio description of the magnetic moment as a function of
pressure. I then compare my data with the Curie temperature as a function of
pressure measured by Niklowitz et al. [201] which fit the data with a power law
behavior whose exponent is β = 3/4. I find the agreement with the experiment very
good and explain that this scaling behavior is a direct consequence of the scaling
law of the bandstructure.

Section 5.5 contains the Conclusions of the present chapter. Technical details of
the DFT calculations are given in section 5.6.

5.1 Magnetic and paramagnetic DFT results

Ni3Al crystallizes in the ideal cubic Cu3Au cP4 structure with the unit cell shown in
the left panel of Fig. 5.1. [348] The experimental lattice parameter is a0 = 3.5680
�A. In this structure four Al atoms are at the corners of a cube and 6 Ni atoms
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share the faces of the cube. Therefore the unit cell contains one formula unit. The
electronic configuration of atomic Ni is 3d84s2 and the one of Al is 3s2 3p1. Due
to their similar electronegativity (1.8 for Ni and 1.5 for Al) the bond is expected to
be metallic. Moreover, as soon as Ni takes more and more electrons from Al, also
the Ni 4p states get more and more involved in the bond as for other intermetallic
compounds. [349, 350] Due to the metallic nature of the bond, the Ni s and p states
are expected to hybridize together with the s and p states of Al and form a wide
free electron band. Al shares also its three electrons in such a way that the electron
count of Ni reaches the d9 configuration.

The chemical view point is confirmed by the paramagnetic bandstructure ob-
tained by using the experimental lattice parameter. The paramagnetic bands are
calculated along the path shown in Fig. 5.1 and plotted in Fig. 5.2 together with the
DOS. The 15 d bands with prevalent Ni character extend from 3.5 eV below EF up
to ∼ 0.5 eV above it; the hybridized s− p states coming from Ni and Al have much
wider energy range: they start from −10 eV below EF end extend up to 10 eV at
least. 1

For this reason in the DOS only the d states of Ni are highlighted. The electron
count of Ni is confirmed to be d9, different from its atomic configuration. The value
of the DOS at the Fermi level is N0 = 3.15 states/eV/spin/f.u. This considerable
high value of the DOS at the Fermi level is given by the presence of several flat
bands close to the Fermi level.

Considering the Stoner parameter of atomic Ni (INi = 0.97 eV) and the value of
N0 given above, the Stoner criterion can be calculated and one obtains a value of
N0 I > 3 which is well above the Stoner criterion for ferromagnetism. Of course, as
for CuBiSO, also in this case the effect of hybridization must be taken into account.
This was done by A. Aguayo et al. in Ref. [52] and a much smaller Stoner parameter
was found, which leads to a Stoner criterion N0 I = 1.21.

At ambient pressure Ni3Al is indeed ferromagnetic both experimentally and in
LSDA, [348] but the theoretical value of the magnetic moment is greatly overesti-

110 eV above EF is the largest value of energy for which I calculated the DOS.
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Figure 5.2: LDA band structure and DOS of Ni3Al obtained using the experimental lattice
parameter. The bands are plotted along the path shown in Fig. 5.1 and the DOS is shaded
according to the partial Ni d character. The total DOS, marked as total is divided by a factor of
4 for graphical convenience. The black dashed line marks the Fermi level EF .

mated. The critical pressure Pc is also overestimate by about 5 times with respect to
experiment.

In Fig. 5.3 I show the results for Ni3Al with and without spin polarization. For
the spin-polarized calculations, I considered only the ferromagnetic order, which is
the ordering actually found in this material. [351] AFM calculations with the spins
aligned along the 111 direction converged to a non-magnetic solution.

The equilibrium lattice parameter, both in the magnetic and in the non magnetic
case, is found to be a0 = 3.4825 �A i.e. 2% smaller than experiment. The value of
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Figure 5.3: Figure adapted from Ref [345]. Top: Magnetic moment of Ni3Al per unit cell, as a
function of pressure, calculated in LSDA (black dotted line). Both the magnetic moment at zero
pressure m(0) and the critical pressure Pc are overestimated with respect to the experimental
data from Ref. [348] (red triangles). The green dots are a linear interpolation of the data.
Bottom: Paramagnetic density of states as a function of energy calculated for different pressures
in LDA. Inset: Density of states at the Fermi level calculated as a function of pressure (black
squares). The data are fitted with eq. (5.1) (red continuous line).

the DOS at the Fermi level (N0) at zero pressure is N0(0) = 2.85 st./eV/ spin f.u
and the magnetic moment was found to be m(0) = 0.68 µB per unit cell in LSDA
and m(0) = 0.73 µB per unit cell in GGA. In both cases they are a bit smaller but in
agreement with value found in Ref. [52], where the authors use the experimental
value of a0.

The calculated magnetic moment, decreases approximately linearly up to a criti-
cal pressure Pc = 45 GPa whose experimental value is PEx pt.

c = 8.2 GPA. Therefore
LSDA (and GGA) overestimates both the magnetic moment at zero pressure and the
critical pressure.
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Before introducing the new method for spin fluctuations, I briefly describe the
LSDA calculations. For this reason I plot, at the bottom of Fig. 5.3, the calculated
paramagnetic DOS N(E) for several pressures.

I find that, within ∼ 4 eV around the Fermi level, N(E, P) scales almost perfectly
with P according to the following law:

N(E, P) =
N [α(P)E, 0]

α(P)
, (5.1)

with α(P) = 1+ 0.005P, and the scaling is obeyed up to 45 GPa. This is due to the
fact that the d− d hopping parameter scales with a negative power law −5 with the
lattice constant a. [352] The contraction of the lattice parameter under pressure
can be expressed, in the lowest order, as a linear expansion around its equilibrium
value a0 such that a(P) = [1−δP]a0, with δ small and positive. As a consequence,
the bandwidth W is expected to scale linearly with pressure as W (P)∼W (0)α(P).
The surprising thing is that this linear scaling is almost exactly obeyed in such wide
range of energy and pressure. 2

I expect that the Stoner parameter changes little with pressure and thus the
transition be driven by a reduction of N0(P). For this reason I performed fixed
spin moment calculations in order to extract the Stoner I with a procedure which I
will explain in the next section. I found the Stoner parameter is actually pressure
independent and ∼ 0.41 eV in LSDA, while in GGA is simply 17% larger IGGA =
1.17I LSDA. At P = 45 GPa the Stoner criterion N0(45GP)I = 0.95< 1 is consistently
released and the system is out of the ferromagnetic instability. Similar results can
be found also in Ref. [52]. Since the Stoner parameter in LSDA and GGA are simply
proportional, from now on I will consider exclusively the L(S)DA results.

This analysis shows that, while the LSDA results can be quite well understood in
terms of the Stoner model, the agreement with the experiment is instead completely
missing. This is due to the overestimation of the Stoner I in LSDA. Indeed given

2Not only the scaling of the DOS (which is an integrated quantity) is perfect but also the one of the
bandstructure.
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eq. (5.1) N0(P) decreases monotonically. In the simplified Stoner model, the condi-
tion for Pc is given by N0(Pc) = 1/I , therefore the overestimation of Pc is directly
connected with the overestimation of I . Thus, in order to bring the LSDA results in
agreement with the experiment, one has to take into account a renormalization of I .
The physical origin of this renormalization is the central topic of the next section.

In this section I presented the LDA and LSDA results for Ni3Al itinerant ferro-
magnet under pressure. Concerning the paramagnetic calculations I showed that in
this compound the bandstructure and the DOS scale almost perfectly with pressure
in a wide range of energy and pressure. Both the d9 Ni electron count and the
high value of the DOS at the Fermi level point towards the tendency to magnetism.
Indeed the compound is magnetic in LSDA but due to the mean field nature of this
approximation, both the magnetic moment at zero pressure and the critical pressure
are overestimated. The analysis of the LSDA data in terms of a simplified Stoner
model, indicates that these overestimations could be due to an overestimation of
the Stoner parameter in LSDA for this compound.

5.2 The renormalization of the Stoner parameter I → Ĩ

A refined version of the Stoner model which makes use of the Andersen force
theorem is the extended Stoner theory (EST) which I derived in chapter 1. [253,
254, 353] This theory gives an approximated expression for the LSDA total energy
E as a function of the magnetic moment m in terms of the LDA paramagnetic DOS:

E(m, I) =
1

2

∫ m

0

m′dm′

Ñ(m′)
−

1

4
Im2. (5.2)

In formula (5.2) Ñ(m) is the average DOS over the Fermi level and I is the Stoner
parameter which governs the magnetic interaction. [253] The condition of minimum
for E(m, I) is given by ∂ E(m, I)/∂m = 0 and ∂ 2E(m, I)/∂m2 > 0 which imply
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respectively

Ñ(m) = 1/I and dÑ(m)
dm < 0.

(5.3)

Therefore, around the minimum of E(m, I), Ñ(m) is concave and decreasing I makes
m to decreases as well. If 1/I > Ñ(m) ∀ m, then no magnetic solution exists. [253]

The fixed spin moment calculations (FSMC) allow to obtain a similar E(m) curve
by minimizing selfconsistently the energy E once a given magnetic moment m is
imposed. Comparing eq. (5.2) with the fixed spin moment calculations it is possible
to extract the value of the Stoner parameter I in LSDA. [52, 63] This is shown in
Fig. 5.4 where I compare the fixed spin moment calculations represented by red
dots and the EST represented by the green line. Note the different depth of the
energy minima. This gives an estimate of the difference in the total energy caused
by the rearrangement of the bands due to spin polarization (beyond the rigid band
splitting). [45]

As I showed in the previous section, LSDA overestimates the magnetic moment,
with respect to experiment, in the entire range of pressure. The correct value of
the magnetic moment can only be obtained using a reduced value of I . In order
to clarify the origin of the renormalization of the Stoner parameter under non
local fluctuations I briefly recall here the results of chapter 1 concerning the self-
consistent renormalization theory. For small magnetic moments, the total energy
can be expanded in terms of a Landau functional as function of the square of the
uniform magnetization M2, in the following way:

E(M) = a0 + a2M2/2+ a4M4/4+ a6M6/6+ · · · , (5.4)

Taking into account fluctuations of the magnetization with respect to its average
δM = M(r)−M leads, in the gaussian approximation, to a renormalization of the
bare coefficients {ai} and therefore to the following expression for the energy:

Ẽ(M) = ã0 + ã2M2/2+ ã4M4/4+ ã6M6/6+ · · · , (5.5)
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where the renormalized coefficients {ãi} can be expressed recursively in terms of
the bare ones {ai} and ξ2 = 〈δM2〉, where the 〈〉 brackets represent the gaussian
average. In chapter 1 I reported the recursive relations. [235]

The value of ξ can be obtained by the fluctuation dissipation theorem (FDT):

ξ2 =
3ħh
Ω

∫

dq

∫

dω

2π

1

2
Imχ(q,ω), (5.6)

where Ω is the volume of the unit cell and χ(q,ω) is the interacting spin susceptibil-
ity of the system. In this sense the renormalization of the LSDA Stoner parameter
can be obtained, in principle, selfconsistently. In Ref. [52] an approximation on
χ(q,ω) is made and the integral performed analytically in terms of N0, the Fermi
velocity vF , the band velocity v and a cut off qc - in principle unknown and fixed
phenomenologically-.

I now assume ξ to be a parameter and I describe a phenomenological approach
to bring the LSDA and the EST results in agreement with the experiment. In this
way I obtain an estimate of the average spin fluctuations amplitude ξ2 in Ni3Al at
zero pressure, and I show that the renormalization of the Stoner parameter I → Ĩ
comes mainly from the renormalization of a2. In this sense E(m, Ĩ) and Ẽ(m) are
equivalent.

The actual value of the bare coefficients a1, · · · , an can be obtained by fitting
the fixed spin moment calculations with a polynomial expansion up to order n.
Thus, imposing that the minimum of eq. (5.5) coincides with the experimental
value of the magnetic moment m̃0 = 0.23 µB per unit cell, the parameter ξ can
be then expressed in terms of the bare coefficients a1, · · · , an and m̃0. In Fig. 5.4 I
compare eq. (5.4) with eq. (5.5) by fitting the fixed spin moment calculations up
to the 6th order. Under the effect of non local fluctuations parameterized by ξ, the
minimum of Ẽ(m) moves towards the experimental one. Assuming the minimum of
eq. (5.2) to be the experimental one m̃0, as done before for extracting the LSDA
Stoner parameter, I obtain a value of Ĩ = 0.358 eV.

As can be seen from the figure, and will be clear in a moment, renormalizing the
coefficients of the E(m) expansion is equivalent, in the lowest order, to renormalize
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Figure 5.4: Comparison between the fixed spin moment calculations and the EST at P = 0 GPa.
The fixed spin moment calculations in LSDA (red dots) are fitted with a Landau expansion up
to the sixth order (black line). In order to bring the minimum of the EST curve (green line) in
correspondence of the minimum of LSDA the Stoner parameter I = 0.407 must be used in eq.
(5.2). The dark blue and light blue curve represent respectively eq. (5.2) with I=0.358 and eq.
(5.5) with ξ phenomenologically tuned.

the Stoner parameter. Indeed, the renormalized second order coefficient of eq. (5.5)
(the renormalized static susceptibility) can be expressed in terms of ξ and {ai} in
the following way:
χ̃−1 = ∂ 2 Ẽ(M)/∂M2 |M=0= ã2 = a2 + (5/3)a4ξ

2 + (35/9)a6ξ
4 + · · ·

On the other hand, the LSDA static susceptibility is easily obtained from eq.
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(5.2):
χ−1 = ∂ E(m, I)/∂m |m=0= a2 =

1
2
[1/N0 − I],

where N0 is measured in states/eV/spin /f.u. By comparing this expression with
the one for ã2 it appears clear that under non local critical fluctuations, the Stoner
parameter is renormalized according to:

Ĩ = I − (10/3)a4ξ
2, (5.7)

which can be written as a function of s = Ĩ/I ≤ 1. In my calculations I obtained
ξ= 0.38 µB and Ĩ = 0.358 eV.

Fig. 5.5 shows that the renormalization of the second order coefficient of the
expansion, i.e. the static inverse spin susceptibility, shifts the minimum of E(m)
while the renormalization of the higher order coefficients modifies the curve at
higher values of energy and magnetic moment. Also in this case the dashed lines
are different compared to the red dots because within EST the magnetic energy is
basically obtained by a rigid shift of the paramagnetic DOS while the expansion in
eq. (5.4) and (5.5) are obtained by fitting the fully selfconsistent calculations. The
resulting effect of non local fluctuations in itinerant system is then to reduce the
Stoner parameter by a factor s ≤ 1.

In this section I showed a phenomenological method, based on the SCR theory,
which allows to bring the LSDA results in agreement with the experiment in Ni3Al
itinerant ferromagnet at zero pressure. This is done by taking into account non local
fluctuations of the magnetization at the gaussian level. This simple method shows in
a transparent way that the effect of non local fluctuations is to suppress the Stoner
parameter I . Therefore it puts in evidence the underlying connection between the
SCR theory and whatever method, whose main aim is to suppress magnetism in
LSDA by suppressing the Stoner parameter.
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Figure 5.5: Figure adapted from Ref. [345]. Energy E as a function of the magnetic moment
m for P = 0 GPa. The red dots show the curve obtained by means of EST with a renormalized
Stoner parameter Ĩ = 0.358. The green and the blue lines mark respectively the Landau
functional where all the coefficients are renormalized and the one where only the first coefficient
of the expansion is renormalized.

5.3 Ab-initio renormalization of I: the reduced Stoner
theory

Having clarified the phenomenology associated with the renormalization of the
Stoner parameter under the effect of non local spin fluctuations in itinerant systems,
in this section I want to go beyond this description, and correct the LSDA Stoner
parameter within the DFT formalism. Indeed, given the connection between the
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LSDA and the SCR theory via the EST, one can think that the renormalized value of
the Stoner parameter Ĩ can be achieved, within DFT, by a suitable more accurate
functional than the LSDA and GGA ones. Therefore the method that I’m going to
present includes the phenomenological reduction of the Stoner parameter directly
inside the LSDA functional.

For this purpose I use the von Bart-Hedin scaling (1.58) of the exchange and
correlation energy: [43]

Exc =

∫

εxc(n, m)n(r)dr (5.8)

εxc(n,ζ) = εP
xc(n) + f (ζ)∆εxc(n), (5.9)

where n = (n↑ + n↓), and m = (n↑ − n↓). In eq. (5.9) εP
xc(n) and ∆εxc(n) do not

depend on m, while f (ζ) is a known function of ζ(r) = m(r)/n(r). Therefore the
response to magnetism is entirely defined by the ∆εxc(n) functional, as the energy
difference between the fully polarized and unpolarized electron gas:

∂ εxc

∂ n
=
∂ εP

xc

∂ n
+ f (ζ)

∂∆εxc(n)
∂ n

− f ′(ζ)∆εxc(n)
ζ

n
(5.10)

∂ εxc

∂m
= f ′(ζ)∆εxc(n)

1

n
. (5.11)

If ∆εxc(n) = 0 the system is non magnetic, while for ∆εxc(n) 6= 0 a ferromagnetic
state with magnetic moment m is realized. The charge potential is influenced by
∆εxc(n) as well. Therefore, scaling this term by a factor s not only scales ∂ εxc

∂m , but
modifies at the same time the charge potential. In this sense is not possible to find
an analytical expression for f and ∆εxc in such a way that ∂ εxc/∂m is modified
(reduced) without changing ∂ εxc/∂ n at the same time. In this sense the charge and
spin contributions to the total energy are not separable. On the other hand, for the
reason given above, scaling ∆εxc(n) by a factor s appears to be the most natural
choice to suppress magnetism within DFT.

This leads to the following set of scaled equations:
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εxc(n,ζ) = εP
xc(n) + s f (ζ)∆εxc(n) (5.12)

∂ εxc

∂ n
= vP

xc + s[ f (ζ)∆vxc(n)− f ′(ζ)∆εxc(n)
ζ

n
] (5.13)

∂ εxc

∂m
= s f ′(ζ)∆εxc(n)

1

n
(5.14)

where the part in the square brackets is simply the additional charge potential
that appears because of spin polarization. It is easy to verify that this functional
produces an exchange-correlation potential scaled by s, and the charge potential
remains unchanged:

Ṽ↑(r)−Ṽ↓(r) = s[V↑(r)−V↓(r)] (5.15)

Ṽ↑(r)+Ṽ↓(r) = [V↑(r)+V↓(r)]

In this way the Stoner kernel δ2Exc/δm2(r) is also scaled by s, and the Stoner
parameter is reduced as I wanted. For this reason I call this approach reduced
Stoner theory (RST).

In general eq. (5.15) can be used to obtain correct magnetic moments and the
corresponding electronic structure in materials near ferro or antiferromagnetic QCP.
Moreover the implementation is quite easy and the calculations are as computa-
tionally expensive as a normal spin polarized calculation.3 Furthermore, given eqs.
(5.6) and (5.7), s gives also an indication of the strength of spin fluctuations acting
in the system. In the next section I will use the modified exchange and correlation
functional in eq. (5.15) to obtain the correct magnetic moment of Ni3Al under
pressure. Before this, it is however instructive to compare the RST results with the
one obtained with the EST at zero pressure.

In Fig. 5.6 I compare the magnetic moment as a function of the renormalized
Stoner parameter Ĩ = sI obtained in EST and in RST using the scaling exchange
factor s. In RST this is obtained by making selfconsistent spin polarized calculations

3A patch for the popular WIEN2K program is available by request from Peter Blaha. The value of s enters as
a variable in one of the input files.
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Figure 5.6: Figure adapted from Ref. [345]. Magnetic moment m as a function of the reduced
Stoner parameter Ĩ = s ∗ I for Ni3Al at 0 GPa in EST (red dots) and RST (green dotted line).
The bare value of the Stoner parameter I = 0.407 eV was chosen in order to have the same
value of m for s = 1.

for several values of 0 ≤ s ≤ 1. The EST curve is obtained instead by extracting
the magnetic moment m from the inversion of the relation Ñ(m) = 1/ Ĩ . The value
of I = 0.407 eV was chosen in such a way that the LSDA and the EST magnetic
moment have the same value for s = 1. The agreement between the two curves is
remarkable and this value of I estimated in this way is in perfect agreement with the
one found by fixed spin moment calculations. The value of Ĩ necessary to reach the
experimental magnetic moment is ∼ 0.360 eV and is in very good agreement with
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the one extracted, in the previous section, by comparing the renormalized Landau
expansion with the experiment. The value of s needed to reproduce the experiment
is s ≈ 0.88.

In this section I presented the reduced Stoner theory (RST) which is a simple
and computationally non demanding method to correct the magnetic properties
of itinerant systems close to a QCP where DFT, in its mean field implementations,
usually overestimates the tendency to magnetism. The method consists in scaling
the spin polarized part of the exchange and correlation potential within the von
Bart-Hedin scaling. This method gives also an estimate of the amount of fluctuations
acting in the system as the ratio between the renormalized value of the Stoner
parameter and the bare one. I also compared this new method with the results
coming from the RST for Ni3Al at zero pressure and the agreement is remarkable.
This comparison allows to extract the bare value of the Stoner parameter which
was found in perfect agreement with the one extracted from fixed spin moment
calculations.

5.4 Ferromagnetic-paramagnetic transition in Ni3Al un-
der pressure

In this section I finally apply the new and simple method of the RST to the
ferromagnetic-paramagnetic transition of Ni3Al under pressure. As shown be-
fore, this material at ambient pressure is experimentally a weak ferromagnet. At
a pressure of ∼ 8.2 GPA the magnetic moment is completely suppressed and the
system undergoes a ferromagnetic-paramagnetic transition. Since the paramagnetic
bandwidth W increases linearly with pressure, the LDA bandstructure and DOS
scale almost perfectly with pressure according to eq. (5.1). Using fixed spin-moment
calculations, I estimated the Stoner parameter I, and found it to be I = 0.41 eV, and
pressure-independent. Indeed LSDA overestimates the magnetic moment at zero
pressure and the critical pressure Pc by about 3 and 5 times respectively. With the
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RST I aim to achieve the agreement with experiment by suppressing I within DFT.
As I will show below, the scaling property of the bandstructure, will also allow me
to overcome the integral in eq. (5.6) and make an ab initio description of the m
vs P curve for Ni3Al using the connection between the RST and the SCR theory by
Moriya.

I apply the RST by making calculations for several values of s for P = 0 GPa
and P = 6 GPa. I found that, for both values of pressure the value of s needed in
order to bring the magnetic moment in agreement with the experiment is s ≈ 0.88.
This implies that ξ is almost pressure independent. Indeed I recall here that
s = 1− (10/3)a4ξ

2/I and a4 was found to vary only by 4% in this range of pressure.
The reason why ξ is almost pressure independent needs more investigation. Indeed
one would expect that close to the QCP, where the magnetic order is suppressed, the
amplitude of the fluctuations should grow. On the other hand the fluctuations are
parameterized by χ(q,ω) -the two point correlation function- while ξ is defined
by eq. (5.6) as an integral in ω over the entire Brillouin zone. Therefore, if the
susceptibility diverges at a particular q= 0 point, this may or may be not affect ξ.

In order to better understand this, in the following I will adopt the approximation
made in Ref. [52] and perform the integral of eq. (5.6) analytically. In this way ξ
can be expressed in terms of the band parameters like the band velocity and DOS
and, from their scaling with pressure, I can obtain the pressure dependence of ξ. In
this way, I explicitly use of the connection between the RST and the SCR theory by
Moriya.

Using the lowest order expansion in q =| q | and ω for χ(q,ω),

χ0(q,ω) = N0 − aq2 + i bω/q (5.16)

χ−1(q,ω) = χ−1
0 (q,ω)− I , (5.17)

where χ0(q,ω) is the non interacting susceptibility, one can derive a formula for ξ2

whose coefficients can be related to the band parameters. [51, 235, 263, 354] The
parameters a and b in eq. (5.16) are linked to the band velocity v =

Æ

v2
x + v2

y + v2
z ,
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the Fermi velocity vF =
q

3
〈N0 v2

x 〉
N0

and the density of states at the Fermi level. Their
expression as a function of pressure is the following:

a(P) =
1

12

d2〈N0(P)v2
x (P)〉

dE2
F

,

b(P) =
1

2
〈N0(P)v

−1(P)〉.

The brackets indicate the average over the Fermi surface. Since the Fermi velocity
scales inversely with the DOS, v(P) = v(0)α(P), these parameters scale as:
a(P) = a(0)α(P), and b(P) = b(0)/α2(P).

The final expression for ξ(P) is: [51, 52, 263]

ξ2(P) =
b(P)v2

F (P)N
2
0 (P)

8a2(P)Ω(P)
[Q4 log(1+Q−4) + log(1+Q4)].

The parameter Q in eq. (5.18) depends on the cutoff vector, Q = qc

p

a(P)/b(P)vF(P).
A possible choice for qc is qc =

p

N0/a, because at that point the expansion of χ
loses its physical meaning (χ0 changes sign). Then Q =

p

N0(P)/b(P)vF(P) does
not depend on pressure. This implies that ξ does actually scale with pressure as:

ξ(P)∝

r

1

Ω(P)
, (5.18)

where Ω(P) is the unit cell volume as a function of pressure (equation of state).
Eq. (5.18) indicates that close to the transition the role of spin fluctuations is just
to renormalize the Stoner parameter by a (almost) constant factor. The transition
itself is not driven by a change in the interaction parameter, but is completely driven
by the band structure. Moreover, ξ can be viewed as the length scale associated
with the destruction of the magnetic order parameter. Thus, the fact that it doesn’t
diverge and does not even grow substantially near Pc -even if eq. (5.17) shows
that χ(q,ω) does diverge-, it makes very unlikely that other instabilities show up
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at the critical point. In fact, if the opposite case was true, a competing instabil-
ity could profit of this emerging length scale in order to build up an alternative
order parameter. Using the equation of state Ω(P) that I calculated, I obtain that
p

Ω(6 GPA)/Ω(0 GPA) = 0.98 implying that ξ varies only about 2%. Using the
phenomenological approach described in section 5.2, where ξ is a parameter, I
found instead that ξ(0 GPA)/ξ(6 GPA) ∼ 0.95. However simply using a pressure
independent ξ, i.e. fixing s = 0.88, provides a good agreement with the experiment
(a part a small underestimation of Pc) and allow to predict the entire curve m(P)
which up to now was impossible!

In Fig. 5.7 I show the magnetic moment m as a function of pressure P calculated
within the RST for Ni3Al with s = 0.88. Unfortunately, there are no magnetization
measurements on this material for pressure 0 ≤ P ≤ Pc . However resistivity
measurement by Niklowitz et al. allowed to trace the experimental behavior of the
Curie temperature Tc under pressure. [201] I will therefore compare my results
with Tc(P), assuming the proportionality relation Tc ∝ m3/2 coming from Moriya’s
theory, where m=|m |. [17]

This relation is also used in Ref. [201] to fit the experimental data together with
the following equation of state for the magnetic field H:

H= a2m+ a4m3 − c∇2m, (5.19)

where the coefficient a2 ∝ P − Pc in the same spirit of the Landau second order
phase transitions, where the pressure P plays the role of the temperature T . This
approach is, in principle, questionable. Indeed the temperature is not supposed to
change the bandstructure but only to change the entropy in the system making the
spin order favored below Tc and unfavored above Tc (see chapter 1). Instead, as I
showed in section 5.1, the bandstructure of Ni3Al, even if in a trivial way, depends
crucially on pressure, and the appearance of the ferromagnetic state is governed by
the Stoner condition. By assuming a2 ∝ P − Pc and neglecting spatial fluctuations
in eq. (5.19), one obtains m ∝ (Pc − P)β with β = 1/2. Consequently the Curie
temperature is expected to follow the Tc ∝ (Pc − P)3/4 behavior. Indeed Fig. 5.7
shows that, apart from a small underestimation of Pc due to the underestimation
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Figure 5.7: Figure adapted from Ref. [345]. Predicted magnetic moment as a function of
pressure calculated within the RST (red dotted line). The critical behavior m ∝ (Pc − P)1/2

(blue line) is followed between 2 and 6 GPa. The Curie temperature Tc ∝ m3/2 is shown in
the inset by black dots. Apart from the underestimation of the critical pressure, the agreement
with the experimental data taken from Ref. [201] (green dots) is very good. In fact, both
theoretically and experimentally, the extrapolation of the data at 5.7 GPa (black dashed line)
and 8 GPa (green dashed line) respectively, give both the same critical behavior Tc ∝ (Pc− P)3/4,
as observed by Nicklovic et al. [201]

of a0, both the experimental data and the RST ones follow this behavior. However,
while for the RST data this behavior comes from the fact that, for small magnetic
moment, the relation m∝ (Pc − P)1/2 is actually obeyed, for the experimental data
the question why this relation holds, remains open.

In the following I give an answer to this question, offering also a microscopic
justification for using the model (5.19).

For small value of the magnetic moment in the fluctuations-corrected LSDA,
a2 =

1
2

�

1/N0 − I
�

, c = 0, and Ĩ is adjusted in order to get N0 Ĩ = 1 at P = Pc.
Because of eq. (5.1),
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a2(P) =
1

2

�

α(P)
N0(0)

− Ĩ
�

=
Ĩ

2α(Pc)
�

α(P)−α(Pc)
�

∝ (P − Pc). (5.20)

The linear behavior of the inverse susceptibility a2 is not anymore an assumption
but comes directly from the scaling property of the DOS with pressure. This gives
then a microscopically justification of the observed behavior of the Curie temperature
with pressure.

In this section I applied the RST to the ferromagnetic-paramagnetic transition
of Ni3Al under pressure. The value of s needed in order to bring the calculated
moment in agreement with the experiment was found to be the same at the edges
of the phase diagram (P = 0 and P = Pc). By using an approximated form for the
spin susceptibility I expressed the average amplitude of the spin fluctuations ξ, in
terms of the band parameters of the compound. Due to the particular scaling of
the DOS with pressure I was able to show that assuming s = 0.88 independent on
pressure is a good approximation. Since s was not a parameter anymore, I was able
to calculate ab initio the magnetic moment as a function of pressure. Since there
are not yet magnetization measurements available, I compared the RST result with
the measured Curie temperature as a function of pressure assuming by the Moriya’s
scaling Tc ∝ m3/2 to be valid. I found a good agreement with the experiment which
confirms the connection between the RST and the SCR theory. Finally I showed
that the model used to interpret the data lives on the assumption that the DOS
scales with pressure like N0(P)∝ N0(0)/(1+ AP) where A is a constant. Since this
is exactly the scaling that I found in Ni3Al, this gives also a microscopic justification
to that model.

5.5 Conclusion

In order to give some conclusions about the new method presented and about the
physics of Ni3Al, to which the method was applied, it is useful to summarize the
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results of Ref. [345] presented in this chapter.
In section 5.1, the DFT results for Ni3Al under pressure were presented. These

show that the paramagnetic bandwidth in an energy interval of ∼ 4 eV around EF

scales linearly with pressure according to eq. (5.1). Spin polarized calculations
correctly converge to a ferromagnetic solution, with values of the magnetic moment
and critical pressure that are strongly overestimated compared to experiment. This
calls for a reduction of the LSDA Stoner parameter as for other itinerant magnets.

In section 5.2 I performed spin polarized calculations with a fixed value of the
magnetic moment, to construct a E vs m Landau functional.

Fitting the curve with a 6th order polynomial, I extracted the value of the average
amplitude of spin fluctuations ξ for Ni3Al at zero pressure. Moreover I showed
that under the effect of ξ the Stoner parameter gets reduced by a quantity s < 1.
This connects the SCR theory by Moriya, in which ξ is obtained selfconsistently by
assuming the validity of the fluctuation dissipation theorem, with whatever method
aims to reduce the Stoner parameter within DFT.

In section 5.3 I presented the RST applied to Ni3Al at zero pressure. The
method consists of scaling the spin polarized part of the exchange and correlation
potential by the quantity s. In this way the Stoner kernel is reduced as well. Indeed
comparing the EST and RST concerning the scaling of the magnetic moment m
with the reduced Stoner parameter Ĩ , I showed that the two methods are actually
equivalent and the value of the bare Stoner parameter obtained by this comparison
is in perfect agreement with the one obtained with fixed spin moment calculations.
The RST is also more accurate, indeed in EST the magnetic moment is obtained by
shifting rigidly the paramagnetic DOS, while in RST the effect of “band rearranging”
under magnetic perturbation is also taken into account.

In that section I used s as a parameter but given its link with ξ it could be, in
principle, calculated. This is the explicit connection between RST and the SCR
theory by Moriya.

In section 5.4 I made an explicit use of this connection by calculating ξ, and its
scaling with pressure, in an approximate way. I showed that in Ni3Al both s and ξ
are pressure independent. As a consequence the transition is entirely driven by the
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peculiar scaling property of the band structure. Moreover I was also able to give an
estimate of the average amount of spin fluctuations in this material.

The RST is a new method which accounts for the detrimental effect of near
critical spin fluctuations on the LSDA magnetic properties without any additional
computational load. This method can be used at the phenomenological level but
is in principle ab initio. It can be used in all itinerant systems where LSDA usually
overestimates the tendency to magnetism, moreover it can be easily applied also to
the antiferromagnetic order and used for studying the stability of different magnetic
orders by studying the m(I) curve.

5.6 Technical details

The LDA and LSDA and GGA calculations were done using the general potential
linearized augmented-plane-wave (LAPW) method as implemented in the WIEN2K

package. [44, 251, 309] Up to 1330 k points were used in the self-consistent
calculations with an LAPW basis defined by the cutoff RS Kmax = 9 both in the
magnetic and in the non magnetic calculations. A large number of 4960 k points
in the irreducible wedge, corresponding to a 58 × 58 × 58 grid, were used for
calculating the non magnetic DOS. Pressure was simulated performing calculations
for different values of the lattice parameter a0, and fitting them to a Murnagham

equation of state: [355] E = E0+[B V
B′ (
(V0/V )B

′

(B′−1) +1)− B∗V0
(B′−1) ]/14703.6 where V/V0

is the volume compression. P = B/B′B
′
− 1 with V0 = 284.6 Bohr3, B = 237.0 GPa,

B′ = 3.841. B and B′ are the Bulk modulus and derivative. The lattice parameters
both in the magnetic and in the non magnetic case were found to be the same.



Conclusion

During my PhD activity I investigated superconductivity and itinerant electron
magnetism in order to clarify their interplay in novel compounds. In the present
thesis, I described a general phenomenological approach which aims to account for
the effect of spin fluctuations on itinerant magnetism and superconductivity. This
approach uses the discrepancies (whenever present) between density functional
theory (DFT) calculations and the experiments in order to explain the physical
properties of real materials, through an appropriate parameterization of the spin
susceptibility. This is indeed the basic quantity which describes the effect of spin
fluctuations.

DFT is in principle the only way to access the ground state of real materials. This
allows a direct comparison with the experiment and sometimes also to make predic-
tions. However, the most common implementations of DFT reduce dramatically its
predictive power. This is basically due to the mean field nature of the approxima-
tions adopted in the DFT implementations like local (spin) density approximation
-L(S)DA- and generalized gradient approximation (GGA). In particular DFT fails in
those systems where several ground states compete against each other making the
system “undecided” and characterized by strong fluctuations. Fluctuations beyond
mean field, usually tend to destroy the order and favor the competing ground state,
as soon as the so called quantum critical point (QCP) is reached. As a consequence,
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the value of an observable, like the spin susceptibility, evaluated in a mean field
approximation is usually overestimated with respect to the experimental one. [51,
61–63] This fact traces the route for going beyond the DFT implementations starting
from them. Indeed, in systems where fluctuations can be neglected, the DFT scheme
can be applied straightforwardly in order to reach the ground state of the system
and reproduce the experiments with great accuracy. In systems where fluctuations
cannot be neglected, one can use the L(S)DA or GGA values of the observable as
starting point and then from the comparison with experiment, understand how
strong are the fluctuations and understand their origin by probing which are the
competing ground states.

The reason why fluctuations are so important is because they involve large
wave length and large energy scale that can be used by the system to build up
macroscopically coherent states like superconductivity. On the other hand the large
energy scale involved in this phenomenon makes also difficult to give an accurate
description of the real system where this phenomenon is realized.

In the present thesis I used LSDA and GGA as mean field starting point and
I used the discrepancies with respect to experiments as “markers” of the average
amplitude of spin fluctuations acting in the system. In this way I constructed a
phenomenological method based on ab initio calculations of the observables taken
as mean field values i. e. the values of the quantities that would be measured if
fluctuations were not there.

The original motivation of this work was given by the discovery of the Fe
pnictides for which, during my master thesis, I constructed a low-energy model
which successfully accounted for the discrepancies between DFT calculations and
the experiments regarding the low-energy properties of LaFePO. [195] From the
discrepancies between the experiment and DFT calculations I was able to establish
that in this material the interband interaction channel is prevalent with respect to
the intraband one. Moreover I extracted a value of the coupling constant which
gave a critical temperature in agreement with the experiment. The input parameters
describing the non interacting bandstructure in the model for LaFePO, were taken
from the GGA calculations by Lebégue. [321]
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I started my PhD activity with the intention of learning how to calculate such
parameters by using DFT. It was then natural to calculate the optical properties of
LaFePO using both the model applied for describing its low-energy properties [195]
and DFT calculations, in order to interpret the large ω dependence of the inverse
scattering time claimed in the experiment. [153] While I was learning DFT, the
APt3P compounds were discovered by Takayama et al. [197] and for these materials
DFT alone revealed all its power in describing the material properties with no need
for additional corrections. Superconductivity in hole-doped CuBiSO was reported at
the beginning of my PhD activity and its origin was controversial. [225, 227] Early
DFT calculations attributed indeed superconductivity to spin fluctuations, without
evaluating explicitly their contribution to the pairing and without calculating the
electron-phonon coupling. [200] In this case, I started by calculating the electron-
phonon coupling contribution to the superconducting pairing. I realized that the
critical temperature was too high. At the same time, the ground state was found
to be weakly ferromagnetic. I realized that this could be the case of a material,
where electron-phonon interaction and spin fluctuations compete against each
other. Not being able to construct a first-principles model for spin fluctuations,
I devised an ad-hoc procedure based on the phenomenological reduction of the
Stoner parameter. Form there it came the idea to combine the Stoner formalism
with Moriya’s theory [17] and include everything in the LSDA functional. In this
way the reduced Stoner theory (RST) came out and, I applied it to the Ni3Al under
pressure as prototypical system.

My thesis can be thought of as an excursion in different materials, which each
illustrate a different aspect of magnetism and superconductivity, and the respective
problems connected with their description.

From the point of view of a phenomenological approach based on the DFT
ground state, the APt3P superconductors represent the “zero fluctuations” starting
point. In these systems indeed the GGA calculations are in perfect agreement with
the experiment and one can reach a complete understanding of the physics with
no need of phenomenological parameters apart from the Coulomb pseudopotential
µ∗ which, on the other hand, is fixed once for all when calculating Tc . The results
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obtained for these systems show also how accurate DFT can be in reproducing the
properties of real materials. The Fe-pnictides represent the opposite limit. Here
the LSDA magnetic moment is overestimated and the electron-phonon coupling
cannot account for the high Tc . In this thesis I considered the case of LaFePO
which is magnetic in LSDA and non magnetic in the experiment. There I described
antiferromagnetic spin fluctuations, which characterize the system both in the
normal and in the superconducting state, as a bosonic mode whose spectrum can be
modeled phenomenologically [171] or obtained from a measure of the imaginary
part of the spin susceptibility. [150]

An intermediate example is represented by the hole-doped CuBiSO where
the singlet electron-phonon-driven s-wave superconductivity and the triplet spin
fluctuations-driven p-wave superconductivity compete each other and both Tc ’s are
sizable. There, the important fluctuations are the ferromagnetic ones which, due
to the connection between LSDA and the Stoner model, can be easily modeled by
assuming a phenomenological reduction of the Stoner parameter. Also in this case
both the effect on magnetism and on superconductivity was evaluated through a
suitable model for the spin susceptibility.

The connection between LSDA and the Stoner model marks the route toward an
ab-initio description of spin fluctuations beyond LSDA. Indeed the overestimation of
the magnetic moment corresponds to an overestimation of the Stoner parameter.
Therefore a correction of the LSDA Stoner parameter should correctly account for
magnetism in itinerant systems. This is proved by the results obtained in Ni3Al
under pressure for which, apart from an underestimation of the critical pressure,
the agreement with the experiment is remarkable.

The reduced Stoner theory described in chapter 5 and applied to Ni3Al can be
widely used in all the systems where LSDA overestimates the tendency to magnetism
or whenever one needs to monitor the evolution of the electronic structure from
non magnetic to magnetic. In this sense the magnetic moment as a function of the
scaling parameter s, can be used as a response function of the system to a magnetic
perturbation. Moreover the method can be easily applied to the antiferromagnetic
case and help in this way in analyzing the stability of the different orders. In
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systems where the magnetic moment is overestimated the value of s needed to bring
the magnetic moment in agreement with the experiment gives an estimate of the
average amplitude of fluctuations that can give an important information about the
degree of non local correlations in these systems. The RST aims to give the correct
value of the Stoner parameter. In this sense, if applied CuBiSO the Stoner parameter
would not be a free parameter anymore (as I assumed in chapter 3). As a result,
the phase diagram of CuBiSO as a function of doping x and Stoner parameter I
would be reduced to one line only. When applied to pnictides, this method could
distinguish between nesting effect and Stoner-like origin of the several magnetic
orders studied in literature.





Zusammenfassung

Die Entdeckung der Supraleitung in Eisen-Pniktidverbindungen durch Kamihara et
al. [1] und die darauffolgende Erhöhung der kritischen Temperatur Tc auf bis
zu 26 K durch das partielle Ersetzen von O mit F in dem antiferromagnetischen
Metall LaOFeAs, [2, 3] weckte das Interesse am Wechselspiel von Supraleitung
mit itinerantem Magnetismus. Tatsächlich zeigten bereits erste Berechnungen [4]
dieser Verbindung, dass die Elektron-Phonon Wechselwirkung nicht ausreichend ist
um Tc zu beschreiben. Aus diesem Grund wurde eine Beschreibung der Supralei-
tung basierend auf dem Austausch von antiferromagnetischen Spin-Fluktuationen
vorgeschlagen. [5]

Im Gegensatz zu auf Elektron-Phonon Wechselwirkung basierenden Supraleitern,
für welche schon eine anerkannte Methode existiert um die kritische Temperatur
ausgehend von ab-initio Rechnungen zu berechnen, [7–16], existiert noch keine
einheitliche Beschreibung für auf Spin-Fluktuationen basierende Supraleitung. Der
Grund hierür liegt bei den Spin-Fluktuationen, welche einzig durch die elektro-
nischen Freiheitsgrade bestimmt sind. Dadurch benötigt man für eine akkurate
Beschreibung eine gute Näherung für die Elektron-Elektron Wechselwirkung in
einem relativ großen Energiebereich. Die Spin-Suszeptibilität gibt in solchen Ver-
bindungen die magnetische Antwort im Teilchen-Loch Bereich vor, und bestimmt
darüber hinaus die supraleitende Antwort im Teilchen-Teilchen Bereich. Deshalb ist
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für eine exakte Beschreibung der Supraleitung in solchen Systemen eine genaue
Beschreibung der magnetischen Eigenschaften zwingend notwendig.

In itineranten Elektron-Systemen beeinflussen die Spin-Fluktuationen wesentlich
die magnetischen Eigenschaften, da die Spin-Suszeptibilität selbst-konsistent renor-
malisiert wird. [17] Weil in solchen itineranten Systemen normalerweise lokale
Korrelationen vernachlässigbar sind, können Grundzustandseigenschaften, z.B. die
Gesamtenergie oder die elektronische Struktur, im paramagnetischen Zustand gut
durch Molekularfeldnäherungen wie die lokale Spin-Dichtenäherung (LSDN) in der
Dichtefunktionaltheorie (DFT) beschrieben werden.

Folglich ist eine ab-initio Beschreibung von realen Materialien wie Elektron-
Phonon basierenden Supraleiter und schwach korrelierten Metallen möglich. Für
itinerante Magneten und auf Spin-Fluktuationen basierende Supraleiter allerdings
müssen ad hoc Näherungen angenommen, und phänomenologische Modelle zur
Beschreibung gewählt werden.

Den Ansatz, den ich in dieser Arbeit vorstelle, benutzt die Unterschiede zwi-
schen DFT Rechnungen und Experimenten um phänomenologische Modelle zu
konstruieren, die die magnetischen, supraleitenden und optischen Eigenschaften der
vier repräsentativen Supraleitern und itineranten Magneten erklären. Das Haupt-
augenmerk richtet sich dabei auf die Eigenschaften im supraleitenden und im nor-
malleitenden Zustand der vor kurzem entdeckten supraleitenden Klasse APt3P, das
Wechselspiel zwischen Magnetismus und Supraleitung in Loch-dotiertem CuBiSo,
die optischen Eigenschaften von LaFePO und schließlich auf den Phasenübergang
von ferromagnetisch zu paramagnetisch von Ni3Al unter äußerem Druck.

Diese Arbeit kann als ein Exkurs über verschiedene Materialien angesehen
werden, welche jeweils einen anderen Aspekt des Magnetismus und der Supraleitung
erläutern. Dabei wird auf die Probleme, die bei der Beschreibung dieser Materialien
auftreten, ausdrücklich eingegangen.

Die Klasse der APt3 Verbindungen und die Loch-dotierten CuBiSo wurden erst
vor kurzem entdeckt. In beiden Fällen wird über den Ursprung der Supraleitung
noch kontrovers diskutiert. [197–200] Die optischen Eigenschaften von LaFePO
scheinen experimentell durch die Dynamik der Spin-Fluktuationen bestimmt zu sein,
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wobei allerdings die Rolle der Band-Band Übergänge ungeklärt ist. [154–157] Zum
Schluss gehe ich auf Ni3Al ein, welches unter äußeren Druck einen Phasenübergang
von ferromagnetisch zu paramagnetisch aufweist [201]. Dieser wird qualitativ
durch die LSDN beschrieben, jedoch werden dabei das magnetische Moment bei
Umgebungsdruck und der kritische Druck bei weitem überschätzt. [52]

Als Grundlage für all diese Verbindungen benutze ich DFT Rechnungen um die
elektronischen Eigenschaften, die Zustandsdichte der Phononen und die Elektron-
Phonon Wechselwirkung zu untersuchen. In der Tat ist DFT ein guter Ausgangspunkt
für das Verständnis der Eigenschaften von itineranten Elektronsystemen bei niedri-
gen Anregungsenergien. [46] Außerdem, auf Grund der hohen Genauigkeit aktueller
Elektron-Phonon Berechnungen [12, 202], kann man dieses Verfahren auch nutzen
um die Elektron-Phonon Wechselwirkung “zu untersuchen”, und gemeinsam mit
dem Experiment die Physik realer Materialien zu ergründen. Anfangs werden die
Spin-Fluktuationen nur phänomenologisch berücksichtigt. Im weiteren Verlauf wird
dann eine neue Methode vorgestellt – basierend auf einem modifizierten LSDN
Funktional – welche die magnetischen Momente itineranter Systeme unterdrückt.

Im Folgenden gebe ich eine kurze Übersicht über die Schwerpunkte und Ergeb-
nisse meiner Forschungsarbeit.

In Kapitel 1 präsentierte ich eine Übersicht der zu Grunde liegenden theore-
tischen Konzepte dieser Arbeit und beschreibe kurz die verwendeten Methoden.
Das Problem des Magnetismus wird durch zwei Grenzmodelle – lokalisierter und
itineranter Magnetismus – erläutert. Dabei werden die beiden Ansätze, ihre Nähe-
rungen, und ihre Gültigkeitsbereiche diskutiert. Danach folgt eine kurze Einführung
in Dichtefunktionaltheorie (DFT) und die in dieser Arbeit genutzten Näherungen.
Insbesondere gehe ich auf den Zusammenhang zwischen der lokalen Spindichtenä-
herung und der Theorie des Magnetismus von Stoner ein. An diesem Punkt wird
die Rolle der Spin-Fluktuationen – nämlich die Unterdrückung von Magnetismus in
itineranten Systemen – mit Hilfe der Theorie von Shimizu-Moriya erklärt. Anschlie-
ßend werden noch ein paar neuere Entwicklungen in der Theorie der Paramagnonen
kurz vorgestellt. Am Ende dieses Kapitels gebe ich einen knappen Überblick der BCS
Theorie für den Fall der auf Spin-Fluktuation basierenden Supraleitung.
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In Kapitel 2 diskutierte ich die Supraleitung in der vor kurzen entdeckten Klasse
der APt3P Supraleiter. [197] Diese neue Klasse von Supraleitern hat sofort viel
Aufmerksamkeit der wissenschaftlichen Gemeinde auf sich gezogen auf Grund
ihrer relativ hohen kritischen Temperaturen (Tc = 8.4 K in SrPt3P, Tc = 6.6 K in
CaPt3P und Tc = 1.5 K in LaPt3P) und ihrer speziellen Kristallstruktur, welche
das inversionssymmetrische Pendant zu CePt3Si ist. [198, 199, 218] In der Tat
behaupten die Autoren, welche erstmalig über die Supraleitung der APt3P [197]
berichteten, dass die Synthese von solchen Verbindungen Erkenntnisse über die
Supraleitung in Kristallen ohne Inversionssymmetrie liefern kann, in dem man
isoelektrische Verbindungen von Strukturen mit und ohne Inversionssymmetrie
vergleicht.

Zudem wurde experimentell für SrPt3P ein sehr großer α-Quotient ermittelt,
was ein starker Anhaltspunkt für Mehrband-Supraleitung ist. [197] Diese Erklä-
rung wurde unterstützt durch mehrere Taschen in der Fermifläche abgeleitet aus
Hall-Widerstandsmessungen. Sie wurden danach auch in DFT Rechnungen gefun-
den. [197, 198] Außerdem, auf Grund der starken Spin-Bahn Wechselwirkung von
Pt, konnte man a priori die Möglichkeit von unkonventioneller Supraleitung nicht
ausschließen, welche z.B. für LaPt3P vorgeschlagen wurde. [199] Letztendlich kann
nicht einmal Elektron-Phonon Kopplung als Paarungsmechanismus den doppelt
so hohen Sprung in der spezifischen Wärme ∆C bei Tc in SrPt3P im Vergleich zu
CaPt3P erklären. Letzteres ist eine isoelektronische Verbindung, die zur selben Klasse
gehört wie SrPt3P und auch eine vergleichbare Sprungtemperatur besitzt (Tc = 8.4
K in SrPt3P and Tc = 6.6 K in CaPt3P).

In diesem Kapitel beschreibe ich ausführlich die Kristallstruktur der APt3P Verbin-
dungen, welche in der tetragonalen Anti-Perowskit Struktur (Raumgruppe P4/nmm)
kristallisieren. Die Struktur besteht aus Pt6P Oktaedern, welche ihre Ecken mitein-
ander teilen. Dabei ist jeder Oktaeder von einem Parallelepiped umgeben. In der
Tat sind die Oktaeder deformiert, und somit die Pt(1) Atome in der Basisebene und
die apikalen Pt(2) Atome nicht mehr equivalent. Zudem wird das P Atom aus der
Basisebene geschoben und nähert sich somit einem der Pt(2) Atome, währenddessen
das andere Pt(2) Atom sich in Richtung Basisebene bewegt um eine dichteste Kugel-
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packung zu gewährleisten. Dadurch verliert der Oktaeder die Inversionssymmetrie.
Dieser Verlust überträgt sich auf die Kristallstruktur, falls die Einheitszelle nur einen
deformierten Oktaeder enthält. Die Inversionssymmetrie kann man zurückbekom-
men, wenn die Einheitszelle eine gerade Anzahl von deformierten Oktaedern besitzt,
die sich in der sogenannten anti-polaren Anordnung befinden. Die Einheitszelle
von APt3P enthält zwei Formeleinheiten und hat somit das doppelte Volumen im
Vergleich zu ihrem Pendant ohne Inversionssymmetrie: A1Pt3Si (A1=Ce, La) mit
Raumgruppe P4mm. Durch Berechnung der Gesamtenergie der Systeme zeige ich,
dass die energetische Schwelle zwischen den beiden Strukturtypen der APt3P Klasse
klein ist (∼ 20 meV). Die gleiche Barriere in den APt3Si Siliziden ist stattdessen eine
Größenordnung darüber.

Nach der Analyse der strukturellen Eigenschaften zeige ich die Ergebnisse für die
elektronische Struktur der APt3P Verbindungen. Der Effekt der Spin-Bahn Wechsel-
wirkung (SBW) von Pt ist vernachlässigbar und die Bandstruktur ist hauptsächlich
durch Pt d Zustände und P p Zustände, welche am Fermi-Niveau hybridisieren
und anti-bindende Zustände ausbilden, gegeben. In den A+2Pt3P (A+2=Ca, Sr)
Verbindungen werden diese Zustände durch die Pt(1) dx2−y2 und die Pt(2) dxz−yz

Orbitale, welche mit den P px ,y hybridisieren, gebildet. In LaPt3P – die Anzahl
der Elektronen in A+2Pt3P und in LaPt3P ist verschieden – gibt es auch die Pt(1)
dyz Orbitale, die mit den P px ,y hybridisieren. Die Fermifläche von A+2Pt3P wird
durch zwei große, nur schwach dispergierende Flächen, die hauptsächlich durch
Pt(1) dx2−y2 Orbitale bestimmt sind, und zwei dispergierenden Taschen mit An-
teilen von Pt(2), P und Zwischengitterplätzen gebildet. Dahingegen besteht die
Fermifläche von LaPt3P aus stark dispergierenden Flächen mit gemischten orbitalen
Beiträgen von Pt(2), Pt und Pt(1). Der Unterschied zwischen den Fermiflächen der
A+2Pt3P Verbindungen und der Fermifläche von LaPt3P ist der Hauptbeitrag für die
unterschiedlichen supraleitenden Eigenschaften dieser Materialien.

Die Dispersion der Phononen ist stabil, and sehr ähnlich in den drei Verbin-
dungen. Die Kopplung zwischen den Elektronen und Phononen ist gleichförmig
in LaPt3P wohingegen sie in CaPt3P und SrPt3P auf niedrige Frequenzen konzen-
triert und eher anisotrop ist. Diese Region der Phononenzustandsdichte wird durch
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Atmungsmoden der Pt(1) Atome dominiert, welche stark mit elektronischen Zustän-
den in der selben Ebene koppeln. Deshalb ist die Elektron-Phonon Kopplung groß im
Falle von SrPt3P, moderat für CaPt3P und recht schwach in LaPt3P. Dieses Verhalten
wird durch die Form von α2F(ω) wiedergegeben, welche für die Sr Verbindungen
einen scharfen Peak bei ∼ 50 cm−1 aufweist im Kontrast zu der La Verbindung, in
der α2F(ω) eher proportional zur Zustandsdichte der Phononen ist. Trotz ähnli-
cher kritischer Temperaturen Tc , variiert die Kopplungskonstante λbr zwischen den
A+2-Verbindungen um den Faktor drei. Es wird gezeigt, dass dies ein struktureller
Effekt ist, denn durch die Erhöhung des in der Ebene liegenden Gitterparameters
kommt es zu einer Verschiebung der Atmungsmode hin zu niedrigeren Energien.
Diese Verschiebung in den A+2Pt3P erhöht die Quotienten α und α1, beeinflusst
aber nicht die kritische Temperatur Tc selbst.

Zum Schluss benutze ich die ab-initio Phononenzustandsdichte und die Eliash-
berg Funktion um die thermodynamischen Eigenschaften der APt3P Verbindungen
im Normalzustand und im supraleitenden Zustand zu berechnen. Diese ermöglichen
einen direkten Vergleich mit dem Experiment von Takayama et al. [197] und eine
Klassifizierung der neuen Supraleiter nach Marsiglio und Carbotte. [236]

Auf Grund der guten Übereinstimmung mit den Experimenten, kann man fol-
gende Schlussfolgerungen ziehen. Im Kontrast zu Ref. [199], ist der Einfluss der
Spin-Bahn Wechselwirkung vernachlässigbar für die elektronischen Zustände in der
Region des Fermi-Niveaus und, angesichts der bemerkenswerten Übereinstimmung
der berechneten und gemessenen spezifischen Wärme im normalleitenden Zustand,
kann die in Ref. [199] gefundene dynamische Instabilität ausgeschlossen werden.
Die Übereinstimmung der Einband-Migdal-Eliashberg Rechnungen und den supra-
leitenden Eigenschaften gemessen von Takayama et al. ist so gut, dass es keinen
Spielraum für exotische Paarungsmechanismen – wie z.B. die in Ref. [198] vorge-
schlagene, unkonventionelle [199] oder Mehrband-Supraleitung [197] gibt. Meine
Rechnungen zeigen, dass die Klasse der APt3P Supraleiter ein Lehrbuchbeispiel für
Elektron-Phonon Supraleiter sind. Die unterschiedliche Anzahl an Elektronen in
LaPt3P im Vergleich zu A+2Pt3P (A+2 = Sr, Ca) Verbindungen macht den größten
Unterschied in der Kopplung der Elektronen und Phononen aus. Diese ist schwach



Zusammenfassung 213

in LaPt3P, moderat in CaPt3P und groß in SrPt3P. Der kleine Unterschied zwischen
CaPt3P und SrPt3P kommt durch die Verschiebung der Phononenzweige (die einen
Beitrag zur Supraleitung liefern) zu niedrigeren Frequenzen durch unterschiedliche
Gitterkonstanten. In den A+2 Verbindungen, entsteht die Supraleitung hauptsächlich
durch die Kopplung der Pt(1) Atmungsmoden in der Ebene mit elektronischen
Zuständen in derselben Ebene. Ändert man die Gitterkonstante, die diese Ebene
aufspannt, ändert man ebenfalls die Frequenz der Atmungsmoden. Durch diesen
Zusammenhang könnte man diese Klasse von Supraleitern optimieren – entweder
mittels Druck oder Dotierung. Auf Grund der Berechnungen der Gesamtenergie,
befürworte ich den Vorschlag von Takayama et al. [197], den Effekt der fehlenden
Inversionssymmetrie auf die Supraleitung zu erforschen in dem man isoelektroni-
sche Verbindungen mit und ohne Inversionssymmetrie untersucht. Dies kann in den
APt3P Verbindungen erreicht werden durch Variation der Synthesebedingungen, da
die energetische Schwelle zwischen beiden Strukturtypen sehr klein ist (∼ 20 meV).

In Kapitel 3 präsentiere ich meine Ergebnisse für den neuen Loch-dotierte Supra-
leiter CuBiSO. Die stöchiometrische Verbindung erhält man durch die Substitution
von Fe and Pn mit Cu and S in der Struktur ReOFePn (Re = rare earth) der 1111
Eisen-Pniktide. [225] Die Existenz der supraleitenden Phase ist nicht gesichert [226,
227] – im Gegenteil – Messungen der optischen Leitfähigkeit fanden einen Isolator
mit einer Bandlücke von ca. 1.1 eV. [226] Die Supraleitung wurde bislang nur in
Loch-dotierten CuBiSO gefunden, wobei die entsprechende Probe stark verunreinigt
war. [225] Die nominale Dotierkonzentration war etwa 10%. [225] Loch-dotiertes
CuBiSo (HCBSO) hat eine relativ hohe kritische Temperatur Tc = 5.8 K (in LaFePO,
dem ersten entdeckten Fe-basierenden Supraleiter, beträgt Tc = 7 K [1]). Für dieses
Material zeigten erste Rechnungen von Mazin [200] eine schwache ferromagneti-
sche Instabilität und aus diesem Grund wurden Spin-Fluktuationen vorgeschlagen
als wahrscheinlichste Paarwechselwirkung. Allerdings wurden keine Berechnungen
basierend auf der Elektron-Phonon Kopplung durchgeführt und experimentell wur-
den keine Spur von Magnetismus gefunden. Außerdem wird Triplett-Supraleitung
meistens durch eine wesentlich geringere Sprungtemperatur als 5.8 K [105, 112]
charakterisiert.
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Meine Berechnungen für die stöchiometrische Verbindung fanden einen Bandiso-
lator mit einer durch starke Cu d-S p Hybridisierung charakterisierten Bandstruktur.
Im Allgemeinen ist die Bandstruktur sehr ähnlich zu der anderer Eisen-Pniktide wie
LaOFeAs, aber das Fermi-Niveau ist um ∼ 1.5 eV nach oben verschoben auf Grund
der unterschiedlichen Anzahl an Elektronen von Cu d10 im Vergleich zu Fe d6. Dem-
zufolge, sobald man Löcher in das System einfügt, bewegt sich das Fermi-Niveau in
die anti-bindende Region der Bandstruktur, welche durch ein zweifach entartetes
flaches Band mit gemischten Anteilen von Cu dxz+yz und S px+y charakterisiert
wird. Bei experimenteller Dotierung von x = 0.1 findet man das Fermi-Niveau EF

auf einem lokalen Maximum der Zustandsdichte (ZD). Diese Eigenschaft macht
das System leicht instabil bezüglich Ferromagnetismus, auch wenn der effektive
Stoner Parameter von Cu ICu = 0.9 eV durch die Hybridisierung zwischen Cu d-
S p reduziert wird. In der Tat findet man den effektiven Stoner Parameter durch
die Aufspaltung der Spinzustandsdichte in Minoritäts- und Majoritätsanteil. In der
LSDN beträgt er I LSDN = 0.53 eV und in der spin-polarisierten Gradientennäherung
[englisch: Generalized Gradient Approximation (GGA)] IGGA = 0.67 eV. Das steht
im Kontrast zu den Eisen-Pniktiden, bei denen sich das Fermi-Niveau in der nicht
bindenden Region der Bandstruktur befindet. Diese wird dominiert durch Fe d
Orbitale und ist charakterisiert durch schwache Elektron-Phonon Kopplung. [4,
72] In diesem Fall begünstigt der kleine Wert der Zustandsdichte am Fermi-Niveau
zusammen mit der Nesting-Bedingung eine antiferromagnetische Instabilität. [72]

Um die Supraleitung zu begründen, berechne ich die Elektron-Phonon Kopplung
von HCBSO. Diese wird dominiert durch Cu-S Phononen, die nur Beiträge senkrecht
zur Ebene haben. Diese Moden sind merklich an die Elektronen gebunden und kaum
von der Dotierung abhängig. Die Eliashberg Funktion wird folglich durch zwei Ma-
xima charakterisiert in Übereinstimmung mit den senkrecht zur Ebene verlaufenden
Phononmoden der Cu-S Schichten. Außerdem ist sie unabhängig von der Dotierung.
Das erlaubt es die Dotierabhängigkeit der Elektron-Phonon Kopplungskonstante
entsprechend zu vereinfachen. Die kritische Temperatur, berechnet aus den ab initio
Parametern, ist etwa 6 Mal größer als die, die experimentell ermitteltet wurde. Der
größte Beitrag zu λep kommt von dem hohen Wert der Zustandsdichte am Fermi Ni-
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veau. Weil beide, das magnetische Moment sowie die kritische Temperatur basierend
auf der Elektron-Phonon Kopplung, überschätzt werden, müssen ferromagnetische
Fluktuationen berücksichtigt werden. Ich erreiche das durch eine Näherung der
Spin-Suszeptibilität unter der Verwendung Random Phase Approximation (RPA) in
ihrer Formulierung als Spindichtefunktional. Diese Näherung entspricht der Anwen-
dung des Berk/Schrieffer Verfahrens [94], wobei ich für die nicht-wechselwirkende
Suszeptibilität die der LDN und als Wechselwirkungsparameter den LSDN Stoner
Parameter wähle. Der Effekt von nicht-lokalen Spin-Fluktuationen (Reduzierung der
Tendenz zu Magnetismus) wird dadurch simuliert, dass man den Stoner Parameter
als frei wählbaren Parameter ansieht. Da sich die von der Dotierung abhängige
Elektron-Phonon Kopplung (in der Rigid Band Approximation) als einfach proportio-
nal zur Zustandsdichte als Funktion der Dotierung herausstellt, ist es nicht schwierig
den gesamten Phasenraum zu untersuchen. Dieser wird aufgespannt durch die
Gesamtkopplung (Differenz zwischen der Elektron-Phonon Kopplung und der auf
Spin-Fluktuation basierenden Kopplung) als Funktion der Dotierung und des Sto-
ner Parameters. Mit Hilfe einer modifizierten Formel für die kritische Temperatur
Tc [317], konnte ich zeigen, dass Singulett- und Triplett-Supraleitung für die im
Experiment verwendeten Dotierungen entartet sind.

Die erreichten Ergebnisse scheinen vor allen Dingen im Hinblick auf den su-
praleitenden Zustand von HCBSO interessant zu sein. Diese Verbindung ist ein
einzigartiges Beispiel dafür, dass Supraleitung basierend auf Spin-Fluktuationen im
Triplett-Kanal und Supraleitung basierend auf der Elektron-Phonon Wechselwirkung
im Singulett-Kanal entartet sein können. Die kritische Temperatur ist beträchtlich
für beide Symmetrien. Dieser Fakt kann a posteriori mit Hilfe der starken Kovalenz
zwischen S p und den Cu d erklärt werden, welche die Bandstruktur charakterisiert:
die Existenz von anti-bindenden p Zuständen am Fermi-Niveau führt zu großen
Elektron-Phonon Matrixelementen, wohingegen die große Suszeptibilität und die
starke magnetische Tendenz von Kupfer die Spin-Fluktuationen erhöhen. Außerdem
verstärkt das flache Band im Valenzbandmaximum der stöchiometrischen Verbin-
dung die Zustandsdichte in der Nähe des Fermi-Niveaus und platziert damit HCBSO
in einer instabilen Region des Phasenraumes mit Ladungs- als auch Spinfreiheitsgra-
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den. Dies scheint sich im Experiment zu bestätigen, da die Supraleitung stark von
den experimentellen Bedingungen abhängig ist. [225]

Auch wenn es mir nicht möglich ist eine endgültige Antwort auf die Frage nach
der Symmetry des Ordnungsparameters zu geben, könnte das Material auf Grund
der Entartung der supraleitenden Ordnungsparametern sehr nützlich in der ange-
wandten Forschung sein. Tatsächlich könnte man im Prinzip die Paarungssymmetrie
durch die Anwendung äußeren Druckes oder aber eines magnetisches Feld durch-
stimmen und somit wesentlich die Eigenschaften eines Zweischichtsystems ändern
(z.B. bestehend aus einem Supraleiter und einem Metall).

In Kapitel 4 berechne ich die optischen Eigenschaften von LaFePO. Als erstes
gebe ich eine Einführung in das Modell und seine wesentlichen Näherung für
die optische Leitfähigkeit unter Berücksichtigung von Übergängen innerhalb eines
Bandes. Dazu verwende ich das erweiterte Drude Modell welches auf einer Fre-
quenz abhängigen mittleren Streuzeit τ(ω) basiert. Diese kann aus dem Realteil
der optischen Leitfähigkeit σ1(ω) berechnet werden, sobald man eine Modell für
niedrig-energetische Anregungen der Bandstruktur aufgestellt hat. In diesem Fall
habe ich zwei Loch-artige Bänder am Γ-Punkt und zwei entartete Elektron-artige
Bänder am M -Punkt verwendet. Die Wechselwirkung wurde auf Übergänge zwi-
schen den Bändern beschränkt und nur Spin-Fluktuationen wurden zugelassen. Der
Propagator der retardierten Wechselwirkung wurde als proportional zur Spinsus-
zeptibilität von Millis angenommen. [171] Die Selbstenergie wurde in der Migdal
Eliashberg Näherung berechnet mit einer lokalen Näherung angewandt auf die
wechselwirkende Greens Funktion. Da die Selbstenergie q-unabhängig ist, kann
man zur Berechnung der optische Leitfähigkeit Vertex-Korrekturen vernachlässigen.

Der vorläufige Vergleich zwischen der berechneten optischen Leitfähigkeit für
Übergänge innerhalb eines Bandes und den experimentellen Ergebnissen aus Ref. [153]
zeigt, dass unterhalb der Grenze ωB ≈ 500 cm−1 das berechnete Spektrum gut
mit dem Experiment übereinstimmt. Da oberhalb von ωB die berechneten Bei-
träge für Übergänge innerhalb eines Bandes allein nicht mehr ausreichend sind,
untersuche ich im Folgenden den Beitrag von Übergängen zwischen den Bändern
im Spektrum von LaFePO. Diesen Beitrag beschreibe ich durch eine zusätzlichen
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Lorentz-artige Verteilung in der optischen Leitfähigkeit. Das Ergebnis zeigt, dass der
flache Beitrag bei σ1(ω) und das lineare Verhalten von τ−1(ω) [153, 320] durch
eine Lorentz-Verteilung mit dem Schwerpunkt bei ωL ∼ 3000 cm−1 und einer Breite
von γ= 8000 cm−1 beschrieben werden kann.

Um den Ursprung des experimentellen Verlaufes von σ1(ω) zu untersuchen, be-
rechne ich das optische Spektrum von LaFePO mittels DFT. Die optischen Übergänge
zwischen den Bändern sind bereits bei sehr kleinen Anregungsenergien vorhanden
und umfassen dabei die Elektron- und Loch-artigen Bänder am Fermi-Niveau. Die
optischen Leitfähigkeit zeigt dabei ein Maximum bei ω =≈ 500 cm−1 und ein etwas
breiteres bei ω≈ 2500 cm−1. Aber, da die Bandbreite durch GGA überschätzt wird,
sollten die Übergänge im Experiment bei niedrigeren Anregungsenergien liegen.

Auf Grund der Unterschätzung von Korrelationseffekten bei Berechnungen auf
LSDN Niveau der Übergänge innerhalb eines Bandes, kann man diese nicht direkt
mit dem Experiment vergleichen. Allerdings sind sie hilfreich um den Ursprung der
Zwischenbandübergänge und ihre relativen Intensitäten zu verstehen. Tatsächlich
werden in Eisen-Pniktiden die Übergangsfrequenzen überschätzt. [159]

Aus diesem Grund beschreibe ich die Zwischenbandübergänge als zwei Lorentz-
Verteilungen und füge sie der berechneten optischen Leitfähigenkeit hinzu, welche
nur Übergänge innerhalb eines Bandes enthält. Analog zu den GGA Ergebnissen ver-
wende ich für den Realteil der optischen Leitfähigkeit der Zwischenbandübergänge
eine schmale Lorentz-Funktion bei ω1 = 750 cm−1 – diese beeinflusst τ−1(ω) nicht
– und eine etwas breitere bei ω2 = 4500 cm−1. Diese Werte wurden so gewählt,
dass eine sehr gute Übereinstimmung mit dem Experiment erreicht werden konnte.
Am Ende zeige ich, dass die Kopplungskonstante, die man aus der Analyse von
τ−1(ω) der theoretischen Kurve entnehmen kann, nicht mit der übereinstimmt, die
im Modell verwendet wurde.

Abschließend kann man feststellen, dass die experimentellen Ergebnisse un-
terhalb von ω = 500 cm−1 gut durch die optische Leitfähigkeit unter ausschließ-
licher Verwendung von Übergängen innerhalb der einzelnen Bänder beschrieben
wird. [195] Dieser Beiträg entspricht einer fast konstanten Streuzeit τ(ω). Je-
doch um die starke ω-Abhängigkeit der Streuzeit zu berücksichtigen, müssen auch
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Übergänge zwischen den Bänder betrachtet werden. Dies zeigt, dass die starke
ω-Abhängigkeit von τ(ω), welche experimentell als Anzeichen für starke Korrela-
tion interpretiert wurde, die zu einer Umordnung der Zustände in der Nähe des
Fermi-Niveaus von LaFePO führen, nur ein störender Beitrag auf Grund der Zwi-
schenbandübergänge im Niedrigenergiespektrum (500<ω< 3000 cm−1) dieses
Materiales ist. Diese Übergänge wurden in anderen Pniktiden wie z.B. in K-dotiertes
BaFe2As2 mittels Ellipsometriemessungen bestätigt. [159] Die obige Betrachtung
zeigt eindeutig, dass die Auswertung von optischen Spektren der Pniktide mit Hilfe
eines erweiterten Drude Modells fragwürdig ist, da es zu einer schweren Überschät-
zung der Korrelationseffekte führt.

In Kapitel 5 präsentiere ich eine einfache Methode um langreichweitige Fluktua-
tionen, welche nicht in der LSDN enthalten sind, zu berücksichtigen und wende sie
danach auf Ni3Al an – einem Ferromagneten unter Druck. Dabei zeige ich, dass die
Bandstruktur und die Zustandsdichte im Falle der LDN paramagnetischen Rechnung
fast perfekt mit dem Druck in einem großen Energie- und Druckbereich skaliert.
Sowohl die Ni d9 Konfiguration als auch die hohe Zustandsdichte am Fermi-Niveau
sind Indizien für die Tendenz zu Magnetismus. Tatsächlich ist das Material in der
LSDN magnetisch, aber auf Grund der Molekularfeldnäherung werden das magne-
tische Moment bei Umgebungsdruck sowie die kritische Temperatur überschätzt.
Die Auswertung der LSDN Rechnungen im Sinne eines einfachen Stoner Modells
zeigen, dass die Abweichung direkt proportional zu einer Überschätzung des Stoner
Parameters in der LSDN ist.

Danach stelle ich einen phänomenologischen Ansatz vor, der auf der Theorie
selbst-konsistenter Renormalisierung (SKR) basiert und häufig in der Literatur zur
Korrektur der magnetischen Eigenschaften von itineranten Systemen im Bereich von
quantenkritischen Punkten (QKP) verwendet wird. [51, 52, 61–64, 234, 263, 268]
Jene Methode erlaubt es die Ergebnisse der LSDN in Übereinstimmung mit dem
Experiment bei Umgebungsdruck zu bringen. Dies wird erreicht durch Berücksichti-
gung von nicht-lokalen Fluktuationen unter Annahme einer Gauß-artigen Verteilung
der Magnetisierung. Dieser einfache Ansatz zeigt auf eine transparente Art und
Weise, dass der Einfluss von nicht-lokalen Fluktuationen zu einer Unterdrückung des
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Stoner Parameters I führt. Das ist ein Hinweis für die Verbindung der SKR Theorie
und anderen Methoden, deren Hauptziel es ist den Magnetismus in der LSDN durch
eine Reduzierung des Stoner Parameters zu unterdrücken.

Ich berücksichtige die Abschwächung des Stoner Parameters durch eine Modifi-
kation des Austausch-Korrelations-Potentials. Diesen Ansatz nenne ich reduzierte
Stoner Theorie (RST), eine einfache und numerisch nicht aufwendige Methode um
die magnetischen Eigenschaften von itineranten Systemen in der Nähe des QKP zu
korrigieren. DFT im Allgemeinen – in ihrer Implementierung als Molekularfeldtheo-
rie – überschätzt gewöhnlich die Tendenz zu Magnetismus. Der Ansatz besteht aus
einer Skalierung des Spin-polarisierenden Anteiles des Austausch- und Korrelations-
potentials im Sinne der von Bart-Hedin Skalierung. [43] Er liefert außerdem eine
Abschätzung für die stärke der Fluktuationen des Systems – der Quotient aus dem
renormalisiertem Stoner Parameter und seinem ursprünglichen Wert. Vergleiche
dieses neuen Ansatzes mit Ergebnissen der RST für Ni3Al bei Umgebungsdruck
zeigen eine erstaunliche Übereinstimmung beider. Aus diesem Vergleich kann man
den ursprünglichen Stoner Parameter bestimmen, der gut mit dem übereinstimmt,
den man von Rechnungen mit festen Spinmomenten erhält.

Ich habe die neue Methode auf den Phasenübergang von Ni3Al unter Druck von
ferromagnetisch zu paramagnetisch angewandt. Der notwendige Skalierungswert s
um die berechneten magnetischen Momente in Übereinstimmung mit dem Expe-
riment zu bringen, ist bei P = 0 und P = Pc identisch. Unter Verwendung eines
genäherten Ausdrucks für die Spinsuszeptibilität, kann ich die gemittelte Amplitude
der Spinfluktuationen ξ in Abhängigkeit der Bandparameter dieser Verbindung
angeben. Auf Grund der speziellen Skalierung der Zustandsdichte mit dem Druck,
zeige ich, dass die Annahme eines Druck unabhängigen Parameters s = 0.88 ge-
rechtfertigt ist. Da nun s kein Parameter mehr ist, kann man die magnetischen
Momente ab initio als Funktion des Druckes berechnen. Weil im Moment noch keine
Magnetisierungsmessungen vorhanden sind, vergleiche ich die Ergebnisse der RST
mit der Curie-Temperatur Tc als Funktion des Druckes gemessen von Niklowitz
et al. [201], unter der Annahme, dass Moriya’s Skalierung Tc ∝ m3/2 anwendbar
ist. Eine gute Übersteinstimmung mit dem Experiment wurde gefunden, was die
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Verbindung zwischen RST und SCR Theorie bestätigt. Am Schluss zeige ich, dass
das Modell, welches Niklowitz et al. [201] verwenden um Ihre Daten zu interpretie-
ren auf der Annahme basiert, dass die Zustandsdichte mit dem Druck skaliert wie
N0(P)∝ N0(0)/(1+ AP), wobei A eine Konstante ist. Da das genau die Skalierung
ist, die ich für Ni3Al gefunden haben, ist meine Rechnung eine mikroskopische
Begründung für ihr Modell.

In der vorliegenden Arbeit habe ich LSDN und GGA als Ausgangspunkt auf
Basis der Molekularfeldnäherung benutzt und Abweichungen zum Experiment als
“Hinweis” für Freiheitsgrade der Spinfluktuationen in diesen Systemen angesehen.
Auf diese Weise konnte ich ein phänomenologisches Modell basierend auf ab initio
Berechnungen der Observablen in Molekularfeldnäherung konstruieren, wobei die
Observablen die Werte annehmen, die man messen würde, wenn keine Fluktuationen
vorhanden wären.

Die ursprüngliche Motivation dieser Arbeit war die Entdeckung der Eisen-
Pniktide. Für sie habe ich in meiner Masterarbeit ein Niedrigenergie-Modell kon-
struiert, welches erfolgreich die Abweichungen zwischen LDN Rechnungen und
den Experimenten in LaFePO beschreibt. [195] Die Unterschiede zwischen dem
Experiment und den DFT Rechnungen ergaben, dass in diesen Material hauptächlich
Wechselwirkungen zwischen den einzelnen Bänder eine Rolle spielen als Wechsel-
wirkungen innerhalb eines Bandes. Außerdem konnte ich eine Kopplungskonstante
bestimmen, welche eine kritische Temperatur vergleichbar mit dem Experiment
ergibt. Folglich berechnete ich basierend auf den Modellparametern die optischen
Eigenschaften um die experimentall auftretende starkeω-Abhängigkeit der Streuzeit
zu untersuchen. [153] Die Startwerte für das Modell von LaFePO, und die Parameter
für die nicht-wechselwirkende Bandstruktur wurden von Lebégues GGA Rechnungen
[321] abgeleitet. Ich begann meine Doktorstudium mit der Absicht, mehr über die
Berechnung solcher effektiven Parameter auf Grundlage von DFT Rechnungen zu
lernen. Während ich mich in die Grundlagen der DFT einarbeitete, wurden die APt3P
Verbindungen durch Takayama et al. [197] entdeckt. Für diese Klasse ist die DFT
vollkommen ausreichend um alle Materialeigenschaften zu beschreiben. Über Supra-
leitung in Loch-dotierem CuBiSO wurde erstmals zu Beginn meines Doktorstudiums
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berichtet, wobei ihr Ursprung kontrovers diskutiert wurde. [225, 227] Erste DFT
Rechnungen führten die Supraleitung auf Spin-Fluktuationen zurück, ohne explizit
ihren Beitrag zur Paarbildung und die Kopplung der Elektronen mit den Phononen
zu berechnen. [200] In diesem Fall begann ich mit der Berechnung des Beitrages
der Elektron-Phonon Kopplung zur Paarbildung in der Supraleitung. Allerdings
ist die resultierende kritische Temperatur zu hoch. Zum selben Zeitpunkt wurde
berichtet, dass der Grundzustand schwach ferromagnetisch ist. Ich erkannte, dass
dies eine Verbindung sein könnte, in der die Elektron-Phonon Wechselwirkung und
die Spin-Fluktuationen im Wechselspiel miteinander stehen. Da es nicht möglich war
eine ab initio Beschreibung der Spin-Fluktuationen zu konstruieren, entwickelte ich
ein Modell basierend auf der phänomenologischen Reduktion des Stoner Parameters.
Daraus entstand die Idee, den Stoner Formalismus mit der Theorie von Moriya [17]
zu verbinden und alles in einem LSDN Funktional zu berücksichtigen. Auf diese
Weise wurde die reduzierte Stoner Theorie (RST) geboren, welche sofort auf die
prototypische Verbindung Ni3Al unter Druck angewandt wurde.

Aus der Sicht phänomenologischer Ansätze, welche auf DFT Grundzuständen
basieren, stellen die APt3P Supraleiter den Ausgangspunkt “ohne Fluktuationen” dar.
Tatächlich sind in diesen Verbindungen die GGA-Rechnungen in perfekter Überein-
stimmung mit den Experimenten und man kann die gesamte Physik ohne phäno-
menologische Parameter verstehen – abgesehen vom Coulomb-Pseudopotential µ∗,
welches einmalig fest gewählt werden muss um Tc zu berechnen. Die Eisenpniktide
hingegen symbolisieren den entgegengesetzten Grenzwert. In ihnen werden in der
LSDN die magnetischen Momente überschätzt. Auch kann die Elektron-Phonon
Kopplung nicht allein ursächlich für die Supraleitung sein. In der vorliegenden
Arbeit habe ich den Fall von LaFePO untersucht. Diese Verbindung ist magnetisch
in der LSDN Rechnung, aber unmagnetisch im Experiment. Diesen Unterschied
beschreibe ich durch antiferromagnetische Spin-Fluktuationen – welche das System
im normalleitenden als auch im supraleitenden Zustand bestimmen – als bosonische
Moden deren Spektrum entweder phänomenologisch beschrieben [171] oder aber
durch den Imagninärteil der Spin-Suszeptibilität erhalten werden kann. [150]

Ein Beispiel, das zwischen den beiden vorher genannten Grenzen liegt, ist das
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Loch-dotierte CuBiSO, in dem Elektron-Phonon basierende s-Wellen Supraleitung
in Konkurrenz mit Spin-Fluktuation basierender p-Wellen Supraleitung steht. Die
wichtigsten Fluktuationen sind von ferromagnetischer Natur, welche durch die Ver-
bindung von LSDN und dem Stoner Modell, leicht beschrieben werden können,
wenn man eine phänomenologische Reduzierung des Stoner Parameters annimmt.
Auch in diesem Fall wurden beide Effekte – der Magnetismus als auch die Supralei-
tung – durch eine passendes Modell der Spin-Suszeptibilität berechnet.

Der Zusammenung zwischen LSDN und Stoner Modell markiert den Weg hin zu
einer ab-initio Beschreibung von Spin-Fluktuationen über die LSDN hinaus. Tatsäch-
lich entspricht die Überschätzung des magnetischen Moments der Überschätzung
des Stoner Parameters. Deshalb sollte die Korrektur des LSDN Stoner Parameters
eine korrekte Beschreibung des Magnetismus in itineranten Systemen ermöglichen.
Dieser Ansatz wurde an Ni3Al unter äußerem Druck erprobt. Die Übereinstimmung
mit dem Experiment ist außergewöhnlich gut abgesehen von einer Unterschätzung
der kritischen Temperatur.

Die in Kapitel 5 beschriebene reduzierte Stoner Theorie kann auf alle Verbin-
dungen angewandt werden, in denen die LSDN die Tendenz zum Magnetismus
überschätzt. Außerdem kann man mit ihr die Veränderungen der elektronischen
Struktur von nicht-magnetisch zu magnetisch untersuchen. In diesem Sinne ist das
magnetische Moment als Funktion des Skalierungsparameters s eine Antwortfunkti-
on des Systems auf eine magnetische Störung. Des Weiteren kann diese Methode
einfach auf den antiferromagnetischen Fall erweitert werden und hilft auf diese
Weise die Stabilität verschiedener magnetischer Ordnungen zu untersuchen. In
Systemen, in denen das magnetische Moment überschätzt wird, ist der Wert s, der
das magnetische Moment in Übereinstimmung mit dem Experiment bringt, eine
Abschätzung für die durchschnittliche Amplitude der (Spin-)Fluktuationen. Die-
se ist ein wichtiger Indikator für das Maß nicht-lokalen Korrelationen in solchen
Verbindungen. Da die RST den korrekten Stoner Parameter liefert, kann das Pha-
sendiagramm von CuBiSO – mit den Näherungen aus Kaptiel 3 – auf eine Linie
reduziert werden. Angewandt auf Pniktide, kann diese Methode den Unterschied
zwischen Nesting-Effekten und Stoner-artigem Ursprung der diversen magnetischen
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Anordnungen, die in der Literatur besprochen werden, liefern.
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bella, brava, simpatica, intelligente (geniale direi!) e buona. Vederti diventare
mamma e’ una cosa che allarga il cuore. Percio’ grazie anche a te Paolo che hai
stravolto l’ordine (seppur precario) della nostra famiglia in un modo che, senza



237

saperlo, aspettavamo da sempre.

Many thanks to all of you!
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“Problèmes de la théorie électronique du magnétisme,” J. de Phys. et le Rad.
2(12), 361 (1921).

[22] P.A.M. Dirac

“Quantum Mechanics,” Dover Books on Physics, DOVER PUBN Incorporated,
(2001).

[23] F. Hund

“Linienspektren und periodisches System der Elemente,” Struktur der Ma-
terie in Einzeldarstellungen, Berlin, (1927).

[24] W. Heitler and F. London

http://dx.doi.org/10.1103/PhysRevB.64.020501
http://dx.doi.org/10.1103/PhysRevLett.86.4656
http://dx.doi.org/10.1103/PhysRevLett.86.4656
http://dx.doi.org/10.1007/978-3-642-82499-9
http://dx.doi.org/
http://dx.doi.org/10.1051/jphystap:019050040067800
http://dx.doi.org/10.1051/jphystap:019070060066100
http://dx.doi.org/10.1051/jphystap:019070060066100
http://dx.doi.org/
http://dx.doi.org/


242 BIBLIOGRAPHY

“Wechselwirkung neutraler Atome und homöpolare Bindung nach der Quan-
tenmechanik,” Zeitschrift für Physik A Hadrons and Nuclei 44, 455–472
(1927).

[25] W. Heisenberg

“Zur Theorie des Ferromagnetismus,” Zeitschrift für Physik 49, 619–636
(1928).

[26] E. Ising

“Report on the theory of ferromagnetism,” Zeitschrift Für Physik 31, 253–
258 (1925).

[27] L. NeéL
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“Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact
Spectroscopy,” Phys. Rev. Lett. 87(13), 137005 (2001).

[90] X. K. Chen et al.

“Evidence for Two Superconducting Gaps in MgB2,” Phys. Rev. Lett. 87(15),
157002 (2001).

[91] T. Takahashi et al.

“High-Resolution Photoemission Study of MgB2,” Phys. Rev. Lett. 86(21),
4915–4917 (2001).

[92] S. Tsuda et al.

“Evidence for a Multiple Superconducting Gap in MgB2 from High-Resolution
Photoemission Spectroscopy,” Phys. Rev. Lett. 87(17), 177006 (2001).

[93] H. Ding et al.

http://dx.doi.org/10.1088/0953-2048/14/11/201
http://dx.doi.org/10.1088/0953-2048/14/11/201
http://dx.doi.org/10.1103/PhysRevB.72.024504
http://dx.doi.org/10.1103/PhysRevB.72.024504
http://dx.doi.org/10.1103/PhysRevLett.87.047001
http://dx.doi.org/10.1103/PhysRevLett.87.047001
http://dx.doi.org/http://dx.doi.org/10.1016/S0921-4534(01)00617-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0921-4534(01)00617-7
http://dx.doi.org/10.1103/PhysRevLett.87.137005
http://dx.doi.org/10.1103/PhysRevLett.87.157002
http://dx.doi.org/10.1103/PhysRevLett.87.157002
http://dx.doi.org/10.1103/PhysRevLett.86.4915
http://dx.doi.org/10.1103/PhysRevLett.86.4915
http://dx.doi.org/10.1103/PhysRevLett.87.177006


250 BIBLIOGRAPHY

“Electronic structure of optimally doped pnictide Ba0.6 K0.4Fe2 As2 : a
comprehensive angle-resolved photoemission spectroscopy investigation,”
Journal of Physics: Condensed Matter 23, 135701 (2011).

[94] N. F. Berk and J. R. Schrieffer

“Effect of Ferromagnetic Spin Correlations on Superconductivity,” Phys. Rev.
Lett. 17(8), 433–435 (1966).

[95] David Bohm and David Pines

“A Collective Description of Electron Interactions. I. Magnetic Interactions,”
Phys. Rev. 82(5), 625–634 (1951).

[96] H. Rietschel and H. Winter

“Role of Spin Fluctuations in the Superconductors Nb and V,” Phys. Rev.
Lett. 43(17), 1256–1260 (1979).

[97] H. Rietschel, H. Winter, and W. Reichardt

“Strong depression of superconductivity in VN by spin fluctuations,” Phys.
Rev. B 22(9), 4284–4292 (1980).

[98] D. Glötzel, D. Rainer, and H.R. Schober

“Ab initio calculation of the superconducting transition temperature,” Zeitschrift
für Physik B Condensed Matter 35, 317–326 (1979).

[99] D. Fay and J. Appel

“Coexistence of p-state superconductivity and itinerant ferromagnetism,”
Phys. Rev. B 22(7), 3173–3182 (1980).

[100] F. Steglich et al.

“Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2,”
Phys. Rev. Lett. 43(25), 1892–1896 (1979).

[101] Georg Knebel et al.

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1103/PhysRevLett.17.433
http://dx.doi.org/10.1103/PhysRevLett.17.433
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRevLett.43.1256
http://dx.doi.org/10.1103/PhysRevLett.43.1256
http://dx.doi.org/10.1103/PhysRevB.22.4284
http://dx.doi.org/10.1103/PhysRevB.22.4284
http://dx.doi.org/10.1007/BF01332692
http://dx.doi.org/10.1007/BF01332692
http://dx.doi.org/10.1103/PhysRevB.22.3173
http://dx.doi.org/10.1103/PhysRevB.22.3173
http://dx.doi.org/10.1103/PhysRevLett.43.1892
http://dx.doi.org/10.1103/PhysRevLett.43.1892


BIBLIOGRAPHY 251

“Competition and/or coexistence of antiferromagnetism and superconduc-
tivity in CeRhIn5 and CeCoIn5,” physica status solidi (b) 247, 557–562
(2010).

[102] Tuson Park and J D Thompson

“Magnetism and superconductivity in strongly correlated CeRhIn5,” New
Journal of Physics 11, 055062 (2009).

[103] G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith

“Possibility of Coexistence of Bulk Superconductivity and Spin Fluctuations
in UPt3,” Phys. Rev. Lett. 52(8), 679–682 (1984).

[104] T. T. M. Palstra et al.

“Superconducting and Magnetic Transitions in the Heavy-Fermion System
URu2Si2,” Phys. Rev. Lett. 55(24), 2727–2730 (1985).

[105] E. Bauer et al.

“Heavy Fermion Superconductivity and Magnetic Order in Noncentrosym-
metric CePt3Si,” Phys. Rev. Lett. 92(2), 027003 (2004).

[106] Lev P. Gor’kov and Emmanuel I. Rashba

“Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-
Triplet State,” Phys. Rev. Lett. 87(3), 037004 (2001).

[107] M. W. Haverkort et al.

“Strong Spin-Orbit Coupling Effects on the Fermi Surface of Sr2RuO4 and
Sr2RhO4,” Phys. Rev. Lett. 101(2), 026406 (2008).

[108] C. N. Veenstra et al., Observation of strong spin-orbital entanglement in
Sr2RuO4 by spin-resolved ARPES, arXiv:1303.5444 [cond-mat.supr-con].

[109] J.G. Bednorz and K.A. Müller

“Possible high Tc superconductivity in the BaLaCuO system,” Zeitschrift für
Physik B Condensed Matter 64, 189–193 (1986).

http://dx.doi.org/10.1002/pssb.200983061
http://dx.doi.org/10.1002/pssb.200983061
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1103/PhysRevLett.52.679
http://dx.doi.org/10.1103/PhysRevLett.55.2727
http://dx.doi.org/10.1103/PhysRevLett.92.027003
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.101.026406
http://arxiv.org/abs/1303.5444
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701


252 BIBLIOGRAPHY

[110] Yoshiteru Maeno, T. Maurice Rice, and Manfred Sigrist

“The Intriguing Superconductivity of Strontium Ruthenate,” Physics Today
54, 42–47 (2001).

[111] K. Ishida et al.

“Spin-triplet superconductivity in Sr2RuO4 identified by O-17 Knight shift,”
Nature 396, 658–660 (1998).

[112] Andrew Peter Mackenzie and Yoshiteru Maeno

“The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing,”
Rev. Mod. Phys. 75(2), 657–712 (2003).

[113] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen

“Doping a Mott insulator: Physics of high-temperature superconductivity,”
Rev. Mod. Phys. 78(1), 17–85 (2006).

[114] D. J. Singh and M.-H. Du

“Density Functional Study of LaFeAsO1−x Fx : A Low Carrier Density Super-
conductor Near Itinerant Magnetism,” Phys. Rev. Lett. 100(23), 237003
(2008).

[115] D. N. Basov and Andrey V. Chubukov

“Manifesto for a higher Tc ,” Nature Physics 7, 272–276 (2011).

[116] Christian Pfleiderer

“Superconducting phases of f -electron compounds,” Rev. Mod. Phys. 81(4),
1551–1624 (2009).

[117] Clifford W. Hicks et al.

“Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12

from scanning SQUID microscopy,” Phys. Rev. B 81(21), 214501 (2010).

[118] Yoshiteru Maeno et al.

“Evaluation of Spin-Triplet Superconductivity in Sr2RuO4,” Journal of the
Physical Society of Japan 81, 011009 (2012).

http://dx.doi.org/10.1063/1.1349611
http://dx.doi.org/10.1063/1.1349611
http://dx.doi.org/10.1038/25315
http://dx.doi.org/10.1038/25315
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/PhysRevLett.100.237003
http://dx.doi.org/10.1103/PhysRevLett.100.237003
http://dx.doi.org/10.1038/nphys1975
http://dx.doi.org/10.1103/RevModPhys.81.1551
http://dx.doi.org/10.1103/RevModPhys.81.1551
http://dx.doi.org/10.1103/PhysRevB.81.214501
http://dx.doi.org/10.1143/JPSJ.81.011009
http://dx.doi.org/10.1143/JPSJ.81.011009


BIBLIOGRAPHY 253

[119] D. A. Wollman et al.

“Experimental determination of the superconducting pairing state in YBCO
from the phase coherence of YBCO-Pb dc SQUIDs,” Phys. Rev. Lett. 71(13),
2134–2137 (1993).

[120] J. R. Kirtley et al.

“Symmetry of the order parameter in the high Tc superconductor YBa2Cu3O7−δ,”
Nature 373, 225–228 (1995).

[121] C. C. Tsuei et al.

“Pairing Symmetry in Single-Layer Tetragonal Tl2Ba2CuOβ+δ Superconduc-
tors,” Science 271, 329–332 (1996).

[122] C. C. Tsuei and J. R. Kirtley

“Pairing symmetry in cuprate superconductors,” Rev. Mod. Phys. 72(4), 969–
1016 (2000).

[123] D. J. Scalapino

“The case for dx2 y2 pairing in the cuprate superconductors,” Physics Reports
250, 329 –365 (1995).

[124] P. Phillips

“Mottness collapse and T-linear resistivity in cuprate superconductors.,”
Philos Trans A Math Phys Eng Sci 369, 1574–98 (2011).

[125] H. F. Fong et al.

“Polarized and unpolarized neutron-scattering study of the dynamical spin
susceptibility of YBa2Cu3O7,” Phys. Rev. B 54(9), 6708–6720 (1996).

[126] H. He et al.

“Magnetic Resonant Mode in the Single-Layer High-Temperature Supercon-
ductor Tl2Ba2CuO6+δ,” Science 295, 1045–1047 (2002).

[127] H. He et al.

http://dx.doi.org/10.1103/PhysRevLett.71.2134
http://dx.doi.org/10.1103/PhysRevLett.71.2134
http://dx.doi.org/10.1038/373225a0
http://dx.doi.org/10.1038/373225a0
http://dx.doi.org/10.1126/science.271.5247.329
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(94)00086-I
http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(94)00086-I
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1103/PhysRevB.54.6708
http://dx.doi.org/10.1126/science.1067877


254 BIBLIOGRAPHY

“Resonant Spin Excitation in an Overdoped High Temperature Superconduc-
tor,” Phys. Rev. Lett. 86(8), 1610–1613 (2001).

[128] Pengcheng Dai et al.

“The Magnetic Excitation Spectrum and Thermodynamics of High-Tc Super-
conductors,” Science 284, 1344–1347 (1999).

[129] P. Bourges et al.

“The Spin Excitation Spectrum in Superconducting YBa2Cu3O6.85,” Science
288, 1234–1237 (2000).

[130] Ar. Abanov and Andrey V. Chubukov

“A Relation between the Resonance Neutron Peak and ARPES Data in
Cuprates,” Phys. Rev. Lett. 83(8), 1652–1655 (1999).

[131] Z.-X. Shen et al.

“Anomalously large gap anisotropy in the a - b plane of Bi2Sr2CaCu2O8+δ,”
Phys. Rev. Lett. 70(10), 1553–1556 (1993).

[132] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen

“Angle-resolved photoemission studies of the cuprate superconductors,” Rev.
Mod. Phys. 75(2), 473–541 (2003).

[133] D. N. Basov and T. Timusk

“Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77(2), 721–
779 (2005).

[134] G. Grüner and M. Dressel

“Electrodynamics Of Solids: Optical Properties Of Electrons In Matter,”
Cambridge University Press, United Kindom., (2002).

[135] D. N. Basov et al.

“Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83(2),
471–541 (2011).

http://dx.doi.org/10.1103/PhysRevLett.86.1610
http://dx.doi.org/10.1126/science.284.5418.1344
http://dx.doi.org/10.1126/science.288.5469.1234
http://dx.doi.org/10.1126/science.288.5469.1234
http://dx.doi.org/10.1103/PhysRevLett.83.1652
http://dx.doi.org/10.1103/PhysRevLett.70.1553
http://dx.doi.org/10.1103/PhysRevLett.70.1553
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471


BIBLIOGRAPHY 255

[136] D. H. Lu et al.

“Electronic structure of the iron-based superconductor LaOFeP,” Nature 455,
81–84 (2008).

[137] Alaska Subedi, Lijun Zhang, D. J. Singh, and M. H. Du

“Density functional study of FeS, FeSe, and FeTe: Electronic structure, mag-
netism, phonons, and superconductivity,” Phys. Rev. B 78(13), 134514
(2008).

[138] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov

“Momentum dependence and nodes of the superconducting gap in the iron
pnictides,” Phys. Rev. B 80(14), 140515 (2009).

[139] H. Ding et al.
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