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1. Introduction

1.1. Transition metal oxides and their heterostructures

Strongly correlated materials are often found among compounds of 3d tran-
sition metals or rare-earth compounds and show a wide diversity of physical
properties [67, 102]. The origin of those phenomena is related to the small
extent of the radial distribution functions so that the on-site electron-electron
Coulomb interaction becomes crucial, as well as a low energy scale of spin �uc-
tuations. One electron band structure calculation can successfully explain the
ground state electrical and magnetic properties for a large variety of solids, but
they fail for transition metal oxides (TMOs), such as CoO, FeO, NiO, which
are predicted to be metallic within the local density approximation (LDA)
band structure calculations, but experimentally they are found to be insulat-
ing. Mott and Hubbard explained the band gap formation by introducing the
electron-electron interaction [64, 102]. The idea is summarized as follows:
Two energy parameters play a competing role here: the kinetic energy t

which is related to the overlap of wave functions on adjecent lattice sites and
the potential energy U which refers to the on-site electron-electron Coulomb
interaction. If the electron-electron interaction U is larger than the hopping
term t (which is proportional to the TM 3d band width w based on the tight-
binding model), the strong electron-electron repulsive Coulomb interaction
splits the transition metal 3d band into two bands. As shown in Fig. 1.1(a),
the upper Hubbard band and the lower Hubbard band are separated by the
energy U which is typically of order several eV . The Mott-Hubbard model
works properly for early 3d transition oxide compounds (like Ti, V compounds)
with a corresponding band gap Eg ∼ U−w [12]. The band gap originates from
the so called d-d type charge �uctuation in the form of dndn → dn−1dn+1, and
the on-site Coulomb energy is expressed as: U = E(dn+1)+E(dn−1)−2E(dn)
[99].
However, di�erences arise for the late transition metal oxides (e.g. Co, Ni,

Cu compounds) since less energy is required for the charge transfer from 2p
ligand states to the 3d band, known as charge-transfer insulators (Fig. 1.1(b))
[12, 37]. The energy gap there is of the form Eg ∼ ∆−W , where ∆ and W
denote the ligand-to-metal charge transfer energy and the ligand band width,
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1. Introduction

Figure 1.1.: Energy-level scheme for (a) Mott-Hubbard insulators: U < ∆
with corresponding energy gap Eg ∼ U − w and (b) Charge-
transfer insulators: U > ∆ with energy gap Eg ∼ ∆−W , where
w, W denote the band width of transition metal ions and ligand
ions, respectively.

respectively. Note that this ligand band width W is much larger than the TM
3d bandwidth w, i.e. w can be neglected. For charge-transfer insulators, the
p-d type band gap is related to the charge �uctuation dndn → dn+1dnL,
and the charge transfer energy is de�ned by ∆ = E(dn+1L) − E(dn), with
L denoting a ligand hole. The charge transfer energy ∆ strongly depends on
the electronegativity of the transition metal ion. A cluster calculation shows
that with increasing electronegativity from Mn to Cu and the same ligand
environment, ∆ decreases [12]. A classi�cation of transition metal compounds
can be made with the Zaanen-Sawatzky-Allen scheme which is based on the
Andenson-impurity model (or the p-d model), and explicitly takes into account
the ligand-metal interaction [149]. The nickel oxide compounds with large
rare-earth ions, i.e. LaNiO3 (LNO) and PrNiO3 (PNO) which are of particular
interest here, are regarded as self-doped Mott insulators with a negative charge
transfer energy [71, 100, 101], as emphasized hereafter.
Regarding the electronic structures of 3d transition metal ions, 3d orbitals

have a 5-fold degeneracy in the atomic limit, namely degenerate dxy, dyz, dxz,
dx2−y2 and d3z2−r2 orbitals. The orbital degeneracy brings a new degree of
freedom to the system and is without any doubt an important source for the
diversity of the electronic phase behaviors. In a cubic crystal �eld, the orbital
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1.1. Transition metal oxides and their heterostructures

degeneracy is lifted into eg (2-fold degenerate) and t2g (3-fold degenerate)
orbitals. Considering a Ni ion surrounded by an octahedral environment with
six oxygen ions (Oh symmetry), the Coulomb interaction along the in-plane
direction (x or y direction in Cartesian coordinates) is higher than along the
diagonal direction, resulting in a lowering of the energy of the t2g orbitals
(dxy, dyz, dxz orbitals). The corresponding energy splitting is called crystal
�eld splitting with a notation 10Dq, as shown in Fig. 1.2. The interplay among
orbital, charge, spin and lattice dynamics causes a variety of phenomena, e.g.
the colossal magnetoresistance in manganese oxides [113, 137]. For the nickel
oxide compounds of interest here, Ni3+ has nominally a low spin 3d7 electron
con�guration with a full occupation of the t2g orbitals and a single electron
(S=1/2) in the doubly degenerate eg level. Compared to bulk nickel oxide
compounds without any preference of eg orbital occupations, an additional
splitting of the degeneracy of the eg level into dx2−y2 and d3z2−r2 , can be
realized by either con�ning the nickelates layers between two insulating layers
in a heterostructure or lowering the crystal symmetry, e.g. D4h symmetry via
strain (right plot in Fig. 1.2 shown as an example of a compressed octahedron)
[20, 53]. Recently it was shown that dimensionality reduction from 3D to 2D
is crucial in tuning the electronic phase transitions of TMO heterostructures
[14, 20, 33].

The diversity of the physical properties of TMOs also largely depend on the
detailed composition and the crystal structure. Many ternary TMOs show the
same basic structure block known as the perovskite structure, which exhibits
the general chemical formula ABO3. Fig. 1.3(a) shows a typical perovskite
structure with ideal cubic symmetry, where each transition metal ion B is
surrounded by six oxygen ions, forming a regular octahedra.

Many perovskites exhibit orthorhombic, tetragonal or monoclinic structures
due to octahedral distortions or cation displacements (such as in some fer-
roelectric materials like BaTiO3, PbTiO3, etc) [43]. The distortion of the
crystal structure was found to depend on the so-called tolerance factor, which
is de�ned as [78]:

t =
rA + rO√
2(rB + rO)

, (1.1)

where rA, rB and rO represent the ionic radius of the A-cation, B-cation and
oxygen ion, respectively. The perovskite structure is stable when 0.75 < t < 1
[72], the structure is of cubic symmetry if t ∼ 1. For 0.75 < t < 0.9, the
A-cation is too small to �t the interstitial site which is compensated by a
distortion of the cubic parent structure. This structural distortion, in good
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1. Introduction

Figure 1.2.: Illustration of the orbital degeneracy for Ni3+ ion with 3d7 con-
�guration. The 5-fold degenerate orbitals are split into eg and t2g
due to a crystal �eld e�ect with Oh symmetry. The corresponding
energy parameter is denoted as 10Dq. A further splitting of eg
states into dx2−y2 and d3z2−r2 orbitals, and t2g states into dxy as
well as dxz, dyz orbitals can be obtained in a lower D4h symmetry,
with the corresponding energy splitting represented by ∆eg and
∆t2g , respectively. Note that we shown the D4h symmetry for the
case of a compressed octahedra here with a lower energy of the
dx2−y2 orbital compared to the d3z2−r2 orbital. For the case of an
elongated octahedra, this order is reversed. The images of atomic
orbitals are adapted from wikipedia website.

approximation, can be described by tilts and rotations of the octahedra.
Fig. 1.3(b) shows a prototype of a perovskite compound with GdFeO3-type,

where the distortion appears as tilts of anions in BO6 octahedra. The rotation
angles along the crystal a-, b-, c-axes are denoted as α, β and γ, which can
be di�erent in each direction, i.e. α 6= β 6= γ. A common way to describe
octahedral distortion is known as the Glazer notation in the form of a∗ b∗ c∗

[43]. The superscript ∗ can be + or -, denoting that neighboring octahedra
along a certain crystal axis tilt in-phase or antiphase, respectively. And ∗=0
labels no tilts along a particular axis. For instance, an a−b−c+ rotation pattern
indicates unequal tilt angles α, β, γ around the three axes, and the octahedra
rotation along the a-axis, b-axis are antiphase, antiphase and in-phase along
the c-axis. The antiphase rotation of the octahedra along a certain crystal axis
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1.1. Transition metal oxides and their heterostructures

Figure 1.3.: Panel (a): crystal structure of a representative perovskite com-
pound ABO3 with cubic symmetry, where each B ion and six oxy-
gen ions form an octahedra; Panel (b): a prototype of the distorted
orthorhombic structure with tilted octahedra. The rotations along
the crystal a-, b-, and c-axes are represented by α, β and γ.

results in a doubling of the unit cell (u.c.), and hence generates to half-integer
di�raction peaks in reciprocal space. The antiphase and in-phase tilts produce
two distinct classes of re�ections based on the space-group symmetry. Special
selection rules exist for di�erent rotation patterns (for details see Ref. [43]),
which can be used to determine the space group through x-ray di�raction
experiments. A full crystallographic re�nement of the half-order Bragg peak
intensities allows one to obtain the oxygen positions quantitatively [34, 88, 92].
The richness of physical properties of TMOs makes them of particular in-

terest when combining those materials in heterostructures. Perovskite super-
lattices o�er the perspective to design new correlated systems via material
engineering [65]. In the following, a brief literature review of various physical
properties of transition metal oxide heterostructures is presented.
At the interface between an antiferromagnetic CaMnO3 and a paramagnetic

metal CaRuO3, ferromagnetism was found which is attributed to a charge
transfer e�ect at the interfaces [35, 133, 148]. A similar e�ect was also reported
for LaMnO3-SrMnO3 interfaces [10, 143].
The interfaces between two insulating materials LaAlO3/SrTiO3 (LAO/STO)

attracted wide-spread interests due to the observation of a high mobility 2D
electron gas [106]. The two insulators have di�erently charged atomic layers
in the ionic limit, i.e. (La3+O2−)+, (Al3+(O2−)2)− for the LAO compound
and neutral (SrO)0, (TiO2)0 layers in STO, therefore in terms of electrostat-
ics, a polar-nonpolar discontinuity is present at the interface, which possibly
reconstructs by a charge transfer from LAO to STO in order to avoid the
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1. Introduction

so-called polar catastrophe [7, 136]. Another interpretation of the origin of
the conducting interface is related to oxygen vacancies, possibly resulting in
oxygen-de�cient STO layers [61, 73]. Furthermore, a coexistence of ferrro-
magnetic and superconducting phases was reported for this heterostructure,
which provides a fascinating system for the study of the interplay between
superconductivity and magnetism [30, 83, 114].
Instead of local chemical doping introducing defects and disorders in the

bulk system, heterostructures can also be used to modulate the dopants at the
interface, e.g. a quantum well of LaVO3 is placed between LAO layers, where
a reconstruction charge is transferred to the LaVO3 quantum well from the
LAO layers through oxygen vacancies and lattice distortions [62, 134].
Despite the nonsuperconducting constituents, superconductivity was ob-

served at the interface of a heterstructure composed of insulating La2CuO4

and overdoped La2−xSrxCuO4 compounds, and attributed to a hole redistri-
bution from overdoped cuprate layers to undoped layers [44, 130].
At the interface of the superconductor YBa2Cu3O7 and the ferromagnetic

materials La2/3Ca1/3MnO3 or LaMnO3−δ, a �ow of the charge across the in-
terface from Mn to Cu ions was reported, which induces a reconstruction of
the d-orbital occupancies and the magnetic pro�le in the interfacial Cu cations
[17, 18]. The magnetic proximity e�ect was found to strongly depend on the
electronic structure of the manganite layers [121]. A detailed MnO6 octahe-
dra rotation mode shows superconductivity-induced line-shape anomalies as a
function of the superconducting layer thickness, as investigated by a Raman
scattering study of the lattice dynamics [32].
Interfaces composed of rare-earth nickel oxides, LaNiO3-LaAlO3 (LNO-

LAO) superlattices grown along the diagonal (111) direction form an arti-
�cially buckled honeycomb lattices equivalent to the graphene lattice, which
are predicted to show exotic electronic and topological states [119, 145]. In a
heterostructure composed of paramagnetic LNO and ferromagnetic LaMnO3,
a shift of the magnetic hysteresis loop was observed known as exchange bias
e�ect, indicating interface-induced magnetism in the paramagnetic LNO layers
[31, 42]. When the nickelate layers are sandwiched by large band gap insula-
tors, orbital manipulation can be achieved through a combination of quantum
con�nement and e�ect of the strain. In this way, LNO-LAO heterostructures
grown along the pseudo-cubic (001) directions are predicted to show a high Tc
cuprate-like Fermi surface [20, 53]. We will focus on this topic in the following.
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1.2. Nickel oxide based heterostructures

1.2. Nickel oxide based heterostructures

Before we address the nickel oxide based heterostructures composed of ANiO3

(ANO) and large band-gap insulating layers, let us �rst review the properties
of bulk nickleates.
Rare-earth nickel oxides of composition ANO (A-trivalent rare earth, A=La

to Lu) exhibit a �rst-order metal-insulator transition (MIT) and unusual mag-
netic order of the Ni spins for A 6=La, which have attracted considerable recent
interest. Fig. 1.4 shows the phase diagram summarizing the metal-insulator
transition temperature TMIT and the magnetic transition temperature TNeel for
di�erent nickelates versus the tolerance factor and versus the Ni-O-Ni bond
angle [16]. TMIT is structurally related to the tolerance factor, which is de-
�ned as the ratio of ionic bond distances between A-O and Ni-O. From La to
Lu, the ionic radius decreases accompanied with structural distortions and a
reduction of the tolerance factor, resulting in a pronounced deviation of the
Ni-O-Ni bond angle from 180◦.
The LNO with the largest ionic radius, remains metallic and paramagnetic

at all temperatures [138]. For the larger ions A=Pr,Nd, which are close
to the vicinity of the phase diagram, the TMIT and the TNeel ordering oc-
cur at a common temperature [45, 138]. The ground state antiferromagnetic

Figure 1.4.: Phase diagram of the resistive transition temperature TMIT and
the magnetic transition temperature TNeel for di�erent nickelates
versus the tolerance factor and the Ni-O-Ni bond angle [16].
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1. Introduction

structure is often described in terms of a �up-up-down-down� sequence, i.e.
non-collinear magnetic ordering as observed from resonant soft x-ray di�rac-
tion [122, 123, 132]. For ANO with smaller A ions, the onset of antiferro-
magnetic order was found to be lower than the MI transition. To date, the
underlying mechanism of this transition is still highly debated, in particular
for the members of the ANO family with larger rare earth ions, like Pr or
Nd [2, 3, 45, 71, 81, 82, 94, 95]. For PrNiO3 (PNO) and NdNiO3 (NNO),
evidence for charge disproportionation with 3d7−δ and 3d7+δ con�gurations
on neighboring Ni sites was reported from high-resolution powder neutron
di�raction and hard x-ray absorption measurements [94, 95]. A recently intro-
duced model stresses the central role of the p-orbitals on the oxygen ligands
(L) and reinterprets these data in terms of a �volume collapse� of neighboring
octahedra without charge transfer ((d8L)i(d

8L)i → (d8L2)S=0(d8)S=1) [71].
An alternative theoretical approach based on an itinerant-electron model at-
tributes the MIT in PNO and NNO to spin-density-wave formation driven by
Fermi surface nesting [81, 82]. Photoemission experiments have indeed found
a strongly nested Fermi surface, with a nesting vector approximately matching
the wave vector characterizing the magnetic order [9, 147].
Our interest in nickel oxide heterostructures originates from the initial pro-

posal by J. Chaloupka and G. Khaliullin, where they proposed a similar elec-
tronic structure as high-Tc cuprates and possible superconductivity in nicke-
late superlattices [20]. The key structural and electronic properties of high-Tc
superconductivity are: no orbital degeneracy, spin-one-half, quasi-two dimen-
sionality and strong antiferromagnetic correlations. LNO with S=1/2 and
con�ned between a large band gap insulator is quasi-2D since the electron
hopping along one direction is suppressed, resulting in a lifting of eg orbital
degeneracy which is further enhanced by the crystal �eld splitting induced by
strain, as illustrated in Fig. 1.5. It is thus expected an e�ective one-band con-
�guration with the electron con�ned in the single dx2−y2 orbital. In Ref. [20],
the mean-�eld phase diagram was obtained by considering two main vari-
ables: the strength of the intra-atomic Hund coupling and the strength of
charge transfer processes, indicating a phase with preferential occupation of
the dx2−y2 planar orbitals similar as in cuprates, as well as enhanced antifer-
romagnetic correlations.
Subsequent calculations based on the density functional theory provided di-

vergent results [48, 49, 53]. Local density approximation and its combination
with dynamical mean-�eld theory were used to calculate the band structure
and the corresponding 2D Fermi surface for a composition of 1 u.c. LNO sur-
rounded by an isostructural insulating layer LAO [58]. The insulating layers
block the electron propagation along the c-axis and induce a predominant occu-
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1.2. Nickel oxide based heterostructures

pation of the dx2−y2 orbital near the Fermi level. Tensile strain, as an additive
parameter, further raises the orbital separation. The electronic correlations in-
duce a cuprate-like single-sheet Fermi surface of dx2−y2 symmetry, indicating
the possible realization of superconductivity by heterostructuring [53]. An-
other important ingredient, i.e. the chemical control of the insulating layer,
was addressed from �rst principles by Han et. al [48]. The calculations were
done for di�erent blocking layers LaXO3 (X=B,Al,Ga, In), where the X-O-Ni
hybridization along the surface normal direction serves as a tuning parameter.
As the ionic radius of X increases, the overlap of X s -O 2pz is expected to be
reduced, resulting in the enhanced hybridization of Ni d3z2−r2 -O 2pz and an
enhanced dx2−y2 orbital occupation (see Fig. 1.5(c)). Furthermore, Han et al.

reported density mean �eld theory calculations taking into account the e�ect
of oxygen explicitly, and claimed that the strong electron-electron interaction
(Hubbard U 6= 0) greatly reduces the preferred dx2−y2 orbital occupation.
Those �ndings excluded a single-sheet Fermi surface in a realistic many-body
model of nickelate heterostructures [49]. Recently, Parragh et al. claimed that
the crucial parameter responsible for this discrepancy is the total number of
d-orbital occupancy, which varies from a Ni 3d7 with one electron per Ni site
on average to a Ni-O hybridized system with a large �lling of ∼ 1.7 electrons
per site, and introduces di�erences of the ground state correlations [107].

Figure 1.5.: Illustration of the possibilities of orbital manipulation in nickel ox-
ide heterostructures: (a): con�nement suppresses the electron dis-
persion along the out-of-plane direction; (b): tensile strain splits
the eg orbital degeneracy, with a preferred orbital occupation of
the dx2−y2 level; (c): the hybridization of X ions with oxygen
(X s -O pz) a�ects the hybridization of the Ni d3z2−r2 -O 2pz or-
bitals. The images of atomic orbitals are adapted from wikipedia
website.
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1. Introduction

Experimentally the questions were to date mainly addressed by x-ray ab-
sorption spectroscopy. The polarization dependent natural linear dichroism
re�ects the di�erent orbital occupations, however, the e�ect of strain on or-
bital or spin degrees of freedom is not completely intuitive due to the octahe-
dral rotations in the perovskite structure [115, 116]. The experimental results
vary and partly disagree with theory. Freeland et. al reported a ∼ 5% orbital
polarization for 1 u.c. LNO-LAO superlattices under tensile strain and no or-
bital polarization for corresponding superlattices under the compressive strain.
An asymmetric response of the eg orbital splitting with strain was proposed,
i.e. a splitting of orbital energies (with a lower energy of the d3z2−r2 orbital
compared to the dx2−y2 orbital) is found for the case of compressive strain,
whereas no splitting is found for the case of tensile strain [36]. It was argued
that the distorted octahedra under tensile strain induce a charge dispropor-
tionation at the Ni sites, similar to the statement made for ultra-thin LNO
�lms [19]. Our measurements are pretty of variance with these reports, as will
be presented in Chapter 4 and Chapter 5.
Optical ellipsometry measurements showed that superlattices with 2 unit cell

thick LNO layer stacks undergo a metal-insulator-transition around 150K. In
addition, the low-energy muon spin relaxation measurements revealed mag-
netic ordering below 50K. In contrast, superlattices with 4 u.c. thick LNO
layer stacks are metallic and paramagnetic down to the lowest temperatures,
indicating that the electronic and the magnetic properties are controlled by the
dimensionality [14]. Contradicting thickness dependencies were found. While
we reported a transition between 2 u.c. and 3 u.c., other groups found a critical
thickness of 5 u.c.. Liu et. al. reported a similar electronic phase transition in
(LNO)n-(LAO)3 (n=3, 5, 10) superlattices, where the results show a crossover
from itinerant electron behavior to localized behavior with 5 u.c. LNO layers
[87]. In terms of the magnetic structure, muon spin relaxation is a local probe
of magnetic moments and only provides indirect information about the type of
magnetic correlations between Ni moments. However, the ordered moment was
estimated to be µNi ≈ 0.5 µB and ferromagnetic order was ruled out. Later
on, the results from resonant x-ray di�raction demonstrated the existence of
an antiferromagnetic spin-density wave in 2 u.c. LNO-based superlattices [33].
More precisely, they show an ordering vector qso=(1/4, 1/4,L) and di�erent
moment directions for superlattices under tensile and compressive strain due to
the di�erent relative occupation of the Ni d-orbitals, which in turn control the
magneto-crystalline anisotropy via the spin-orbit coupling (Fig.3 of Ref. [33]).
Octahedral distortions in nickelates are important and non-negligible for the
electronic properties. Scanning transmission electron microscopy and x-ray
di�raction studies showed that the NiO6 tilts and distortions in the superlat-
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1.2. Nickel oxide based heterostructures

tices are generally di�erent from those of the bulk constituents, which may
have an important in�uence on their transport properties [27, 28, 34, 66, 92].
Besides the in�uence of dimensionality in electronic phase transitions re-

ported in LNO-based superlattices mentioned above, epitaxial strain was re-
ported to induce similar metal-insulator transition in other ANO systems.
In particular, the MIT of PNO thin �lms can be suppressed by compressive
strain induced by the lattice constant mismatch with the underlying substrate
[79], resulting in metallic transport behavior down to the lowest tempera-
tures akin to bulk LNO. A related strain-mediated MIT was also observed
for ultra-thin NNO �lms [85, 86]. A recent Raman scattering study revealed
two di�erent low-temperature ground states in PNO-based SLs with insulat-
ing PrAlO3 (PAO) blocking layers, depending on the strain imposed by the
substrate [60], which is in agreement with the theoretical predictions for a
spin density wave phase with charge order as a secondary order parameter
[81, 82]. The strain controlled phases in nickelate heterostructures open the
opportunity for novel device applications such as antiferromagnetic spintronics
[89, 128].
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1. Introduction

1.3. Scope of this thesis

In Chapter 2, we will discuss the theoretical background of x-ray spectroscopy.
First, we present the quantum mechanical approach of x-ray absorption phe-
nomena through Fermi's Golden rule, followed by a derivation of the polar-
ization dependent sum rules. Then, we discuss the resonant x-ray scattering
process, especially focusing on the simulation of the x-ray re�ectivity in Par-
ratt's recursive and matrix formalisms. The data processing as well as the idea
of the �orbital re�ectometry� technique will be addressed. A further interpre-
tation of the core-hole excitations, relevant for x-ray absorption is presented
in terms of cluster calculations. Finally, we brie�y introduce the experimental
aspect, i.e. synchrotron radiation facilities and the experimental setup.
In Chapter 3, a summary of the crystal structures of the studied compounds

is presented. We start from presenting a brief introduction of the pulsed
laser deposition method, then the characterization of the surface morphology
through atomic force microscopy, followed by the investigation of the crystal
quality as well as the lattice parameters by x-ray di�raction measurements,
and �nally the dc resistivity measurements for initial characterization of the
electronic properties.
Chapter 4: A major part of this PhD thesis is devoted to applying the

�orbital re�ectometry� technique to obtain layer-resolved orbital occupation
pro�les of LNO-based superlattices. We present the experimental results and
the data analysis in detail, and determine the layer-resolved orbital polariza-
tion quantitatively. Finally we directly compare our experimental data with
the results of density functional theory (DFT).
In Chapter 5, we discuss orbital re�ectometry results on PNO-based su-

perlattices. We focus on the temperature as well as strain dependent orbital
physics in detail, which is indicative for the close interaction between orbital,
charge, and spin degrees of freedom. Similar to the LNO-based heterostruc-
tures in Chapter 4, the lattice-orbital response is studied in detail.
In Chapter 6, the x-ray re�ectometry technique has been tested to probe

octahedral distortions. We start from presenting the idea of the experiment,
then the experimental results and the analysis, followed by a discussions and
simulations.
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2. Backgrounds and Principles

Spectroscopy measures the energy spectrum of a solid, which can be used to
provide both the static properties such as lattice arrangement, the magnetic
structure and the dynamic properties such as phonons, magnons in transition
metal oxides. Electromagnetic (EM) waves are a common source probe of
the microscopic properties of solids. Basic experimental schemes between an
EM wave and the solid are classi�ed into absorption and scattering. In an
x-ray absorption spectroscopy (XAS) experiment, core electrons are excited
into the unoccupied states or into the continuum (as shown in Fig. 2.1). The
excitations to the unoccupied bound states are related to the chemical binding
energy of a material. We can calculate the binding energy based on the Bohr
model of an atom in a semi-classical approach where the binding energy is
expressed as E = − 1

n2
Z2e2

2a0
with n denoting the main quantum number,

a0 = 0.529Å denotes the Bohr radius and Z is the atomic number. Thus,
XAS has the big advantage of being an element speci�c probe. For instance,
the resonant absorption energy shifts to higher energies with increasing Z for
3d transition metal elements from Sc to Zn. According to the Stoner-model
for a ferromagnetic metal, the di�erent spin oriented states form majority
and minority bands depending on the relative electron populations. Spin-
band resolved x-ray magnetic circular dichroism measurements can be used to
study the local spin and orbital moment in a quantitative way for a particular
element of interest. The di�erence of the absorption intensity with left- and
right-circularly polarized light is directly proportional to the atomic magnetic
moment, which is given by the di�erence of the occupations of the two bands.
Elastic x-ray scattering/di�raction is a photon-in photon-out process, where

elastic means that there is no energy loss during the scattering process. Non-
resonant x-ray scattering is commonly used for determining the crystal struc-
ture, but can also probe the magnetic ordering [24, 25] which is a di�cult
experiment and largely limited by the small scattering cross section. The
problem is overcome by tuning the x-ray energy to an absorption edge where
the scattering cross section is dramatically enhanced, namely, resonant elastic
x-ray scattering (REXS). The momentum transfer provides the information
about the periodicity of the density modulation. Further polarization analy-
sis as well as the azimuthal dependent scattering intensity can give detailed
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2. Backgrounds and Principles

Figure 2.1: A schematic illustration of
the x-ray induced core-hole
excitation from 2p to unoc-
cupied 3d states. The 2p
states split into 2p3/2 level
(J = l + s=1+ 1

2
= 3

2
) and

2p1/2 level (J = l + s=1-
1
2
= 1

2
) due to spin-orbit

coupling.

2p
3/2

2p
1/ 2

3d

information on the charge and magnetic structure [33, 41, 123, 132].

2.1. X-ray absorption

2.1.1. Fermi's Golden rule

Fermi's Golden rule is the core of understanding spectroscopical phenomena,
which is characterized by a quantum mechanical transition probability of an
electron from an initial state |i〉 to a �nal state |f〉. The transition probability
is expressed as:

Ti→f =
2π

~
|Mif |2ρ =

2π

~
|〈f |H

′
|i〉|2ρ, (2.1)

whereMif is the matrix element, H
′
is the electron-photon interaction Hamil-

tonian which can be treated as a perturbation to the system, ρ is the joint
density of states of the �nal state. When neglecting the magnetic part of the
incident EM wave as well as the displacements of the nuclei by the incoming
photon, the perturbation Hamiltonian for electron-photon interaction reads:

H
′

= ~Ein · (e~r) = ε̂ · E0(ω) exp[i(~k~r − ωt)] · (e~r), (2.2)
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2.1. X-ray absorption

where ~Ein = ε̂ · E0(ω) exp[i(~k~r − ωt)] is the electric �eld of the incident EM
wave, ε̂ characterizes the beam polarization, E0(ω) is the amplitude, and the
last term (e~r) denotes the electric dipole moment of electrons. In the electric
dipole approximations, making the assumption that the phase change of the
electric �eld is negligible so that exp(i~k~r) ≈ 1, the transition matrix can be
rewritten as:

Mif = |〈f |E0ε̂ · ~r|i〉|. (2.3)

In case of core-hole excitations, relevant for x-ray absorption process, a good
approach is to describe the core electrons by hydrogen-like wave functions.
The initial state |i〉 and the �nal state |f〉 can be expressed using spherical
harmonics:

ψnlm = Rnl(r) Ylm(θ, φ) χ(s,ms). (2.4)

Neglecting all the pre-factors, the matrix element can be expressed as the
product of the radial, angular and spin parts:

〈f |ε̂ · ~r|i〉 =

∫
ψ∗f (~r)(ε̂ · ~r)ψi(~r)d3~r (2.5)

=

∫
r3drR∗nf lfRnili︸ ︷︷ ︸
Radial integral

∫
dΩY ∗lfmf (ε̂ · r̂)Ylimi︸ ︷︷ ︸
Angular integral

δ(ms
f ,m

s
i )︸ ︷︷ ︸

Spin part

.

It is obvious that spin �ips are not allowed during the excitation since other-
wise 〈f |ε̂ ·~r|i〉 = 0. Moreover, the dipole operator only operates on the angular
part.

2.1.2. Sum rule analysis

Both, the absorption spectrum line-shape and the intensity are directly related
to the ground state properties. In a normal XAS measurement with linearly
polarized light, the sum rule analysis relates the integrated absorption intensity
to the projected density of states of the initial state. The sum rule results
from the intrinsic properties of the dipole operator, which are obtained only
through symmetry considerations, regardless of the details of the Hamiltonian.
A comprehensive derivation of the sum rules is shown in Ref. [54] based on
an one-electron approximation. The derivation of sum rules for 2p → 3d
excitations presented below can be found in Refs. [6, 54, 70].
In electron-dipole approximation, the x-ray absorption intensity can be writ-
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2. Backgrounds and Principles

ten
IXAS ∝Mif

2 = 〈ψi|ε̂ · ~r|ψf 〉〈ψf |ε̂ · ~r|ψi〉, (2.6)

summing over all the �nal states, such that
∑
f |ψf 〉〈ψf | = 1, thus

IXAS ∝ 〈ψi|ε̂ · ~r || ε̂ · ~r|ψi〉. (2.7)

The dipole operator can be expressed in terms of spherical harmonics [120]:
(ε̂ · r̂) = rC

(1)
q

1, with q = −1, 0, +1, denoting the polarization vector for
left circular polarized light, z linear polarized light and right circular polar-
ized light, respectively. The dipole operator for x- and y-polarized light are

expressed as r
√

1
2
(C

(1)
−1 − C

(1)
1 ) and r i

√
1
2
(C

(1)
−1 + C

(1)
1 ), respectively.

Whether a transition is allowed or forbidden depends on the direct product
of these three spherical harmonics (Eq. 2.5) and could be easily evaluated
through symmetric consideration, i.e. by evaluating < Y

mf
lf
| C(1)

q | Y mili
>.

The parity of a state depends on the quantum number l, i.e. parity = (−1)l,
and it is clear that C(1)

q is odd in parity. Therefore, the other two spherical
harmonics should be opposite in parity so that the integral over odd-odd-even
(or even-odd-odd) terms is non-zero, which yields the following dipole selection
rules:

∆l = ±1

∆m = 0, ±1

∆s = 0 (2.8)

∆ms = 0.

In the following, we will derive the sum rules for a 2p→ 3d transition in the
atomic limit. First, we expand the dipole operator in second quantization:

rC(1)
q = r

∑
mσm′σ′

cm′σ′ l
†
mσ〈lmσ|C(1)

q |cm′σ′〉. (2.9)

The spectral intensity can be written as:

1Here, usually Racah's spherical tensor operator instead of the normal spherical harmon-

ics Yml is used to get rid of the pre-factor, i.e. C(l)
m =

√
4π

2l+1Y
m
l .
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2.1. X-ray absorption

〈ψi|r
∑

mσm′σ′

cm′σ′ l
†
mσ〈lmσ|C(1)

q |cm′σ′〉|ψf 〉〈ψf |

r
∑

m′′σ′′m′′′σ′′′

cm′′′σ′′′ l
†
m′′σ′′〈lm′′σ′′ |C

(1)
q |cm′′′σ′′′〉|ψi〉. (2.10)

A separation of the radial and the angular integral part results in:

|〈Ri|r|Rf 〉|2
∑

mσ...σ′′′

〈ψi|

lmσc
†
m′σ′cm′′′σ′′′ l

†
m′′σ′′ |ψi〉〈lmσ|C

(1)
q |cm′σ′〉〈lm′′σ′′ |C(1)

q |cm′′′σ′′′〉. (2.11)

For 2p → 3d transitions, the 2p shell (c=1) is completely �lled, therefore
c†m′σ′cm′′′σ′′′ = δm′m′′′δσ′σ′′′ , as a result: m′ = m′′′, σ′ = σ′′′ = σ′′ (the
dipole moment is not σ dependent). The spectrum intensity can be further
written as:

Iq = |〈Ri|r|Rf 〉|2
∑

m...m′′σ

lmσl
†
m′′σ〈lmσ|C

(1)
q |cm′σ〉〈lm′′σ|C(1)

q |cm′σ〉. (2.12)

The Wigner-Eckart theorem relates the matrix element to the coupling co-
e�cients which can be replaced by a 3J-symbol as:

〈lm|C(k)
q |cm′〉 = (−1)m

√
(2l + 1)(2c+ 1)

(
l k c
0 0 0

)(
l k c
−m q m′

)
.

A physically reasonable 3J symbol should satisfy: −m + q + m′ = 0, i.e.
m = q + m′. Similarly for the second 3J-symbol, it requires: m′′ = q + m′.
Now let us specify the absorption intensity with c= l - 1 (dipole allowed):

Iq = |〈Ri|r|Rf 〉|2
∑

mσm′′σ

(−1)m+m′′(2l + 1)(2c+ 1)lmσl
†
m′′σ (2.13)(

l 1 c
0 0 0

)(
l 1 c
−m q m′

)(
l 1 c
0 0 0

)(
l 1 c
−m′′ q m′

)
= |〈Ri|r|Rf 〉|2

∑
mσ

(2l + 1)(2l − 1)nmσ(

(
l 1 l − 1
0 0 0

)(
l 1 l − 1
−m q m− q

)
)2,
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2. Backgrounds and Principles

with nmσ = lmσl
†
mσ.

By setting all l- and c-dependent prefactors to A2
cl, we obtain the absorption

intensity for q=-1, 0, and +1 as follows:

I−1 = A2
cl

∑
m,σ

nmσ
(l −m)(l −m− 1)

2l(2l + 1)(2l − 1)

I0 = A2
cl

∑
m,σ

nmσ
(l −m)(l +m)

l(2l + 1)(2l − 1)
(2.14)

I+1 = A2
cl

∑
m,σ

nmσ
(l +m)(l +m− 1)

2l(2l + 1)(2l − 1)
.

Next we can derive the spectral intensity for x- and y-polarized light. Re-
placing the dipole operator for x- and y-polarized light, the intensity reads:

Ix =|〈Ri|r|Rf 〉|2
∑

m...m′′σ

lmσl
†
m′′σ

〈lmσ|
√

1

2
(C

(1)
−1 − C

(1)
1 )|cm′σ〉〈lm′′σ|

√
1

2
(C

(1)
−1 − C

(1)
1 )|cm′σ〉, (2.15)

then:

Ix =
1

2
(I−1 + I+1)− 1

2
A2
cl

∑
mσm′′σ

(−1)m+m′′ lmσl
†
m′′σ

(

(
l 1 c
−m −1 m′

)(
l 1 c
−m′′ 1 m′

)
+(

l 1 c
−m 1 m′

)(
l 1 c
−m′′ −1 m′

)
)

=
1

2
(I−1 + I+1)− 1

2
A2
cl

∑
mσm′′σ

(−1)m+m′′ lmσl
†
m′′σ

(

(
l 1 l − 1
−m −1 m+ 1

)(
l 1 l − 1

−m− 2 1 m+ 1

)
+(

l 1 l − 1
−m 1 m− 1

)(
l 1 l − 1

−m+ 2 −1 m− 1

)
). (2.16)

Note that for non-vanishing angular momentum dipole matrix elements, the
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2.1. X-ray absorption

�rst 3J symbol should satisfy: m′ = 1 + m, m′′ = 1 + m′ = 2 + m; and it
implies: m′ = −1 +m, m′′ = −1 +m′ = −2 +m for the second 3J symbol.
Thus for c= l - 1 dipole transition, Ix can be written as:

Ix =
1

2
(I−1 + I1)−A2

cl
1

2

∑
m,σ

√
l −m− 1

√
l −m

√
l +m+ 1

√
l +m+ 2

2l(2l − 1)(2l + 1)

(lm+2σl
†
mσ + lmσl

†
m+2σ); (2.17)

Similarly, we can calculate the absorption intensity for Iy:

Iy =
1

2
(I−1 + I1) +A2

cl
1

2

∑
m,σ

√
l −m− 1

√
l −m

√
l +m+ 1

√
l +m+ 2

2l(2l − 1)(2l + 1)

(lm+2σl
†
mσ + lmσl

†
m+2σ). (2.18)

The 3d orbitals could be expressed in terms of spherical harmonics as follows:

3dx2−y2 = 1√
2
(Y 2

2 + Y 2
2 )

3d3z2−r2 = Y 0
2

3dxy = − i√
2
(Y 2

2 − Y 2
2 ) (2.19)

3dyz = − i√
2
(Y 1

2 + Y 1
2 )

3dxz = 1√
2
(Y 1

2 − Y 1
2 ).

To derive the absorption intensity for Iz, only transition including d3z2−r2 , dxz,
and dyz orbitals are symmetrically allowed and contribute. Furthermore, we
know:

n3z2−r2 = d3z2−r2d
†
3z2−r2

nxz = dxzd
†
xz =

1

2
(n−1 + n1)− 1

2
(d−1d

†
1 + d1d

†
−1)

nyz = dyzd
†
yz =

1

2
(n−1 + n1) +

1

2
(d−1d

†
1 + d1d

†
−1).

Taking into account the transition probability (pre-factors of the 3J-symbol
calculation in Eqs. 2.14- 2.18) for each transition, one can easily obtain the
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2. Backgrounds and Principles

Figure 2.2.: Schematic presentation of excitations from the 2p core
level (px, py, pz orbitals) to the unoccupied 3d band
(dxy, dxz, dyz, dx2−y2 and d3z2−r2 orbitals) with linear z-polarized
light (q=0). All orbitals are expressed in terms of spherical har-
monics. The allowed dipole excitations are marked by lines. The
value written next to each transition corresponds to the expecta-
tion value of the 3J-symbols considering only the symmetry.

sum rules as follows:

Ix =
1

n
(
1

2
nxy +

1

2
nyz +

1

6
nz2 +

1

2
nx2−y2 −

√
1

12
(dz2d

†
x2+y2

+ d†
z2
dx2+y2))

Iy =
1

n
(
1

2
nxy +

1

2
nyz +

1

6
nz2 +

1

2
nx2−y2 +

√
1

12
(dz2d

†
x2+y2

+ d†
z2
dx2+y2))

Iz =
1

n
(
1

2
nxz +

1

2
nyz +

2

3
nz2). (2.20)

Fig. 2.2 and Fig. 2.3 show an illustration of the transition from the 2p core
level to the unoccupied 3d states, with z-polarized light and left circular po-
larized light, respectively. In each plot, we show the allowed dipole excitations
as well as the expectation values of the 3J-symbols. Note that the square of
the expectation values multiplied by the relative weight of each orbital ex-
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2.1. X-ray absorption

Figure 2.3.: Dipole allowed transitions from the 2p core level to the unoccupied
3d states with left circular polarized light (q=-1). The value writ-
ten next to each transition is the expectation value of the Matrix
element which is calculated by evaluating the 3J-symbols with
purely symmetry considerations. The square of the expectation
values multiplied by the relative weight for each orbital results
from the di�erent pre-factors in Eq. 2.20. The orbitals shown in
Fig. 2.2 and Fig. 2.3 are adopted from wikipedia website.

actly represents the di�erent pre-factors in Eq. 2.20. For instance, the relative
spectral intensity of Iz is given by:

nxz : nyz : nz2 = 2∗( 1√
2

)2∗(− 1√
10

)2 : 2∗( 1√
2

)2∗(− 1√
10

)2 : (

√
2

15
)2 =

1

2
:

1

2
:

2

3
.

Particularly for a Ni3+ ion (3d7: t62ge
1
g) with crystal symmetry higher than

orthorhombic: nxy =nxz =nyz = 0. Neglecting the interference terms results
in:

Ix = Iy =
1

6
nz2 +

1

2
nx2−y2

Iz =
2

3
nz2 . (2.21)
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2. Backgrounds and Principles

It is obvious that XAS measurements with incident light perpendicular and
parallel with respect to the scattering plane re�ect directly the hole occupa-
tions with dx2−y2 and d3z2−r2 symmetry.

2.1.3. Absorption intensity from optical theorem

The interaction of light with matter can be treated by an optical response ap-
proach, where atoms are modeled by classical dipole oscillators with character-
istic resonant frequency ω. The small displacement vector (or the polarization
vector) of the electron ~P in response to a time dependent incident EM wave
~Ein is linear and can be expressed as:

~P = χ ~Ein, (2.22)

where ~Ein is the electric �eld of the incoming beam (with the same expression
as Eq. 2.2) and χ denotes the electric susceptibility of the electron. The current
density can then be written:

~j =
∂ ~P

∂ t
= −ωχ~Ein. (2.23)

The current density ~j arises due to the conduction electrons and can be related
to the conductivity σ, i.e. ~j = σ ~Ein. It is obvious that: σ = −ω χ.
The �nal x-ray absorption intensity can be simply expressed in term of

conductivity as follows:

IXAS ∝ Im [ε̂∗ · σ · ε̂]. (2.24)

Note that the conductivity σ is a second rank tensor which will be discussed
in detail in the following.
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2.2. X-ray scattering

2.2. X-ray scattering

To illustrate a scattering process one can imagine that the incoming x-rays
force the electrons of a material to vibrate, and the oscillating electrons act
as a dipole source and radiate an EM �eld. The simplest scattering process
would be the scattering of x-rays by one electron, where the scattering ability
of an electron is called the Thomson scattering length, which is given by the
classical electron radius with r0 = 2.82 × 10−5 Å. Since its value is smaller
than the typical lattice spacing, multiple scattering is negligible. Considering
the scattering ability of x-rays by one atom consisting of Z electrons (where
Z is the atomic number associated with electron density distribution ρ(~r)) we
have to take into account the atomic form factor f0( ~Q). Mathematically, the
radiated strength of an atom is the superposition of all electrons, the total
atomic scattering length is −r0f

0( ~Q) with ~Q being the momentum transfer.
The atomic form factor f0( ~Q) reads:

f0( ~Q) =

∫
ρ(~r)ei

~Q~rd~r

=

{
Z for Q→ 0

0 for Q→∞.
(2.25)

For a general scattering problem, the atomic form factor is a complex quan-
tity which is both energy ~ω and momentum ~ ~Q dependent:

f0( ~Q, ~ω) = f0( ~Q) + f ′(~ω) + if ′′(~ω), (2.26)

where f ′(~ω) and f ′′(~ω) account for the resonant part (dispersion), and are
related directly to the re�ection index in a material as will be discussed in
the next section. The resonant process, namely when the photon incident
energy corresponds to the absorption edge of a particular element, has the
advantage in probing small density modulations such as the charge, orbital
and magnetic orderings in solid state research due to the large enhancement
of the scattering cross section. The momentum dependent part f0( ~Q) plays
a role in the structure determination of solids, normally performed at �xed
wavelengths, e.g. at Cu and Mo Kα energies.
X-ray scattering is a photon-in photon-out process as illustrated in Fig. 2.4.

The scattering intensity for a scattering process can be written as:

Iscat = |
∑
i

exp(i (~kin − ~kout) ~Ri) ε∗out fi εin|2, (2.27)
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2. Backgrounds and Principles

Figure 2.4: A simple illustration of x-
ray scattering as a photon-
in photon-out process for
2p → 3d excitations. ~Q de-
notes the momentum trans-
fer during the scattering
process, i.e. ~ ~Q = ~~kout−
~~kin .

2p
3/2

2p
1/ 2

3d

kin kout

Q

where ~kin and ~kout denote the incoming and the outgoing wave vector, εin and
εout represent the polarization of the incoming and outgoing light, respectively.
The total scattering intensity is sensitive to the momentum transfer ~Q during
the scattering process: ~ ~Q = ~~kout − ~~kin. fi denotes the scattering factor
at site i. Furthermore, the total scattering factor sums up di�erent atomic
positions ~Ri with a phase factor, i.e. F (Q)=

∑
i fi exp(i ~Q ~Ri). From the

optical theorem, the scattering factor is related to the conductivity σ (or the
dielectric tensor ε) through:

F = − ω σ, (2.28)

with σ as a second rank tensor:

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (2.29)

In general, the response or induced vectors (properties) of a material to
an external/applied vector can be expressed by a tensor of second rank, such
as the heat �ow density in response to an applied temperature gradient is
linked by the thermal conductivity, or the dielectric displacement which is
related to the applied electric �eld through the permittivity, or the magnetic
induction which is related to an external magnetic �eld by the permeability,
etc. Similarly here, the electron is correlated to the incoming electromagnetic
wave through the conductivity tensor σ. Moreover, the symmetry of physical
properties (σ, ε, etc.) is related to the symmetry of the crystal known as the
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2.2. X-ray scattering

Neumann's Principles, which state [105]:
The symmetry elements of any physical property of a crystal must include

the symmetry elements of the point group of the crystal.

Taking into account the crystal symmetry for a non-magnetic crystal, the
conductivity tensors are as follows, representing cubic, tetragonal (hexagonal,
trigonal), orthorhombic and monoclinic crystal symmetry (e.g. σxy = σyx),
respectively.

σcub =

 σxx 0 0
0 σxx 0
0 0 σxx

 σtetra =

 σxx 0 0
0 σxx 0
0 0 σzz



σorth =

 σxx 0 0
0 σyy 0
0 0 σzz

 σmono =

 σxx σxy 0
σyx σyy 0
0 0 σzz

 .

Triclinic as the lowest symmetry has basically the same form as Eq. 2.29,
but it preserves the symmetrical properties, i.e. σij = σji (i, j = x, y, z).
The conductivity tensor of a magnetic material with a local moment along

the z-axis is given by:

σ =

 σxx σxy 0
−σxy σyy 0

0 0 σzz

 ,

with σyx = −σxy [56].
A general polarization dependent scattering problem can be easily visual-

ized and understood from the scattering tensor. For instance, in a resonant
magnetic di�raction process, a magnetic scattering tensor with o�-diagonal
components must be considered. Details of the ground state magnetic struc-
ture can be obtained from the polarization and the azimuthal dependence of
the scattered intensity [33, 123]. In terms of the charge modulation in layered
heterostructures considered throughout this thesis, we take into account the
conductivity tensor σ with tetragonal symmetry which has been �rst proposed
in Ref. [8], the idea of which is explained hereafter.
Let us consider a layered structure, which either can be atomic planes of

a crystal or di�erent layers in a heterostructure, neglecting the multiple scat-
tering, the x-ray scattering intensity along the specular direction is directly
related to the total scattering factor Fqz , which is a superposition of scatter-
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Figure 2.5.: Visual picture to calculate exp(iθ) for some frequently used angles
in a unit circle. The horizontal and the vertical axis denote the
real and the imaginary part of a complex number.

ing factors of the individual layers with a phase factor:

Fqz =
∑
i

fie
iqzz, (2.30)

where fi denotes the atomic form factor of layer i, qz is the momentum transfer
during the scattering process and z is the thickness of layer i.
The phase factor can be expressed by trigonometric functions using Euler's

formula, i.e. exp(iθ) = cos θ + i sin θ, which can be easily calculated with the
help of a unit circle (Fig 2.5).
We performed our x-ray scattering experiments at �xed momentum transfer

qz, i.e. a �xed phase factor for each individual layer in Eq. 2.30, from which
the total scattering factor can be obtained. Fig. 2.6 shows the relative weight
of phase factors for di�erent layers with �xed qz around the SL(001) re�ection
and SL(002) re�ection for a superlattice con�guration of 4 u.c. LNO and 4 u.c.
LAO. Note that the specular momentum is written in terms of the Miller index
L, i.e. qz = 2π L/c, with c denoting the superlattice bilayer period. L re�ects
the modulation from the superlattice period, e.g. the SL(001) and SL(002)
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Figure 2.6.: Illustration of a �xed qz re�ectivity measurement in a LNO-LAO
(4 u.c.//4 u.c.) superlattice. (a) A sketch of the layer structure
with 4 u.c. LAO (with the scattering factor fLAO) and 4 u.c. LNO
(fBLNO and fALNO denote the scattering factor of the interfacial
layer and the inner layer, respectively.); (b),(c) show the rela-
tive weight of the phase factor for qz =SL(001) and qz =SL(002),
respectively.

correspond to the re�ection with the period of the superlattice and half of the
bilayer period, respectively (as shown in Fig. 2.6). The total scattering factors
F(001) and F(002) read:

F(001) =
∑
i

fi exp(iqz z)

= fLAO + (

√
2

2
+

√
2

2
i)fLAO + ifLAO + (−

√
2

2
+

√
2

2
i)fLAO

− fBLNO − (

√
2

2
+

√
2

2
i)fALNO − ifALNO + (

√
2

2
−
√

2

2
i)fBLNO (2.31)

= (1−
√

2

2
+

√
2

2
i)(fLAO − fBLNO) + (i+

√
2

2
+

√
2

2
i)(fLAO − fALNO);
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2. Backgrounds and Principles

F(002) =
∑
i

fi exp(iqz z)

= fLAO + ifLAO − fLAO − ifLAO + fBLNO + ifALNO − fALNO − ifBLNO
= (1− i)(fBLNO − fALNO). (2.32)

It is obvious that the intensity of the SL(002) superlattice re�ection is deter-
mined by the di�erence of the scattering factors of the outer and the inner
layers (i.e. F(002) ∝ (fBLNO − fALNO)). We will show later that a polarization-
dependent analysis of the scattering intensity allows a map of layer-resolved
charge pro�les inside the 4 u.c. layer stacks.
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2.3. Simulation of the x-ray re�ectivity intensity

Resonant x-ray re�ectivity is a well-known method for exploring detailed struc-
tural information of multilayers or thin �lms such as the individual layer thick-
ness, roughness and the electronic density. However, one cannot get direct
information about the structural properties due to the loss of phase infor-
mation in intensity measurements. Here, we use the program REMAGX to
simulate the resonant x-ray re�ectivity curves based on either the Paratt's
recursive or the matrix formulism. Prior to the simulation, the knowledge of
appropriate optical constant of each layer in the system is crucial. Theoretical
values of the form factors can be found in the Henke or the Chantler table
[21, 59]. For instance, the Chantler table shows the real and imaginary part
of the form factor (f1 and f2) for all elements (up to Uranium, Z =92) from
10 eV to 400 keV [21]. The photoelectric absorption cross section is obtained
from self-consistent Dirac-Hartree-Fock calculations for isolated atoms taking
into account only the spin-orbit coupling, which is in good agreement with
experimental results at non-resonant energies. At absorption edges, the �ne
structure is important which changes the scattering form factor dramatically.
In our data analysis, a proper optical constant is obtained by merging the
experimentally measured absorption spectrum near resonant energies to the
theoretical values from the Chantler table.
From the optical theorem, we know that the x-ray absorption cross section

is proportional to the imaginary part of the scattering factor f2 through:

f2 = − σa
2r0λ

, (2.33)

where σa, r0 and λ denote the absorption cross section, the classic electron
radius and the wavelength of the incoming photon, respectively.
Thus, the imaginary part f2 can be derived from the atomic photo-absorption

cross section. The real part of the atomic scattering factor f1 is related to the
imaginary part f2 by the Kramers-Kronig dispersion relation (for details see
Appendix. A).
The data processing to obtain the optical constant is performed as follows:
First, we create the theoretical atomic form factor for a compound by taking

the sum of the scattering factor of all individual atoms times the relative
number of each type of atom in the compound. For instance, the theoretical
atomic form factor for LNO (fLNO) is obtained through:

fLNO = 1 ∗ fLa + 1 ∗ fNi + 3 ∗ fO. (2.34)
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The energy spectrum of the imaginary part f2 close to the Ni L-edges are
shown in Fig. 2.7(a), with La M5 and M4 edges nearby (i.e. four resonant
energies in total).
Then, we merge the experimental XAS spectrum to the Chantler table. We

notice that the imaginary part of the scattering factor shows a linear decay
of the scattering intensity above resonant edges, which is due to the damp-
ing term for the semiclassical treatment of the electron-photon interactions as
classical harmonic oscillators. Thus, we �t the background prior to the reso-
nant edges with a linear function in the form of y = b − k ∗ E(~ω), where b
and k corresponds to the o�set as well as the slope of the linear background
(Fig. 2.7(b)). The edge jump is denoted by h. Next, we merge the experimen-
talXAS∗E(~ω) spectrum to the Chantler table which captures the edge jump,
i.e. the characteristic atomic transition of core electrons (Fig. 2.7(c)). One can
do this by simply multiplying the edge jump h, followed by adding the linear
�tting of the background line to the normalized XAS ∗E(~ω) curve. 2 Finally
the real part of the scattering factor f1 is obtained through a Kramers-Kronig
transformation.
In the last step, we obtain the optical constants δ and β. The real and the

imaginary parts of the refraction index n = 1− δ + iβ are related to the real
and the imaginary parts of the atomic form factor as follows:

δ(E) =
2πρr0(c~)2

E2
(Z∗ + f1(E))

β(E) =
2πρr0(c~)2

E2
(f2(E)), (2.35)

where r0 =2.8179× 10−15 m represents the classical electron radius, ρ denotes
the mass density in the unit of mass/volume, c=2.998×108 m/s is the light
velocity, ~=6.582×10−16 eV · s is the Planck constant and Z∗ is the atomic
number after a relativistic correction: Z∗ = Z − (Z/82.5)2.37. E = ~ω is the
x-ray energy.
Having the proper optical constants at hand, we are ready for the simulation

of the re�ectivity curves. As mentioned before, two methods, the Parratt's
recursive and the matrix formulism have been used to calculate the re�ectivity
intensity. Parratt's recursive method is based on the dynamical approach [108],
taking into account multiple scattering e�ects. The idea for the Parratt's
recursive simulation is summarized as below, following Refs. [68, 108, 109].

2The normalized XAS ∗E(~ω) curve is de�ned as the absorption line after subtracting a
linear background followed by scaling the continuum edge to one (e.g. E=880 eV for
LNO-based superlattices).
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Figure 2.7.: (a) The imaginary part of the scattering factor f2 of LNO obtained
from the Chantler table. (b) Scattering factor f2 after subtracting
a linear line (y = 34.4521−0.02329∗E), which shows a step height
h=44.785. (c) In the last step the normalized (XAS ∗ E(~ω))
spectrum is merged to the Chantler data and multiplied by the
edge jump. (d) The real part f1 is obtained from f2 through a
Kramers-Kronig transformation.

The total re�ectivity amplitude rj−1,j between the neighboring (j − 1) and
j layers taking into account the multiple re�ections can be expressed as:

rj−1,j = r′j−1,j + t′j−1,jr
′
j,j+1t

′
j,j−1(eizjqj )2 + t′j−1,j(r

′
j,j+1)2t′j,j−1r

′
j,j−1(eizjqj )4 + ...

= r′j−1,j + t′j−1,jr
′
j,j+1t

′
j,j−1(eizjqj )2

∞∑
m=0

(r′j,j−1r
′
j,j+1(eizjqj )2)m.

The summation is a geometric series, and similar to the phase factor sum-
mation. rj−1,j can thus be rewritten as:

rj−1,j =
r′j−1,j + rj,j+1 e

izjqj

1 + r′j−1,jrj,j+1 eizjqj
, (2.36)

where eizjqj accounts for the phase shift of the beam re�ected from (j − 1, j)
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Figure 2.8.: Illustration of the recursive approach to calculate the re�ection
amplitude at an arbitrary (j − 1, j) interface. nj−1, nj and nj+1

represent the refraction index of (j−1), j and (j+1) layer, respec-
tively. The total re�ectivity amplitude rj−1,j takes into account
the multiple re�ections, r′j−1,j is the direct re�ection amplitude
from the Fresnel equation. The second re�ection arises from the
transmitted beam at the (j−1, j) interface with transmission am-
plitude t′j−1,j , is re�ected at (j, j + 1) interface with r′j,j+1, then
again transmit at (j, j− 1) interface with t′j,j−1, resulting in a re-
�ectivity amplitude (t′j−1,jr

′
j,j+1t

′
j,j−1e

izjqj ) with eizjqj denoting
the phase shift of a layer with thickness Zj . The direct re�ectivity
amplitude r′j−1,j and the transmission amplitude t

′
j−1,j are related

to the wave vector transfer qj−1 and qj as mentioned in the main
text.

and (j, j+ 1) interfaces, zj is the thickness of layer j and qj is the wave vector
transfer as illustrated in Fig. 2.8. r′j−1,j denotes the Fresnel coe�cient without
multiple re�ection which is related to the wave vector transfer between layer
(j − 1) and layer j through:

r′j−1,j =
qj−1 − qj
qj−1 + qj

. (2.37)

The wave vector transfer qj =2kj sin(αj) is further related to the re�ection
index nj through:

αj = 2π
√
n2
j − 1 + sin α, (2.38)

with α denotes the incident angle of the x-rays at the vacuum-sample interface.
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2.3. Simulation of the x-ray re�ectivity intensity

The Eq.2.36 could be solved numerically by assuming that the substrate
is in�nitely thick, so that there is no re�ection from the substrate surface.
The re�ectivity amplitude between the last layer N and the substrate can be
expressed as:

rN,∞ = r′N,∞ =
qN − q∞
qN + q∞

. (2.39)

Note that the Fresnel equation is polarization dependent. Instead of using
Cartesian coordinates, σ and π are used, de�ning a coordinate perpendicular
(σ or s) and parallel (π or p) to the scattering plane. A sketch of the geometry
is shown in Fig. 2.17. The re�ectivity amplitude r′ and the transmission
amplitude t′ for σ polarization and π polarization are summarized as follows:

r′,σj−1,j =
qj−1 − qj
qj−1 + qj

t′,σj−1,j =
2qj−1

qj−1 + qj

r′,πj−1,j =
n2
j qj−1 − n2

j−1qj

n2
j qj−1 + n2

j−1qj
(2.40)

t′,πj−1,j =
2n2

j qj−1

n2
j qj−1 − n2

j−1qj
.

The di�erence due to di�erent polarization is small except around the Brew-
ster's angle, where rπ =0, because there is no intensity re�ected parallel to
the electric dipole direction.
Fig. 2.9 shows the simulated re�ectivity curve with I = |r|2. The qz depen-

dent re�ectivity curve corresponds to a Co/Cu multilayer with a thickness of
10Å/60Å and a repetition of 6 times. The distance between the main peaks
can be used to estimate the bilayer thickness. The simulation is done at a
photon energy of 777eV assuming a perfect surface and no roughness at the
interfaces.
The re�ectivity of a rough interface can be calculated by the Nevot-Croce

method [104] which is given by:

r′,gradj−1,j = r′j−1,j e
−2kj−1kjγ

2

, (2.41)

where γ is the roughness of the interface between layer (j − 1) and layer j,
assuming that the roughnesses are small compared to the thicknesses. For
roughnesses that follow a Gaussian distribution, the change of the optical
constants is given by an error function like pro�le. Note that it is impossible to
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Figure 2.9.: A characteristic re�ectivity simulation curve using the Par-
ratt's recursive method for a Co/Cu multilayer with a thickness
(10Å/60Å) and a repetition of 6 times. The simulation curve is
calculated at a photon energy of 777 eV (Co L3 edge).

describe materials with non-cubic scattering factor in the Parratt's formulism,
i.e. the scattering factor is a scalar.
A further polarization dependent scattering intensity is obtained via the ma-

trix formulism taking into account the tensor nature of the dielectric constant

2
z

0 z2 z3

1 3

P2(0)

P2(z )2

m

zm

P3(z )

P1(0)

Pm(z )

2

m

D2 D3
Dj

z j

Figure 2.10.: Illustration the matrix formulism. ~Pj(zj−1) and D̃j denote the
wave propagation vector at the position zj−1 and the propagation
matrix of a medium j, respectively. The �nal outgoing propa-
gating vector ~Pm(zm) is related to the incoming vector ~P1(0)
through a series of matrix products of each individual layer.
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2.3. Simulation of the x-ray re�ectivity intensity

[150, 151]. The main idea is that the incoming light vector is related to the
outgoing light vector via matrices, which are built up by the matrix products
of all individual matrix elements. To understand the propagation of the �eld
vectors inside a medium, two matrices have to be de�ned, i.e. the medium
boundary matrix A and the medium propagation matrix D̃. The boundary
�eld vector is represented by F, and is related to the wave propagating vector
P by the medium boundary matrix A, i.e.

F = A P.

From Maxwell's equations, we know that the tangential components of the
�eld vector are continuous at the interface. Considering an arbitrary interface
between layer 1 and layer 2, it requires: F1 =F2, i.e. A1P1 =A2P2.
Furthermore, each wave propagation vector P at the interface can be ex-

pressed with four-components:

P =


Eiσ
Eiπ
Erσ
Erπ

 ,

where i and r refer to the incident and the re�ected light, respectively. Eσ
and Eπ correspond to a beam with electric �eld perpendicular or parallel to
the scattering plane, respectively. Therefore, if the medium boundary matrix
A is known, one can calculate the incoming and re�ected beam intensities at
neighboring layers. The derivation for A is lengthy, the details as well as the
�nal expression for an arbitrary magnetic interface is presented in Refs. [150,
151].
For a medium composed of more interfaces, an additional propagation ma-

trix D̃ needs to be introduced, which accounts for the damping and the phase
shift of the �eld. As shown in Fig. 2.10, the wave propagation vector at z= z2

of medium 2 is given by P2(0)= D̃2 P2(z2). Therefore:

A1 P1 = A2 P2(0)

= A2 D̃2 P2(z2)

= (A2D̃2A
−1
2 ) A2 P2(z2)

= (A2D̃2A
−1
2 ) A3 P3(z2) . (2.42)

In summary, the propagation of light from the vacuum down to the substrate
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Figure 2.11.: Illustration of the layer segmentation in the Matrix formulism.
Each layer can be sliced into elements with an atomic-layer thick-
ness and individual dielectric constant. The roughness of an in-
terface is modeled by a gradual change of the optical constants.

is described by:

Avac Pvac =

m∏
j=1

(Aj D̃jA
−1
j )Asub Psub . (2.43)

Similar to the Parratt formulism, this equation could be solved numerically
by assuming a substrate with in�nite thickness, i.e. there is basically no re-
�ected intensity inside the substrate.
The matrix approach describes all e�ects that can be modeled by a dielectric

tensor, since the medium boundary matrix A is related directly to the incident
angle and the dielectric tensor [150, 151]. For each layer, both, σ and π
polarized re�ected and transmitted intensities are calculated simultaneously
before entering the next layer. Thus this method provides the full polarization
dependent scattering intensities.
To account for possible roughness of the interfaces/surface, a layer segmen-

tation is included in the simulation (Fig. 2.11), each layer is sliced into thin
elements with atomic-layer resolution. For the superlattice with a composi-
tion of (4 u.c. // 4 u.c.) LNO-LAO, each LNO block is composed of 4 u.c. LNO,
and we assigned a di�erent scattering tensor to each 1 u.c. thick LNO layer,
denoted as fB

LNO, f
A
LNO, f

A
LNO and fB

LNO in Fig. 2.6(a). The layer is sliced into
a bunch of layers with thickness of 0.5Å to account for the roughness. The
roughness in the segmented layer is modeled by a gradual change of the optical
constants (δ, β) (Fig. 2.11). The roughness between layer A and layer B was
assumed to be zero (σ=0), while at the LNO-LAO interface, the roughness
was taken from the structural �t using Parratt's method.
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2.4. Cluster calculation of XAS spectra

X-ray absorption spectroscopy measures core-hole excitations. In transition-
metal oxides, a transition to the metal K-edges can be explained simply and
nicely in a single particle model, where only one electron core excitation is
considered and a number of computer codes are available to calculate the
absorption cross section. However, these approaches do not give good results
for the transition metal L-edges, since here multiplet e�ects are important due
to strong overlap between the core and the valence electron wave-functions [46].
In the past years, a proper quantitative description of the core-hole excitation
spectrum at L-edges was made by a cluster model based on a many body
con�guration interaction (CI) [12, 140, 141], accounting for the full multiplet
e�ects.

The cluster calculation program used in this thesis was written by Maurits
W. Haverkort [54, 57]. The cluster calculation was performed for a NiO6

cluster, i.e. an octahedron with one Ni ion surrounded by six-neighboring O
ligands. In LNO, the Ni ion has nominally a 3+ valence state, i.e. a 2p63d7

con�guration. However, the charge transfer energy is small, allowing for a
transfer of electrons from O 2p orbitals to Ni 3d orbitals. For bulk LNO, it is
discussed that the charge transfer energy is even negative (i.e. ∆=-0.5 eV as
shown in Fig. 2.13), giving rise to a 2p63d8L ground state, with L denoting the
ligand hole (rather than 2p63d7). Within our cluster calculation, the ground
state is composed of a basis set of states: 2p63d7L0, 2p63d8L1, 2p63d9L2,
2p63d10L3, where the three terms label the number of core electrons in the Ni
2p, the Ni 3d shell and the number of holes in the ligands p shell, respectively.

For a 2p63d7L0 con�guration, there are C3
10 = 120 possible wave-functions,

i.e. the �rst hole on the Ni site can �ll in 10 possible orbitals (ml=-2, -
1, 0, 1, 2, each with spin up and spin down), the second hole can �ll in 9
orbitals, and so on. Since the electrons are indistinguishable, this results in
a total of 10×9×8

3×2×1
= 120 wave-functions. Similarly, there are C2

10C
1
10 = 450,

C1
10C

2
10 = 450 and C3

10 = 120 wave-functions for the 2p63d8L1, 2p63d9L2 and
2p63d10L3 con�gurations, respectively. Thus, the Hamiltonian is represented
by a 1140×1140 matrix. Similarly, the �nal state of the 2p → 3d dipole
transition includes a basis set of: 2p53d8L0, 2p53d9L1 and 2p53d10L2, with
corresponding C1

6C
2
10 = 270, C1

6C
1
10C

1
10 = 600 and C1

6C
2
10 = 270 wave-

functions. Therefore, there is also a 1140×1140 Hamiltonian matrix for the
�nal state.

The ground state wave-function is a superposition of all basis con�gurations:
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Ψi = α0 |p6d7L0 > +α1 |p6d8L1 > +α2 |p6d9L2 > +α3 |p6d10L3 >, (2.44)

where the coe�cients (αi, i=0, 1, 2, 3) and ground state energies are obtained
by diagonalizing the Hamiltonian matrix. Note that these states do not have
the same energy and depend on several energy parameters, i.e. the d-d Coulomb
repulsion energy Udd, the O2p -metal 3d charge transfer energy ∆, the O 2p -
metal 3d hybridization T and the core-hole - d Coulomb energy Upd. The en-
ergy schemes for di�erent ground states and x-ray absorption �nal states are
shown in Fig. 2.12, where the 2p63d7L0 con�guration is assumed to be the
ground state. The energy di�erence between 2p63d8L1 and 2p63d7L0 is only
due to the charge transfer energy ∆, which characterizes the energy to move
one electron from the ligand to the 3d states. The next con�guration 2p63d9L2,
requires additional energy to transfer electrons to the 3d states. In addition
the higher occupancy of the metal d-orbitals cost the the electron-electron
Coulomb energy Udd. Thus the energy di�erence is ∆ +Udd. So is the energy
of the next con�guration, but with twice of the electron-electron interaction.
The XAS �nal state is di�erent from the initial state since an additional

attractive core-hole and 3d transition metal interaction must be taken into
account. In the energy scheme of the �nal state, the on-site energy of the
2p53d8L0 con�guration is set as the reference. The energy di�erence of 2p53d9L1

includes: the transfer of one electron from the ligand states to the Ni 3d states,
the Coulomb interaction between electrons, as well as Upd accounting for the
attractive core-hole - 3d interaction.
The ground state Hamiltonian is expressed as:

H = HCFd +HCFL +HHop +HU∆, (2.45)

where HCFd is the crystal �eld splitting of 3d orbitals, HCFL is the crystal
�eld of ligand p orbitals, HHop denotes the hopping term and HU∆ is the
Coulomb interaction plus the charge transfer energy term.
The crystal �eld e�ect is treated with in a mean-�eld approximation. The

local potential can be expressed in spherical harmonics, which could be sim-
pli�ed by symmetry considerations. For a crystal with Oh symmetry, only one
parameter is left to describe the crystal �eld splitting, i.e. 10Dq, denoting the
energy di�erence between eg and t2g states. For a lower D4h symmetry, there
are three parameters, i.e. 10Dq, the energy lifting of eg levels ∆eg (splitting
between dx2−y2 and d3z2−r2) and the energy splitting of t2g levels ∆t2g (energy
di�erence between dxz,dyz and dxy orbitals)(Fig. 1.2). For a lower symmetry,
like the D2h and D3d point group, more energy parameters should be consid-
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Figure 2.12.: The relative on-site energy-level scheme for (a) the ground state
and (b) the XAS �nal states of di�erent con�gurations. Udd,
∆, Upd denote the 3d-3d Coulomb interaction energy, the charge
transfer energy and the core-hole-3d Coulomb attractive energy,
respectively. Here, ∆ is assumed to be positive.

ered, the details are summarized in Ref.[54]. Within the scope of this thesis,
cluster calculations were performed considering a D4h symmetry of the NiO6

cluster. We used 10Dq=2 eV , while the energy splitting ∆eg was varied.
The hopping term describes the hybridization e�ect between oxygen and the

transition metal ion which mixes the two di�erent con�gurations, e.g. 2p63d7L0

and 2p63d8L1. It enters the o�-diagonal terms of the Hamiltonian and the
size of the hopping can be expressed in terms of the Slater-Koster parameters
known as pdσ and pdπ [129]. The σ bonding corresponds to those orbitals
which remain symmetrical under rotation along the internuclear axis (i.e. the
bonding of O 2p orbitals with Ni 3dx2−y2 and Ni 3d3z2−r2 orbitals), whereas
the π orbitals change the phase under a rotation along the internuclear axis
(i.e. the bonding of O 2p orbitals with dxy, dxz and dyz orbitals). In general,
the bonding of the ligand π orbitals is weaker than the ligand σ orbitals. For
transition metal oxides, the transfer integral pdσ is within the range of -1.0 to
-2.5 eV [99]. In our cluster calculation, we used commonly accepted values for
nickel oxides, i.e. pdσ=-1.88 eV , and pdπ= pdσ/2.17 [124, 135].
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2. Backgrounds and Principles

The last term of the initial state Hamiltonian HU∆ includes the d − d
Coulomb interaction and the charge transfer energy, which enters the Hamil-
tonian in the diagonal terms and relates directly to the multiplet states for
di�erent basis con�gurations. The electron-electron interaction can be ex-
pressed by spherical harmonics in second quantization, the radial part is ob-
tained from Hartree-Fock calculation as summarized in Ref. [54], where the
electron-electron Coulomb interaction can be described in terms of Slater in-
tegrals, i.e. Fdd[0], Fdd[2] and Fdd[4]. The values of Fdd[2] and Fdd[4] for our
calculation are used with a corrections of 80% to account for the intra-atomic
CI as pointed out by F.M.F. de Groot et al. [26], i.e. Fdd[2]= 13.276*0.8,
Fdd[4]= 8.294*0.8. In general, Udd is around 6-8 eV for later transition metal
oxides. The charge transfer energy ∆ depends on the transition metal ion,
which increases as the atomic number of the transition metal decreases due
to the electronegativity. In our cluster calculation, the ∆ value is negative,
∆3+ = ∆2+ −Udd = −0.5 eV with Udd=7 eV and ∆2+ = 6.5 eV from Ni2+

[124]. The energy-level scheme for LNO as an example for a typical negative
charge transfer insulator is illustrated in Fig. 2.13.
We emphasize again that the �nal state Hamiltonian is di�erent from the

initial state Hamiltonian since it takes into account the attractive interaction
between the core hole and the 3d electrons Upd, as well as the spin-orbital
coupling of 2p holes:

HXAS = HXASCFd +HXASCFL +HXASHop +HXASU∆ +HcLS . (2.46)

Similar to the treatment of HU∆ in the ground state Hamiltonian, the radial
part of the Hamiltonian HXASU∆ now considers di�erent spin con�gurations,
i.e. it includes not only the 3d − 3d Coulomb interaction and the 2p − 3d
Coulomb interaction in terms of Fpd[2], but also the exchange interaction. The
exchange interaction brings the states to singlets and triplets with di�erent
energy as Gpd[1] and Gpd[3]. All the values are again calculated from Hartree-
Fock and summarized in Ref. [54]. We take the values with a correction of 80%.
For the Coulomb interaction between O 2p and Ni 3d, we use Upd=8.5 eV . The
last term represents the spin-orbital coupling of 2p holes HcLS with a coupling
strength ζ2p=11.506 eV . All the parameters are summarized as Tab. 2.1.
After the diagonalization of the Hamiltonian, we obtain the eigen-energies

of the ground state as well as the coe�cient αi of each con�guration in the
basis. The spectrum calculation is based on Fermi's Golden rule (electron-
dipole approximation). As mentioned before, the expectation value of the
dipole operator depends on the polarization of the incident light. For the clus-
ter calculation with linearly polarized light, the unoccupied states are only
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2.4. Cluster calculation of XAS spectra

Figure 2.13: Energy-level scheme
for LNO as a negative
charge-transfer insulator
with ∆<0, resulting in
a metallic ground state
due to the merging of
the ligand band with the
upper Hubbard band.

in the eg levels, i.e. dx2−y2 and d3z2−r2 orbitals. We obtain the absorption
spectrum: Fxx d3z2−r2 , Fzz d3z2−r2 , Fxx dx2−y2 and Fzz dx2−y2 individu-
ally, which denote the transition to d3z2−r2 with x-polarized light, to d3z2−r2

with z-polarized light, to dx2−y2 with x-polarized light and to dx2−y2 orbital
with z-polarized light, respectively. The absorption spectrum for x- and z-
polarized light is described in terms of the linear combination of these with
100% occupation of either the dx2−y2 or the dx2−y2 orbital, i.e.

FE‖x = α ∗ Fxx d3z2−r2 + (1− α) ∗ Fxx dx2−y2
FE‖z = α ∗ Fzz d3z2−r2 + (1− α) ∗ Fzz dx2−y2 . (2.47)

Udd ∆ pdσ Fdd[2] Fdd[2] Upd Fpd[2] Gpd[1] Gpd[3] ζ2p
7 -0.5 -1.88 10.621 6.635 8.5 6.679 6.329 3.602 11.506

Table 2.1.: List of all the parameters for cluster calculations in unit of eV . The
de�nition of each parameter is speci�ed in the main text.
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2. Backgrounds and Principles

2.5. X-ray sources

X-ray absorption measurements were performed by varying the incident pho-
ton energies and collect the absorption intensities in forms of the �uorescence
yield or the total electron yield. The latter case is collecting the photo-
electrical current produced by the second electrons and measures the drain
current, which is weak so that the high brilliance of synchrotron radiation fa-
cility is required. Moreover, a pair of linear polarization (σ- and π-polarization)
or circular polarization (σ+ - and σ− -polarization) is needed to measure lin-
ear or circular dichroism. The modern third generation synchrotron radiation
can provide almost fully polarized light. In this section, we will present a brief
overview of the synchrotron radiation.
In traditional x-ray sources like x-ray tubes, electrons are generated by a

heated �lament and then accelerated by a high electric �eld to hit a target
(usually tungsten, molybdenum or copper). A typical x-ray radiation spectrum
includes a continuous part (known as 'bremsstrahlung' due to the deceleration
of the high energy electrons and the conversion to photons) as well as several
discrete characteristic white lines. Those characteristic lines are related to
atomic transitions. In the x-ray source used for structure characterization
here is Cu Kα radiation, which corresponds to the atomic transition from
n=2 to n=1 level of Cu.
Synchrotron radiation provides electromagnetic radiation covering a broad

range from hard x-rays with E ∼ 10− 100 keV to the far infrared range and
tera-hertz range with E ∼ 1meV with high brilliance. The working principle
to some extent is similar to the traditional x-ray tube: electrons are accelerated
close to the speed of light in a booster and then are inducted into a storage
ring with large bending magnets of regular intervals. Those bending magnets
serve as guides for the electrons in the center of the storage ring. In between
the bending magnets are the insertion devices which will be discussed in detail
below as Fig. 2.14(b). Now relativistic accelerated electrons produce radiation
in a dipole pattern with no radiation along the acceleration direction. In a
synchrotron, the electrons are accelerated close to the speed of light, and the
dipole pattern gives rise to intensity along the trajectory and the radiation
appears in a narrow cone with an opening angle 1/γ (Fig. 2.14(a)).
Special magnetic devices can be used to customize the radiation charac-

teristics for special experimental requirements, which are called �insertion de-
vices� (IDs). Regular IDs are wigglers and undulators consisting of a series
of periodically arranged magnets which de�ect the electron beam path sinu-
soidally. A dimensionless strength parameter K = eB0λu

2π mc
=0.934B0(T)λu(cm)

is de�ned to distinguish a wiggler and an undulator. It is called a wiggler for
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Figure 2.14.: (a) Trajectory of electrons moving in the storage ring, electron
relativistic radiation along the forward direction with the radia-
tion cone 1/γ. (b) Illustration of the bending magnet and inser-
tion devices. (c) Insertion devices: wigglers with radiation inten-
sity proportional to the number of magnet poles N and a broad
radiation spectrum. (d) Insertion devices: undulator with a pe-
riodic arrangement of magnets, the constructive interference of
electrons resulting in an enhanced intensity proportional to N2

and a narrow radiation angle. Panel (b)-(d) are adapted from
SPring 8 and DESY synchrotron radiation facility websites.

K � 1 and known as an undulator for K � 1. Wigglers could be consid-
ered as a series of bending magnets where the radiation intensity is enhanced
and scales with the number of magnetic poles N . Every electron of the elec-
tron bunch radiates independently resulting in a broad radiation spectrum
(Fig. 2.14(c)).
An undulator has the big advantage that oscillating electrons interfere con-

structively and result in a narrow radiation cone in the forward direction. The
electron beam is periodically de�ected by weak magnetic �elds. The electrons
perform oscillations with the same period of the undulators. The emission
wavelength of the electrons in an undulator is given by the undulator period
(Lp), shortened �rst by the Lorentz contraction (γ) and then by the Doppler
shift(γ). It means that the normal undulator period length is of the order of
cm, which is reduced by a factor γ2 (∼ 106 − 108) to yield short wavelength
radiation in the x-ray regime, i.e. the electrons could `see' the compressed
undulator (Fig. 2.14(d)).
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2. Backgrounds and Principles

Figure 2.15.: Illustration of permanent magnet arrangement to produced cir-
cular polarized light. Panel (a) Linear (horizontal) polarized light
perpendicular to the electron trajectory. Panel (b) Circular left
(or right) polarized light which is realized by shifting the relative
positions of the diagonal array of magnets.

In general, wigglers cover a broad radiation spectrum range, while un-
dulators are optimizied the beam brightness in a comparably small energy
range. Despite synchrotron x-ray sources have the big advantage of high bril-
liance (which is de�ned as a quantity related to the number of photons per
second, the collimation of the beam, the beam size as well as the spectral
distribution), it can provide light with a broad and tunable energy range and
a high degree of polarization. The �rst practical question would be how to
tune the photon energy. The wavelength is changed by varying the gap be-
tween the magnetic dipoles, namely, changing of the gap modi�es the magnetic
�eld strength, thus the K value, resulting in a photon energy matching the
experimental demand. The emission photon energy is given by:

εk(eV ) = 950
kE2(GeV 2)

λu(cm)(1 + 1
2
K2 + γ2θ2)

(2.48)

where E is the energy of electrons, k is the k-th harmonic (only odd harmon-
ics exist), K denotes the strength parameter which as mentioned could be
modi�ed by the magnetic �eld strength, λu is the periodicity of the magnetic
undulator �eld, γ is the relativistic factor of electrons, and θ is the observation
angle from the undulator axis.
The synchrotron light is linearly polarized in the electron plane (perpendic-

ular to the electron trajectory). The change from linearly polarized light to
circularly polarized light is done by shifting the relative positions (phases) of
the diagonal arrays of magnets by 1

4
λu (as shown in Fig. 2.15(b)).
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x-ray

“ERNST” setup: 
 UHV XRMR

Figure 2.16: The setup of the the
UE56/2-PGM1 soft-x-ray
beamline at BESSY II
in Berlin, Germany, with
the advanced three-axis
ultrahigh-vacuum (UHV)
resonant magnetic re�ec-
tometry (XRMR).

2.6. The experimental setup

The resonant x-ray re�ectivity and x-ray absorption spectroscopy (XAS) mea-
surements were performed at the UE56/2-PGM1 soft-x-ray beam line at BESSY
II in Berlin, Germany, using the advanced three-axis ultrahigh-vacuum re�ec-
tometer described in Ref. [15] (as shown in Fig. 2.16).

Since it is impossible to perform measurements with the electric �eld vector
of the incident light parallel to the surface. Therefore, an absorption mea-
surement is always performed with the sample tilted by an arbitrary angle θ
with respect to the incident photon propagation direction. Fig. 2.17 shows a
sketch of the measurement geometry in the front view (a) and an illustration
of the scattering geometry from the top view (panel (b)). Linearly polarized
soft x-rays (σ and π polarization) tuned to the resonant edges were used to
measure XAS spectra in two collection modes, total electron yield (TEY) and
total �uorescence yield (FY). The TEY mode is collecting the photocurrent
induced by scattered secondary electrons. The idea is as follows: x-rays make
core-hole excitations, the core holes are �lled by Auger decay which is domi-
nant in the soft x-ray region. On the one hand the emitted Auger electrons can
provide a direct measurement of the x-ray absorption intensity which is highly
surface sensitive (less than 10Å in the soft x-ray region), known as Auger elec-
tron yield. On the other hand, the Auger electrons create secondary electrons
which are the main contribution to the TEY intensity.

The measured intensity is proportional to the projected density of states
along this special direction, which includes two contributions, i.e. from the
in-plane component IE‖x and the out-of-plane component IE‖z. They satisfy
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2. Backgrounds and Principles

the following equation [131]:

I(θ) = IE‖x cos2 θ + IE‖z sin2 θ. (2.49)

Particularly, the measurements here are performed with an incident angle
θ=30◦ with σ- and π-polarized light. The intensity along the in-plane direc-
tion IE‖x directly corresponds to the integrated intensity of the σ-polarized
spectrum. However, a correction of the geometry for the intensity along the
out-of-plane direction IE‖z is needed, which is proportional to the unoccupied
hole states along z-direction. Applying Eq.2.49 we obtained:

IE‖x = Iσ

IE‖z =
4

3
(Iπ −

1

4
Iσ), (2.50)

where Iσ and Iπ denote the intensity for σ- and π-polarized absorption spectra,
and IE‖x and IE‖z represent the intensity along the in-plane and the out-of-
plane direction, respectively.
The photocurrent is measured by a Keithley 6715A electrometer. Secondary

electrons created deeper in the sample can hardly escape due to the work

Figure 2.17.: Panel (a): Sketch of the measurement geometry in the front view.
The absorption spectra are collected in both TEY and FY modes
simultaneously. Panel (b): Illustration of the scattering angles
and scattering geometry. The sample is tilted with an angle θ
related to the incoming beam direction. The absorption as well
as the resonant x-ray re�ectivity spectra are measured for both
σ and π polarization. The re�ectivity intensity is collected with
a Hamamatsu GaAsP diode. qz denotes the momentum transfer
during the scattering process along the specular direction.
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function, making TEY a surface sensitive method with a penetration depth
up to a few angstroms in the soft x-ray region. Four contacts are made at the
sample surface to provide a good conductivity. The emitted �uorescence light
is collected by two Hamamatsu GaAsP diodes (G1740 type) which are placed
in front of the samples. Therefore, in an absorption measurement, both TEY
and FY intensities are collected simultaneously. The re�ected beam intensities
were detected with a Hamamatsu GaAsP diode (G1116 type), which is placed
in a direction perpendicular to the propagation direction of the outgoing light.
A second diode is mounted 28mm above the scattering plane to measure the
di�use background from the sample. All intensities were normalized to the
incoming intensity measured with a gold mesh.
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3. Sample preparation and structural

characterization

3.1. Bulk structural properties

In this section, a summary of the bulk properties of the studied compounds
is presented. The composition of the nickel oxide superlattices is denoted as
ANiO3-RXO3 (ANO-RXO) (x//y)× m, with A=La, Pr, R=La, Dy, Gd, Pr
and X=Al, Ga, Sc, where x, y denote the number of unit cells for ANO and
RXO, respectively, with a stacking repetition of m times.

cpc

apc

bpc

a

g

b

Figure 3.1.: Crystal structure of bulk LNO with a trigonal cell and the cubic
unit cell is highlighted by octahedra.
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Fig. 3.1 shows the crystal structure of bulk LNO with a trigonal cell. The
pseudo-cubic unit cell is highlighted by the octahedra. The octahedral distor-
tion away from the ideal cubic pervoskite can be described using the Glazer
notation [43]. Bulk LNO is described by an a−a−a− rotation pattern, where
the corresponding rotation angles are α=β= γ=5.2◦ with respect to the pseu-
docubic apc-, bpc- and cpc- crystal axes [92].
Throughout this thesis, we studied LNO-based and PNO-based oxide super-

lattices. Chapter 4 mainly presents the experimental results of LNO-based su-
perlattices with four consecutive unit cells LNO and equally thick layer stacks
of the di�erent band insulators RXO (i.e. LAO, LaGaO3 (LGO), DyScO3

(DSO) and GdScO3 (GSO)). These samples were grown on di�erent sub-
strates with di�erent lattice constant mismatch compared to bulk LNO, i.e. on
YAlO3 (YAO), LaSrAlO4 (LSAO), SrTiO3 (STO), DSO, and GSO substrates.
Tab. 3.1 summarizes the bulk properties of these compounds1.
Chapter 5 focuses on the experimental results of PNO-PAO superlattices

with x= y=4u.c. grown on di�erent substrates, i.e. on STO, LSAO, LAO and
(LaAlO3)0.3-(Sr2Al0.5Ta0.5O6)0.7 (LSAT). The bulk properties as well as the
lattice constant mismatch compared to bulk PNO are summarized in Tab. 3.2.
The space group of bulk PNO is Pbnm at room temperature; this so-called
GeFeO3-type distortion is found in many related perovskites.

3.2. Deposition method: pulsed laser deposition

Pulsed laser deposition (PLD) is a thin �lm preparation technique which is
commonly used for complex oxides such as high Tc superconductors [17, 32],
piezoelectric and ferroelectric materials [154] etc, with the advantage that the
deposited �lms preserve the cation stoichiometry of the target materials. The
deposition process is as follows: the PLD chamber is pumped to low pressure to
ensure a long mean free path of evaporated particles. A high power laser beam
is focused on the target inside a vacuum chamber. A laser plume is formed due
to the vaporization of atoms from the target material, which travels mostly
in the forward direction. Eventually, the ablated material is deposited as thin
�lms on a substrate. The substrate is always heated to a certain temperature
to provide the su�cient activation energy for atom di�usion as well as to
enable epitaxial growth with a proper reaction between the thin �lm and the
substrate of a certain phase. The optimized growth condition for each material
can be controlled by deposition parameters such as laser pulse, laser energy,

1Note that the density stated in Tab. 3.1- 3.2 is also the one used to calculate the optical
constant (Eq.2.37).

52



3.2. Deposition method: pulsed laser deposition

Compounds lattice constant space
group

apc ρ m

(Å) (Å) (g/cm3) (%)
LNO a=b=5.456,

c=13.143
R3c [144] 3.837 7.268 -

LAO a=b=5.363,
c=13.103

R3c [58] 3.789 6.329 -1.2

LGO a=b=5.531,
c=13.394

R3c [29] 3.889 7.231 +1.3

DSO a=5.554,
b=5.71, c=7.89

Phnm [84] 3.95 6.9 +3.0

GSO a=5.45,
b=5.75, c=7.93

Pbnm [84] 3.96 6.6 +3.2

STO a=b=c=3.905 Pm3m [63] - 5.11 +1.6
LSAO a=b=3.756,

c=12.636
I4/mmm
[126]

- 5.92 -2.4

YAO a=5.18,
b=5.31, c=7.35

Pbnm [118] 3.71 4.88 -3.5

Table 3.1.: Bulk properties for LNO-based superlattices: compounds, bulk
lattice constant, space group, pseudocubic lattice constant, den-
sity ρ as well as the lattice constant mismatch m compared
with bulk pseudo-cubic LNO. Di�erent signs and amplitudes
of the lattice mismatches are induced to the superlattices, i.e.
aY AO <aLSAO <aLNO bulk <aSTO <aDSO <aGSO where a is the
lattice constant of the pseudocubic perovskite structure. The lat-
tice mismatch is calculated by (asub-aLNO)/aLNO.

deposition temperature, background pressure and so on. Monitoring precisely
the growth rate can be realized by re�ection high-energy electron di�raction
(RHEED) where one oscillation period in the di�raction pattern corresponds
to the deposition of one unit cell based on the di�raction and reconstruction of
the surface. However, the PLD system for the nickelate superlattices studied
here is not equipped with RHEED which is very challenging to be combined
with the requirement of a high oxygen pressure for the growth of stoichiometric
LaNiO3.0. Fig. 3.2(b) shows a schematic view of the PLD chamber used for
the nickelate superlattices' deposition. Fig. 3.2(c) is a photograph of the laser
plume. The high laser plume intensity indicates highly ablation rates and
highly energetic particles during the thin �lm deposition process.
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Compounds lattice constant space
group

apc ρ m

(Å) (Å) (g/cm3) (%)
PNO a=5.42,

b=5.38, c=7.63
Pbnm [97] 3.815 6.31 -

PAO a=b=5.327,
c=12.957

R3c [153] 3.737 6.73 -2.4

STO a=b=c=3.905 Pm3m [63] - 5.11 +1.9
LSAO a=b=3.756,

c=12.636
I4/mmm
[126]

- 5.92 -2.0

LSAT a=b=c=3.87 PN3-MZ
[110]

- 6.74 +1.0

LAO a=b=5.363,
c=13.103

R3c [58] 3.789 6.329 -1.0

Table 3.2.: Bulk properties for PNO-based superlattices: compounds, bulk lat-
tice parameters, space group, pseudocubic lattice constant, density
ρ as well as the lattice mismatch m related to the bulk pseudo-
cubic PNO. Similarly, the lattice mismatch is calculated by (asub-
aPNO)/aPNO.

The superlattices are deposited by pulsed laser deposition from stoichiomet-
ric targets of ANO and RXO, using a KrF excimer laser with a deposition rate
of 2Hz and an energy density of 1.6 J/cm2. All materials are deposited in
0.9mbar oxygen atmosphere at 730 ◦C, followed by annealing in 1 bar oxy-
gen atmosphere at 690 ◦C for 30min. Thickness control of the individual
superlattice layer is accomplished by counting laser pulses. A �rst rough es-
timation of the individual grow rates ηANO and ηRXO of ANO and RXO is
obtained from thin �lms grown on di�erent substrates. Taking those grow
rates as starting values, we deposite superlattices with, e.g. (i) (2//4) u.c.
and (ii) (3//3) u.c. structure, where 1 u.c. of ANO (RXO) corresponds to xk
(yk) laser pulses for samples k=(i),(ii). By solving the linear equation sys-
tem xk · ηANO + yk · ηRXO = DSL, where DSL is determined from the x-ray
di�raction feedback of sample k=(i), (ii), we optimized the grow rates for the
deposition of both materials.

Prior to the thin �lm deposition, most of the substrates are chemically
treated to provide a well-de�ned surface for the layer-by-layer deposition. The
surface morphology before and after the thin �lm deposition is characterized
by Atomic Force Microscopy (AFM) as shown in Fig. 3.3. The working prin-
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3.2. Deposition method: pulsed laser deposition

ciple of AFM with very high-resolution images at nano-scales can be simply
summarized as follows: it works essentially as a scanning probe microscope,
where the cantilever with an atomically sharp tip is scanned over the sample
surface. During the scan, the tip moves up and down following the contour of
the surface, di�erent de�ections of the cantilever are expected. The de�ection
is measured through a laser beam focused on the front side of the cantilever
and converts it into an array of position-sensitive photodiodes. If the measured
de�ection is di�erent from the expected value, the feedback system transfers
this information to a piezoelectric material connected to the cantilever which
then adjusts the relative height of the cantilever. The tip can scan at a con-
stant height or at a constant force mode. However, in a constant height mode,
the tip can be easily damaged due to surface collision. Hence, in most cases,
a constant force with tunable tip-to-sample distances is used. The cantilever
position and its oscillation can be detected as a function of the lateral position
of the sample which re�ects the information of the sample surface.

STO (miscut angle< 0.1 ◦) is treated using a HF solution followed by an-
nealing at 900 ◦C for 1 hour to obtain the TiO2-termination and a good surface
recombination [74]. AFM images, taken after the termination, reveal a step
height of 4-5Å and a terrace width of 300-500nm (Fig. 3.3(b)-(c)(left)). This
surface morphology provides an optimized surface for the growth of super-

Figure 3.2.: (a) Sketch of the PLD system. Figure adapted from the website at
the research group of Prof. R. Schwarz, I.S.T., Lisboa, Portugal.
(b) Schematic view of the inner part of the PLD chamber ( c©
Max-Planck-Institute for Solid-State-Research ). Photograph of
the laser plume (c) when LAO and (d) when LNO is deposited.
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Figure 3.3: Ex-situ AFM pictures of
the specimen surfaces be-
fore and after deposition
on various substrates for
a) LNO-DSO on DSO, b)
LNO-DSO on STO and b)
LNO-LGO on STO. For
all the three samples the
surface morphology of the
substrate is preserved af-
ter the deposition of the
superlattice.

a) LNO-DSO-BE20 (4 //4) x 8 on DSO

DSO (110) surface 
(annealed) before deposition

after deposition

1 µm 1 µm

b) LNO-DSO-BE19 (4 //4) x 8 on STO

STO (001) surface (term.+ 
annealed) before deposition

after deposition

1 µm 1 µm

c) LNO-LGO-BE16 (4 //4) x 8 on STO

STO (001) surface (term.+ 
annealed) before deposition

after deposition

1 µm 1 µm

x 3

x 3

x 3

lattices with atomically �at interfaces. The LSAO substrates are not further
treated and hence the surface termination is unknown. However, the big out-
of-plane lattice constant with both LaO and SrO layers, between alternating
AlO2 layers might cause a more complex substrate-superlattice interface as
indicated from the cross-sectional TEM studies [27, 28]. The DSO substrate
was annealed to obtain surface rearrangement before the deposition of super-
lattices. The surface morphology shows ∼4Å high terraces, but the termina-
tion is unclear (Fig. 3.3(a)(left)). AFM images indicate that the superlattices
preserve the surface morphology of the substrate after the deposition (right
panels of Fig 3.3). The deposited LNO-RXO surfaces show small islands which
indicate a layer-by-layer epitaxial growth. The island diameters are roughly a)
300Å, b) 500Å, and c) 300Å for di�erent specimens (see insets in Fig. 3.3), in
good agreement with the structural coherence length determined from x-ray
di�raction [27, 34].
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3.3. Structural characterization

3.3.1. X-ray di�raction experimental setup

X-ray di�raction (XRD) is a powerful tool to check the crystal quality, to
verify the chemical composition, and the preferred crystal orientation, as well
as to determine the atomic structure of a crystal. The di�raction experiments
throughout this thesis were performed on a four-circle di�ractometer with four
tunable angles ω, 2θ, χ, and φ, as indicated in Fig. 3.4. The experiments are
done in a φ-�xed mode, since the crystal orientation is su�ciently determined
by three degrees of freedom. The di�raction intensity is collected by a Mythen
detector (line detector), which consists of a linear array of small n-doped Si
microstrip sensors.
A coupled ω−2θ scan is used to measure the Bragg di�raction angles corre-

sponding to di�erent di�raction planes. The scans along the specular direction
([00l] in Fig. 3.4(b)) of thin �lms show characteristic thickness fringes, which
arise from the interference of x-ray waves di�racted from the thin �lm inter-
face and the surface of substrate. From the period of the thickness fringes,
the total thickness of thin �lm can be read o�. The additional periodicity of
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Figure 3.4.: (a)Sketch of a 4-circle x-ray di�ractometer with four tunable an-
gles: ω, 2θ, χ, and φ. (b) A sketch of how di�erent angular scans
movements give rise to 2D maps in reciprocal space using the
mythen detector along the specular [00l] and the o� specular [h0l]
directions.
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3. Sample preparation and structural characterization

a superlattice gives rise to satellite peaks around the main peak (i.e. (00l)
re�ection). From the position of the satellite peaks, the superlattice bilayer
thickness is obtained.

Reciprocal space mapping (RSM) allows one to measure a two dimensional
di�raction pattern in k-space (pink area in Fig. 3.4(b)). In principle, two recip-
rocal space points along di�erent crystal directions should be enough to de�ne
the whole reciprocal space for a crystal with tetragonal or cubic symmetry. A
more accurate de�nition of the reciprocal space can be achieved by aligning
more reciprocal space points along the specular and the o�-specular directions
(better statistics). As shown in Fig. 3.4(b), the o�-specular reciprocal lattice
point could be reached by either rotating the scattering plane from (h0l) to
(0kl) plane by χ (which is perpendicular to the sketched scattering plane) or
staying in (h0l) plane with the tilting of χ compensated by ω ((ω − χ) or
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Figure 3.5.: High resolution x-ray di�raction scans along the specular rod (00l)
of the investigated samples.
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3.3. Structural characterization

a) LNO-LAO on LSAO b) LNO-LAO on YAO c) LNO-DSO on STO d) LNO-LGO on STO e) LNO-DSO on DSO f) LNO-GSO on GSO

Figure 3.6.: Reciprocal space maps around the cubic (103) peak position for
(4//4) u.c. superlattices (a) LNO-LAO-BE110 on LSAO, (b) LNO-
LAO-BE27 on STO, (c) LNO-DSO-BE19 on STO, (d) LNO-LGO-
BE16 on STO, (e) LNO-DSO-BE20 on DSO, and (f) LNO-GSO-
BE7 on GSO.

(ω + χ)). Both approaches basically provide the same result as long as the
crystal has a cubic or tetragonal symmetry. From the reciprocal lattice points
along the o�-specular direction, one can obtain the in-plane lattice constant,
which allows a direct evaluation of the strain state, i.e. whether the thin �lms
or superlattices are fully strained to the substrate (with identical in-place lat-
tice constant) or relaxed (thin �lm with the same in-plane lattice constant
as the bulk material) or partially relaxed (the reciprocal space pattern lies
between the fully strained line and the fully relaxed line).

3.3.2. Structural properties of LaNiO3-RXO3 superlattices

In this study, high resolution XRD has been used to test the quality of the
LNO-based superlattices and to provide structural information such as the
lattice constants, the periodicity as well as the thickness of the superlattices.
Fig. 3.5 shows the XRD scans along the specular rod (with Cu Kα radiation,
i.e. E=8047 eV ) for LNO-RXO (4 u.c.//4 u.c.) superlattices. The di�raction
intensity is plotted as a function of 1/d. Symmetrically around the SL(001)
peaks, we observe superlattice satellites, labeled with SL+1 and SL−1 in each
panel and thickness fringes in-between. From the position of the satellites we
obtain the bilayer thickness dbi and from the periodicity of the thickness fringes
the total thickness D is read o�. Figs. 3.6 shows the o�-specular RSMs around
the (103) re�ection, from which we obtained the average in-plane and out-of-
plane lattice constant aSL and cSL, respectively, all the values are tabulated in
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3. Sample preparation and structural characterization

Composition Sub. dbi D aSL cSL R
(Å) (Å) (Å) (Å)

LNO-LAO LSAO 30.1±0.6 314±8 3.756(5) 3.813(5) 0%
LNO-LAO YAO 30.5±0.5 243±6 3.835(5) 3.790(3) 100%
LNO-LAO STO 30.2±0.5 247±8 3.853(2) 3.779(3) 54%
LNO-LGO STO 30.5±0.5 245±5 3.902(2) 3.829(1) 0%
LNO-DSO DSO 31.0±0.5 244±10 3.949(2) 3.870(2) 0%
LNO-DSO STO 30±1 241±10 3.905(2) 3.870(10) 0%
LNO-GSO GSO 30.6±0.4 248±9 3.964(3) 3.881(3) 0%

Table 3.3.: Superlattice composition, substrate material, bilayer thickness dbi,
total thickness D, and lattice parameter aSL, and cSL of the in-
vestigated LNO-based heterostructures. The averaged LNO-RXO
in-plane aSL and out-of-plane cSL lattice constants have been de-
termined by hard x-ray reciprocal space mapping around the cubic
(013) re�ex positions and scans along the specular rod (Fig. 3.5).
Note that the lattice constants have been determined with respect
to the substrate lattice parameters and by assuming a tetragonal
crystal structure of the overlayer. The last column shows the relax-
ation R in percentage, where 0% corresponds to a "fully-strained"
state and 100% corresponds to a "fully-relaxed" state related to
the substrate.

Tab. 3.3.2. In same case we tried to get better values by taking into account
the (002) and (203) re�ections as well. The error bars of cSL and aSL are
obtained by evaluating (001), (002), (103), (203) re�ections and (103), (203)
re�ections, respectively. The layer re�ections with respect to the fully strained
case (black line) are marked in each map, providing the relaxation information
of the superlattices. Note that the superlattices are fully strained, showing the
same in-plane lattice constant as the substrate. The only exception is LNO-
LAO grown on YAO substrate which is fully relaxed.

3.3.3. LaNiO3-DyScO3 superlattices: the e�ect of cation R on

orbital occupancy

The e�ect of cation R in orbital occupancy can be directly evaluated by care-
fully designing the superlattice con�gurations, as explained in Sec. 4.4 in detail.
For this purpose, two superlattices are studied:
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Figure 3.7.: High resolution x-ray di�raction scans along the specular direction
of LNO-DSO superlattices with di�erent stacking sequences, as
written in each panel.

(a) LNO-DSO (4 u.c.//4 u.c.)×8 grown on DSO substrate;
(b) LNO-DSO (2 u.c.//4 u.c.)×10 grown on DSO substrate.

bpccpc

a

aor

bor

0 a*(b*)

(103)

b(103)
(013)

(013)

(023)

(023)

c*(a) (b)

Figure 3.8.: Illustration of the relationship between orthorhombic and pseu-
docubic perovskite unit cells. Panel (a): aor and bor denote the
orthorhombic cell frame, bpc and cpc represent the the pseudocubic
unit cell, which is along the <110> and <11̄0> directions in the
orthorhombic cell. Panel (b) sketches the crystallographic struc-
ture in the reciprocal lattice of a pseudocubic unit cell. The (103)
and (1̄03) re�ections show identical Qz values, whereas the (013)
and (01̄3) re�ections show di�erent Qz values, which is character-
istic of the orthorhombic distortion.
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dle) and (013) (right) re�ections of sample (a): LNO-DSO
(4 u.c.//4 u.c.)×8 superlattice grown on DSO substrate in a pseu-
docubic reciprocal unit cell.

Fig. 3.7 shows the XRD patterns for LNO-DSO superlattices along the spec-
ular direction. The average lattice constant cSL, the bilayer thickness dbi as
well as the total thickness D are shown in the legend.
The DSO substrate has an orthorhombic structure (aor 6= bor 6= cor). The

orthorhombic distortion can be described by a pseudocubic unit cell with a tilt
angle β, denoting the deviation of the angle between the pseudocubic (010) and
(001) planes (or between (110)or and (11̄0)or plane in the orthorhombic unit
cell) from 90◦ (Fig. 3.8(a)). The reciprocal lattice points in a pseudocubic
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Figure 3.10.: Reciprocal space maps of sample (b) LNO-DSO (2 u.c.//4 u.c.)
around (01̄3) (left), (1̄03)/(103) (middle) and (013) (right) re-
�ections in a pseudocubic reciprocal unit cell.
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3.3. Structural characterization

unit cell taking into account the orthorhombic distortion are illustrated in
Fig. 3.8(b). Note that the reciprocal lattice points show identical Qz values
along (h0l) and (h̄0l) planes, whereas di�erent Qz values exist along (0kl)
and (0k̄l) planes, such as the (013) and (01̄3) re�exes as shown in Fig. 3.8.
A similar crystallographic structure of the NdGaO3(110) substrate has been
reported in Ref. [38]. The tilt angle β for the orthorhombic distortion can be
obtained from RSM measurements through: β = arctan ∆Qz

2Qx
.

Figs. 3.9 and Figs. 3.10 show reciprocal space maps around the {013} family.
Bulk DSO in a pseudocubic unit cell exhibits a lattice constant cpc=3.944
Å and β ∼ 2.8◦. The superlattices follow the distortion of the substrate, but
with clearly smaller distortion angles than the substrate. Slightly di�erent tilt
angles, i.e. β=0.84◦ and β=0.97◦ were estimated from the read-o� positons
of the reciprocal lattice points for sample a and sample b, respectively.

3.3.4. LaNiO3-LaGaO3 superlattices: a probe of octahedral

distortions

Chapter 6 discusses the layer resolved orbital pro�les and their sensitivity to
di�erent bonding environments, i.e. di�erent octahedral rotation patterns in
LNO layers. Two samples are under investigation particularly:
Sample A: LNO-LGO (1 u.c.//3 u.c.) × 16 on STO substrate;
Sample B: LNO-LGO (1 u.c.//4 u.c.) × 13 on STO substrate.
The samples are prepared with approximately the same total thickness.

Good sample qualities are veri�ed by hard x-ray di�raction measurements as
shown in Fig. 3.11, where both superlattices show satellite peaks and thickness
fringes in between. The superlattice structural parameters including dbi and
D as well as the average out-of-plane lattice constant cSL are shown in the
corresponding legend.

3.3.5. Structural properties of PrNiO3-PrAlO3 superlattices

Similar experiments have been performed also for PNO-PAO superlattices on
di�erent substrates. Fig. 3.12(a) shows the XRD scans along the specular
direction and Fig. 3.12(b)-(e) show the corresponding reciprocal space maps
around the (103) re�ection. The superlattice structural parameters, i.e. dbi

and D, as well as the crystal lattice constants aSL and cSL assuming a tetrag-
onal crystal symmetry are summarized in Tab. 3.3.5. For superlattices grown
on compressive strain inducing substrates, they show the same aSL as the
substrate indicating a fully strained state. However, the superlattices are par-
tially relaxed when grown on LSAT and STO substrate. The relaxation can
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Figure 3.11.: High resolution x-ray di�raction measurements along the
specular (00l) direction for superlattice A: LNO-LGO
(1 u.c.//3 u.c.)×16 on STO substrate (top panel) and su-
perlattice B: LNO-LGO (1 u.c.//4 u.c.)×13 grown on STO
substrate (bottom panel).

be de�ned as:

R =
astrL − as
arelL − as

, (3.1)

Composition Sub. dbi D aSL cSL R
(Å) (Å) (Å) (Å)

PNO-PAO STO 31±1 241±6 3.831(2) 3.766(3) 57%
PNO-PAO LSAT 30±0.5 237±8 3.847(3) 3.75(3) 24%
PNO-PAO LAO 31.2±0.5 251±9 3.79(1) 3.788(3) 0%
PNO-PAO LSAO 30.8±0.3 260±8 3.755(3) 3.823(3) 0%

Table 3.4.: Superlattice composition, substrate material, bilayer thickness dbi,
total thickness D, and lattice parameter aSL, and cSL of the investi-
gated nickelate heterostructures. The averaged PNO-PAO in-plane
aSL and out-of-plane cSL lattice constants have been determined by
hard x-ray reciprocal space mapping around the cubic (013) re�ex
positions and scans along the specular rod (Fig. 3.12(b)-(d)).
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3.4. Electrical transport measurements

Figure 3.12.: High resolution x-ray di�raction scans for PNO-PAO superlat-
tices. Panel (a) shows the XRD spectra along the specular rod
(00l) for PNO-PAO (4 u.c.//4 u.c.) grown on LSAO, LAO, LSAT
as well as on STO substrate. Panel (b)-(e) shows the correspond-
ing reciprocal space maps around the (103) re�ex. Note that for
the superlattices grown on tensile strain induced substrates, the
thin �lms are partially relaxed as discussed in the main text.

where astrL and arelL denote the in-plane lattice constant of the strained and the
relaxed layer, respectively. The parameter as represents the in-plane lattice
constant of the substrate. Here, we take arelL =3.776Å (the averaged in-plane
lattice constant of PNO and PAO layers), astrL is the measured averaged lattice
constant of the superlattice. We obtain a relaxation of 24% and 57% for
the LSAT substrate (as=3.87Å ) and the STO substrate (as=3.905Å ),
respectively.

3.4. Electrical transport measurements

The electrical resistance measurements were performed using a standard four
probe method. For this measurement four contacts were made using silver
paste and gold wires, known as Van-der Pauw method. Fig. 3.13(a) shows
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3. Sample preparation and structural characterization

(a) (b)

Figure 3.13.: Temperature dependent dc resistivity measurements for
(a): LNO-RXO superlattices and for (b): PNO-PAO superlat-
tices, determined by the Van der Pauw method.

the temperature dependent dc resistivity (in units of Ω ·m) of LNO-RXO su-
perlattices. The resistivity is calculated by taking the LNO layer thickness as
approximately half of the total thickness D obtained from x-ray di�raction,
assuming that the conductivity is determined by the "metallic" LNO layers.
A careful reader may notice that some of the superlattices show a minimum
in resistivity followed by a small upturn at low temperatures (T <30K). This
minimum resistivity may be related to quantum interference due to electron-
electron interaction and weak localization [39, 80] or magnetic scattering re-
lated to the Kondo e�ect [91].
Similarly, Fig. 3.13(b) represents the temperature dependent dc resistivity of

PNO-PAO superlattices grown on substrates that induce di�erent tensile and
compressive strain. The superlattices under tensile strain (grown on STO and
LSAT substrates) show a metal-insulator transition, whereas this behavior is
suppressed for the PNO-PAO superlattice deposited on a compressive strain
inducing LSAO substrate. The hysteresis indicates a �rst order transition as
discussed in Ref. [60].
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4. Orbital re�ectometry on LaNiO3-based

heterostructures

In this chapter, we report a combined analysis of x-ray absorption and res-
onant re�ectivity data designed to obtain the orbital polarization pro�les of
LNO-based superlattices with (4 u.c.//4 u.c.) stacking sequence. This super-
lattice geometry allowed us to partly separate the in�uence of epitaxial strain
from interfacial e�ects controlled by the chemical composition of the insulat-
ing blocking layers. Our quantitative analysis revealed orbital polarizations
up to 25%. We further show that strain is the most e�ective control param-
eter, whereas the in�uence of the chemical composition of the blocking layers
is comparatively small.
Since our dc resistivity measurements show that superlattices with 4 u.c.-

thick LNO layer stacks exhibit a metallic temperature dependence, we conclude
that this do not exhibit any temperature-induced changes of the electronic and
magnetic structure (Fig. 3.13, the same as prior studies in Refs. [14, 33]), we
present room-temperature data.

4.1. X-ray linear dichroism

We �rst discuss the Ni L edge XAS data shown in Fig. 4.1. Except for the
LNO-LAO on LSAO superlattice (Fig. 4.1(a)), the spectra of all superlattices
clearly show a polarization dependence, which we attribute to natural linear
dichroism. The magnitude of the observed dichroism varies substantially be-
tween superlattices of di�erent composition and can be clearly seen in the
normalized di�erence spectra (lower panels in Fig. 4.1(a-f)). In particular we
point out that the observed dichroism in LNO-RScO superlattices is substan-
tial, having in mind that even in the case of full x2-y2 orbital polarization in
the atomic limit the integrated intensity of the spectrum for x polarization is
about 60% of that of the z polarization. 1 Although the spectra obtained in

1Compared to cuprates with only one hole and an almost 100% di�erence between the
intensity for x and z polarized light, in nickelates with 3 holes, even in the case of full
dx2−y2 orbital polarization, the intensity of the spectrum for x polarization is about
60% of that of the z polarization.
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Figure 4.1.: XAS spectra (FY shifted by +1.5 for clarity) measured with
linearly polarized light. Dotted grey lines show the results of
Lorentzian �ts to the tail of the La M4 lines. The normalized
di�erence spectra (Ix(E)-Iz(E))/( 1

3
(2Ix +Iz)) are shown directly

below the corresponding spectra, together with the results of the
cluster calculation. (a) LNO-LAO on LSAO; (b) LNO-LAO on
YAO, (c) LNO-LAO on STO (Ref. [8]), (d) LNO-DSO on STO,
(e) LNO-LGO on STO, (f) LNO-DSO on DSO , and (g) LNO-GSO
on GSO .

TEY and FY detection modes di�er in spectral weight and line shape, their
polarization dependency agree remarkably well (lower panels in Fig. 4.1(a-f)).
This con�rms that the observed linear dichroism is robust and not related to
surface e�ects.
In order to quantitatively analyze the observed dichroism, we applied the

sum rule for linear dichroism [8, 139], which relates the ratio of holes in the
Ni eg orbitals to the energy-integrated XAS intensities across the Ni L-edge
Ix,z =

∫
L3,2

Ix,z(E)dE for photons with in-plane (x) and out-of-plane (z)
polarization, respectively:

X =
h3z2−r2

hx2−y2
=

3Iz
4Ix − Iz

. (4.1)

Here hx2−y2 and h3z2−r2 are the hole occupation numbers of orbitals with
x2 − y2 and 3z2 − r2 symmetry.
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Figure 4.2.: Absorption spectra (TEY) measured with linear polarized light
before and after the subtraction of the La M4 line for all super-
lattices (see the labels in panel (a)-(f)). The dotted grey line is
a Lorentzian �t to La M4 line and the black dotted line shows a
measured reference XAS spectrum of a LaCoO3 thin �lm. The
XAS spectra after subtraction are enlarged by a factor of 5 and
shifted by +6 (subtraction of La M4 lines from LaCoO3) and +9
(subtraction of the Lorentzian �ts of La M4 lines) for clarify.

Before proceeding to describe the analysis of the linear dichroism, we add
a remark about data processing. Since the La M4 line partially overlaps the
Ni L3 contribution, it has to be subtracted before integrating the Ni XAS
spectra. We carefully estimated the error associated with this subtraction.
The results presented in the following were obtained by subtracting Lorentzian
line shapes from the TEY and FY data (dashed lines in Fig. 4.1). Because
there is a substantial di�erence in the La M edge line shape measured in
TEY and FY, di�erent Lorentzians were subtracted from these spectra. Note,
however, that there is no linear dichroism at the La M -edge, so that identical
Lorentzians can be subtracted for light polarization parallel to x and z. To
further crosscheck our results, we compared the sum rule results obtained by
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4. Orbital re�ectometry on LaNiO3-based heterostructures

Figure 4.3: Hole ratio Xav obtained
via the sum rule Eq. 4.1
vs the in-plane lattice con-
stant aSL of LNO-LAO on
LSAO (N), LNO-LAO on
YAO (�), LNO-LAO on
STO (Ref. [8]; F), LNO-
DSO on STO (�), LNO-
LGO on STO (M), LNO-
DSO on DSO (�), and
LNO-GSO on GSO (©).
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integrating across the Ni L3,2 lines with those obtained by integrating only
across the Ni L2 region, which is not a�ected by the La M4-line subtraction.
Again we found that both results are identical within the given error bars. In
addition the La M4 contribution has been subtracted using a TEY reference
spectrum measured on a LaCoO3 �lm, in which the La lines are well separated
(Fig. 4.2). In conclusion, we found that the error made by these di�erent
subtractions is small and lies within the error bars.
In this way, the spatially averaged hole ratio Xav was calculated from the

average of values determined from the sum rule analysis of TEY and FY XAS
data. This quantity is shown in each panel of Fig. 4.1(a)-(f). In Fig. 4.3, we
show Xav as a function of the measured in-plane lattice parameter aSL (see
structural characterization Fig. 3.5 in Sec. 3.3.2). Xav increases monotonically
with increasing aSL. We will further discuss this hereafter.

4.2. Resonant x-ray re�ectivity and constant qz measurements

In an e�ort to elucidate the in�uences of strain and interfacial chemistry on
the orbital occupation, we have determined layer-resolved pro�les inside the
LNO block. For this purpose, the intensity of the specularly re�ected beam
was measured as a function of momentum transfer (qz) and photon energy.
The principle of layer-resolved orbital re�ectometry is summarized as fol-

lows. According to the optical theorem, the x-ray absorption intensity is
proportional to the imaginary part of the scattering factor, for instance, in
superlattices with four unit cell LNO with outer layers B and inner layers A
(inset of Fig. 4.11), the absorption intensity IXAS is expressed as:
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IXAS ∝ Im|ε∗σε|

=
1

ω
Im|ε∗(fA + fB)ε|. (4.2)

As mentioned before, the hole ratio of the averaged four unit cell of LNO
layers can be obtained from the polarization dependent linear dichroism. This
analysis of the scattering intensity allows to determine a layer resolved orbital
pro�le.
In the �rst step of our analysis, a structural model was obtained from �ts

of models in Parratt's recursive approach with nine independent parameters
(as illustrated in Fig. 4.4) to the qz-dependent non-resonant re�ectivity using
the re�ectivity �tting tool REMAGX [90]. To improve the �ts,we allowed the
layer directly adjacent to the substrate and the top layer at the surface to

sub.

bottom
s

t

layer 2
s[2]

t

layer 3

layer n-2

layer n-1

top layer n

for i = 5, n-1, 2  do
t [i] = t [3]
s [i] = s [3]
end

for j = 4, n-2, 2  do
t [j] = t [2]
s [j] = s [2]                                                                           
end

[1]

[1]

[2]

s[3]

t[3]

s[n-2],

t [n-2]

s[n-1],

t [n-1]

s[n],

t [n]

s[0]

Figure 4.4.: Illustration of the structural �tting parameters of LNO-RXO su-
perlattices using Parratt's recursive approach. There are nine in-
dependent parameters in total, i.e. substrate roughness σ[0] with
thickness∞, the bottom layer 1 with roughness σ[1] and thickness
t[1], the top layer n with di�erent σ[n], t[n], as well as σ[2], t[2]
for layer 2 and σ[3], t[3] for layer 3. The �tting parameters of the
rest layers are synchronized to layer 2 and layer 3 via the script
given on the right, which is executed individually for every data
point.
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have di�erent thickness and roughness. Within the error, for all superlattices,
our �ts con�rm the expected (4 u.c.//4 u.c.) structure with interface rough-
nesses around 1 u.c. (see Tab. 4.1). The individual layer thickness as well as
the roughness are summarized in Tab. 4.1. In the following, the structural
parameters were �xed for the simulation of the dichroic re�ectivity. While
for all other superlattices we used the measured linearly polarized XAS data
to construct the optical constants, for the LNO-LAO on LSAO superlattice,
these data were not available since Pav∼ 0. In order to construct the optical
constant, we add the di�erence from cluster calculations to the averaged ex-
perimental XAS data, i.e. XAS+ 1

2
LDic for x and XAS - 1

2
LDic for z polarized

light, respectively. The results of �ts to the non-resonant (E=8048 eV ) and
resonant (Ni L2) qz-dependent re�ectivity data are shown in Fig. 4.5.
The constant qz measurements is performed with �xed momentum transfer

along the specular direction by varying the incident beam energy as well as
the scattering angle simultaneously. A careful selection of the momentum
transfer qz can make the total scattering factor quite sensitive to the local
charge scattering or magnetic scattering. For instance, for the superlattice
structure of (4 u.c.//4 u.c.) LNO-RXO investigated here, the scattering factor
close to SL(002) peak re�ected from such a symmetric superlattice is sensitive
to modulations within the LNO layer stack [8]: F002 =

∑
i fi exp(iqz) =

(1− i)(fB − fA) (Eq. 2.32).
Fig. 4.6 shows the energy- and polarization-dependent resonant re�ectivity

of various samples with �xed momentum transfer qz close to the (002) super-
lattice re�ex. Note that the actual qz values given in the caption of Fig. 4.5
vary slightly for the di�erent superlattices because of their (small) structural
di�erences. Using the numerical routines [90], we computed the normalized
dichroic di�erence spectra for models with di�erent orbital occupation in the
inner layers A and outer layers B based on the Matrix formulism. The charge
anisotropy for outer and inner layer is introduced by a tetragonal tensor with
the form:

εA(B) =

 εxxA(B) 0 0

0 εxxA(B) 0

0 0 εzzA(B)

 .

The modulation is parameterized by:

(εA(B))
jj = (1∓ α)εjj ± αεcubic, (jj = xx, zz), α ∈ [0, 1] (4.3)

with εcubic = 1/3(2εxx + εzz) denotes the cubic case. In order to model the
constant qz scan, we varied α between 0 and 1 to change the dielectric con-
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Figure 4.5.: Re�ectivity as a function of qz for the (a) LNO-LAO on LSAO,
(b) LNO-DSO on STO, (c) LNO-LGO on STO, (d) LNO-DSO on
DSO, and (e) LNO-GSO on GSO superlattice. The qz values at
(002), chosen for the constant-qz shown in Fig. 4.6, are marked
by green vertical lines and correspond to values of (a) 0.3880Å−1,
(b) 0.4146Å−1, (c) 0.4120Å−1, (d) 0.4035Å−1, (e) 0.4055Å−1.

stants of layers A and B, i.e. the relative orbital occupation of layer A and B.
We changed the di�erent input �les of the optical constant until we found the
best agreement with the normalized di�erent spectra from constant qz mea-
surements, with the constraint that the total hole ratio measured by XAS is
constant. Taking the example of LNO-DSO superlattice grown on DSO sub-
strate with Xav =1.135 and assume α=0. In this case, there is no di�erence
between layer A and B, i.e. a homogenous distribution across all LNO layers
with a preferred hole occupation of the d3z2−r2 orbital. Our result α=0.15 ob-
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Figure 4.6.: Experimental and simulated constant-qz energy scans at the (002)
superlattice peak of (a) LNO-LAO on LSAO, (b) LNO-DSO on
STO, (c) LNO-LGO on STO, (d) LNO-DSO on DSO, and (e)
LNO-GSO on GSO. The experimentally obtained normalized dif-
ference (Iσ(E)-Iπ(E))/(Iσ(E)+Iπ(E)) is shown directly below the
corresponding spectrum together with the simulated one. The ob-
tained layer-resolved orbital polarizations within the LNO layer
stack, PB (interface layer) and PA (inner layers), are stated in
each panel.

tained from the re�ectivity simulation yields XB =Xav+(1+α)(Xav-1)= 1.155
and XA =Xav+(1-α)(Xav-1)= 1.115. It is obvious that the extreme case of
α=1 results in XB =1.27 and XA =1, implying that the dichroism arises from
the interface B layers only. The variation of the optical constant β pro�les
with di�erent modulation parameter α is shown in Fig. 4.7. The dark black
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Composition Sub. structure α Pav

(u.c.) (%)
LNO-LAO LSAO0.5 4.40.7[(4.10.6/4.20.7)x9]4.70.8 0.25 0 ± 2
LNO-LAO YAO (4//4)x8 3 ± 2
LNO-DSO STO0.8 5.00.8[(3.91.3/4.01.7)x7]3.41.3 0.05 10 ± 1
LNO-LGO STO0.6 4.00.5[(4.00.9/4.20.8)x7]5.11.6 0.20 12 ± 2
LNO-DSO DSO0.6 4.71.4[(4.21.4/3.90.7)x7]3.61.3 0.15 19 ± 1
LNO-GSO GSO0.8 3.70.6[(4.00.6/3.90.8)x7]4.41.2 0 25 ± 2

Table 4.1.: Superlattice composition and structure, substrate material, the
modulation α from dichroic re�ectivity modeling and the aver-
aged orbital polarizations of the investigated nickel oxide het-
erostructures. The superlattice structure obtained from �ts to
the re�ectivity (see text) is given in the following nomenclature:
dLNObottomσ [(dLNOσ /dRXOσ )xM]dRXOtopσ with thickness d and rough-
ness σ in u.c. calculated by dividing with cSL. The roughness of
the substrate is given in the corresponding column as an index, i.e.
RXOσ. For the LNO-LAO on YAO no re�ectivity measurements
were performed.

line corresponds to cubic symmetry. As a consequence of an increasing mod-
ulation α for z-polarized light, β of layer A is decreasing and increasing for
layer B. The opposite case occurs for x-polarized light, resulting in a small
linear dichroism of layer A and a large linear dichroism of layer B. The values
of the modulation α for di�erent samples are given in each panel of Fig. 4.6
(also summarized in Tab. 4.1).
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Figure 4.7.: The varying of the imaginary part β of a refraction index with
di�erent modulation α for (a) layer A and (b) layer B in di�erent
polarization.

75



4. Orbital re�ectometry on LaNiO3-based heterostructures

4.3. Discussion

4.3.1. Linear orbital-lattice coupling

XAS is a well-established technique for studying the unoccupied site- and
symmetry-projected electronic density of states of solids, providing the pos-
sibility to compare experimental results with single-particle band-structure
calculations, often obtained using DFT. In the past, it was demonstrated that
for a satisfactory description of the observed �ne structure of transition-metal
L-edges, it is important to include many-body e�ects, in particular the in-
teraction of the 2p core hole created in the absorption process with electrons
in the partially �lled 3d �nal state. For rather localized electrons (insulating
material), a reasonable description can be obtained by a cluster calculation
based on many body con�guration interaction, which takes into account the
full multiplet e�ects [26].
Hence, as a further step in the analysis of the spectroscopic data, we per-
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Figure 4.8.: (Top) Polarization-dependent XAS spectra (TEY and FY) after
subtraction of the La M4 line (Lorentzian �t) together with the
spectra obtained from our cluster calculation (γ=0.6, δ=0.4, and
∆eg =300meV ). All spectra are normalized by their polarization-
averaged integral [A=(2Ix+Iz)/3]. (Bottom) Normalized di�er-
ence spectra [Ix(E)-Iz(E)]/A. The results of the cluster calcula-
tion are shown for γ=0.6, δ=0.4, and di�erent values of ∆eg,
ranging from 0 to 300meV .
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Figure 4.9: Crystal �eld splitting ∆eg
obtained from the clus-
ter calculation vs the in-
plane lattice constant aSL
of LNO-LAO on LSAO
(N), LNO-LAO on YAO
(�), LNO-LAO on STO
(Ref. [8]; F), LNO-DSO
on STO (�), LNO-LGO
on STO (M), LNO-DSO on
DSO (�), and LNO-GSO on
GSO (©).

formed a cluster calculation for a Ni 3d7 ion in a tetragonal ligand �eld of six
oxygen ions, in which both the orbital polarization and the energy di�erence
between the Ni eg orbitals, ∆eg, were adjusted to maximize agreement with
the dichroic di�erence spectra. Additional parameters are radial integrals,
Slater integrals, and spin-orbit coupling constants, which were obtained by
atomic Hartree-Fock calculations, as well as 10Dq, the hybridization strength
pdσ and pdπ, and the charge-transfer energy ∆3+. These parameters used
for the cluster calculations are summarized in Tab. 2.1. The measured spectra
were then described as linear superpositions of spectra, Ix

2−y2
x,z (E), I3z2−r2

x,z (E)
calculated for 100% occupation of either the x2 − y2 or the 3z2 − r2 orbital
and for polarization of the incoming light parallel to the x and z directions,
respectively. For instance, the absorption spectra for z-polarized light is ob-
tained by Iz(E) = γIx

2−y2
z (E) + δI3z2−r2

z (E). The admixture coe�cients (γ
and δ with γ+δ=1) and ∆eg were then varied until the best agreement with
the experimental linear-dichroic di�erence spectra was found. As shown in
the bottom panel of Fig. 4.8, the derivative-like up-and-down line shape in the
normalized di�erent curve of LNO-DSO superlattice grown on DSO substrate
can only be reproduced by increasing the crystal �eld splitting ∆eg.
Since the cluster calculation is a local approach and the LNO layers in all

superlattices studied here are metallic, it is not surprising that the line shapes
of the spectra are not exactly reproduced (see Fig. 4.8 and the discussion
in Ref. [8]). We emphasize, however, that the normalized dichroic di�erence
spectra [Ix(E)-Iz(E)]/A ([A=(2Ix+Iz)/3]) are almost independent of the in-
dividual line shape and describe our experimental data very well (see Fig. 4.1).
While a preferred orbital occupation of one of the eg orbitals is seen as an inten-
sity di�erence between Ix(E) and Iz(E) spectra, the e�ect of the crystal-�eld
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splitting manifests itself as an energy shift between these spectra, which re-
sults in a derivative-like line shape of the di�erence spectra (lower panels in
Figs. 4.1(a)-(f)). At this point, we emphasize that for the determination of or-
bital polarizations from energy integrals of the XAS spectra across the full Ni
L-edge via Eq. 4.1, a detailed understanding of the XAS �ne structure is not
necessary. While the e�ect of the core hole potential enters the Hamiltonian
of the system, the sum rule is independent of it, and therefore Xav re�ects the
polarization dependence of the d-projected unoccupied density of states.
The variation of ∆eg as a function of the measured in-plane lattice constant

aSL Fig. 4.9 is consistent with the behavior of Xav (see Fig. 4.3). Whereas
the value for the LNO-LAO superlattice under compressive strain (∆eg ≈ -
100meV ) agrees with the one reported earlier for a similar sample [19, 36], we
see a comparable shift also for tensile strain with a roughly linear dependence of
∆eg on aSL based on a large number of samples. Our results clearly indicate an
approximately linear orbital-lattice coupling, and con�rm the stabilization of
the planar dx2−y2 orbital under tensile strain, which will be discussed in detail
below. This result di�ers from the previously reported asymmetry between the
behavior under tensile and compressive strain of ultrathin LNO thin �lm [19]
and LNO-based superlattices [36], at least in the (4 u.c.//4 u.c.) superlattice
structures investigated here.

4.3.2. Orbital polarization

Before comparing our experimental results with density functional theory
(DFT) predictions, let us �rst have a brief literature review of the theoret-
ical calculations made for nickel oxide heterostructures. The nominally Ni3+

ions in bulk LNO adopt the electron con�guration t62ge
1
g, and initial analytical

calculations indicated a single Fermi surface with dominant dx2−y2 charac-
ter for the eg electrons in suitably prepared nickel oxide superlattices. The
shape of this Fermi surface was predicted to resemble the one of the cuprate
superconductors, raising hopes for "engineered" high-temperature supercon-
ductivity [53]. Subsequent calculations based on DFT addressed the in�uence
of con�nement, strain, structural distortions, chemical composition of the in-
sulating layers, and electronic correlations on the orbital polarization of the Ni
eg electron, with widely divergent results [11, 48, 49, 51, 52]. Whereas some
DFT calculations supported original predictions, Han et al. [49] later reported
that the combined e�ect of the on-site Hund interaction and the covalency of
the nickel-oxygen bond greatly reduces the orbital polarization, so that the
orbital degeneracy retains its dominant in�uence on the electronic structure of
the nickel oxides, even under the most favorable conditions. This conclusion
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received support from x-ray absorption spectroscopy (XAS) studies of ultra-
thin LNO �lms [19] and superlattices [36]. Whereas �lms under compressive
strain showed a slightly enhanced occupation of the d3z2−r2 orbital, XAS data
for �lms under tensile strain were interpreted as evidence of a charge-ordering
instability with negligible orbital polarization.
In order to compare our experimental results with the DFT predictions

mentioned above,we de�ne the orbital polarization following Refs. [48] and
[49] and using Eq. 4.1

P =
nx2−y2 − n3z2−r2

nx2−y2 + n3z2−r2
=

(
4

neg
− 1

)
(X − 1)

(X + 1)
, (4.4)

where nx2−y2 and n3z2−r2 denote the numbers of electrons in orbitals of x2-y2
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Figure 4.10.: Band structure (left) and Wannier orbitals (right) of bulk LNO
(space group R3̄c [40]): (a) down-folded to atomic Ni d and O p
orbitals and (b) down-folded to extended Ni-d-eg orbitals, ex-
plicitly including covalency. The di�erence in phase of the wave
functions is depicted by red and blue colors. The color coding for
the band structure is as follows: red corresponds to Ni eg, blue to
Ni t2g and green to O p character of the bands. The calculations
were done using the Stuttgart-NMTO code [4, 5].
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and 3z2-r2 symmetry. The prefactor in Eq. 4.4 depends on the total number
of eg electrons, neg , and deserves particular attention, since hybridization
between Ni d and O p is not negligible and can be a�ected by strain and the
composition of the insulating material. In order to calculate P of the local,
atomic-like Ni d orbitals for all di�erent superlattices, the value of natomiceg has
to be known. Theoretical values show fairly large variations of natomiceg =1.5-
2.1 as a function of composition and interactions [48, 50], but an experimental
determination is a di�cult task. Here, we suggest to consider the orbital
polarization of extended Wannier orbitals in order to provide a well-de�ned
quantitative description for the discussion and comparison of superlattices with
possibly di�erent hybridization. The orbital polarization of those extended
Wannier orbitals is obtained via Eq. 4.4 using neg =1 for all superlattices
studied.

To illustrate the di�erent wave functions, we performed DFT calculations
using the experimentally reported crystal structure of bulk LNO [40] (for de-
tails see Ref. [57]).We considered two cases: (i) a large basis of �ve atomic-like
Ni d and three O p orbitals with natomiceg =1.8 due to hybridization (top panel
in Fig. 4.10 ) and (ii) a small basis of extended Wannier orbitals, labeled with
d, representing the antibonding Ni eg and O p states near the Fermi level with
neg =1 (bottom panel in Fig. 4.10). The latter orbitals are very close to the
band eigenstates and re�ect the covalency due to their large weight at the
oxygen positions, but exhibit the full symmetry of the eg orbitals. Describ-
ing our results using this basis functions does not require the knowledge of
the strain and composition dependent values natomiceg , since the di�erences in
hybridization are re�ected in a local change of the Wannier functions. Fur-
thermore, a similar orbital basis set was used to calculate orbital polarizations
in Refs. [53], [48], and [49], i.e. only bands spanning a small energy window
close to the Fermi level were integrated to obtain the corresponding occupa-
tion numbers nx2−y2 and n3z2−r2 (-3 and -1.5 eV to EF =0 in Refs. [49] and
[48], respectively). A detailed inspection of the revised results [50] of Ref. [49]
indicates that the Fermi surface properties, in particular, the size of the central
Fermi surface patch, is re�ected in P3→0 (extended Wannier orbitals) rather
than in P−∞→0 (atomic like orbitals). While the values of P3→0 are materially
di�erent for the interacting cases (23-37%, large central patch) compared to
the noninteracting case (50%; very small central patch), the values for P−∞→0

fall into a fairly narrow range of 11-17% for all cases. Note that, the total
number of these states is neg ≈ 1 and therefore comparable to our experi-
mental results on an absolute scale. For all superlattices, we obtain positive
values in the range Pav =25% for the spatially averaged orbital polarization,
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4.3. Discussion

corresponding to a substantially enhanced occupancy of the orbital with x2-y2

symmetry.
As mentioned above, discrepancy exists from previous LDA+DMFT studies,

which is mainly related to the treatment of the hybridization with O p orbitals
[49, 52, 53]. Parragh et al. reconsidered the existing LDA+DMFT studies
at a model level, and pointed out the crucial role of d electron occupation
neg in understanding the contradict. The di�erent �lling in the d-only model
(neg =1) and in the dp-model (neg =1.7) leads to di�erences for the ground
state correlations. In the d-only model, the crystal �eld splitting provides a
preferred dx2−y2 orbital occupancy similar to the Fermi surface topology as
cuprates. Whereas in the latter case, the Hund's coupling favors, resulting in
a strong local moment and a small orbital polarization P . Moreover, Peil et al.
presented the LDA+DMFT calculations taking both the structural distortions
and the electronic correlations recently, where the orbital polarizations P are in
good agreement with our experiment results quantitatively, i.e. a stabilization
of the planar dx2−y2 orbital under tensile strain [111].

4.3.3. Layer resolved orbital polarization

Fig. 4.11 provides a synopsis of the orbital polarizations Pav, PA, and PB as
a function of aSL. Note that the hole ratio Xav plotted in Fig. 4.3 is linearly
related to Pav over the range investigated here, and within the given error
bars. The polarization PA of the inner layers, which is less strongly a�ected
by interfacial e�ects, depends linearly on aSL over the entire measured range,
including both the samples under tensile strain and the compressively strained
LNO-LAO superlattice on LSAO, where PA is negative corresponding to an
enhanced occupation of the d3z2−r2 orbital. The �tted straight line crosses
zero around aSL =3.79 Å, slightly below the pseudocubic bulk lattice constant
of LNO of 3.838 Å. We attribute this shift to the e�ect of con�nement, yielding
a slightly preferred x2 − y2 occupation even for the inner layers (i.e. a small
positive value of PA). The strain dependence of both the energy splitting
∆eg extracted from the cluster model discussed above and PA determined by
orbital re�ectometry thus indicate a simple linear orbital-lattice coupling.
Whereas strain alone induces orbital polarizations of up to PA∼ 25%, the

additional enhancement of the polarization in the outer LNO layers generated
by interfacial e�ects falls into a comparatively narrow band of width ∼ 5%
(grey area in Fig. 4.11). According to the DFT predictions [48, 49, 53], the
orbital polarization at the LNO-RXO interface is strongly in�uenced by the
dimensional con�nement of the conduction electrons and by the chemical com-
position of the blocking layers. The e�ect of con�nement is expected to be
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Figure 4.11.: Averaged (Pav) and layer-resolved (PA, PB) orbital polariza-
tions obtained from the combined analysis of XAS and re�ec-
tivity as a function of the in-plane lattice constant aSL mea-
sured by x-ray di�raction. The data for LNO-LAO on STO
is obtained from Ref. [8]. Inset: ratio PB/PA vs. the lat-
tice constant ratio cLNO/aLNO (full squares) with cLNO =2 cSL-
cRXO and aLNO = aSL and vs. the size of the X cation rx
(Ref. [22]; open stars) for superlattices under tensile strain. The
c-axis lattice parameter of RXO was obtained from Poisson ratio:
cRXO = 2ν

ν−1
(aSL − abulkRXO) + abulkRXO using ν=0.26 [125].

similar in all of our superlattices, because the blocking layers have identical
thicknesses (4 u.c.) and similar band gaps. The e�ect of chemical composition
is due to the hybridization between the Ni d3z2−r2 and the O pz orbital of the
apical oxygen at the interface, which in turn depends on the hybridization
between the s-symmetry orbital of the X ion with the O-pz states. The hy-
bridization parameters are di�cult to determine experimentally, but Han et al.
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4.4. The e�ect of di�erent R cations

[48] pointed out a close relationship between these quantities and parameters
characterizing the lattice structure, including especially the O-X bond length,
which is controlled by the size of the X cation, rX. Speci�cally, for large rX

(large O-X distances) the X s -O pz hybridization is expected to be reduced,
and the Ni d3z2−r2 -O pz hybridization correspondingly enhanced, resulting in
a larger enhancement of the orbital polarization at the interface, and vice
versa. We have therefore plotted the ratio PB/PA (which is a measure of the
modulation of orbital polarization within the LNO layer stack) as a function
of the lattice parameter ratio cLNO/aLNO (inset of Fig. 4.11), which is approx-
imately proportional to rX (top axis in the inset of Fig. 4.11). The resulting
trend of reduced interfacial enhancement of P for smaller rX is opposite to
the trend predicted by the DFT calculations [48, 146]. A full crystallographic
determination of the Ni-O and O-X distances and the Ni-O-X bond angle as
well as corresponding DFT calculations are required to elucidate the origin
of this discrepancy. Peil et al. presented the e�ect of octahedral distortion
on orbital polarization based on GGA+DMFT calculations for LNO �lms on
di�erent substrates. The octahedral tilts result in a nonlinear response of the
orbital polarization to external strain e�ect. In addition, the enhancement
of orbital polarization in the distorted structure compared to the tetragonal
case without distortions is related to di�erent hybridization between eg and
t2g states, which gives rise to di�erent band structures.

4.4. The e�ect of di�erent R cations

As discussed above, the orbital occupation in LNO-RXO heterostructures de-
pends on the dimensionality, the choice of the X ion and strain induced by the
substrate [20, 48, 49, 51, 52, 53]. More precisely, the con�nement is expected
to reduce the band dispersion of the Ni-d3z2−r2 states along the z-direction,
the e�ect of the chemical ion X is to change the hybridization between the
Ni d3z2−r2 orbital and O2pz orbital, and strain does not directly lift up the
Ni d3z2−r2 orbital but modi�es the bandwidth. The biaxial strain induces a
di�erence between the in-plane and the apical Ni-O bond lengths, resulting in
an enhancement of the eg orbital splitting. The choice of the R ion may also
play an important role, i.e. the R ion, such as Dy, La, Gd, essentially changes
the Ni-O bond length and the corresponding hybridization as indicated from
LDA calculations.

Fig. 4.12 shows the GGA+U (generalized gradient approximation, U =3 eV )
calculation results for a LNO-DSO (4 u.c.//4 u.c.) superlattice on DSO sub-
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Electron integral nx2-y2 n3z2-r2 P

Ni-12 0.47372 0.16288 0.31

Ni-11 0.5162 0.22565 0.29

Ni-10 0.58702 0.2988 0.29

Ni-9 0.72232 0.26834 0.45

(a) (b)

( )c

Figure 4.12.: GGA+U calculation of the LNO-DSO (4 u.c.//4 u.c.) on DSO
substrate (U = 3 eV ) without a consideration of the GdFeO3

distortions. Panel (a): the optimized structure with an averaged
unit cell volume conservation of the bulk LNO and the bulk DSO.
The in-plane Ni-O bonds are set to 1.972Å (fully strained to the
DSO substrate). The apical Ni-O bond lengths are shown in the
plot. Panel (b): integrated density of states of Ni d3z2−r2 and
dx2−y2 orbitals. Panel (c): the calculated orbital polarization for
each Ni ion which takes into account only the antibonding states
near the Fermi level (from -1.5 eV to 0).

strate using the Vienna ab-initio simulation package (VASP) code.2 The input
structural parameters for DSO are a= b= c= cpc=3.944Å [75]. In compari-
son with the GGA+U results of a LNO-LAO superlattice [8], the di�erence is
that there is no mirror plane in the LNO-DSO superlattice, in particular, the
Ni-9 connects with the DyO plane and the Ni-12 connects with the LaO plane
(Fig. 4.12(a)). The structure optimization results in an oxygen buckling in the
ScO2 and DyO planes. The apical Ni-O bond distances are shown in panel (a).
One can notice that there is a di�erence in apical Ni-O bond length between

2The GGA+U calculation results shown here were done by X.P. Yang, unpublished.
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4.4. The e�ect of di�erent R cations

Electron integral nx2-y2 n3z2-r2 P

Ni-12 0.51582 0.25415 0.26

Ni-11 0.57755 0.42774 0.15

Ni-10 057632 0.41916 0.16

Ni-9 0.56528 0.26589 0.30

(a) (b)

( )c

Figure 4.13.: GGA+U calculation of the LNO-DSO (4 u.c.//4 u.c.) superlat-
tice on DSO substrate with U = 3 eV taking into account the
GdFeO3 distortions. Panel (a): the optimized structure with an
averaged volume conservation as well as the corresponding apical
Ni-O bond lengths. Panel (b): integral of Ni d3z2−r2 and dx2−y2
density of states. Panel (c): the calculated orbital polarization
for each Ni ion from -1.5 eV to Ef .

the two interface layers, i.e. Ni-9 and Ni-12, which a�ects the hybridization
between Ni d3z2−r2 and O2pz orbitals. In general, for a small apical Ni-O
bond length, the Ni d3z2−r2 -O pz hybridization is expected to be enhanced,
resulting in a preferred dx2−y2 orbital, and vice versa. However, this cannot
be simply applied here, since the bond lengths are quite di�erent for the top
and the bottom apical Ni-O bonds. Taking the octahedra of the Ni-12 ion
for example, the top and bottom apical Ni-O bond lengths are 1.733 Å and
1.823 Å , respectively. As an estimate of the orbital polarization of each NiO6

octahedron can be obtained by the relative change of the in-plane Ni-O/apical
Ni-O bond length ratio. For instance, the apical Ni-O bonds in LNO-LAO
(4 u.c.//4 u.c.) [8] are much larger than those in LAO-DSO (4 u.c.//4 u.c.),
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4. Orbital re�ectometry on LaNiO3-based heterostructures

with a correspondingly smaller orbital polarization in the former case.
The orbital occupation is obtained by projecting the calculated electronic

density of states to spheres. Technically, the sphere size is arbitrary and not
well-de�ned. Here the VASP default values of the Wigner-Seitz radii were used
(i.e. 1.286 Å for Ni d atomic orbitals and 0.820 Å for O p atomic orbitals),
which provide a good estimation of the local charge and the local magnetic
moment, etc. The integral of dx2−y2 and d3z2−r2 density of states as a function
of energy are shown in Fig. 4.12(b). The orbital polarizations presented in
panel (c) of Fig. 4.12 were calculated by integrating the antibonding states
near the Fermi level (from -1.5 eV to Ef). The orbital polarization for Ni-
12 ion is 31%, whereas a dramatic di�erence is observed for the Ni-9 ion
with P =45%. If such a di�erence exists, it would deserve an experimental
con�rmation.
On the other hand, bulk DSO exhibits an orthorhombic distortion. Fig. 4.13(a)

shows the optimized structure taking into account the GdFeO3 distortion.
Once again the averaged unit cell volume of the bulk LNO and the bulk DSO
is conserved in the calculation. Note that the O-Ni-O angle in the apical
direction is almost 180◦ while the Ni-O-Ni angle deviates clearly from 180◦,
which leads to a stretched apical Ni-O bond compared to the case without
GdFeO3 distortion. The Sc with 3d outmost shell is quiet di�erent from Al.
Oxygen dimpling is very obvious in ScO2 layer. When the NiO2 mirror plane
is avoided e�ectively, the dimpling of oxygen becomes more visible in energy,
which strengthens the Jahn-Teller e�ect of the octahedra. Fig. 4.13(b) shows
the integral of the Ni dx2−y2 and d3z2−r2 density of states and the correspond-
ing orbital polarizations taking into account the anti-bonding states near Ef

which are shown in panel (c). We notice that the orbital polarizations are
smaller on average. Moreover, the di�erence arising from the Dy and La
cations are partially canceled. Possibly this is related to the octahedra tilts,
and the change of the Ni-O-Ni bond angle as well as the increased apical Ni-O
bond length. The latter cause a reduced hybridization between Ni d3z2−r2 and
O2pz orbitals, i.e. the distortions cancel the non-symmetric interface e�ect
due to interfacial Dy or La ions. However, the e�ect is nontrivial since the
hybridization depends on a combined e�ect of the Ni-O and O-Sc distance and
the Ni-O-Sc bond angle.
In summary, di�erent cation ions R results in a change of orbital occupan-

cies which may cause a big di�erence between the two outer LNO layers as
suggested by the GGA+U calculation. This e�ect depends on how far the real
structure deviates from the bulk environment. Note that for the LNO-RXO
(4 u.c.//4 u.c.) superlattices, the scattering factor calculated for the SL(002)
re�ection is not sensitive to the di�erence related to the cation R. In other
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4.4. The e�ect of di�erent R cations

words, for R=Dy,Gd, i.e. the LNO-DSO and the LNO-GSO superlattices,
it is possible that the orbital polarizations of the top LNO layer (with the
atomic form factor fB

′
LNO) and the bottom LNO layer (with the atomic form

factor fBLNO) inside the LNO layer stack are di�erent. An atomic sketch of
the superlattice con�guration shows that the top atomic NiO2 layer is sand-
wiched between RO and LaO layer, whereas the bottom atomic NiO2 layer is
sandwiched by two LaO layers, or vice versa. We point out that our simu-
lations based on SL(002) di�raction index give equally good results for both
models (BAAB and B′AAB), because the intensity for qz around the (002)
re�ection is less sensitive to this interface di�erence (i.e. fB

′
LNO - fBLNO) than to

the di�erence between the outer and the inner layers, i.e. fB
′(B)

LNO - fALNO.
Luckily, it is possible to have a direct evaluation of the e�ect by carefully

designing the superlattice con�gurations. For this purpose, two superlattices
are studied:
(a) LNO-DSO (4 u.c.//4 u.c.) grown on DSO substrate;
(b) LNO-DSO (2 u.c.//4 u.c.) grown on DSO substrate.

The good sample qualities were con�rmed by XRD measurement (lscans
along the specular direction shown in Fig. 3.7 and the corresponding RSMs
along the o�-specular directions in Fig. 3.9 and Fig. 3.10). For sample (a), a
direct con�rmation of the cation R e�ect is to reach the SL(004) re�ex. Since
the scattering factor of SL(004) is only sensitive to the di�erence between the
top and the bottom LNO layer, denoted as fBLNO and fB

′
LNO, i.e.

F(004) =
∑
i

fi exp(iqz z)

= fBLNO − fALNO + fALNO − fB
′

LNO

= fBLNO − fB
′

LNO. (4.5)

For sample (b), the scattering factor of the SL(003) peak F(003) has the
same form as the scattering factor of F(004) shown above (Eq. 4.4).
Prior to the experiments, let us have a simple estimation of the di�raction

angle 2θ. For sample (a), (4u.c.//4u.c.) LNO-DSO superlattice (the same
structure as that used in GGA+U calculations), the bilayer thickness is ap-
proximately:
dbilayer =(8× 3.838+3.944

2
) Å =31.13 Å,

from which a value qz ≈ 0.8073 Å−1 is estimated around the SL(004) re�ection
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index. For an incoming photon in the energy range of (810, 900) eV (around
Ni L edges), a corresponding 2θ in the range of (160, 124.5)◦ is expected
with a �xed qz ≈ 0.8073 Å−1. Thus an experimental setup that can reach a
di�raction angle as high as 160 ◦ is necessary.
Similarly, for sample (b) with a bilayer thickness of approximately 23.35 Å,

a corresponding di�raction angle 2θ in the range of (160, 124.5) ◦ is expected
for the soft x-ray ~ω between810 eV and 900 eV with a �xed qz ≈ 0.8072Å−1

around SL(003) re�ection index. Note that a measurement at this high scat-
tering angle is di�cult, because it is almost in the backscattering geometry,
where the di�raction intensities are rather low and noisy. The Porod's law
predicts that the scattering intensity for a smooth surface is related to the
transferred wave vector q in a form known as I ∝ q−4, which also corresponds
to a factor of 1/sin θ4 in the Fresnel equations of re�ections. It indicates the
small scattering intensities at a high q limit [127], even though we have the
re�ection intensities from the superlattice. The experiments were performed
at the Canadian Light Source (CLS), since there high di�raction angles are
available (nominally 2θ ∼ 160◦). Besides a di�erent con�nement and probably
a di�erent electronic structure between the two samples, a di�erent amount
of orthorhombic distortion exists from the crystallographic structure point of
view. X-ray reciprocal space maps indicate that both superlattices exhibit an
orthorhombic distortion of the DSO substrate. Assuming a GaFeO3 distortion
we deduced relatively small distortion angles, i.e. 0.84 ◦ and a slightly larger
tilt angle β=0.97◦ for sample a and sample b, respectively.
Again we performed a combined study of the x-ray absorption and the res-

onant x-ray re�ectivity to understand the e�ect of di�erent cation Dy and
La on the orbital occupancy. Fig. 4.14 shows the polarization and energy
dependent x-ray re�ectivity results of superlattice a. The XAS spectra are
shown in Fig. 4.1(e), yielding an average orbital polarization Pav =+(19±1)%.
Fig. 4.14(a) shows the resonant x-ray re�ectivity at Ni L2 and Ni L3 edges for
σ polarized light. The re�ected intensities are rather small around the SL(004)
peak. Another experimental di�culty arises from the in�uence of the second-
harmonic di�raction peak of the DSO substrate. Nevertheless, two constant
qz values were picked for the energy dependent �xed qz re�ectivity measure-
ments. As demonstrated before, the �xed qz re�ectivity measurements are
quite sensitive with a �xed depth resolution [8]. Two qz values qz =0.781 Å,
0.788 Å were selected (marked as grey lines in panel (a)). Fig. 4.14(b) and
(c) show the re�ectivity curves which are normalized to the incoming beam
intensity. A di�erent background exists for σ and π polarization for both qz
values. The di�erent linear background were subtracted. Note that at both
constant qz re�ectivity measurements, the multiplet structures, i.e. the relative
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scattering intensities are not identical at the La edges and we do not observe
any linear dichroism at the Ni L-edges.
Fig. 4.15 shows the experimental results for sample (b): LNO-DSO (2 //4) u.c.

on DSO substrate. Panel (a) shows the x-ray absorption results for σ and π po-
larization. The experimental data are processed in the same way as described
before providing an averaged orbital polarization Pav =(24±2)%. This orbital
polarization is slightly enhanced compared to sample (a), which we attribute to
a stronger con�nement e�ect. Fig. 4.15(b) shows the resonant x-ray re�ectivity
at the Ni L-edges, where the di�raction intensities at high di�raction angles
are extremely low which maybe related to the surface roughness. Fig. 4.15(c)
shows the constant qz re�ectivity curves, hardly showing any signal at Ni
L-edge energies.
In conclusion, for both superlattices with slightly di�erent orthorhombic

distortions, we do not observe a clearly di�erent signal in the constant qz re-
�ectivity measurements related to di�erent orbital occupancies of the two outer
LNO layers. It implies that there is no clear di�erence in the orbital occupation
arising from the di�erent DyO-NiO2-LaO or LaO-NiO2-LaO bonding environ-
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Figure 4.14.: Panel (a): resonant x-ray re�ectivity at Ni L3 and Ni L2 edges
for sample a. Panel (b),(c): constant qz re�ectivity spectra (σ
and π polarization) around the SL(004) peak for qz =0.781 Å,
0.788 Å, respectively. Panel (d),(e) show the enlarged constant
qz re�ectivity spectra after subtracting a linear background.
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Figure 4.15.: (a): X-ray absorption spectra for LNO-DSO (2 u.c.//4 u.c.) su-
perlattice with di�erent linear polarized light, from which an
averaged orbital polarization Pav =(24±2)% is obtained; (b):
Resonant x-ray re�ectivity at Ni L3 and Ni L2 edges; (c) Con-
stant qz re�ectivity spectra for di�erent polarized light around
the SL(003) peak.

ments. This agrees to some extent with the GGA+U calculation result, i.e.
the orthorhombic distortion cancels the di�erence arising from various cation
R bonding environments. This result further suggests that a proper compari-
son between the theoretical calculation and the experimental results requires
taking into account the GdFeO3 distortions. The recent LDA+DMFT calcu-
lations also provide reasonably good agreements with the experimental results
when including the structural distortions [111]. However, technical di�culties
arising from the small scattering intensities with high q limit and the large
�uorescence background present challenges for the experiments.
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superlattices

In this chapter, we present the study of orbital occupations on PNO-PAO su-
perlattices. Since the occupation of the Ni d-orbitals controls the electronic
bandwidth, this parameter is of key importance for the phase behavior of nickel
oxides. The orbital response to the strain-induced lattice deformation has
therefore been intensively studied, both theoretically and experimentally. Con-
�icting results on the orbital-lattice interaction have been reported. Whereas
for ultrathin LNO �lms [19] as well as LNO-LAO superlattices [36] with single-
unit-cell thick LNO layers the response to tensile and compressive strain was
reported to be markedly di�erent, a linear, symmetric orbital-lattice coupling
was observed in four unit-cell-thick LNO-based superlattices as presented in
the previous chapter, in agreement with theoretical predictions [48, 52, 53, 111]
and experimental �ndings for related heterostructures [1, 137].
Special interest in the PNO-based superlattices arose from the observation

of tunable charge and spin order by very recent polarized Raman scattering
measurements [60]. While a bulk-like insulating phase with charge and spin
order is found for samples under tensile strain, a metallic spin-density-wave
phase with no (or very weak) charge order is observed for compressive strain
[60](as illustrated in Fig. 5.1(a)-(b)). Here, we present a continuation of the
study of PNO-based superstructures, focusing on the temperature and strain-
dependent spatially-resolved orbital polarizations using the orbital re�ectom-
etry technique described before. A series of PNO-PAO superlattices with four
consecutive pseudocubic unit cells of PNO and equally thick layer stacks of the
band insulators PAO were deposited on di�erent substrates, i.e. LSAO, LAO,
LSAT and STO, with aLSAO < aLAO < aPNO bulk < aLSAT < aSTO, where a is
the in-plane lattice constant of the perovskite unit cell.
Hard x-ray di�raction was used to characterize the superlattice quality as

well as to study the structural properties. The structural parameters, including
the in-plane aSL and out-of-plane lattice constant cSL assuming a tetragonal
crystal symmetry are summarized as Fig. 3.12 in Sec. 3.3.5. The resonant
x-ray re�ectivity and x-ray absorption spectroscopy experimental setup was
introduced in Sec. 2.6 (Fig. 2.17).
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(a)

(b)

PNO-PAO

LSAO

PNO-PAO

LSAT

O 2p +Ni 3d

qSO=(1/4,1/4,L)

Figure 5.1.: Illustration of the suggested strain-dependent phases below the
MIT of PNO-PAO superlattices. Panel (a): a metallic, spin den-
sity wave phase under compressive strain (on LSAO) and (b): an
insulating state with both spin order (qso =(1/4, 1/4, L)) and
charge order (qco =(1/2, 1/2, L)) under tensile strain (on LSAT).
The corresponding temperature and polarization dependent x-ray
absorption spectra for the superlattice under compressive strain
are shown in panel (c)-(d) and for tensile strain in panel (e)-(f).
The inset of each panel shows the enlarged spectrum near the Ni
L3 edge. In the bottom panels ((c)-(f)) the normalized di�erence
spectra (Ix(E)-Iz(E))/( 1

3
(2Ix +Iz)) are presented. Pav denotes

the averaged orbital polarization (Eq. 4.4).

5.1. Temperature dependent x-ray linear dichroism

Polarization dependent x-ray absorption probes the symmetry-dependent pro-
jected unoccupied density of states. The hole ratioXav for a Ni3+ ion (3d7: t62ge

1
g)

can be obtained directly from a sum rule analysis as shown in Eq. 4.1, and
the orbital polarization is also de�ned the same as before (Eq. 4.4, Sec. 4.3.2).
According to LDA+DMFT calculations [49, 107, 111], the total number of
d-orbital occupation neg was found to be a crucial parameter for the Fermi
surface properties. We like to point out that the experimental results pre-
sented here do not depend on neg . When calculating P , di�erent values of the
d-orbital occupation are only a scaling factor to the total orbital polarization.
For consistency with prior work [49, 107, 111],we chose a basis where the total
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5.1. Temperature dependent x-ray linear dichroism

number of electrons in the eg orbital manifold is neg =1. In this basis, P
corresponds to the orbital polarization of the integrated projected density of
states of the anti-bonding Ni eg and O p states near the Fermi level.
PNO-PAO superlattices with (4 u.c.//4 u.c.) structure under compressive

strain exhibit a metallic phase with a magnetic transition with TNeel ≈ 100 K
but no (or only very weak) charge order (Fig. 5.1(a)). Fig. 5.1(c),(d) show
the corresponding polarization dependent x-ray absorption spectra and the
normalized di�erence spectrum at 300 K and 20 K. For photon polarization
perpendicular to the atomic NiO2 plane (E ‖ z), the absorption spectrum is
shifted by ∼ 0.1 eV to lower energies compared to the spectrum with polariza-
tion parallel to the NiO2 plane (E ‖ x). This observation can be explained by
the e�ect of the tetragonal crystal �eld: due to the compressive strain induced
by the LSAO substrate, the Ni-O bond length along the out-of-plane direction
is elongated compared to the in-plane bond length, resulting in a lower energy
of the 3d3z2−r2 compared to the 3dx2−y2 orbital, thus a preferred out-of-plane
orbital occupation. Note that such a shift was also observed for LNO thin
�lms under compressive strain [19]. The low temperature spectra are almost
identical to the room temperature measurements, indicating that the magnetic
order does not induce any change in the relative orbital occupation.
The situation is di�erent for the PNO-PAO superlattices under tensile strain.

The corresponding x-ray linear dichroism data at 300K and 85K (above and
below the transition temperature, respectively) are shown in Fig. 5.1(e)-(f).
Two observations can be stated. First, the low temperature absorption spectra
clearly show a double-peak structure at both Ni L3 and Ni L2-edges, with an
energy splitting of ∼ 1.6 eV . This indicates a change of the electronic structure
across the MIT to a state with a more localized nature of the �nal states of
the 2p - 3d transition. The double-peak structure is very similar to those of the
smaller rare earth ANO bulk compounds in the insulating phase, indicating a
similar local electronic structure [112]. Piamonteze et. al reproduced the peak
splitting of bulk PNO using an atomic multiplet calculation for D4h symme-
try and by varying the crystal �eld splitting and the spin-orbit coupling [112].
Alternatively the peak splitting can also be related to hybridization with O2p
orbitals. ANO compounds are regarded as self-doped Mott insulators, where
the negative charge transfer energy implies a crucial role of the O2p states
in the band structure as well as the physical properties [71, 100, 101]. The
lineshapes in the absorption spectra of PNO-PAO superlattices under tensile
strain are almost identical to those of bulk PNO, indicating a common origin,
i.e. charge order with two non-equivalent NiO6 octahedra at low temperatures,
in agreement with the robust spin and charge order below TMIT reported in
Ref. [60].
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5. Orbital re�ectometry on PrNiO3-PrAlO3 superlattices

A second important observation on the superlattices under tensile strain is
that the positions of the E ‖ x and z absorption lines are identical within the
experimental error (insets of Fig. 5.1(e),(f)), which implies that the crystal
�eld splitting is too small to be observed. The orbital polarization is thus
apparent only in di�erent absorption intensities for E ‖ x and z. A quan-
titative analysis reveals a reduced orbital polarization below the MIT, i.e.
Pav(85K)=+(3± 1)%, compared to Pav(300K)=+(6± 1)% (Tab. 5.1). The
same measurements were performed at 200, 160 and 120K (with a temperature
error bar of 10K), from which we obtained averaged orbital polarizations as fol-
lows: P (160K)=P (200K)=P (300K)=+(6± 1)%, and P (120K)=P (85K)
=+(3± 1)%. This indicates a rather sharp change across the transition
temperature, in good agreement with the temperature dependent changes
observed by dc transport and Raman measurements. The observation of
P (T < TMIT) < P (T > TMIT) can be understood in a simpli�ed Ni 3d7−δ-
3d7+δ charge order picture, where the admixture of the 3d8 con�guration (with
nominally one electron in each eg orbital due to Hund's coupling) e�ectively
reduces the orbital polarization below TMIT [93].
A careful reader may notice a weak, polarization-independent peak at∼ 850.5 eV

ahead of the Ni L3 edge in the 300K spectrum of Fig. 5.1(c), which almost
vanishes at 20K (Fig. 5.1(d)). The peak energy corresponds to the La M4

white line arising from the LSAO substrate. We relate the temperature de-
pendence of the intensity of this peak to the small change in conductivity and
the associated change in the TEY probing depth across the magnetic transi-
tion for superlattices on LSAO substrate. For the superlattice on the LSAT
substrate, which exhibits a much higher resistivity at room temperature, the
peak is not visible due to the lower probing depth.

5.2. Layer resolved orbital pro�les

Spatially-resolved orbital polarizations were investigated by the x-ray orbital
re�ectometry technique (see Sec. 4.2 for details). Fig. 5.2(a)-(d) compares the
polarization dependent x-ray absorption spectra for PNO-PAO (4 u.c. // 4 u.c.)
superlattices on LSAO, LAO, STO and LSAT substrates. A monotonic in-
crease of the orbital polarization Pav as a function of increasing in-plane lat-
tice parameter aSL is observed. The calculated averaged hole ratio Xav as
well as Pav are summarized in Tab. 5.1. Similar to the LNO-based superlat-
tices, a preferred electron occupation of the d3z2−r2 orbitals (Pav <0) for the
superlattice under compressive strain, and a preferred electron occupation of
the dx2−y2 orbitals (Pav >0) for the superlattice under tensile strain is found.
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Figure 5.2.: X-ray absorption spectra measured with linearly polarized light
for PNO-PAO (4 u.c. // 4 u.c.)×8 superlattice grown on (a) LSAO;
(b) LAO; (c) STO and (d) LSAT substrate. Bottom pan-
els are the corresponding normalized di�erence spectra (Ix(E)-
Iz(E))/( 1

3
(2Ix +Iz)). Inset of panel (b) shows the polarization

dependent absorption spectra at O K edge for PNO-PAO super-
lattice on LAO substrate (solid lines), as well as the O K edge
absorption spectra for bulk PNO (empty circle) and NiO (solid
circle) which are digitized from Medarde et al. [98].

For the PNO-PAO superlattice on LAO substrate, we observe the absence of
average orbital polarization (Pav =(0±1) %). This average zero orbital polar-
ization results from an approximately cubic lattice with cSL ∼ aSL ∼ 3.79 Å.
Note that we preformed no resonant x-ray re�ectivity measurements for this
superlattice.
In particularly, the absorption curves look much di�erent compared to the

others which exhibit a much stronger double-peak-structure for PNO-PAO
superlattice on LAO substrate. The double-peak-structure could be related
to the existence of Ni2+ valence states, comparable to the absorption curves
of NiO thin �lms with two distinguished peaks at Ni L-edge [55]. Inset of
panel (b) shows the absorption curves around O K energies. The solid lines
are the measured XAS spectra for the sample under investigation. The bulk
solid circle and the orange empty circle curve correspond to the XAS spectrum
for NiO and PNO powder, respectively, which are digitized from Ref. [96, 98]
and shifted relatively with the same Pr-O hybridization peak at ∼ 828.1 eV .
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Figure 5.3.: Panel (a)-(c): re�ectivity curves as a function of qz for PNO-
PAO superlattices grown on LSAO, STO and LSAT substrate.
Top, middle and bottom panels show the re�ectivity curves at
E=8047.7 eV (Cu Kα) and at Ni L3 and Ni L2 energies, re-
spectively. All data were normalized to 1 at qz =0. The solid
lines show the �t results based on Parratt's recursive approach.
The �tting parameters are summarized in Tab. 5.1. Panel (d)-
(f): the corresponding experimental and simulated constant-qz
energy scans at SL(002). The experimental curves are shifted
for clarify. The corresponding normalized di�erence (Iσ(E)-
Iπ(E))/(Iσ(E)+Iπ(E)) are shown directly below together with
di�erence in modulation denoted as α, which is de�ned as Eq. 4.3.

One can easily notice the existence of the pre-peak structure in the PNO-PAO
superlattice (the same as in the bulk PNO), corresponding to 3d8L → c 3d8

core-hole excitations, where c labels one core hole in O1s state. In comparison
with the TEY spectra of bulk NiO, there is a clearly absence of the peak
structure related to the presence of the Ni2+ valence state, with corresponding
3d9L → c 3d9 transitions. Therefore, we conclude that Ni ion in PNO-PAO
superlattice on LAO substrate shows predominately Ni3+ valence state and
the double-peak structure may originate from a more localized states due to
the stronger octahedra distortion [13].
Now we turn to the results of the re�ectometry measurements. The results of

96



5.2. Layer resolved orbital pro�les

3 . 7 5 3 . 8 0 3 . 8 5 3 . 9 0
- 1 0

- 5

0

5

1 0

1 5

2 0

a L N O  b u l k
PN

O-
PA

O 
on

 LS
AT

PN
O-

PA
O 

on
 ST

O

PN
O-

PA
O 

on
 LA

O

 

 

Or
bit

al 
po

lar
iza

tio
n (

%)

a S L  ( Å )

a P N O  b u l k

 P a v
 P A
 P B

PN
O-

PA
O 

on
 LS

AO

P N O  P A

P A O

P A O
P N O  P B  

P N O  P B

Figure 5.4.: Averaged (Pav) and layer-resolved (PA, PB) orbital polarizations
as a function of the in-plane lattice constant aSL measured by x-
ray di�raction for PNO-PAO superlattices. The orange line rep-
resents the linear �tting of the inner layer orbital polarization of
LNO-based superlattices, which is reproduced from Fig. 4.11 in
Sec. 4.3.3. The light grey area corresponds the additional inter-
facial e�ects. The purple line represents a linear �t to the or-
bital polarization PA of the inner layers within the PNO layer
stacks. The enhancement of the orbital polarization due to in-
terfacial e�ects are con�ned in the dark grey area. The in-plane
lattice constant of bulk PNO and LNO are shown as the dashed
lines with aPNO bulk =3.815Å and aLNO bulk =3.838Å. Note that
PNO-PAO superlattice on STO substrate is partially relaxed (The
details of the structure characterization for all samples are shown
in Fig. 3.12).

the re�ectometry measurements are shown in Fig. 5.3(a)-(c) as a function of the
the momentum transfer (qz) along the specular direction. The data processing
is described in detail in Sec. 4.1. To obtain a proper structural model, we
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5. Orbital re�ectometry on PrNiO3-PrAlO3 superlattices

used Parratt's recursive approach implemented in our advanced re�ectometry
�tting program REMAGX [90]. The resulting structural parameters (which
are summarized in Tab. 5.1) were kept �xed for the simulation of the dichroic
re�ectivity.
To probe the di�erence between the inner and outer layers (denoted as A

and B, respectively) within a 4 u.c. thick PNO layer stack, the energy- and
polarization dependent re�ectivity spectra were measured at a �xed momen-
tum transfer qz close to the SL(002) re�ection(Fig. 5.3(d)-(f)). Following
arguments provided before, the scattering factor of the SL(002) re�ection is
particularly sensitive to the di�erence of the scattering factors of the outer
and inner layers. Note that in TEY mode the contribution of the La M -edge
from the LSAO and LSAT substrate is negligible (Fig. 5.2 (a)-(d)). To deter-
mine the contribution of the LASO and LSAT substrates to the re�ectivity,
we extracted the La M -edge optical constants from LaCoO3 XAS spectra by
�tting them to the theoretical values from the Chantler table. The simulated
re�ectivity curves are shown in the upper panels of Fig. 5.3(d) and (f). Since
there is no dichroism at the La M4 edge, the normalized di�erence spectra
(lower parts of Fig. 5.3(d)-(f)) are not a�ected by this contribution.
Figure 5.4 summarizes the averaged orbital polarizations Pav, the inner layer

orbital polarization PA, and the outer layer orbital polarization PB as a func-
tion of aSL for superlattices based on PNO (this work; see also Tab. 5.1) and
LNO (Sec. 4.3.3). For all superlattices we observe PB >PA, i.e. an enhanced
occupation of the dx2−y2 orbital in the interface layers adjacent to PAO. The
results for PA of the PNO-based superlattices �t reasonably well to the linear

Substrate structure α Pav PB PA

(u.c.) (%) (%) (%)
LSAO0.4 3.90.6[(4.00.7/4.40.3)x7]5.10.7 0.25(10) −5 ± 2 -4 -6
STO0.6 4.20.9[(4.20.9/4.10.4)x7]4.50.6 0.25(5) 5 ± 1 6 4
LSAT0.5 4.20.4[(3.80.5/4.00.9)x7]4.02.1 0.25(5) 6 ± 1 8 5

Table 5.1.: Structure parameters for PNO-PAO superlattices: substrate ma-
terial, superlattice structure, the modulation α from the dichroic
re�ectivity modeling and the orbital polarizations of PNO-PAO
heterostructures. The superlattice structure obtained from the �t-
ting of the re�ectivity (see text) is given in the following nomencla-
ture: dPNObottomσ [(dPNOσ /dPAOσ )xM]dPAOtopσ with thickness d and
roughness σ in u.c. calculated by dividing cSL.
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Figure 5.5.: Temperature dependent resonant x-ray re�ectivity of the PNO-
PAO superlattices on LSAT substrate. (a) Resonant x-ray re�ec-
tivity curves measured with σ polarized light. Panel (b) and (d)
show the energy and polarization dependent normalized re�ectiv-
ity spectra with �xed qz =0.4148 Å measured at T=300 K and
T=85 K, respectively. Panel (c) compares the normalized di�er-
ent spectra (Iσ(E)-Iπ(E))/(Iσ(E)+Iπ(E)) of both phases.

PA-aSL dependence in LNO-based superlattices. For comparison, we also �t-
ted PA for the PNO-based superlattices alone (purple line in Fig. 5.4). The
slope of the PA-versus-aSL line is slightly higher, which might be related to
the increase of octahedral distortions in PNO-based superlattices, compared to
those based on LNO, the latter exhibiting a tolerance factor closer to one. Such
a tendency towards higher orbital polarizability for distorted structures with
tilts and rotations of the NiO6 octahedra was also observed in recent calcula-
tions based on the GGA, and was attributed to the di�erence in hybridization
between Ni d- and O p-orbitals [111].
For the PNO-PAO superlattice on the LSAT substrate, which shows a tem-

perature dependent change in orbital occupancy across the MIT as discussed
above, we obtained the spatially-resolved orbital polarizations of both metal-
lic and insulating phases. Fig. 5.5(a) presents the momentum dependent res-
onant x-ray re�ectivity curves measured with σ-polarized light at T=300K
and T=85K. While temperature dependent changes in the q-dependent re�ec-
tivity are hardly visible, they become obvious in the energy-dependent data
at �xed nocumentum close to the SL(002) re�ection (Fig. 5.5(b) and (d)).
Note that these temperature dependent changes in scattering only occur at
Ni L-edge energies; no corresponding change are observed at other energies
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5. Orbital re�ectometry on PrNiO3-PrAlO3 superlattices

including the La M4-edge. Apart from these di�erences in line shape, which
are related to the changes in XAS discussed above, the normalized di�erence
of the constant-qz spectra are identical in both phases (Fig. 5.5(c)). This im-
plies that the di�erence in orbital occupation of the outer and the inner layers
inside the 4 u.c. PNO stack is una�ected by the MIT, presumably because
the charge disproportionation below TMIT encompasses the entire PNO layer
stacks.
In conclusion, the low-temperature charge- and spin-ordered phase in PNO-

PAO superlattices under tensile strain exhibits a reduced orbital polarization,
which can be qualitatively explained as a consequence of the Hund's coupling
in the charge-disproportionated state. In contrast, we found no change in or-
bital polarization at the magnetic transition of superlattices under compressive
strain. An approximately linear dependence of the orbital occupation on strain
is observed both for PNO-PAO superlattices and for LNO-LAO superlattices
grown on di�erent substrates.
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octahedral distortions

Strain engineering of octahedral rotations has been proposed as a means to
tailor the electronic properties in perovskite thin �lms and superlattices [115].
The main mechanism is related to the modi�cation of the bond lengths via
octahedral distortions (e.g. the strain-induced enhancement of ferroelectric
transition temperature in Ref. [23, 47]), or/and the modi�cation of the oc-
tahedral rotation patterns and amplitudes which is linked to the electric and
magnetic behaviors in the system (e.g. the stability of Ru magnetic moment in
SrRuO3-based thin �lms [152], the spin-state transition in epitaxial strained
LaCoO3 �lms [116], etc). The strain-induced octahedral distortion, in partic-
ular, the strain bond-angle coupling mechanism has been reported to provide
the physical basis for the diversity of electronic propertied by �rst-principle
calculations [103, 117]. Nickelates have served as an important model system
for the exploration of these strategies. Bulk nickelates are sensitive to the
magnitudes of the octahedral distortions. It has been shown that the Ni-O-Ni
bond angles control the electronic bandwidth, thus the MIT temperature and
the Neel temperature in the system [16]. In LNO thin �lms and LNO-based
superlattices, di�erent physical properties such as charge disproportionation,
lattice-orbital coupling as well as magnetism have been reported in response
to external tensile or compressive strain, which induce di�erent octahedral
distortion patterns to the layers [11, 19, 36, 71, 92]. In PNO and NNO thin
�lms, strain has turned out to be an e�ective parameters in controlling the
MIT but the underlying mechanism is still under debate [79, 85, 86]. The
understanding of the strain-bond angle interaction is limited experimentally.
A direct mapping of the atomic positions by transmission electron microscopy
is still a challenge for light atoms such as oxygen [69, 142]. On the other hand,
the measurement of half-order Bragg peaks using x-ray di�raction can provide
information on the crystallographic space group as well as the oxygen posi-
tions quantitatively via structural re�nements [34, 92], however, in an averaged
manner, i.e. not resolved for the individual layer of a heterostructure. Here,
we propose to apply the x-ray re�ectometry technique to probe the octahedral
distortions.
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6. X-ray re�ectometry as a probe of octahedral distortions

Before we present the experimental details, let us have a short review of
the octahedral rotations for LNO-based thin �lms and superlattices. Bulk
LNO shows an a−a−a− rotation pattern in Glazer's notation with rotation
angles α = β = γ = 5.2 ◦, i.e. the neighboring octahedra are antiphase
tilted along the crystal x-, y-, z-axes [40]. May et al. reported structural
re�nements for LNO thin �lms under tensile (on STO substrate, with lat-
tice mismatch +1.7%) and compressive strain (on LAO substrate, with lattice
mismatch -1.1%), where they presented the corresponding octahedral rotation
angles α = β = 7.2 ± 0.2 ◦, γ = 0.3 ± 0.7 ◦ and α = β = 1.2 ± 0.2 ◦,
γ = 7.9 ± 0.7 ◦, respectively [92]. Some parameters including the in-plane
Ni-O bond lengths as well as the out-of-plane tilt angles are highly sensitive to
strain e�ects. Researchers have also performed some structural re�nements for
LNO-LAO superlattices by the same measurement method [76, 88]. In partic-
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Figure 6.1.: Illustration of the octahedral rotation in nickel oxide heterostruc-
tures with an a− rotation pattern along the crystal z-direction.
Panel (a): LNO-LGO (1 u.c.//3 u.c.) superlattice (sampleA) with
the same octahedral rotation of the neighboring LNO layers along
the specular direction (site 1 and 3, site 2 and 4); (b): LNO-LGO
(1 u.c.//4 u.c.) superlattice (sample B) with the opposite octa-
hedral rotation of the neighboring LNO layers along the specular
direction. f iLNO denotes the corresponding scattering factor for
site i=1, 2, 3, 4.
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ular, for LNO-LAO superlattices under compressive strain (LSAO substrate,
with lattice mismatch -2.4%), the Ni-O bond distance is elongated along the
out-of-plane direction, while the tilt angle γ is increased to accommodate the
compressive strain. The corresponding tilt angles are: α = β = 1.9 ± 0.2 ◦

and γ = 11.6± 1.2 ◦. For LNO-LAO superlattices on LSAT substrates (ten-
sile, with lattice mismatch +1.0%), the in-plane Ni-O bonds are straight-
ened, resulting in the following rotation angles: α = β = 0.0 ± 0.2 ◦ and
γ = 5.2 ± 1.9 ◦. Therefore, one can expect a monoclinic distortion with an
a−a−c− rotation pattern as the starting point for the investigation of octahe-
dral tilts in LNO-LXO superlattices (X=Al, Ga).
The experiment described here is an extension of the layer-resolved orbital

pro�le and its sensitivity to di�erent bonding environments, i.e. di�erent ways
of octahedral rotation in LNO layers. Two samples are under investigation:
Sample A: LNO-LGO (1 u.c.//3 u.c.) × 16 on STO substrate.
Sample B: LNO-LGO (1 u.c.//4 u.c.) × 13 on STO substrate.
Fig. 6.1 illustrates the octahedral rotation for LNO-LGO superlattices with

a structural con�guration of A: (1 u.c.//3 u.c.) and B: (1 u.c.//4 u.c.) consid-
ering an a−a−c− distortion pattern with monoclinic symmetry for the crystal.
One can easily notice that the octahedra of the neighboring LNO layers along
the z-direction are rotated in phase for sample A (Fig. 6.1(a)), whereas the
neighboring LNO octahedra rotate antiphase for sample B. The arti�cially de-
signed superlattice con�guration in a sense changes the bonding environment
of the neighboring LNO layers.
The scattering intensity for sample A/B I

A/B
001 can be written as follows:

I
A/B
001 ∝

∑
i

fi exp(iqz z)

∝ (f1
LNO + f3

LNO − 2fLGO)2 + (f2
LNO + f4

LNO − 2fLGO)2.

Here the superscripts 1, 2, 3, 4 denote di�erent NiO6 sites as shown in Fig. 6.1.
Moreover, we can make the assumption that the octahedral distortions of the
LGO layers are not so important when tuning the incident photon energies to
Ni resonant edges where the scattering cross section from Ni is dramatically
enhanced at resonant edges.
The conductivity tensor with a monoclinic symmetry can be written as:

σmono =

 σxx σxy 0
σyx σyy 0
0 0 σzz

 ,
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with σxy = σyx.
Moreover, for a crystal with an opposite rotation pattern, the conductivity

can be written in a similar way, but with di�erent signs in the o�-diagonal
terms, i.e. -σxy and -σyx. Therefore, we can specify the scattering intensity
for sample A and sample B with corresponding structural con�gurations as
shown in Fig. 6.1.

IA001 ∝ (σ1
LNO + σ3

LNO)2 + (σ2
LNO + σ4

LNO)2

= (

 σxx σxy 0
σyx σyy 0
0 0 σzz

+

 σxx σxy 0
σyx σyy 0
0 0 σzz

)2

+ (

 σxx −σxy 0
−σyx σyy 0

0 0 σzz

+

 σxx −σxy 0
−σyx σyy 0

0 0 σzz

)2

= 4× (

 σxx σxy 0
σyx σyy 0
0 0 σzz

2

+

 σxx −σxy 0
−σyx σyy 0

0 0 σzz

2

);(6.1)

whereas the scattering intensity for sample B IB001 can be expressed as:

IB001 ∝ (σ1
LNO + σ3

LNO)2 + (σ2
LNO + σ4

LNO)2

= (

 σxx σxy 0
σyx σyy 0
0 0 σzz

+

 σxx −σxy 0
−σyx σyy 0

0 0 σzz

)2

+ (

 σxx −σxy 0
−σyx σyy 0

0 0 σzz

+

 σxx σxy 0
σyx σyy 0
0 0 σzz

)2

= 8×

 σxx 0 0
0 σyy 0
0 0 σzz

2

. (6.2)

The scattering factor of the SL(001) peak is hence only sensitive to the
di�erent bonding environments of the neighboring LNO layers along the spec-
ular direction. The di�erence between sample A and B is obvious, i.e. the
scattering intensity of sample B is not sensitive to the octahedral distortions,
as indicated by the canceling of the o�-diagonal terms in evaluating the sum
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Figure 6.2.: Experimental results of sample A. Panel (a): X-ray absorption
spectra for linear polarized lights. Panel (b)-(e) show the qz depen-
dent x-ray re�ectivity curves at di�erent resonant and o�-resonant
energies. The black curves are the �tting results using the Par-
ratt's recursive method. The �tting structural parameters are
listed as Tab 6.1. Panel (f)-(i) show the experimental measured
re�ectivity curves at a constant qz with σ and π polarizations.
Panel (f),(g) show the re�ectivity curves around the SL(001) peak
with qz =0.4087, 0.4011 Å, respectively (marked as orange short
lines in panel (c)). Panel (h)-(i) show the re�ectivity spectra at
qz =0.1709 Å and qz =0.1809 Å (black short lines in panel (c)).

of the conductivity tensors.
The method of orbital re�ectometry introduced in previous chapters is ex-

tremely sensitive to subtle charge pro�les between interface and inner layers.
Here we study the constant qz resonant re�ectivity at SL(001) to verify the
in-phase/antiphase bonding environment. A further simulation of the �xed qz
re�ectivity intensities allows us obtain quantitative information on the rota-
tion angles. The samples are prepared with the same total thickness as shown
in Fig. 3.11 (Sec. 3.3.4). Good sample qualities are veri�ed by hard x-ray
di�raction measurements.
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Figure 6.3.: Experimental results of sample B. (a): X-ray absorption spectra
for linear polarized lights. (b)-(e) shows the qz dependent x-ray
re�ectivity curves at di�erent energies labeled at each panel. The
black curves are the �tting result using the Parratt's recursive
method. The �tting structural parameters are listed as Tab. 6.1.
(f)-(i) show the experimental measured re�ectivity curves at a
constant qz with σ and π polarizations. Panel (f)-(g) show the re-
�ectivity results around the SL(001) peak with qz =0.3142 Å and
qz =0.3233 Å, respectively (marked as orange arrow in panel (c)).
Panel (h)-(i) represent the re�ectivity spectra at qz =0.2019 Å and
qz =0.2135 Å (black arrows in panel (c)).

Fig. 6.2 and Fig. 6.3 show the result of the x-ray absorption and re�ec-
tivity measurements for sample A and sample B, respectively. The absorp-
tion spectra measured with linearly polarized light were collected in the TEY
mode. For both samples, we observed the absence of linear dichroism at Ni
resonant edges, which indicates that there is no clearly preferred orbital occu-
pation. Note that the absorption spectrum only probes a thin LNO layer in
this surface-sensitive TEY mode and the La M -edge is dominant. Unfortu-
nately, we had some troubles with �uorescence diodes during this beamtime,
otherwise it might have provided more conclusive results. Panel (b)-(e) show
the qz dependent re�ectivity curves both on and o� resonances, i.e. at Cu Kα
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composition subs. t(σ) LNO t(σ) LGO t(σ)
Å(Å) Å(Å) Å(Å)

LNO-LGO (1//3) ∞(3.1) 3.83(2.0) 11.5(3.0)
LNO-LGO (1//4) ∞(2.9) 3.2(2.1) 16.6(2.7)

Table 6.1.: The �tting parameters, i.e. the roughness of the substrate σ, the
thickness t and the roughness σ of LNO and LGO layers for sample
A and sample B based on Parratt's recursive method.

edge with E = 8047.7 eV , at the Ni L3-edge with E = 854.4 eV , at the Ni
L2 resonant edge with E = 871.4 eV and at the soft x-ray o�-resonant edge
E = 700 eV , respectively. The structural model is obtained by �tting the
hard x-ray re�ectivity data using Parratt's recursive method, which also gives
a nice description of the full set of data measured for di�erent energies (the
black curves). The �tting parameters in terms of the thickness t and the rough-
ness σ are summarized in the Tab. 6.1. Panel (f)-(i) of Figs. 6.2 and Figs. 6.3
show the corresponding constant-qz curves, where polarization-dependent dif-
ferences between scans with σ and π- polarized light become more obvious.
In principle the di�erences should also exist in the polarization-dependent re-
�ectivity measurement at �xed energies, but in a less distinct manner due to
the lack of depth resolution. For sample A, the �xed-qz curves show a strong
polarization dependence around the SL(001) re�ex with qz =0.4087, 0.4011 Å.
The pronounced di�erence appears not only in di�erent intensities but also in
di�erent line-shapes. Moreover, there is almost no polarization dependence at
other scattering momentum values. Fig. 6.2 (h) and (i) represent the polar-
ization dependent re�ectivity curves with qz =0.1709 Å and qz =0.1809 Å ,
which correspond to the valley with destructive interference and the peak po-
sition with constructive interference, respectively (as marked in Fig. 6.2(c)).
According to the estimation of the SL(001) scattering factor in Eq. 6.1, these
di�erences arise from the di�erence of the top and the bottom LNO layers.
For sample B with a structure con�guration of LNO-LGO (1 u.c.//4 u.c.),

we do not observe a similar behavior. Fig. 6.3 (f) and (g) show the re�ectivity
curves with qz =0.3142 Å and qz =0.3233 Å around the SL(001) re�ection in-
dex, the change due to di�erent polarized incident light is considerably smaller.
The scattering spectra have similar line-shapes and almost indentical intensi-
ties. At the scattering momenta of qz =0.2019 Å and qz =0.2135 Å , there is
no dichroic di�erence, as previously found in sample A.
We noted that the observed phenomena are not related to the lack of ac-

curacies in the �tting results based on Parratt's recursive method at high qz
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6. X-ray re�ectometry as a probe of octahedral distortions

limits, since similar �tting inaccuracies which might be related to the surface
roughness appear in both sample A and sample B, whereas we only observed
substantial polarization dependent re�ectivity curves around SL(001) for sam-
ple A. The experimentally observed strong polarization dependent re�ectivity
curves are qualitatively in agreement with the scattering intensity IA001 calcu-
lated by taking into account the octahedral tilts and rotations. Therefore, we
will focus on the quantitative description of the e�ect observed in sample A
below.

In order to understand the experimental results, we modeled the re�ectivity
intensities with REMAGX. The e�ect of the octahedral rotation gives rise to a
low crystal symmetry. A good starting point is the assumption of a monoclinic
symmetry, as mentioned before. The conductivity tensor σmono then can be
obtained by multiplying the tetragonal tensor σtetra with the rotation matrix
R through:

σmono = RT · σtetra ·R, (6.3)

with RT being the transposed matrix of R.

Taking the example of a rotation along the x-axis with angle α, along the
y-axis with angle α (no in-plane anisotropy), and along z-axis with angle θ
(these rotation angles are speci�ed in Fig. 3.1), the rotation matrix is given
by:

R1 ·R2 ·R3 = 1 0 0
0 cosα sinα
0 − sinα cosα

 ·
 cosα 0 − sinα

0 1 0
sinα 0 cosα

 ·
 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ,

(6.4)

therefore, the corresponding monoclinic matrix σmono1 is:

σmono1 = RT1 ·RT2 ·RT3 · σtetra ·R3 ·R2 ·R1. (6.5)

For the adjacent layer with an opposite rotation, i.e. a rotation of -α, -α and
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Figure 6.4.: Panel (a): experimental constant qz re�ectivity curves with
�xed qz =0.4011 Å. (b): normalized di�erent curves with di�er-
ent γ in cluster calculations with a �xed crystal �eld splitting
∆=100 meV . γ=0.4, 0.3 and 0.7 correspond to an average or-
bital polarization of Pav =-15%, -30% and +30%, respectively.

-θ along the x, y and z-axis, respectively, the rotation matrix is:

R′1 ·R′2 ·R′3 = 1 0 0
0 cosα − sinα
0 sinα cosα

 ·
 cosα 0 sinα

0 1 0
− sinα 0 cosα

 ·
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ,

(6.6)

which gives rise to a di�erent monoclinic conductivity tensor σmono2 as:

σmono2 = R′T1 ·R′T2 ·R′T3 · σtetra ·R′3 ·R′2 ·R′1. (6.7)

In particular, for sample A, the optical constants for site 1 and site 3 are
given by σmono1 , while σmono2 is relevant for site 2 and site 4.
The script used in the REMAGX simulation can be found in Appendix A.3.
Based on Eq. 6.3 - Eq. 6.5, we notice that the o�-diagonal terms in the mon-

oclinic conductivity tensor are proportional to the di�erence of the diagonal
terms, i.e. σxy ∝ (σzz −σxx), and its in�uence is extremely small compared to
the diagonal terms. The o�-diagonal terms can only be obtained if there exist
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Figure 6.5.: Panel (a): constant qz re�ectivity curves for σ and π polarizations
at qz =0.4011 Å. (b)-(e) Normalized di�erent curves obtained by
(Iσ−Iπcor.)/(Iσ+Iπcor.) for di�erent crystal �eld splitting energies
∆=10meV , 100meV , 300meV as well as 500meV , respectively.
The dark black line shows the experimental normalized di�erent
curve. The others are the simulation curves with di�erent octahe-
dral rotation angles: θ=0◦, 5◦, 20◦ . The input optical constants
are obtained by merging the absorption curves from cluster calcu-
lation to the Chantler table with γ=0.3.

di�erences in the diagonal terms via matrix rotation approach. Thus we have
to make a quantitative modeling taking into account the natural dichroism,
which is not in agreement with the current absorption data (Fig. 6.2(a)) and
will be addressed hereafter.
We hence �rst reduce the problem to a tetragonal tensor with relative big

di�erence between the diagonal terms. We calculate the di�erence (σzz−σxx)
following the principles presented in Chapter 2. Fig. 6.4(b) shows the simu-
lated normalized di�erence curves together with the result of model calcula-
tions. In detail, the optical constant is obtained by merging the spectra from
the cluster calculations to the Chantler table. The spectra with di�erent mag-
nitudes of orbital occupation are varied by changing the admixture coe�cient
γ. As discussed in Sec. 4.3.1, the measured spectra for the x-ray absorption
measurements can be described as linear superposition of spectra, Ix

2−y2
x,z (E),

I3z2−r2
x,z (E), which are calculated for 100% occupation of either the x2 − y2 or

110



the 3z2 − r2 orbital and for the polarization of the incoming light parallel to
the x and z direction, respectively. For instance, the absorption spectra for
the z-polarized light is obtained by Iz(E) = γIx

2−y2
z (E) + (1− γ)I3z2−r2

z (E).
γ=0.5 indicates the same spectral weight of the linear x-polarized and z-
polarized light, i.e. the same electron occupation between dx2−y2 and d3z2−r2

orbitals. Fig. 6.4(b) shows the e�ect of changing γ in the normalized di�er-
ent curves. γ=0.4 corresponds to an orbital polarization Pav =+15% (taking
neg =1, see discussion in Sec. 4.3.2). A better agreement with the experimental
result is obtained with γ=0.3 (i.e. Pav =30%), whereas γ = 0.7 (Pav =-30%)
with a preferred orbital occupancy of d3z2−r2 orbital is worse.

We �xed γ=0.3 in the following discussions. Fig. 6.5 shows the REMAGX
simulated re�ectivity results with �xed qz =0.4011 Å. Fig. 6.5(b)-(d) show the
normalized di�erent curves with di�erent crystal �eld splitting energies, i.e.
∆=10 meV , 100 meV , 300 meV and 500 meV , respectively. The simulations
were performed with di�erent rotation angles, i.e. α = θ=0◦, 5◦ and 20◦.
The normalized di�erent curves are shown in the corresponding panel. Note
that the e�ect of the crystal �eld splitting produces a shift of the spectra
with di�erent polarizations. In particular, ∆ corresponds to a bigger energy
splitting between dx2−y2 and d3z2−r2 orbitals, and a lower energy of dx2−y2
orbital is expected due to the preferred orbital occupations. Thus, for photons
with polarization parallel to the NiO2 plane (E ‖ x), the absorption energy is
lower than that for photons with polarization perpendicular to the NiO2 plane
(E ‖ z). With increasing crystal �eld splitting energy ∆, the agreement at
Ni L3 edge becomes better. However, it is hard to judge which ∆ provides a
better description of the experimental results.

As mentioned above, a natural linear dichroism is needed for a better ex-
planation of the measured spectra based on this approach. However, our
experimental result (Fig. 6.2 (a)) does not indicate any preferred orbital oc-
cupation in the polarization dependent x-ray absorption measurements. One
possible reason is that it is related to the presence of inhomogeneities inside
the superlattice. XAS is a local approach that collects the intensities on av-
erage, but the x-ray re�ectivity with a �xed penetration depth can provide
spatially resolved information along the superlattice normal direction. How-
ever, this is not in agreement with sample B, which should have a comparable
orbital polarization. In principle, for both samples with 1 u.c. thick LNO lay-
ers sandwiched with several layers of insulators LaGaO3, a strong con�nement
and thus a big orbital polarization is expected from theoretical calculations.
Therefore, we can exclude the inhomogeneities as a possible origin. Another
technical reason is that we only probe a few top LNO layers, which contribute
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tiny TEY signals at Ni edges compared to neighboring La edges with huge
absorption intensities. The experimental result can be con�rmed or rechecked
in the future by collecting the bulk-sensitive �uorescence signal. Finally, the
roughness of a single LNO layer is about half unit cell (∼ 2 Å) from structural
�tting, which suggests that the sample quality should be improved for further
investigations.
In conclusion, the orbital re�ectometry method is very sensitive to the oc-

tahedral tilt patterns. We provide the �rst step towards a quantitative un-
derstanding of the observed strong polarization dependent re�ectivity results.
This ansatz where the monoclinic conductivity tensor is obtained by rotating
the tetragonal conductivity tensor obviously does not yet explain our experi-
mental result quantitatively. Further e�orts are required to obtain a fully un-
derstanding of the re�ectivity behavior. For instance, an understanding of the
current experimental results might be improved if one could get a proper opti-
cal constant from experiments (such as measuring the �uorescence yield spec-
tra) or from theoretical calculations (such as the local-density-approximation
calculations).
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A.1. Values of 3J symbols

The matrix element of spherical tensors are evaluated by Wigner-Eckart the-
orem in terms of 3J symbols, i.e.

〈lm|C(k)
q |cm′〉 = (−1)m

√
(2l + 1)(2c+ 1)

(
l k c
0 0 0

)(
l k c
−m q m′

)
.

For a 2p → 3d transition, l=2, c=1, and k=1 for the incident beam.
Here we list the values of 3J symbols for calculating the transition probability
(neglecting the prefactors). With linear z-polarized light, i.e. q=0, the non-
vanishing 3J symbols are:(

2 1 1
−1 0 1

)
= −

√
1

10
;

(
2 1 1
0 0 0

)
=

√
2

15
;

(
2 1 1
1 0 −1

)
= −

√
1

10
.

With circular left polarized light, i.e. q=-1, the non-vanishing 3J symbols
include: (

2 1 1
0 −1 1

)
=

√
1

30
;

(
2 1 1
1 −1 0

)
= −

√
1

10
;

(
2 1 1
2 −1 −1

)
=

√
1

5
.
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With circular left polarized light, i.e. q=+1, they include:(
2 1 1
−2 1 1

)
=

√
1

5
;

(
2 1 1
−1 1 0

)
= −

√
1

10
;

(
2 1 1
0 1 −1

)
=

√
1

30
.

A.2. Kramers-Kronig transformations

The real and imaginary part of the scattering factor (f = f ′ + if ′′) are
not independent, but connected by the Kramers-Kronig relations, which can
also be used for any complex function, as described in [77]. Regarding x-ray
scattering factor (f = f ′+if ′′), one cannot rely on the theoretical values since
it is very sensitive to the chemical local environment. The imaginary part of
the scattering factor f ′′ is directly related to the absorption coe�cients σa
through:

f ′′ = − ω

4πr0c
σa (A.1)

The real part of the scattering factor f ′ is obtained from the Kramers-Kronig
relations which are given by

f ′(ω) =
2

π
P

∫ +∞

0

ω′f ′′(ω)

(ω′2 − ω2)
dω′

f ′′(ω) = −2ω

π
P

∫ +∞

0

f ′(ω)

(ω′2 − ω2)
dω′,

(A.2)

where P is the Cauchy principal value of the integral. The Kramers-Kronig re-
lations are derived from Cauchy's theorem for complex integration from math-
ematical point of view.
Practically, one cannot integrate from 0 to +∞. As mentioned in Sec. 2.1.3,

the imaginary part of the scattering factor f ′′ is obtained by merging the
experimental measure absorption spectra near resonant energies to the values
from Chantler table within a range from 10 eV to 400,000 eV . The numerical
estimation of the equation is more complicated due to the singularity at ω′ =
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ω, which is solved by a summarization of discrete parts as follows:

f ′(ω) =
2

π
P
∑
ωi

ω′f ′′(ω)

(ω′2 − ω2
i )
dω′. (A.3)

A.3. Scripts of layer-resolved orbital occupation modulation in
Remagx simulation

for i=6, 26, 4 do
thickness [i] = thickness [2]

sigma [i] = sigma [2]

end

for i=7, 29, 4 do
thickness [i] = thickness [3]

sigma [i] = sigma [3]

end

for i=8, 28, 4 do
thickness [i] = thickness [4]

sigma [i] = sigma [4]

end

for i=9, 29, 4 do
thickness [i] = thickness [5]

sigma [i] = sigma [5]

end

epsilon=8e-6
for i=1, 29, 4 do
exx - r[i]= (1.− delta[1]) ∗ (1.− delta[1]) − beta[1] ∗ beta[1]

eyy - r[i]= (1.− delta[1]) ∗ (1.− delta[1]) − beta[1] ∗ beta[1]

ezz - r[i]= (1.− delta[5]) ∗ (1.− delta[5]) − beta[5] ∗ beta[5]

exx - i[i]=2. * (1− delta[1]) ∗ beta[1]

eyy - i[i]=2. * (1− delta[1]) ∗ beta[1]

ezz - i[i]=2. * (1− delta[5]) ∗ beta[5]
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end

for i=3, 27, 4 do
exx - r[i]= (1.− delta[3]) ∗ (1.− delta[3]) − beta[3] ∗ beta[3]

eyy - r[i]= (1.− delta[3]) ∗ (1.− delta[3]) − beta[3] ∗ beta[3]

ezz - r[i]= (1.− delta[7]) ∗ (1.− delta[7]) − beta[7] ∗ beta[7]

exx - i[i]=2. * (1− delta[3]) ∗ beta[3]

eyy - i[i]=2. * (1− delta[3]) ∗ beta[3]

ezz - i[i]=2. * (1− delta[7]) ∗ beta[7]

end

for i=4, 28, 4 do
exx - r[i]= (1.− delta[4]) ∗ (1.− delta[4]) − beta[4] ∗ beta[4]

eyy - r[i]= (1.− delta[4]) ∗ (1.− delta[4]) − beta[4] ∗ beta[4]

ezz - r[i]= (1.− delta[8]) ∗ (1.− delta[8]) − beta[8] ∗ beta[8]

exx - i[i]=2. * (1− delta[4]) ∗ beta[4]

eyy - i[i]=2. * (1− delta[4]) ∗ beta[4]

ezz - i[i]=2. * (1− delta[8]) ∗ beta[8]

end

�ShowMatrixEigenvalues()

A.4. Scripts of octahedra rotation in Remagx simulation

� create 3x3 matrices
� �rst index i = row
� second index j = column
� R: rotation matrix
� Er: epsilon tensor real part
� Ei: epsilon tensor imaginary part
� Tr: temporary matrix real part
� Ti: temporary matrix imaginary part

R= {}
Er = {}
Ei= {}
Tr = {}
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Ti= {}

for i=1, 3 do
R[i]= {}
Er[i]= {}
Ei[i]= {}
Tr[i]= {}
Ti[i]= {}

for j=1, 3 do
R[i][j]=0;
Er[i][j]=0;
Ei[i][j]=0;
Tr[i][j]=0;
Ti[i][j]=0;
end
end

� for each layer calculate R ∗ E ∗RT (RT =transposed matrix of R)
for l = 1, 31, 2 do
� de�ne epsilon tensor
deltaxx= delta[1];
betaxx= beta[1];
deltazz = delta[3];
betazz = beta[3];
deltayy = (delta[1] + delta[3]) ∗ 0.5;
betayy = (beta[1] + beta[3]) ∗ 0.5;

Er[1][1]= 1. - 2.∗deltaxx+ deltaxx ∗ deltaxx - betaxx ∗ betaxx;
Er[2][2]= 1. - 2.*deltayy + deltayy ∗ deltayy - betayy ∗ betayy;
Er[3][3]= 1. - 2.*deltazz + deltazz ∗ deltazz - betazz ∗ betazz;
Ei[1][1]= 2.*betaxx - 2.*deltaxx ∗ betaxx;
Ei[2][2]= 2.*betayy - 2.*deltayy ∗ betayy;
Ei[3][3]= 2.*betazz - 2.*deltazz ∗ betazz;

� de�ne rotation matrix for each layer with a rotation angle of 10◦

angle = l / 36. * 2. * math.pi;
�print("angle of layer ", l, ": ", angle);
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R[1][1]=math.cos(angle);
R[1][2]=math.sin(angle);
R[2][1]= -math.sin(angle);
R[2][2]=math.cos(angle);
R[3][3]= 1.;

� T = R ∗ E
for i=1, 3 do
for j=1, 3 do
Tr[i][j]=0.;
Ti[i][j]=0.;
for k=1, 3 do
Tr[i][j]=Tr[i][j]+R[i][k] ∗ Er[k][j];
Ti[i][j]=Ti[i][j]+R[i][k] ∗ Ei[k][j];
end
end
end

� E = T ∗RT
for i=1, 3 do
for j=1, 3 do
Er[i][j]=0.;
Ei[i][j]=0.;
for k=1, 3 do
Er[i][j]=Er[i][j] + Tr[i][k] ∗R[j][k];
Ei[i][j]=Ei[i][j] + Ti[i][k] ∗R[j][k];
end end end

� set epsilon tensor
exx - r[l]=Er[1][1];
exy - r[l]=Er[1][2];
exz - r[l]=Er[1][3];
eyx - r[l]=Er[2][1];
eyy - r[l]=Er[2][2];
eyz - r[l]=Er[2][3];
ezx - r[l]=Er[3][1];
ezy - r[l]=Er[3][2];
ezz - r[l]=Er[3][3];
exx - i[l]=Ei[1][1];
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exy - i[l]=Ei[1][2];
exz - i[l]=Ei[1][3];
eyx - i[l]=Ei[2][1];
eyy - i[l]=Ei[2][2];
eyz - i[l]=Ei[2][3];
ezx - i[l]=Ei[3][1];
ezy - i[l]=Ei[3][2];
ezz - i[l]=Ei[3][3];
end
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Abstract

Despite extensive research for decades, cuprates still play the dominant role
for high-Tc superconductors and the mechanism for the superconductivity is
of considerable debate. The key ingredients of the electronic properties of
cuprates include no orbital degeneracy, spin-one-half, quasi-two dimensionality
and strong antiferromagnetic correlations. There is no high Tc superconductor
found among the nickel oxides although Nickel is next to Copper in the periodic
table.
Rare-earth nickelates heterostructures were proposed as candidates to po-

tentially exhibit the same electronic structure [20], and the past years have
seen several attempts to realize these properties, but no high-Tc superconduc-
tivity was reported so far. In particular, superlattices composed of the para-
magnetic metal LaNiO3 (LNO) and a large band-gap insulator RXO3 (RXO)
with R= rare-earth ion and X= trivalent cation, were studied in detail. Both
materials exhibit a perovskite-type structure. One important aspect of the
electronic structure, in analogy to the cuprates is the orbital occupation of the
Ni d-orbitals. In LNO, the nominal Ni3+ electron con�guration is 3d7 : t62ge

1
g

due to the cubic crystal �eld of the octahedrally coordinated oxygen ligands,
i.e. an unpaired electron with S = 1/2 occupies the eg orbitals (x2 − y2 and
3z2 − r2). While studies on bulk LNO have shown that the eg levels are
degenerated, epitaxial heterostructuring o�ers new routs to manipulate or-
bital occupations via quantum con�nement, strain induced by the underlying
substrate and the choice of the second, insulating material as demonstrated
by recent theoretical and experimental work [11, 48, 49, 51, 52, 53]. More
precisely, the e�ect of quantum con�nement is expected to reduce the three
dimensional bulk band dispersion of the Ni d3z2−r2 state along the z-direction,
resulting in a lifting of eg orbital degeneracy by lowering the x2 − y2 state.
Biaxial strain induces a di�erence between the in-plane and apical Ni-O bond
lengths, giving rise to an eg orbital splitting and a modi�cation of the band-
width. Depending on the sign of biaxial strain, compressive or tensile, this
possibly results in a preferentially occupation of one of the eg orbtials. The
e�ect of di�erent trivalent ions X, e.g. Al, Ga, In or Sc, in the insulating layer
is to change the hybridization between the Ni d3z2−r2 orbital and O 2pz or-
bital, thus the X-O-Ni hybridization along the surface normal direction serves
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as a tuning parameter. As the ionic radius of X increases, the overlap of X
s -O 2pz is expected to be reduced, resulting in the enhanced hybridization of
Ni d3z2−r2 -O 2pz and an enhanced dx2−y2 orbital occupation.
The present Phd work reports an experimental investigation of layer-resolved

orbital occupations, which allow a direct, quantitative comparison with theo-
retical calculations and therefore provide important information on the possi-
bility to manipulate the electronic structure in nickelate-based heterostructure.
We used orbital re�ectometry, a new method combining x-ray absorption and
x-ray re�ectivity to study layer-resolved orbital occupations. In x-ray absorp-
tion measurements, linearly polarized soft x-rays tuned to the Ni L edge were
used to measure absorption spectra. The absorption intensities are directly
proportional to the imaginary part of the layer-averaged scattering factor. For
the quantitative analysis, we applied the sum rule for linear dichroism, which
relates the ratio of holes in the Ni eg orbitals to the energy-integrated absorp-
tion intensities across the Ni L edge. In order to partially separate the in�uence
of strain and interfacial e�ects induced by di�erent X ions on the orbital polar-
ization, we performed resonant re�ectivity measurements. First, the specularly
re�ected beam intensity at �xed energies, resonant and non-resonant, was an-
alyzed to obtain a proper structural model of the superlattice. To account for
the strong resonances, we used the measured linearly polarization absorption
data scaled to theoretical values of the scattering factor as input for the �tting
routines. In a second step, the energy- and polarization-dependent resonant
re�ectivity with �xed momentum was measured. The momentum transfer qz
was chosen to be particularly sensitive to a possible di�erence between in-
terface and inner layer of the LNO layer stack and allowed us to map out
layer-resolved orbital pro�les. Two systems were investigated:
First, we focused on LNO-based heterostructures, with a structural com-

position of 4 unit cell (u.c.) LNO and equally thick layer stacks of the band
insulators RXO (R=La,Gd,Dy and X=Al,Ga, Sc). The results allowed us to
partly disentangle the orbital polarization originating from strain, a�ecting all
four LNO layers in the stack, from the change in chemical composition across
the LNO-RXO interface, which largely a�ects the outer two interfacial layers.
The strain dependence of both, the energy splitting between eg levels (i.e. the
energy di�erence between dx2−y2 and d3z2−r2 levels) extracted from a com-
parison of the x-ray absorption spectra with cluster calculations and the inner
layer orbital polarization determined by orbital re�ectometry indicate a linear
orbital-lattice coupling and con�rm the stabilization of the planar dx2−y2 or-
bital under tensile strain with values of orbital polarization up to P = 25 %.
Such an simple linear orbital-lattice interaction is surprising, when considering
the very complex crystal structures of these materials [116, 117]. Furthermore
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our results indicate that strain is the most e�ective control parameter, whereas
the in�uence of the chemical composition of the blocking layers falls into a com-
paratively narrow band of width ∼ 5%, at least for superlattices investigated
here. The direct and quantitative comparison with theoretical results per-
formed within the scope of this thesis is an important feedback for the theory
and the rational design on nickelate heterostructures in general.
In the second part of this thesis, we report the investigation of the orbital

properties of PrNiO3-PrAlO3 (PNO-PAO) superlattices. Di�erent from bulk
LNO, which stays paramagnetic and metallic down to the lowest temperatures,
bulk PNO shows a metal-insulator transition and magnetic order below a com-
mon temperature of T ≈ 130K. Very recent transport, x-ray scattering and
Raman experiments demonstrated that the electronic and magnetic properties
can be tuned by strain and con�nement in heterostructures of PNO [60]. It was
shown by us and others that the metal-insulator transition can be suppressed
in thin �lms grown epitaxially under compressive strain, while a bulk-like tran-
sition is observed under tensile strain. When con�ned in a PNO-PAO super-
lattice and compressively strained, the PNO layers retain their comparatively
high conductivity down to lowest temperatures, but show antiferromagnetic
order below ∼ 100K for layer thicknesses of 4 u.c. We identi�ed this phase as a
possible realization of a pure spin density wave. In contrast, superlattices un-
der tensile strain show a robust insulating phase with spin and possible charge
order. In the present thesis, we performed x-ray absorption and resonant re-
�ectometry measurements on PNO-PAO superlattices under compressive and
tensile strain, in order to investigate the local electronic structure of Ni and
its temperature dependence.
For superlattices under compressive strain, the low-temperature x-ray ab-

sorption spectra are almost identical to those measured at room temperature,
indicating that the magnetic order hardly change the electronic structure and
the relative orbital occupation. The situation is di�erent for PNO-PAO su-
perlattices under tensile strain. First, the low temperature absorption spectra
show a double-peak structure at both Ni L3 and Ni L2 edges, with an energy
splitting of ∼ 1.6 eV . The �ne structure of the absorption spectra of PNO-PAO
superlattices under tensile strain is almost identical to those of bulk PNO. For
bulk PNO this multiplet structure has been interpreted as a signature of charge
order with two non-equivalent NiO6 octahedra at low temperatures [112], in
agreement with the robust spin and charge order below ∼ 160K reported in
Ref. [60]. A second important observation for the superlattices under tensile
strain is that our quantitative analysis reveals a reduced orbital polarization
in the low temperature phase, which can be understood in a simpli�ed Ni
3d7−δ - 3d7+δ charge order picture, where the admixture of the 3d8 con�gura-
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tion, with nominally one electron in each eg orbital due to Hund's coupling,
e�ectively reduces the orbital polarization below the metal-insulator transition
temperature, in qualitative agreement with theoretical scenarios [93].
From our resonant re�ectometry study we observe a similar linear orbital-

lattice interaction as compared to the LNO-based superlattices. A tendency
towards higher orbital polarizability is observed for PNO-PAO superlattices,
which possibly is related to the increase of octahedral distortions in PNO-
based superlattices, compared to those based on LNO, the latter exhibiting a
tolerance factor closer to one. This tendency for distorted structures with tilts
and rotations of the NiO6 octahedra was also predicted by recent calculations
based on the generalized gradient approximation and was attributed to the
di�erence in hybridization between Ni d- and O p-orbitals [111]. Such a quan-
titative comparison of experiment and theory is important for the design of
�orbitally engineered� oxide heterostructures and their potential applications.
In the third part of the thesis, we report results indicating that orbital

re�ectometry is a uniquely sensitive probe of octahedral rotation pattern in
oxide superlattices.
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Trotz jahrzehntelanger umfassender Forschung spielen Kuprate immer noch
die dominante Rolle auf dem Gebiet der Hochtemperatursupraleiter und der
Mechanismus der Supraleitung ist weiterhin Gegenstand wissenschaftlicher
Diskussion. Die wesentlichen Bestandteile der elektronischen Struktur der
Kuprate sind das Fehlen von orbitaler Entartung, ein Spin von 1/2, quasi
Zwei-Dimensionalität und starke antiferromagnetische Korrelationen. Unter
den Nickeloxiden wurde bisher noch kein Supraleiter gefunden, obwohl Nickel
im Periodensystem neben Kupfer zu �nden ist.
Seltenerdnickelat-Heterostrukturen wurden als Kandidaten vorgeschlagen,

die möglicherweise die gleiche elektronische Struktur wie die Kuprate vor-
weisen [20]. In den vergangenen Jahren wurden vielfältige Versuche unter-
nommen diese Eigenschaften zu realisieren, aber bisher gibt es keinen Bericht
von Hochtemperatursupraleitung. Insbesondere wurden Übergitter zusam-
mengesetzt aus dem paramagnetischen Metall LaNiO3 (LNO) und dem Ban-
disolator RXO3 (RXO), mit R=Seltenerdion und X=dreiwertiges Kation,
eingehend studiert. Beide Materialien haben eine Perowskit-artige Kristall-
struktur. In Analogie zu den Kupraten ist einer der wesentlichen Aspekte
der elektronischen Struktur die Besetzung der Ni d-Orbitale. In LNO ist
die nominelle Ni3+ Elektronenkon�guration aufgrund der oktaedrischen Ko-
ordination der Sauersto�liganden 3d7 : t62ge

1
g, d.h. ein ungepaartes Elek-

tron mit Spin 1/2 besetzt die sogenannten eg Orbitale (x2 − y2 und 3z2 −
r2). Während Studien an Bulk LNO auf entartete eg Niveaus hinweisen,
zeigen neuere theoretische Arbeiten, dass epitaktische Heterostrukturierung
mittels Quantenbeschränkung, Verspannungen induziert durch das darunter
liegende Substrat und die Wahl des zweiten, isolierenden Materials, neue
Möglichkeiten bieten um die orbitalen Besetzungen zu manipulieren [11, 48, 49,
51, 52, 53]. Genauer gesagt, es wird davon ausgegangen, dass der E�ekt der
Quantenbeschränkung die drei-dimensionale Banddispersion der Ni d3z2−r2

Zustände entlang der z-Richtung reduziert, und somit eine Aufhebung der eg-
Orbitalentartung durch Absenkung des x2 − y2 Zustandes resultiert. Biaxiale
Verspannung induziert einen Unterschied zwischen den planaren und apikalen
Ni-O Bindungslängen, die wiederum eine Aufhebung der eg-Orbitalentartung
und eine Modi�kation der Bandbreite bewirken. Abhängig vom Vorzeichen der
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Verspannung, Druck- oder Zugspannung, resultiert diese in einer möglichen
Vorzugsbesetzung von einem der eg Orbitale. Der E�ekt der unterschiedlichen
dreiwertigen X Ionen in der isolierenden Schicht, z.B. Al, Ga, In oder Sc,
besteht darin, dass die Hybridisierung zwischen dem Ni d3z2−r2 Orbital und
dem O 2pz Orbital verändert wird. Daher dient die X-O-Ni Hybridisierung
entlang der Ober�ächennormale als Anpassungsparameter. Wenn der X Io-
nenradius ansteigt, wird erwartet, dass der X s- O 2pz Überlapp reduziert wird,
so dass eine verstärkte Ni d3z2−r2 - O 2pz Hybridisierung und eine bevorzugte
dx2−y2 Orbitalbesetzung resultiert.
Die vorliegende Doktorarbeit berichtet über eine experimentelle Studie der

lagenaufgelösten orbitalen Besetzungen in Nickelat-basierten Übergittern, welche
einen direkten, qualitativen Vergleich mit theoretischen Vorhersagen erlaubt
und deshalb wichtige Informationen über die mögliche Manipulation der elek-
tronischen Struktur mittels Heterostrukturierung liefert. Um die lagenaufge-
lösten orbitalen Besetzungen zu studieren haben wir � Orbitale Re�ektometrie�
genutzt, eine neue Methode, die Röntgenabsorption und Röntgenre�ektome-
trie verbindet [8]. Für die Röntenabsorptionsmessungen wurden linear polar-
isierte weiche Röngtgenstrahlen abgestimmt auf die Ni L Kante verwendet.
Die Absorptionsintensitäten sind direkt proportional zu dem Imaginärteil des
lagengemittelten Streufaktors. Für die quantitative Analyse haben wir die
Summenregel für den linearen Dichroismus angewendet, die das Verhältnis
der Löcher in den Ni eg Orbitalen mit den über die Ni L Kante energiein-
tegrierten Absorptionsintensitäten in Zusammenhang setzt. Um den Ein�uss
der Verspannung und die Grenz�ächene�ekte, induziert durch die verschiede-
nen X Ionen, auf die orbitalen Besetzungen teilweise separieren zu können,
haben wir resonante Re�ektivitätsmessungen durchgeführt. Zunächst wur-
den die spekular re�ektierten Strahlintensitäten bei fester Energie, resonant
und nicht-resonant, analysiert um ein geeignetes Strukturmodel des Übergit-
ters zu erhalten. Um die starken Resonanzen zu berücksichtigen, wurden die
gemessenen linear polarisierten Absorptionsdaten an die theoretischen Werte
der Streufaktoren skaliert und als Eingabe für die Fitroutinen benutzt. In
einem weiteren Schritt wurden die energie- und polarisationsabhängigen Re-
�ektivitäten bei festem Impulstransfer gemessen. Der Impulstransfer qz wurde
so gewählt, dass er besonders sensitiv auf einen möglichen Unterchied zwis-
chen den Grenz�ächenlagen und den inneren Lagen der LNO Schicht ist, was
es uns ermöglicht hat die lagenaufgelösten orbitalen Pro�le abzubilden. Zwei
Systeme wurden untersucht:
Als erstes haben wir uns auf die Untersuchung von LNO-basierten Het-

erostrukturen, mit einer strukturellen Zusammensetzung von 4 Einheitszellen
LNO und gleich dicken Schichten des Bandisolators RXO (R=La,Gd,Dy und
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X=Al,Ga, Sc) konzentriert. Die Ergebnisse erlaubten uns die orbitale Po-
larisation, verursacht durch die Verspannung, welche alle vier LNO Lagen in
der Schicht gleichermassen betri�t, und die orbitale Polarisation, die durch
Änderung der chemische Zusammensetzung über die LNO-RXO Grenz�äche
verursacht wird und stärker die äusseren Grenz�ächenlagen betri�t, teilweise
zu separieren. Die Verspannungs-Abhängigkeit der Energieaufspaltung der
eg Niveaus (d.h. der Energieunterschied zwischen dem dx2−y2 und d3z2−r2

Niveau) bestimmt durch einen Vergleich der Röntgenabsorptionsspektren mit
Clusterrechnungen, sowie die durch orbitale Re�ektometrie bestimmte Polari-
sation der inneren Lagen deuten auf eine lineare Orbital-Gitter-Kopplung hin
und bestätigen die Stabilisierung des planaren dx2−y2 Orbitals unter Zugspan-
nung mit Werten der orbitalen Polarisation bis zu P = 25%. Eine solche
einfache, lineare Orbital-Gitter-Wechselwirkung ist überraschend, wenn man
die sehr komplexe Struktur dieser Materialien in Betracht zieht [116, 117].
Desweiteren deuten unsere Ergebnisse an, dass die Verspannung der e�ektivste
Kontrollparameter ist, wohingegen der Ein�uss der chemischen Komposition
der RXO-Sperrschicht, zumindest für die hier untersuchten Übergitter, nur
in einen vergleichsweise schmalen Bereich von ∼ 5 % fallen. Der direkte und
quantitative Vergleich mit theoretischen Ergebnissen, der im Rahmen dieser
Doktorarbeit vorgenommen wurde, ist eine wichtige Information für die The-
orie und die zukünftige Gestaltung von Nickelat-Heterostrukturen generell.
Im zweiten Teil dieser Arbeit berichten wir über die Untersuchung der or-

bitalen Eigenschaften von PrNiO3-PrAlO3 (PNO-PAO) Übergittern. Anders
als Bulk LNO, welches paramagnetisch und metallisch bis zu tiefsten Temper-
aturen bleibt, zeigt Bulk PNO einen Metall-Isolator-Übergang und magnetis-
che Ordnung unterhalb einer gemeinsamen Temperatur von T ≈ 130K. Kür-
zlich wurde mittels Transportmessungen, Röntgenstreuung und Raman Ex-
perimenten gezeigt, dass die elektronischen und magnetischen Eigenschaften
durch Verspannung und Eingrenzung in Heterostrukturen von PNO manip-
uliert werden können [60]. Es wurde durch uns und andere gezeigt, dass der
Metall-Isolator-Übergang in Dünn�lmen unter epitaktischer Druckspannung
unterdrückt werden kann, während ein bulk-artiger Übergang für Zugspan-
nung beobachtet wird. Eingegrenzt in einem PNO-PAO Übergitter unter
Druckspannung, ist die vergleichsweise hohe Leitfähigkeit der PNO Schichten
bis zu tiefsten Temperaturen erhalten, aber antiferromagnetische Ordnung un-
terhalb ∼ 100K wird für Schichtdicken von 4 Einheitszellen beobachtet. Wir
haben diese Phase als eine mögliche Realisierung einer reinen Spindichtewelle
identi�ziert. Im Gegensatz hierzu zeigen Übergitter unter Zugspannung eine
robuste isolierende Phase mit Spin- und Ladungsordnung. In der vorliegenden
Doktorarbeit haben wir Röntgenabsorptions- und resonante Re�ektivitätsmes-
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sungen an PNO-PAO Übergitter unter Druck- und Zugspannung durchge-
führt um die lokale elektronische Struktur von Ni und deren Temperaturab-
hängigkeit zu untersuchen. Für Übergitter unter Druckspannung sind die
Tieftemperatur-Röntgenabsorptionsspektren nahezu identisch zu denen die bei
Raumtemperatur gemessen wurden, was andeutet das die magnetische Ord-
nung die elektronische Struktur und die relative orbitale Besetzung nur wenig
ändert. Die Situation ist deutlich verschieden für PNO-PAO Übergitter unter
Zugspannung. Erstens zeigen die Tieftemperaturabsorptionspektren eine Dop-
pelpeakstruktur, sowohl an der Ni L3, wie auch an der Ni L2 Kante, mit einer
Energieaufspaltung von ∼ 1.6 eV. Diese Feinstruktur der Absorptionsspektren
ist nahezu identisch zu denen von Bulk PNO. Für Bulk PNO wurde diese Mul-
tipletstruktur als Merkmal von Ladungsordnung mit zwei nicht-äquivalenten
NiO6 Oktaedern bei tiefen Temperaturen interpretiert [112], in Übereinstim-
mung mit der in Ref. [60] berichteten robusten Spin- und Ladungsordnung un-
terhalb von ∼ 160K. Eine zweite wichtige Beobachtung für Übergitter unter
Zugspannung ist die reduzierte orbitale Polarisation in der Tieftemperatur-
phase die sich aus unserer quantitativen Analyse ergeben hat und welche in
einem vereinfachten Ni 3d7−δ - 3d7+δ Ladungsordnungsbild verstanden werden
kann, wo die Beimischung der 3d8 Kon�guration mit nominal einem Elek-
tron in jedem eg Orbital aufgrund der Hundschen Kopplung, e�ektiv die
orbitale Polarisation unterhalb der Metall-Isolator-Übergangstemperatur re-
duziert [93]. Basierend auf den Ergebnissen der orbitalen Re�ektrometrie
beobachten wir eine ähnliche, lineare Orbital-Gitter-Kopplung im Vergleich
mit den LNO-basierten Übergittern. Für PNO-PAO Übergitter wird eine Ten-
denz zu höherer orbitaler Polarisierbarkeit beobachtet, die möglicherweise mit
den grösseren Oktaederverzerrungen, im Vergleich zu LNO, in Zusammenhang
steht. LNO weist einen Toleranzfaktor näher bei eins auf. Eine solche Tendenz
für verzerrte Strukturen mit Verkippungen und Drehungen der NiO6 Oktaeder
wurde kürzlich auch von Rechnungen basieren auf der � Generalized Gradi-
ent Approximation� vorhergesagt und dem Unterschied in der Hybridisierung
zwischen Ni d- und O p- Orbitalen zugeordnet [111]. Ein solcher qualitativer
Vergleich von Experiment und Theorie ist wichtig für das Design von � orbital
technisierten� Oxidheterostrukturen und deren potentielle Anwendung.
Im dritten Teil dieser Doktorarbeit berichten wir von Ergebnissen, die aufzeigen,

dass die orbitale Re�ektometrie eine einzigartig sensitive Messmethode von
Oktaederrotationsmustern in Oxidübergittern ist.
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