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Abstract

In the present thesis, three different perovskites with potential multiferroic behavior
were investigated mainly by X-ray and neutron powder diffraction methods.

Rietveld refinements of room temperature synchrotron X-ray and neutron diffraction
measurements of the Bi;_,Sr,FeO3_s perovskites (with x = 0 to x = 0.5) revealed that
above a composition of x > 0.2, the crystal structure can be regarded as cubic with
the centrosymmetric space group Pm3m, which prohibits the occurrence of proper
ferroelectricity. Structural and magnetic investigations of high temperature high res-
olution neutron powder diffraction data showed, that the magnetic structure of the
BiFeO3; end member of the Bi;_,Sr,FeO3_s solid solution series must be described by
a spin cycloid, whereas the Bi;_,Sr,FeO3_s5 perovskites above a composition of x >
0.2 possess a G-type antiferromagnetic ordering of the magnetic moments, which can
be described by using a 4 times larger unit cell with the Shubnikov group I.4/mem
(140.550) in the BNS setting. The critical Néel temperatures were determined from the
temperature dependent neutron powder diffraction data and compared to the results
from differential scanning calorimetry measurements.

For the LaFeOs perovskite the crystal structures of three polymorphs were deter-
mined from pressure dependent synchrotron X-ray powder diffraction measurements
using four different data sets which are distinguishable by the used pressure media
and the maximal applied pressure. From these data sets, two structural phase transi-
tions at approximately 20.5(6) GPa and at approximately 38 GPa were found, where
the first phase transition is of second order and the second phase transition is of first
order. From Rietveld refinements it could be determined that the structural second
order phase transition is a phase transition from the lower symmetric space group
Pbnm to the higher symmetric space group Ibmm. This observance was intriguingly
underlined by the application of different crystallographic approaches, like e.g. the
recently developed approach of rotational symmetry modes of a rigid body, which
revealed that this phase transition can be described by the rotation of the FeOg oc-
tahedron and a shift of the lanthanum cation. For the first order phase transition it
could be proved by Rietveld refinements, that this phase transition can be described
by an isostructural phase transition, which can be attributed to a pressure induced
high-spin (S = 2) to low-spin (S = 1) transition of the Fe*" cation, which leads to a
volume decrease of the FeOg octahedron and therefore to a volume drop of approx-
imately 3% of the crystallographic unit cell. In addition to the investigation of the
different phase transitions in LaFeOj3, sequential and parametric Rietveld refinements
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2 Contents

were performed in order to determine the equation of state (EoS) parameters for the
volume and the lattice parameters. Applying a Murnaghan EoS up to the hydrostatic
limit of the pressure dependent volume gave a bulk modulus of By = 172(2) GPa, a
first pressure derivative of the bulk modulus of Bj = 4.3(3) and a volume at ambient
conditions of Vj = 242.87(1) A%. Corresponding values for the lattice parameters were
determined by an adapted inverted Murnaghan EoS as well as by a newly developed
adpated inverted third order Vinet EoS approximation.

The third and last investigated perovskite BiCuzCrsOq5 was recently synthesized and
belongs to the class of quadruple perovskites. The temperature dependent synchrotron
X-ray powder diffraction investigations showed, that on cooling at approximately 188
K, the crystal structure becomes heavily distorted and that a reversible cubic to mon-
oclinic phase transition from the centrosymmetric space group Im3 to the centrosym-
metric space group C'2/m takes place. Moreover, it could be shown from bond valence
sum calculations that this structural phase transition is accompanied by a charge
disproportionation and charge ordering of the chromium cations. Simultaneously, a
paramagnetic to ferrimagnetic phase transition could be observed, which was unveiled
by magnetization and magnetic susceptibility measurements.



CHAPTER 1

Introduction

Multiferroic materials (multiferroics), especially those who exhibit a strong (linear)
magnetoelectric coupling between a(n) (anti-)ferromagnetic and a(n) (anti-)ferroelectric
order at room temperature, are promising candidates in order to develop new magne-
toelectronic devices. For instance, these devices can be used as new types of currentless
magnetic field sensors [1, 2] or new types of magnetic data storages, where the mag-
netic bits can be written by small electric fields [2]. Besides single phase multiferroics,
which exhibit a direct magnetoelectric coupling effect, different multi phase approaches
are currently investigated, where the magnetoelectric coupling is indirectly mediated
by e.g. strain effects [3-5]. Such a combination of piezomagnetic / magnetostricitve
and piezoelectric / electrostrictive materials can be regarded as future-oriented, as the
strength of the indirect magnetoelectric coupling can probably be epitaxially tailored
[4-6].

Before a potential multiferroic material can be utilized in a magnetoelectric device,
its structural and physical properties as well as the possible magnetoelectric coupling
mechanisms have to be known in detail. Consequently, the first step in the inves-
tigation of such materials is to perform X-ray and neutron single crystal or powder
diffraction measurements in order to reveal the underlying crystal and/or magnetic
structure. In general, it is often more convenient to carry out such experiments using
powders, as in many cases the synthesis, the handling and the required measurement
geometry for such samples is much simpler compared to single crystals. Furthermore,
single crystal diffraction experiments require specimens of an appropriate size, which
are often not available. With respect to the simplified measurement geometry for pow-
ders, it is also more convenient to carry out in situ diffraction measurements, from
which the behavior of multiferroic materials under different temperature and/or pres-
sure conditions can be studied. Especially the temperature and/or pressure dependent
phase transitions are of importance, as they can provide information about the onset
of ferroic or even multiferroic orders [7]. Moreover, if the phase dependent crystal and
magnetic structures are determined correctly, then the underlying symmetries can give
crucial information about the allowed or disallowed occurrence of ferroic orders and
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their potential couplings® [7]. Therefore a thorough characterization by diffraction
methods has a high relevance.

The accepted method in order to determine crystal and/or magnetic structures from
powders is the Rietveld method [10], where a least-squares algorithm is used in or-
der to refine an artificial powder diffraction pattern, which is calculated from crystal
and/or magnetic structure models, against an experimentally observed one. The pa-
rameters which are obtained from such a refinement, especially the atomic coordinates
can give for instance insights in the structural changes during phase transitions. How-
ever, as the temperature and/or pressure dependent interplay between the different
atoms in a crystal structure often is exceedingly complicated, different crystallographic
approaches for the modeling of the atomic coordinates must be employed. These ap-
proaches constrain the different atoms either by symmetry dependent considerations
or by given bond lengths and bond angles, which in many cases leads to a more in-
tuitive description of the collective temperature and/or pressure dependent motion of
the atoms.

Altogether it becomes apparent, that the micro- and macroscopic physical proper-
ties of a solid are intimately connected with the adopted crystal structure and its
corresponding symmetry. Therefore diffraction experiments and in particular powder
diffraction experiments are among the techniques which are at the forefront with re-
spect to the investigation of many interesting materials including multiferroics.

In the present thesis, promising perovskite candidates with potential multiferroic
behavior are investigated mainly by X-ray and neutron powder diffraction methods.
In chapter 2, a description of the theoretical and experimental details of the used pow-
der diffraction method is given. In addition, an introduction to all employed methods
like the Rietveld method, symmetry modes and magnetic structure descriptions is
presented, followed by a short introduction to phase transitions and ferroic and mul-
tiferroic materials.

In chapter 3, a solid solution series of Bi;_,Sr,FeO3_s is investigated in situ, in order to
shed light on the temperature dependent structural and magnetic properties of these
perovskites, by determining the crystal and magnetic structures from synchrotron X-
ray and neutron powder diffraction measurements. Furthermore the antiferromagnetic
to paramagnetic phase transition is explored in detail by temperature dependent neu-
tron powder diffraction and differential scanning calorimetry measurements.

In chapter 4, an in situ high pressure synchrotron X-ray powder diffraction study of

1 A prominent example for such a symmetry dependent prediction is for instance given by the
BiFeO3 perovskite, where the symmetry of the long-range spin cycloid prohibits a linear magne-
toelectric coupling [3, 4, 8, 9].



the LaFeOg3 perovskite is carried out, where besides the structural investigations along
the room temperature isotherm, different crystallographic approaches with respect to
the modeling of the atomic coordinates were tested, in order to give a comprehensive
picture of the pressure induced structural phase transitions. In addition, the bulk
modulus and corresponding values for the lattice parameters of the LaFeO3 perovskite
are determined from a Murnaghan equation of state (EoS) and a newly developed in-
verted third order Vinet EoS approximation.

In chapter 5, a recently synthesized BiCu3CrsO;2 quadruple perovskite is structurally
analyzed by in situ temperature dependent synchrotron X-ray powder diffraction mea-
surements. The occurring structural low temperature phase transition, which is ac-
companied by a charge disproportionation, charge ordering effects and a paramagnetic
to ferrimagnetic transition is characterized in detail by bond valence sum calculations
as well as magnetization, magnetic susceptibility and electric resistivity measurements.






CHAPTER 2

Theoretical and experimental basics

Excerpts of the sub-chapters “2.1 Basics and History of Powder Diffraction” and “2.2
The Rietveld Method” are published with additional information of the entire history
of powder diffraction in the manuscript: “M. Etter & R.E. Dinnebier - A Century of
Powder Diffraction: a Brief History” [11].

2.1 Basics and history of powder diffraction

Early experiments with light were already carried out by the Greek philosophers [12],
although it is believed that the Italian Francesco Maria Grimaldi (1618-1663) was the
first who investigated the diffraction of light more rigorously. In his book “Physico
mathesis de lumine, coloribus, et iride, aliisque annexis libri duo” from 1665 which
was published after his death, he described the shape of a light cone, after the light
has passed through a pinhole [13]. In fact, he was also the first who used the term
“diffraction” in order to name the physical properties of his light scattering experi-
ments.

Over the centuries, the investigation and description of light was a quite continu-
ous development, as just the narrow spectral range of visible light was accessible (The
infrared spectral range and the ultraviolet spectra range were discovered rather late
by Friedrich Wilhelm Herschel (1738-1822) around 1800 and Johann Wilhelm Ritter
(1776-1810) in 1801, respectively). This changed dramatically in 1895, when Wilhelm
Conrad Rontgen (1845-1923) discovered his “X-rays”, while he was experimenting with
discharge tubes [14, 15]. This new kind of rays rapidly attracted the interest of a lot
of researchers and for almost two decades there was a debate among them whether
these new rays consist of particles or electromagnetic waves.

In 1912, Walter Friedrich (1883-1968), Paul Knipping (1883-1935) and Max von Laue
(1879-1960) conducted their famous X-ray diffraction experiment, in which they pro-
duced a single crystal diffractogram by irradiating a copper sulfate crystal with the
(polychromatic) light from a X-ray tube [16-19]. With this experiment they could
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prove two physical principles at once: first of all that a single crystal is built by regu-
lar blocks (which is a required condition that diffraction effects can occur) and secondly
that the X-rays are waves with a wavelength on the order of the distances between
the building blocks of the crystal [11, 20, 21]. In fact, the idea for the experiment is
ascribed to von Laue who also gave the first theoretical description of the observed
phenomenon [16-18, 20-22]. In the theoretical part of their jointly publication [16-18],
von Laue introduced the famous equations which are named after him:

Q- (F—F)=h-A |
b-(5—5)=k-\A | (2.2)
E(F—5F) =1 (2.3)

Here, S is the unit vector of the primary beam, s'is the unit vector of the scattered
beam, h.,k,l are the Miller indices, a, l;,é’ are the primitive lattice vectors and A is
the wavelength. Due to the usage of unit vectors for the incident and the outgoing
beam, the scalar product of a primitive lattice vector with a beam vector, reduces
to a projection of the primitive lattice vector (which is equal to the distance of two
points) onto the beam vector. For constructive interference the difference between the
two projections must be equal to a multiple of the wavelength (see figure 2.1a). For
a crystal structure in three dimensions diffraction occurs, if all three Laue equations
are fulfilled simultaneously.
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(a) Laue picture (b) Bragg picture

Figure 2.1: Visualization of the a) Laue equation and the b) Bragg equation with
two point scatters. For the Bragg equation the optical path which must be a multi-
ple of the wavelength is shown in red. Please note that the visualization of the Bragg
equation is only a simple representation as the point scatters can lie anywhere on the
lattice planes as they must not necessarily lie above each other [23, 24].

Already in the same year of the discovery of Friedrich, Knipping and von Laue,
another mathematical description of the diffraction condition was given by Sir William
Lawrence Bragg (1890-1971) who published his own equation [25], which is equivalent
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to the Laue equations:

2~dhkl~sin«9:n~)\ . (24)

The geometrical interpretation of this equation is similar to the interpretation of
the Laue equations. If the sine of the scattering angle # multiplied by the doubled
lattice plane spacing dpy; is equal to a multiple of the wavelength A (n is a positive
integer), then diffraction occurs (see figure 2.1b)).

Although Bragg’s and von Laue’s description are equivalent, nowadays Bragg’s equa-
tion is often preferred, due to its natural linkage of the lattice plane spacing d which is
a function of the lattice parameters a, b, ¢, a, 3, v of the unit cell and the Miller indices
h, k,l with the scattering angle ¢ and the wavelength \.

In addition to the Laue equations, von Laue gave in his milestone publication from
1912 also an equation for the structure factor amplitude F' [16-18], which is required
for the calculation of the intensity of a h,k,l-dependent Bragg reflection. The calcu-
lation of the complex structure factor F' depends on an individual atomic form factor
f, the Miller indices h, k, [ and the relative atomic coordinates x,y, z of each atom n
in the unit cell:

Fugg =Y fo - €270 Bronthuntlan) - (2.5)

Mathematically, the structure factor is the Fourier transform of the convolution be-
tween the real space lattice and a motif, which is in the case of X-ray diffraction the
distribution of the electron density in the unit cell and in the case of neutron diffrac-
tion the distribution of the atomic nuclei in the unit cell. Owing to the fact that the
structure factor is a Fourier transform, many properties of diffraction can be in general
predicted, like the invariance of the diffracted pattern if the convoluted lattice with
the motif is translated. This is an important statement as it implies that there is no
need to define an artificial origin of the investigated crystal. Another important prop-
erty of the Fourier transform is that the measured peak width is directly correlated
with the number of unit cells which build the real space lattice. If the number of unit
cells which contribute to the diffraction in three dimensions is very small, the Fourier
transform will give a broader peak width. In contrast, if the number of unit cells in
all three directions is high the experimental peak width is no longer dominated by size
effects of the crystal and other effects come to the fore.

In order to calculate the intensity I of a h,k,l-dependent Bragg reflection, the square
of the absolute value of the structure factor or equivalently the multiplication of the
structure factor with its complex conjugate needs to be build. This product of the
structure factor and its complex conjugate is proportional to the intensity:

Ikt X Fngr - Fyy = | Fum|? : (2.6)
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In general, equations 2.5 and 2.6 are valid for crystal structures infinitely extended
in three dimensions. Nevertheless, they are sufficient approximations for finite crystals
and they are even applicable to nanocrystals which can have a spatial extent of only
a few nanometers. But how can the diffracted intensity be calculated if the crystal is
no longer built by regular building blocks? For example for amorphous compounds
or even for liquids where the atoms or molecules can occupy all possible orientations?
It is obvious that the deficit of regular building blocks with well-defined unit cells
automatically leads to the loss of symmetry as without a unit cell no suitable coordi-
nate system can be established and with this also no relative atomic coordinates for
atoms or molecules can be given. This issue was addressed in 1915, when Peter Debye
(1884-1966) published an article about the dispersion of X-rays [26]. In his work he
considered an amorphous compound where a molecule or polyatomic ions can take
all possible orientations in space. He realized that the diffracted intensity of such a
compound depends only on the distance 7,,, between two individual point scatterers
m and n within or between the molecules and the scattering vector k'. Taking into
account that all intra- and inter-molecular distances must be considered and that the
electronic distribution of an individual point scatterer is given by the atomic form
factor f, it is possible to modify the original double sum equation of Debye to obtain
the commonly known Debye scattering equation:

Zme fu-

In this representation of the Debye scattering equation the intensity is calculated in
electronic units and it is possible to apply this equation to “gases, liquids, amorphous
solids and crystalline powders” [27].

sink - SNk - T'mn
2.7
ke, Tmn (2.7)

Looking at the scientific interests of Peter Debye and his particular interest into the
scattering of X-rays from particles, it is quite obvious that he was also involved in one
of the first powder diffraction experiment in 1916. Although as early as in 1913 Walter
Friedrich in Germany [28] and Shoji Nishikawa (1884-1952) and S. Ono in Japan [29]
carried out X-ray diffraction experiments with powders, they were not able to give
the correct explanation for the diffraction rings which they saw because at that time
they were not aware of the spectrum of their X-ray source [11]. As a consequence it
took another three years, until Peter Debye and Paul Scherrer (1890-1969) could use
the knowledge of characteristic X-rays in order to explain the occurrence of diffraction
rings when they investigated lithium fluoride powder [30]. Astonishingly almost at the
same time, on the other site of the Atlantic Ocean, Albert Wallace Hull (1880-1966)
conducted a powder X-ray diffraction experiment with iron powder and he found the
same explanations as Debye and Scherrer did before [31]. But in contrast to Debye
and Scherrer the experimental setup of Hull was much more sophisticated as he was
using one of the first monochromators with a zirconium filter in order to suppress the

1 The length k of the scattering vector k is defined as k = dmsind 7).
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characteristic K radiation and most of the unwanted Bremsstrahlung background of
his molybdenum X-ray tube [31]. The diffraction patterns which Debye, Scherrer and
Hull recorded were already looking very similar to the simulated powder diffraction
patterns in figures 2.2¢)+d).

a) b) <) d) e)
] %
inel | Textured powder Powder (random, Powder (random, & h
Sing:2 Eryetd (preferred orientation) um particle size) nm particle size) morphous

F .Y @ S

SN DR AN
WIS

Order ¢ D Disorder

L4

Figure 2.2: Simulated two-dimensional diffraction patterns of different types of crys-
talline materials. From left to right the evolution of these patterns is shown, when a
single crystal is crushed and the disorder is increased. a) Diffraction pattern of a sin-
gle crystal. b) Diffraction pattern of a textured powder with preferred orientation. c)
Diffraction pattern of a powder with particles in micrometer size and d) in nanometer
size. e) Diffraction pattern of an amorphous material (also valid for gases and liquids).

A descriptive interpretation of the Laue equations was given by Paul Peter Ewald
(1888-1985) in 1913, when he introduced the concept of the Ewald sphere [32]. In
this illustration of a reciprocal space lattice the diffraction condition can be easily
graphically evaluated (see figure 2.3a)). In order to find the hkl values which fulfill the
diffraction condition, the incident wave vector Sy has to be drawn in a reciprocal space
lattice in that way, that the vector ends at the origin of the reciprocal space lattice.
The direction of the incident wave vector is given by the experimental setup and the
length of the vector is given by the reciprocal value of the wavelength. Subsequently
the Ewald sphere is drawn by taking the value of the reciprocal wavelength as the
radius with the starting point of the incident wave vector as the center of the sphere.
The Laue conditions and therefore constructive interference are now fulfilled for all
reciprocal lattice points hkl which lie on the surface of the Ewald sphere. To such a
reciprocal lattice point it is possible to draw the outgoing wave vector § with the same
length as for the incoming wave vector sy. The difference between the outgoing wave
vector and the incoming wave vector gives the scattering vector h.
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h=5—5 . (2.8)

However, the construction of the Ewald sphere does not solely provide information
about physical values in reciprocal space like scattering vectors and reciprocal lattice
points. If an equivalent description of the Bragg equation is taken, it is possible to
give a geometrical interpretation of the angle between the incoming and the outgoing
wave vector in real space. Such an equivalent description or variation of the Bragg
equation is given by:

2.sind 1 -
————— h . 2.9

Without loss of generality, it can be shovvn that for constructive interference the
scattermg vector h must be equal to a reciprocal lattice vector dhkl and that |dhkl| =

and d [ d*. In the case of the Ewald construction, the multiple n of the wavelength

|d Kt
can be set to 1, as the definition from above requires that the length of the incoming
and outgoing wave vector is § = §y = % With this rewritten Bragg equation it is

possible to derive a real space interpretation of the angle 20 (see figure 2.3a)). This
shows remarkably the power of the Ewald construction as it provides direct access to
the real space diffraction angle 26 which is required to position a detector in order to
measure the diffracted intensity of a certain hkl reflection.

Although the explanation above seems to be only valid for the case of single crystal
diffraction, it can be also used to explain the occurrence of diffraction rings in powder
diffraction. In figure 2.3b) the effect is shown if a crystal is turned during the measure-
ment or alternatively if a powder with all kind of orientations of the crystal structure
is measured. In a static experiment it is only possible to measure the hkl reflections
which lie directly on the surface of the Ewald sphere. If other hkl reflections shall
be measured, the single crystal has to be turned until the corresponding reciprocal
lattice points hits the surface of the Ewald sphere. A powder diffraction experiment
is therefore comparable to a single crystal experiment at which the data integration
is performed continuously while the single crystal is rotated in three dimensions. In
such a dynamical diffraction experiment all reciprocal lattice points will hit the Ewald
surface at a certain point in time. In contrast to that, the grains in a powder already
have all possible orientations and therefore they contribute to the diffraction pattern
at the same time giving the same smearing effect of the reciprocal lattice points onto
the surface of a sphere as for a dynamic single crystal experiment. Consequently, this
smearing of a reciprocal lattice point onto the surface of a sphere leads not only to the
reduction in dimensionality (from three dimensions to one dimension; mathematically
this is a projection: di,; — |di,|), but also to many other effects like systematic and
accidental reflection overlaps which will be described later.

In figure 2.3 the evolution of a diffraction pattern of a single crystal which is split
into smaller and smaller pieces is exemplary shown. In figure 2.2a) the diffraction of a
single crystal gives sharp reflection spots, whereas in figure 2.2b) a crystal consisting
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(a) Ewald construction: single crystal (b) Ewald construction: powder

Figure 2.3: a) Two-dimensional projection of the reciprocal space lattice with the
Ewald sphere and the limiting sphere (the limiting sphere determines the maximal
reachable hkl values in a powder diffraction experiment). The radius of the limiting
sphere is given by % (therefore the maximum reachable dpy; value is given by dpr; =
%) Please note that the incoming beam within the Ewald sphere does not necessarily
start at a reciprocal lattice point. b) 24 single crystal diffraction patterns each rotated
by an angle of 2°. It is obvious that in a powder where ideally all possible orientations
of crystal grains exist, the single spots in 2 dimensions will merge into a continuous
diffraction ring, which becomes a continuous diffraction sphere in 3 dimensions.

of different grains (=polycrystalline) with preferred orientation of these grains shows
a smearing effect of the reciprocal lattice points. In the case of a powder (figure 2.2¢))
where the grains are of micrometer size and where they ideally obtain all possible
orientations a smearing of the reciprocal lattice points to a circle or diffraction ring
can be observed. In general, these diffraction rings are cut projections of so called
Debye-Scherrer cones (see figure 2.4 for a three-dimensional view of the optical path
of the diffracted rays), which in turn are originating from cut projections through
the above mentioned surface of the sphere which arises due to the smearing of the
reciprocal lattice points. If the powder particles are further split into nanoparticles a
severe broadening! of the diffraction rings can be observed (see figure 2.2d)). Finally
the material becomes completely amorphous and the diffraction rings pass over to a
halo effect (see figure 2.2¢)).

1 The broadening due to the particle size can be modeled by the Scherrer equation: FWHM(26) =
2 where FWHM(20) is the full width half maximum for a given diffraction angle 6, K is the

Scherrer constant which is almost equal to 1, A is the used wavelength and L is the particle size
[33].
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hkl = hkl

hkl hkl hkl = Rkl
(a) Single crystal diffraction (b) Powder diffraction

Figure 2.4: Diffracted X-rays of a a) single crystal specimen and diffracted X-rays
in b) Debye-Scherrer cones for a powder sample. The Debye-Scherrer rings result from
a cut projection of the spheres which arise due to the smearing of reciprocal lattice
points onto different spheres in reciprocal space. The cone shape is simply given by
the propagation of the radiation.

Originating from the different appearances between the diffraction patterns of single
crystals with single observable reciprocal lattice points and the diffraction patterns of
powders with diffraction rings, the subsequent treatment of the acquired data is dif-
ferent. In both cases the possible hkl values have to be assigned to either the individ-
ual reciprocal lattice points or to the diffraction rings (normally the two-dimensional
powder diffraction patterns are integrated along circles into a one-dimensional powder
diffraction pattern as the intensity is a function of the radius and therefore no informa-
tion will be lost during this integration. This argument becomes also clear by taking
care of the above described reduction in dimensionality). From figure 2.5 it is obvious
that this is a challenging task in the powder case, as the smearing of the reciprocal
lattice points leads to different kinds of information losses. For instance, in the single
crystal case the full three-dimensional measurement of reciprocal space provides the
entire information about the kind of the reciprocal lattice and the individual inten-
sities at the reciprocal lattice points from which the real space lattice and the Laue
group can be deduced (because of the Fourier transform the single crystal diffraction
pattern has always an inversion symmetry and therefore two reciprocal lattice points
with the same intensity exist, the commonly known Friedel pairs). In contrast for the
powder case, the information of the Laue group and also of the real space lattice is
lost, as the intensities of radially symmetric equivalent reciprocal lattice points are
merged into a single intensity and with this all orientation information is gone (e.g.
reciprocal lattice points 100 and 001 in figure 2.5 are radially symmetric equivalent).
The number of radially symmetric equivalent reciprocal lattice points which merge
into a single reflection depends on the Laue group and is called reflection multiplicity
(if the symmetry is known the reflection multiplicity as a systematic overlap can be
easily treated, as it is just a multiple of the reflection intensity). Besides the reflection
multiplicity a second systematic overlap of reflections can be observed. For example,
if different independent hkl values lead to the same dpy; value a systematic overlap
occurs as can be seen e.g. for the (500) reflection and the (340) reflection for a cubic
crystal structure in figure 2.5. The last possible overlap of reflections is occasional
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or accidental. For instance if two reflections are very close in reciprocal space, broad
peaks can merge into a single peak and cannot be any longer distinguished. This
phenomenon can be often observed for high values of the measured 26 range, where
different reflections often come very close.

In addition to the reflection multiplicity and the systematic overlap, peak broadening
and also the estimated standard deviation in each measurement of the angle 26 is a
severe problem which often makes it difficult to find the right indexing for a powder
diffraction pattern. For instance the error (= estimated standard deviation) which
arises in the determination of the correct dj;; due to a shift of the 20 value can be
estimated by the curves in figure 2.6.

In order to find the correct indexing values for each Bragg reflection, the following
indexing equation must be solved:

ﬁ = d;3; = h*-a+ k> 02+ +2-h-k-a*-b* -cos 7 +2-h-l-a*-c*-cos f*+2-k-1-b*-c*-cos a*
(2.10)
This equation is the general equation for the triclinic case and simplifies in case of
higher symmetries. This equation follows from equation 2.17 from table 2.1, if the re-
lationships between direct and reciprocal lattice parameters from equations 2.18-2.24
of table 2.2 are used. In theory, the general triclinic case needs at least six independent
observed dy; values in order to index the diffraction pattern and to find the correct
reciprocal lattice parameters a*,b*, c*, a*, *,v*. However, if there is a mentionable
uncertainty of each of this six measured d;; values, it is almost impossible to find the
correct reciprocal lattice parameters. Due to this reason, reliable indexing results of
most of the computer algorithms used today can be obtained by providing more d;
values (usually between 20 and 30 values at all) than mathematically required. In the
following, a short overview of different historic and modern algorithms is given.

In 1917, C. Runge proposed the first considerable approach for the systematic in-
dexing of powder diffraction patterns [34]. Publications of T. Ito in 1949 [35] and of
P.M. de Wolff in 1957 [36] enhanced this concept until in 1969 J.W. Visser published a
computer program (nowadays known as “ITO” program) based on these concepts [37].
In general, the Runge-Ito-de Wolff method implemented by Visser is a zone! indexing
algorithm which is very powerful for the indexing of powder diffraction patterns with
lower symmetries [38, 39]. Another algorithm of that time is the one proposed by
P.E. Werner in 1964 [40]. This method is a semi-exhaustive trial-and-error method
where the Miller indices for the observed diffraction lines are permuted [39, 41]. The
corresponding computer program is “TREOR”. Another computer algorithm based on
the successive dichotomy method was developed by D. Louér and M. Louér in 1972
[42]. Later the computer program was named “DICVOL” and was expanded to include

1 A crystallographic zone is a family of planes which have parallel cutting edges. The direction of
the cutting edges is known as zone axis.
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Figure 2.5: Cubic reciprocal lattice where the reciprocal lattice points are contin-
uously smeared onto the surfaces of different spheres. If these spheres are arbitrar-
ily cut through the center, continuous two-dimensional powder diffraction rings can
be observed. Another cut projection through the center of the diffraction rings gives
the one-dimensional powder diffraction pattern (In an experiment normally the one-
dimensional powder diffraction pattern are obtained by the integration of the rings
along a cut which is perpendicular to the rings). Indexing of the single peaks in this
powder diffraction pattern can be done by following the orange dashed lines and
then by following the corresponding lines of the circle to the reciprocal lattice points.
Please note that for instance the reciprocal lattice points 100 and 001 merge into a
single peak (this is the case of reflection multiplicity) as well as the reciprocal lattice
points 500 and 340 merge into a single peak (this is the case of systematic overlap of
reflections).

2 Theoretical and experimental basics
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Figure 2.6: The deviation of the scattering angle by a constant angular misalign-
ment leads to different percentage errors for the obtained % values as can be seen by
the different curves. For instance a misalignment of A20 = 0.01° for a measured peak
at 20 = 20° and at a wavelength of A = 1.54059 A leads to an error (= estimated

standard deviation) in d of Ad = 0.057 A. The curves can be calculated through the

ddnir | ~ _do
dhkl ~ tan 6

equation ’ which follows from the total differential of the Bragg equation

[24].

monoclinic [43] and triclinic symmetries [44]. This method varies the cell parameters
in direct space and tries to reduce the possible solution space [39, 41]. In addition
to these algorithms meaningful figure of merits (FOM) were given by P.M. de Wolff
in 1968 with the Myy-FOM [45] and by G.S. Smith and R.L. Snyder in 1979 with the
Fxn-FOM [46] which allowed the judgment of the quality of the calculated unit cell
parameters.

Several other indexing programs were developed in recent time. Examples for in-
dexing algorithms which use direct space approaches are for instance approaches with
genetic algorithms [47] or Monte Carlo approaches like the indexing by singular value
decomposition [48] or the McMaille approach [49].

Additionally, some of the indexing programs used nowadays also suggest probable
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space groups by checking the pattern for systematically absent reflections (there is no
possibility to determine all space groups unambiguously as some of them obey the
same extinction rules).

Table 2.1: Equations for the calculation of the djy; values dependent on the real
space unit cell parameters for the different crystal systems (from [39, 50]).

trigonal (P)

Trigonal (R)

Monoclinic

Triclinic

1

a?

System 1/djy,
. h? + k? + 2
Cubic % (2.11)
2, 12 g2
Tetragonal f J;k: + l—2 (2.12)
. h?  k? [P
Orthorhombic = + 7 + = (2.13)
Hexagonal and 12
3_a2~(h2+k2+h-k)+g (2.14)

((h2+k:2+l2)-sin2a+2-(h-k+h-l+k3-l)-(coszoz—cosoz)

142 -cos3a—3-cos?a
(2.15)

2 2 2
2. h-1-
h k [ h-1-cosf (2.16)

a2-sin26+b_2+cz-sin26 a-c-sin’®p
1
1 —cos?a —cos? f — cos?y + 2 - cosa-cos - cosy

h? k2 12 2-h-k
| = -sin? a+— -sin? B+ — -sin? v+ -(cosa - cos f — cos7y)
a? b2 c? a-
(2.17)
2-h-1 2-k-1
+ - (cosa - cosy — cos 3) + -(cosﬂ-cosv—cosa)ﬂ
a-c e
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Table 2.2: Relations between the real/direct space lattice parameters and the recip-
rocal space lattice parameters. Further relations can be found in [50].

1 - b-c-sinvy
f=—.|bXxC|lm ——— 2.18
i (215)
a-c-sin
b= |ixi|lm —L 2.19
plTEy (219)
- a-b-sina
= | dxb|l= ——mm— 2.20
o= o lax B =T (220)
cosat — COSﬂ‘- coS 7‘— cos & (2.21)
sin (3 - sin~y
cos §* = cos a.- cosy.— cos 3 (2.22)
sin « - sin 7y
cos = cos oz.- cos B'— cos "y (2.23)
sin «v - sin 3
V:a-b~c~\/1—cosza—c0526—00527+2-cosa-cosﬁ-cosw
(2.24)

2.2 The Rietveld method

The method of choice in order to fit an entire one-dimensional powder diffraction pat-
tern by the refinement of crystal structures is a structure based whole powder pattern
fitting (WPPF) method developed by Hugo Rietveld in the late 1960s. This method,
nowadays known as the Rietveld refinement method or just Rietveld method, uses
a least-squares algorithm in order to refine a calculated powder diffraction pattern
against an experimentally observed powder diffraction pattern.

In 1966, Hugo Rietveld made the first successful attempt to use a least-squares algo-
rithm to refine directly the background corrected integrated intensities of X-ray and
neutron powder patterns [51]. Although this first attempt was not well recognized by
the crystallographic community, he continued his work and one year later he published
the first WPPF analysis of tungsten trioxide, where he could show, that even a severe
peak overlap of reflections can be treated by his refinement algorithm [52]. Finally in
1969, Hugo Rietveld published one of the most cited scientific articles in crystallogra-
phy, where he demonstrated that with a powerful computer a WPPF can be performed
with almost all important parameters which determine a crystal structure like lattice
parameters, atomic positions, components of a magnetic vector, etc. [10] (for a full
list see also [11]). However, within the first eight years, the Rietveld method was
solely applied to neutron powder diffraction due to the simplicity of the obtained peak
shapes (neutron powder diffraction peak shapes can be satisfactory modeled by the
assumption of a simple Gaussian peak shape). After this period, in 1977, three differ-
ent groups published nearly simultaneously Rietveld refined X-ray powder diffraction
patterns by the application of more sophisticated peak shapes [53-55].
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Although the basis of the Rietveld method was laid almost 50 years ago, the mathe-
matical description remains unchanged. In general, a refinement of a crystal structure
by a least-squares minimization between the calculated and observed powder diffrac-
tion pattern can be done by the following equation [10]:

Min =" (Yos(20;) — Yeae(26:))? ; (2.25)
26,
where Min is the desired global minimum of the refinement, Y, is the experimen-
tally observed powder diffraction pattern and Y., is the calculated diffraction pattern
for which a detailed description is given below. Normally the 260 space is a continuum,
but due to the data collection procedure the 26 space is discretized, which is denoted
by the running index ¢ whose integer value reflects the current data point.
Usually, equation 2.25 is modified with a weighting factor w in order to guarantee that
peaks with a high intensity are not overestimated [10]:

Min =" w(20;) (Yors(20:) — Yeure(26)))” (2.26)

260;

where the weighting w is e.g. given by w(26;) = assuming Poisson statistics
[56].

Besides the weighting with the inverse observed intensity, other weighting schemes can
be chosen. For instance in the TOPAS software [57] and in some textbooks [58], a
weighting factor w with the inverse of the squared variance of the observed intensity is
chosen (while it is assumed that all covariances between different observed intensities

are zero [58]):

1
Yobs (201)

1
v = ey

where o (Y,p5(26;)) denotes the variance (which is often simply the square-root of
the estimated standard deviation/error of the measurement) of the experimentally
observed intensity. Please note that Rietveld already stated in his publication from
1969, that if the variance of the observed intensity from counting statistics is equal
to the observed intensity, then the weighting scheme becomes equal to the weighting
with the inverse observed intensity (if not the squared variance is used as above in
equation 2.27) [10].

(2.27)

The above described calculated intensity is given by the following equation:

Yeare(20:) =328 >0 (1Feate ((hobs 1) - @iy, (205 = 200 iy, ) - Corrni, (26:))
p {h.k,l}p

+Bkg(26;)  (2.28)

where S, is a phase p dependent scale factor, {h,k,l}, denotes a tupel of three Miller
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indices which depend on the phase p, Feoq. ({h,k,l},) is the structure factor of a cer-
tain phase dependent Bragg reflection, @y 1.1y, (2@ — 29{h7k,l}p) is the normalized peak
profile at the peak position 20y 51y,, Corres ki, (20;) is a product of different correc-
tion functions, which depend on the Bragg reflection and/or the discrete 26; value and
finally Bkg(26;) is the background which is normally fitted by point interpolation or
polynomials.

In addition to the minimization equations 2.25 and 2.26 the least-squares algorithm

requires residual values (R values) in order to judge the quality of the refinement.
These R values also known as agreement factors are often defined differently:

Zgg ‘Yobs(2€ ) Ycalc(zei”

20, Yobs (201) : (2.29)

o - % T i  em

Heap = \/229 Yobs (20))° : (2.31)

GOF = ? = & — \/ Loz, PO B0 Yer OO , (2.32)
Ry — 2 (hiyy Hovs ({hokl}p) - mlc({h,k,l}p)| 25

Z{hkl} obs({hkl}P)

Here R, is the profile residual, R,, is the weighted profile residual, R.,, is the
expected residual with M as the number of data points and P as the number of the
refined parameters, GOF' is the goodness of fit (GOF) and Rp is the Bragg residual.
Please note that the GOF given here is the one which is defined in the TOPAS software
[57]. In textbooks [56, 59] and in the GSAS software [60] the GOF is defined as follows:

(2.34)

GOF =2 = (M)z Yo, w(20:) (Yobs (26:) — Yeare(26,))°

Re:vp M-—-P

In addition to the above given definitions for equations 2.29, 2.30 and 2.31, the
R,, R,, and R.,, can be defined in a background corrected version if a low peak to
background ratio makes such a definition necessary [58].

2.2.1 Sequential and parametric Rietveld refinements

The technical progress of today allows collecting huge amounts of data sets, especially
when in situ powder diffraction experiments are carried out. In such cases the powder
diffraction data sets depend on external variables like temperature, pressure, time,
etc.. The subsequent treatment of these amounts of data sets by WPPF methods is
often very time consuming, but in some cases the data handling can be simplified.
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For instance, if the step width of the external variable is not too large, the refinement
results of one diffraction pattern can be used as starting values for the next consecu-
tive diffraction pattern, provided that no dramatic changes in the refined values will
occur (which can happen if a phase transition sets in). This method, using the refine-
ment results of a diffraction pattern for the next consecutive one is called sequential
refinement or in the case of using the Rietveld method, sequential Rietveld refinement.

In 2007, Stinton and Evans published the first successful attempt of a parametric
Rietveld refinement [61] (sometimes is also called surface refinement), where different
powder diffraction patterns, which depend on common variables are treated simulta-
neously. In this approach, one or several parameters of different powder diffraction
patterns are constrained by one or more equations where the independent variable is
the external variable of the in situ measurement. It is obvious that any type of equa-
tion can be chosen, as long as the equation is physically or empirically connected with
the information stored in a single or over a group of powder diffraction patterns. In nu-
merous publications it could be shown that parametric Rietveld refinements have the
potential to reduce the correlation between parameters, to reduce the final standard
uncertainties, avoid false minima in individual powder diffraction pattern refinements
and most importantly allow a direct modeling of parameters which are normally not
part of the refinement as they are first introduced by the applied equations [61]. An-
other welcomed effect is the reduction of the total number of refined parameters which
is believed to give a further stabilization of the refinement in a least-squares minimiza-
tion process.

2.2.2 Whole powder pattern decomposition

Derived from the Rietveld method are the whole powder pattern decomposition (WPPD)
methods according to Pawley [62] and to Le Bail et al. [63], which are WPPF methods
that do not require the knowledge of a crystal structure. Instead of using the full
information of the crystal structure as it is used in the Rietveld WPPF, the WPPD
methods require only the approximate knowledge of the lattice parameters and the
space group. Other parameters like the peak shape parameters or the zero shift can
be obtained by the refinement and are independent from the crystal structure. The
reason for that is, that only peak intensities are refined instead of refining the atomic
positions of a structure factor which contributes to the peak intensity.

In the Pawley WPPD method the peak intensities are individually refined, which allows
in general, for closely overlapping peaks, that one peak can become positive, whereas
the other peak can become negative!. The correlation matrix can be used as a measure
for the accuracy of individual reflection intensity.

In contrast to the Pawley WPPD method, the Le Bail WPPD method uses another

1 Nowadays, most of the refinement softwares used, disallow negative peak intensities in a Pawley
as well as in a Le Bail refinement.
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approach to obtain the intensities. Instead of performing a direct least-squares re-
finement of the intensities as the Pawley method does, the Le Bail method uses an
iterative process to keep the intensities positive. After each least-squares refinement
cycle, the obtained intensities from the Rietveld formula are used as squared structure
factor amplitudes for the next refinement cycle. This process is continued iteratively,
until the refinement converges. In general this is an adequate method to keep the
intensities in most cases positive [56, 58].

2.3 The concept of symmetry modes

The concept of symmetry modes or also known as distortion modes is an intriguingly
natural concept in order to describe structural, occupational or magnetic changes in a
crystal structure, as it connects on a mathematical basis the higher symmetry (HS) of
an undistorted crystal structure with the lower symmetry (LS) of the distorted version,
as long as the space group of the distorted crystal structure with the lower symmetry
is a subgroup of the parental space group of the undistorted crystal structure.

In crystallography, a group-subgroup relation between space groups always implies
that a phase transition of a particular crystal structure between two of these groups
can be in principal regarded as a quasi-continuous transformation, independent from
the fact whether the real phase transition is of first or of second order. Due to this fact,
such a quasi-continuous transformation can be described by a set of distortion vectors
(or also known as polarization vectors) and corresponding amplitudes, which are re-
sponsible for the distortion of the entire crystal structure!. Although the description
of a crystal structure change by distortion vectors sounds quite easy, the calculation
of a specific distortion vector requires a profound knowledge of group theory and rep-
resentation theory, therefore only a superficial explanation will be given here.

From diffraction experiments it is known, that each quasi-continuous phase trans-
formation of a crystal structure to a lower symmetry and therefore to a subgroup will
generate additional Bragg reflections, which are also sometimes called superstructure
reflections. These superstructure reflections will appear at special k-points in the first
Brillouin zone? of the parent crystal structure and are therefore connected with one or
more propagation vectors k which point from the gamma point of the Brillouin zone

1 This explains also why phase transitions of first order can be equally described with this calculus,
as the amplitude of a certain distortion, which shows first order behavior, will be simply discon-
tinuous and makes a jump at the critical phase transition point, whereas the distortion vector will
be not affected. This is also the reason why the author is calling this transformation as quasi-
continuous, as a first order phase transition of a crystal structure which has a group-subgroup
relationships can still be described with the same calculus.

2 The first Brillouin zone in physics is defined as the primitive Wigner-Seitz cell in reciprocal space.
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to these k-points! [64]. For each propagation vector kit is possible to find a set of
symmetry operations from the parental space group, for which the rotational part of
these symmetry operators leave the propagation vector invariant. This set of symme-
try operators is then called the group of the wave vector or the propagation vector
group or simply the “little group” [65]. By mapping, these symmetry operations of the
little group can be linked to a finite number of irreducible representations [66]. Inter-
estingly, mathematically it can be shown, that each irreducible representation stands
for a set of parental symmetry operations which can be broken? [66]. Furthermore,
if a phase transitions breaks only symmetries of a specific irreducible representation
then this irreducible representation is linked to an order parameter®® [66]. Besides the
connection with order parameters, each irreducible representation is also associated
with basis vectors (mathematical term for the terms polarization vectors, distortion
vectors, distortion modes or symmetry modes). If now a certain parameter is changed
in the crystal structure upon crossing the phase transition, then this can be expressed
as the sum of different basis or distortion vectors [70]:

rLs = Trps + Z Ay - Em ) (2.35)

where ry g is the parameter value in the LS phase, rgg is the parameter value in the
HS phase and A,, is the amplitude of a certain polarization vector &,,.

Besides the simply explained concept of the symmetry modes, there are a lot of
implications which arise from the mathematical basis, for instance that for a dis-
placive/structural phase transition the number of distortion vectors is equal to the
number of variable atomic-coordinate parameters [66]. Apart from that example lots
of other implications as well as a rigorous calculus can be found in the literature given
for instance by Miller and Love [71], Stokes et al. [72], Stokes and Hatch [73], Dove
[69], Hatch and Stokes [74], Campbell et al. [64, 66], Orobengoa et al. [75] and Perez-
Mato et al. [70].

Nowadays, for the exploration of the different possible crystal structures of a given
parent structure, two very powerful tools, which are available online, can be used:
ISODISTORT [64] and AMPLIMODES [75]. In ISODISTORT different modes can
be used if the crystallographic information of a crystal structure is provided. This in-
cludes for instance a search of possible subgroups by a given propagation vector k or for

1 The simplest case is, that the superstructure reflections appear only at one k-point and are there-
fore connected only with a single propagation vector k. This was the case for the determination
of the magnetic propagation vector in chapter 3 and for the determination of the structural prop-
agation vector in chapter 5.

2 In crystallographic terms, this means that each irreducible representation has the ability to lead
to at least one or more different subgroups of the parental space group.

3 This implies that a phase transition that breaks multiple irreducible representation can have
several order parameters.

4 The term “order parameter” refers to the order parameter from Landau theory [67—-69].
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instance the decomposition of a given crystal structure of the subgroup into symmetry
modes. In contrast to ISODISTORT, AMPLIMODES provides only the possibility to
perform the decomposition of given crystal structures of a group-subgroup pair into
symmetry modes!.

2.4 Magnetic neutron scattering and description of magnetic
structures

The following sections describe the physical and mathematical properties of elastic
magnetic neutron scattering as well as the crystallographic/mathematical description
of the symmetry of magnetic structures in solids.

2.4.1 Magnetic neutron scattering and magnetic propagation vector

The standard method in order to determine magnetic structures in solids is to use
unpolarized neutrons which are elastically scattered due to the dipole-dipole inter-
action between the neutron spin and the spin of unpaired electrons?. This includes
that the neutrons are sensitive to both, the spin angular momentum and the orbital
angular momentum contributions®. Besides the scattering from unpaired electrons,
the neutrons are also scattered by the atomic nuclei, which results in a combined
elastic scattering from the magnetic moments and the atomic nuclei of the solid. The

intensity in neutron diffraction is therefore given by:

Thit < Ny - Nyggg + M1 - M7 g = |Npwt)® + [ Mo pia]? ; (2.36)

where the intensity I depends on the sum of the product of the nuclear struc-
ture factor Ny and its complex conjugate and the product of the magnetic structure
factor M| ju and its complex conjugate. The form of the nuclear structure factor is
the same as the structure factor Fjy; in equation 2.5. The magnetic structure factor
M pi is also known as magnetic interaction vector. The perpendicular sign L next to
the magnetic structure factor indicates that only the perpendicular component of the
magnetic interaction vector contributes to the neutron scattering [65, 83, 84]. This
is a crucial point as this allows the determination of the direction of the magnetic
moments within the unit cell of the crystal structure.

For the following descriptions it is more convenient to substitute the Miller indices

1 For other modes like in ISODISTORT, one has to choose other tools from the Bilbao Crystallo-
graphic Server [76-78]

2 It is also possible to detect magnetic moments by X-ray diffraction, for instance if a wavelength
close to an absorption edge is chosen and anomalous dispersion effects set in [79-82]

3 In the following the term spin means always the total angular momentum J of the system, which
is given by the coupling of the spin angular momentum S and the orbital angular momentum L.
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h, k,l which are vector components of the scattering vector h by the scattering vec-
tor itself'. With this substitution the magnetic structure factor/magnetic interaction
vector is given as:

M (R) = he X M(R) X he = M(R) — he - (he - (R)) (2.37)
where i, is the unity vector he = ‘% and M (i_i) is the magnetic structure of the unit
cell, which is given by:
M(h)="p- f;(h) -1y - 70T (2.38)
lj
where the constant p is p = 5-7.-y with . as the classical electron radius (re = ’ =

with e the electron charge, m, the mass of the electron and ¢ the speed of light) and v

as the magnetic moment of the neutron in nuclear magnetons [65, 84]. This constant
p is used in order to convert the magnetic moment configuration my;, which is given
in Bohr magnetons to scattering lengths units [65]. f](ﬁ) is the atomic magnetic form
factor of atom j and 77; is a lattice vector to atom j in the unit cell [ of the crystal
structure? [65, 83, 84].

If equations 2.38 and 2.37 are combined, then a complete expression of the magnetic
interaction vector M, (h) is obtained:

MU(R) = sl Yp- fy(R) ity - 27 i (2.39)
lj
M ()
=S fi(R)iy gy - e (2.40)

In this equation, the magnetic moment configuration my; is given by the following
Fourier series:

y=3 S e R (2.41)
k

where §,;j are complex Fourier coefficients in Bohr magnetons [65], which must fulfill

the following relation § = S* 1n order to keep the sum and therefore the magnetic

moments as a real Vector [65], k: is the magnetic propagation vector which is restricted

1 In physics the scattering vector h is often denoted as § and the scattering vector Cj is given as
Cj =27 h.

2 With the vector ﬁl, which is a vector from the arbitrary origin of the crystal to the origin of the
unit cell [ of the crystal and a lattice vector &; within the unit cell [, the lattice vector 77; can be
expressed as 7}; = R+ Z;.
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to the first Brillouin zone [83] and R, is a vector to the origin of the unit cell [ of the
crystal structure [65, 83, 84].

In general, the complex Fourier coefficients are given by the following relation:
a 5 L P 2mid
SEj = RE]‘ + - ]Ej -e kj , (2.42)

where é,;j is the three component vector of the real part of §,;j, f,;j is the three
component vector of the imaginary part of 5’,;]. and the exponential function gives an
additional phase factor with phase angle Dr;- The index k 7 at every variable denotes,

that all these variables depend on a special vector k and a certain atom J in the
crystallographic unit cell.

2.4.1.1 Examples of different Fourier coefficients and magnetic propagation vectors

In the following, different examples with increasing complexity will show, how the
magnetic moment is affected by the choice of certain Fourier coefficients and magnetic
propagation vectors and how the entire magnetic moment configuration for the crystal
is established from equation 2.41. For this purpose, we assume a cubic crystal struc-
ture with space group Pm3m and that only one atom in the crystallographic unit cell
is magnetic at position (0.5,0.5,0.5)7. This reduces the index j from equation 2.41 to
1 and therefore it can be neglected.

1. Sz = (0,0,w)T (w = real) and k = (0,0,0)7

Since a zero magnetic propagation vector leads always to a zero phase in the ex-
ponent, therefore the Fourier coefficient Sr = (0,0, w) (w only real and without the
assumption of an additional phase factor @E]’) is not influenced and all magnetic mo-
ments point along the same direction, along the z-direction (see figure 2.7). In this
case the magnetic unit cell coincides with the crystallographic unit cell and the ferro-
magnetic Bragg peaks in a diffraction pattern lie on top of the nuclear Bragg peaks,
as the magnetic reflections appear at the nodes of the nuclear reciprocal lattice and
their intensities are therefore added.

2. 5,; = (0,0,w)” (w = real) and k = (0,0,0.5)7

In this example the vector k gives rise to a regular sign modulation of the Fourier
coefficient 5’,; = (0,0, w) (w only real and without the assumption of an additional
phase factor @Ej)- For the first cell at R; = (0,0,0)” the magnetic moment points
along the positive z-direction, whereas for the second cell at Ry = (0,0, 1) the mag-
netic moment points along the negative z-direction. In this case, the description of
the magnetic unit cell needs a doubling of the crystallographic unit cell, as the con-
figuration is clearly antiferromagnetic (see figure 2.7).



28 2 Theoretical and experimental basics

3. Cycloid configuration with 5’,; complex and k = (1/3,1/3,0)7

For this example the Fourier coefficient has complex entries and therefore equation
2.41 must be rewritten in order to keep the sum and therefore the magnetic moments
real:

T S
— Z (}3% - cos (2 T (E B+ @Ej)) + f,;j . sin (2 e (]2 R, + ¢Ej)))(2'43)
K

—

where the condition gEj = Sil;:j was used (the full calculation can be found in
appendix A).
If the phase angle @,;j is neglected and it is assumed that R,;j = (0,0,w;)T and

I%j = (wy,wr,0)T, then a cycloid in the xy-plane can be created (see figure 2.7).

2.4.2 Crystallographic description of magnetic structures: magnetic space
groups and representation theory

In the following subsections, two state-of-the-art concepts will be presented in order
to give a mathematical description of magnetic structures.

2.4.2.1 Magpnetic space groups (Shubnikov groups)

The description of the magnetic space groups is almost equal to the description of the
colored space groups (black and white space groups). In both space group classes,
an additional symmetry operation, often called time reversal operation, is needed in
order to change the color or the spin direction of a given object after the ordinary
spatial symmetry operation!. For instance in the case of the colored space groups, the
time reversal operation changes the color “black” into the color “white”?. If the time
reversal operation is then combined with an ordinary spatial symmetry operation,
then a point in space of color “black” can be transformed to another point in space
of color “white”. In general, this concept can be also used for the change of a spin
direction (magnetic moment direction). In contrast to the colored space groups one

1 The term “ordinary spatial symmetry operations” is used here in order to denote, that these are
the symmetry operations which are known from the 230 crystallographic space groups, which
transform one point in space to another point in space.

2 If the author considers a time reversal operation in the present thesis, it always means that
something is changed. In the literature this corresponds often to a multiplication with -1 in order
to denote that something is changed (in theses cases the change is denoted by a sign change).
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Y
Ry, R, R, Ry R, Re

2. AFM

3. Cycloid

Figure 2.7: Examples for magnetic structures for different magnetic propagation
vectors and different real and complex Fourier coefficients. a) ferromagnetic (FM) con-
figuration with 5% = (0,0,w)T (w = real) and k = (0,0, O)T b) antiferromagnetic
(AFM) configuration with §~ = (0,0 w) (w = real) and k = (0,0,0.5)7 and c) cycloid
configuration with S~ complex and k = (1/3,1/3,0)7. The unit cells which are shown
by the black squares are given by the lattice vector R; = (0,1,0)” with [ as integer.

has to bear in mind, that a color is a scalar quantity, whereas a spin is an axial vector!.

If the concept of an additional symmetry operation/time reversal operation is ap-
plied to the 230 crystallographic space groups, then the 1651 magnetic space groups
or also known as Shubnikov groups can be derived [65]. These 1651 Shubnikov groups
consist of 3 different classes of space groups. The first class is the class of the 230 crys-
tallographic space groups or also known as monochrome groups or Fedorov groups.

1 The reason why it must be an axial vector is obvious. From the definition, an axial vector
transforms under an inversion in that way, that its direction is not changed, whereas a polar
vector changes its direction by 180°. If a polar vector would be used in conjunction with an
ordinary spatial symmetry operation and a time reversal operation, than the direction of the polar
vector would be changed after the spatial symmetry operation and again after the time reversal
operation. Although it is also possible to use polar vectors for the description of spins/magnetic
moments, it is logically more convenient to use axial vectors, as there direction is invariant under
the application of an ordinary spatial symmetry operation.
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The second class is the class of the 230 gray groups or also known as paramagnetic
space groups!. The third and biggest class is the class of the 1191 black and white
space groups, which can be divided into 674 equi-translation subgroups (“translations-
gleiche Untergruppen”) and 517 equi-class subgroups (“klassengleiche Untergruppen”).

In order to catalogue the different 1651 Shubnikov groups two different notations can
be used. The first notation is the BNS setting (named after Belov, Neronova, Smirnova
[85, 86]) and the second notation is the OG setting (named after Opechowski and Guc-
cione [87-91]). The notations of both settings are identical except for the the equi-class
subgroups [65].

From the definition of the Shubnikov groups by the addition of a time reversal opera-
tion to the ordinary spatial symmetry operations it is obvious that this mathematical
description accounts exclusively for commensurate magnetic structures. In order to
describe commensurate and incommensurate magnetic structures a description of the
magnetic structures by the representation theory is necessary.

2.4.2.2 Representation theory for magnetic structures

In representation theory for magnetic structure it is possible to determine the complex
Fourier coefficients Sg; from equation 2.41 by the sum over free parameters Cy/y and

complex constant vectors SEK( Js) [65]:
St = 20 Sxs) s (2.44)
n

where j is no longer a single atom as in equations 2.38-2.42, but stands for a complete
Wyckoff site?, the subindex s is a single atom for a given Wyckoff position j, C%, is
a free parameter® for the active irreducible representation I, from the little group Gj,
with component A\, which labels the component corresponding to the dimension of I,
n gives the number, how often an irreducible representation I, is contained in the
entire magnetic representation and gﬁi(js) are complex constant vectors which can
be calculated from the irreducible representations I, [65]. In general, this complex
constant vectors are obtained in a similar way like the basis vectors for the symmetry
mode approach described before, except for the fact that they are axial vectors [65].
In the approach of representation theory for magnetic structures as described above,
there is no limitation to commensurate magnetic propagation vectors k as it was the
case for the description with Shubnikov groups. Therefore the representation theory

1 An example of a gray group can be given by considering that a point in space has simultaneously
both colors black and white (therefore the name gray). If this point is now transformed, than it
will be again black and white (=gray), no matter if a time reversal operator is applied or not.)

2 Sometimes this index for the Wyckoff site is also called “orbit”.

3 This parameter corresponds to an order parameter according to Landau theory [65] and is therefore
responsible for the amplitude of the magnetic moment.
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is the more general approach in order to describe magnetic structures.

2.5 Phase transitions and phenomenological Landau theory

In the following, a short overview of the concepts of phase transitions and phenomeno-
logical Landau theory, as they are used in the present thesis, is given.

2.5.1 Phase transitions

In order to characterize and to classify the different phenomena which can be observed
if one phase is transformed to another, different classification schemes have been de-
veloped. In the following the most prominent classification schemes are presented,
which consist of the Ehrenfest classification and the modern classification.

2.5.1.1 Ehrenfest classification

The oldest classification scheme for phase transitions was given by Paul Ehrenfest in
1933, who defined the order n of a phase transition according to the number of the
first non-continuous derivative of a particular thermodynamic potential, the Gibbs
energy (also known as Gibbs free energy or free enthalpy) [92-94]. This means that,
for a given Gibbs energy G(T,p), a first order phase transition is characterized by a

jump at critical values of T" and p of the first partial derivatives S(T',p) = — (g—g) and
P
V(Tp) = — (%)T, where S is the entropy, 7' is the temperature, p is the pressure

and V' is the volume (the subscript denotes that this variable is constant). In case of
a second order phase transition the first partial derivatives of G(T,p) are continuous,
whereas the second partial derivatives exhibit a discontinuity. This means that for a

given Gibbs energy G(7,p) the heat capacity C, = =T - 327(2; and the compressibility
kp =—V - %27(2; are discontinuous at critical values of 7" and p. Interestingly, although

this definition allows for higher order phase transitions, they have not been observed
so far [94].

2.5.1.2 Modern classification

Although the Ehrenfest classification is valid for many phase transitions, it is too strict
in order to describe all observed phase transition phenomena® [94]. For instance, one
point of criticism regarding the Ehrenfest classification is, that the observed behav-
iors for the heat capacity and compressibility are rather asymptotic with a singularity
at the critical phase transition point for a second order phase transition, which is in
contrast to the proposed analytical discontinuity [94].

1 From the later described phenomenological Landau theory, which is a classical non-quantum
mechanical theory, the Ehrenfest classification is strictly confirmed [94].
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Therefore the modern classification, defines only two types of phase transitions, a
discontinuous phase transition which corresponds to a first order phase transition and
a continuous phase transition which corresponds to a second order phase transition
[94]. For a first order phase transition the definition is almost equal to the definition
from the Ehrenfest classification, although it is extended to a discontinuity of the first
derivative of an arbitrary thermodynamic potential’ [94]. In contrast to the first or-
der phase transitions, the second order phase transitions are defined slightly different.
According to the textbook of Nolting [94], a second order phase transition is given, if
at least one second partial derivative of an arbitrary thermodynamic potential shows

a non-analytical behavior?.

In the present thesis, the modern classification for the phase transitions will be used,
although for the given experimental examples, the Ehrenfest classification scheme
would be also applicable.

2.5.2 Phenomenological Landau theory

The Landau theory is a classical (= non-quantum mechanical) theory, which was devel-
oped in order to describe phenomenologically the observed thermodynamic behavior
of an order parameter in the vicinity of a phase transition [7, 67, 94, 95]. In principle,
the Landau theory considers a phase as homogeneous, which means that interactions
on a microscopic scale are not incorporated, which classifies this theory as a mean-field
theory [94, 95]. Moreover, the negligence of local fluctuations on the microscope scale
leads also to one of the points of criticism of the theory, as in the immediate vicinity
of the critical phase transition point, the fluctuations become too large to disregard
them?® [94-96]. Despite this deficiency, Landau theory provides an insight into the
symmetry breaking process during a phase transition by an order parameter, which is
zero above and non-zero below the critical phase transition point?* [68].

The assumption which Landau made was, that in the vicinity of a critical point, a
phase transition can be modeled by a Taylor series of the Gibbs free energy GG, which
depends on an order parameter () and one or more intensive variables, for instance a
temperature T [7, 67, 94, 95]:

1 In his publication from 1933, Ehrenfest used only the thermodynamic potential of the Gibbs
energy for his considerations [92-94].

2 The mathematical definition of an analytical function is given by a function which can be locally
described by a convergent power series.

3 In addition to large fluctuations, Landau theory is also not applicable in cases where the interac-
tions are of short range and not of long range [95].

4 An order parameter can usually be identified with a macroscopic physical quantity like polarization
or magnetization but also with collective motions of atoms as it will be shown in sections 4.4.4
and 4.4.5.
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GQ,T) = Go—i—a(T)~Q+%~b(T)~Q2+%~c(T)~Q3+i~d(T)-Q4—|—...(2.45)

here GGy is the thermodynamic potential in the phase where () = 0 and a, b, ¢ and
d are functions of the temperature 7.
If only a finite number of orders of such a Taylor series is considered, then a necessary
condition for such an approximation of the Gibbs free energy is, that the values of )
are small [7, 67, 94, 95]. For the investigation of, for instance, the special case of a
simple continuous phase transition without any couplings to other parameters!, it is
sufficient to consider only even terms up to the 4th order [7, 67, 94, 95]:

GQT) = G0+%-b(T)-Q2+i-d(T)~Q4 . (2.46)

The so obtained Gibbs potential is known as the 2-4 Landau potential, due to the
present terms of second and fourth order [68].

In order to gain some information about the nature of the two coefficients b and d
above and below the critical phase transition point, the energy minimum of the 2-4
Landau potential can be investigated. For this purpose, the first and second pres-
sure derivative of equation 2.46 must be generated and the necessary and sufficient
conditions of a minimum must be applied [7, 67, 94, 95]:

0G(Q,T)

50 = WT)-Q+d(T)-Q°=0 , (2.47)
P*G(Q,T) 5
a0r = WD +3dT)-@ >0 (2.48)

For the phase, where () = 0 and therefore T > T, or T" = T,, it is evident from
the conditions in equations 2.47 and 2.48, that the coefficient b must have a positive
value, whereas for () > 0 and therefore 7' < T, it follows that b must have a negative
value. The simplest assumption which can be made to model such a behavior of b(7T)
is the following:

W)=k (T-T) (2.49)

where k is a positive constant and 7T, is the critical phase transition temperature.

1 For a coupling to for instance spontaneous strain see Salje [68].
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The behavior of the order parameter () in the region 7" < T, can be modeled if equation
2.47 is solved for () and if it is combined with the result from equation 2.49:

L-T. [T.—T T, —T\?
Q:j:\/d(T) \/ 7 :iA-< T ) . (2.50)
———

A

From this equation it can be deduced that d(t) must be positive (otherwise the

square root would result in a complex value) and that the critical exponent is = %
Therefore, from all the assumptions which were made, it can be stated that for a
simple continuous phase transition without any couplings to other parameters, the
Landau theory will result in an exact critical exponent.
An illustration of the energy landscape in dependence on the temperature 7" and the
order parameter () is given in figure 2.8a). In this figure the typical bifurcation (marked
by the solid red line in the energy minimum of the Gibbs free energy potential) of an
order parameter can be seen, which corresponds to an reversal of the sign for a physical
macroscopic property, like the magnetization or the polarization in a bulk material.
Furthermore, in figure 2.8b) it is also shown what happens, if a 2-3-4 Landau potential
is chosen. In this case, there exists only one energy minimum and the order parameter
() jumps, which indicates a first order phase transition.
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Figure 2.8: Temperature and order parameter dependent energy landscape for a a)
2-4 Landau potential and for a b) 2-3-4 Landau potential. The red solid line marks

the path of the lowest Gibbs energy.
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2.6 Ferroic and multiferroic phenomena

The symmetry of a crystal structure can not solely be broken by the displacive motion
of atoms or atomic groups, but also by other long-range ordering effects like macro-
scopic spontaneous magnetization, macroscopic spontaneous electrical polarization or
macroscopic spontaneous deformation of the crystal, which occur if a intensive prop-
erty like temperature is changed. Similar to the case of a continuous displacive phase
transition, such a continuous phase transition and therefore the symmetry breaking
of a crystal structure by a long-range ordering effect is also connected with an order
parameter, which is zero in the high symmetry phase and finite in the low symmetry
phase.

Depending on the observable physical macroscopic properties which arise sponta-
neously in the low symmetry phase, the different ferroic orders can be categorized.
The onset of a macroscopic spontaneous magnetization leads for instance to a(n)
(anti-)ferromagnetic order, whereas a macroscopic spontaneous electrical polarization
leads to a(n) (anti-)ferroelectric order. If a crystal structure exhibits macroscopic
spontaneous deformation then this can be described as ferroelastic order.

The following subsections give an overview of the different ferroic orders!, which can be
observed either individually in single ferroic materials or simultaneously in multiferroic
materials.

2.6.1 (Anti-)Ferroelectricity

A ferroelectric phase is characterized by a non-vanishing spontaneous electric polar-
ization P below, for instance, a critical temperature T, pp without the apphcatlon of
an external electric field E. However, as the spontaneous polarization P is a vector
quantity, it can be switched by 180° by an external electrical field E. This means that
an ferroelectric phase in a solid with a non-vanishing spontaneous polarization must
possess a dielectric hysteresis curve in a P(E) diagram?.

The physical microscopic reasons for the occurrence of the non-vanishing spontaneous
polarization P in a crystal structure is manifold, but in general a classification into
proper ferroelectric effects and improper ferroelectric effects can be done.

1 The ferrotoroidic order will be neglected in this work, as there is an ongoing discussion about the
unambiguous observation of this ferroic order [3].

2 This statement is correct for ferroelectricity. In the case of antiferroelectricity there exist two
sublattices with opposite spontaneous polarization and therefore a net spontaneous polarization
is normally canceled, which means that no dielectric hysteresis can be observed. In the case
of ferrielectricity, a dielectric hysteresis curve can be observed, as the absolute value of the two
different spontaneous polarization vectors is not equal and therefore a net spontaneous polarization
is left over.
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2.6.1.1 Proper ferroelectricity

If the primary order parameter, which is connected with the continuous ferroic phase
transition from a paraelectric to a ferroelectric phase, is given by the spontaneous
polarization, then this kind of ferroelectricity is called proper ferroelectricity [7].

Proper ferroelectricity occurs in materials, where the spontaneous polarization arises
due to structural effects, like for instance hybridization effects of filled oxygen p or-
bitals and empty d orbitals of transition metals (e.g. in BaTiO3) [97, 98] or for instance
polarizable lone pairs which move away from their centrosymmetric position in a oxy-
gen surrounding (e.g. in BiFeO3) [97]. In addition, such a structural effect must break
the spatial inversion symmetry of the crystal structure, as otherwise the spontaneous
polarization will be canceled out. Therefore proper ferroelectricity cannot occur in
all space groups or point groups, respectively. An overview of all three dimensional
point groups is given in table 2.3. Only the polar point groups where all symmetry
operations leave at least two points invariant are capable of producing pyroelectricity
and eventually proper ferroelectricity!.

Table 2.3: All 32 crystallographic point groups in 3 dimensions. All of the
non-centrosymmetric point groups are capable of being piezoelectric, except for

point group 432. All 10 polar point groups, which are a subgroup of the non-
centrosymmetric point groups, are capable of being pyroelectric. Proper ferroelectric-
ity can only occur in the polar and therefore pyroelectric point groups [7].

Crystal system | Centrosymmetric point groups Non-centrosymmetric point groups
Polar Non-polar

Cubic m3 m3m - 432 | 43m 23

Tetragonal 4/m 4/mmm 4| 4mm | 4 | 42m 422

Orthorhombic mmm mm?2 222

Hexagonal 6/m 6/mmm 6| 6mm | 6 | 6m2 622

Trigonal 3 3m 3| 3m 32

Monoclinic 2/m 2 m -

Triclinic 1 1 -

Total number 11 groups 10 groups 11 groups

1 This is a convenient feature, as materials with a centrosymmetric point group/space group exhibit
certainly not proper ferroelectricity.
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2.6.1.2 Improper ferroelectricity

In contrast to proper ferroelectricity, the spontaneous polarization of improper ferro-
electricity is not connected with a primary order parameter, as the observable sponta-
neous polarization arises as a secondary effect due to a coupling to another ordering
phenomenon [97]. In general, there exist different possibilities how ordering can in-
duce improper ferroelectricity. For instance, improper ferroelectricity can occur if a
structural phase transition leads to a special kind of lattice distortions, therefore this
ferroelectricity effect is also known as geometric ferroelectricity (e.g. in hexagonal
manganites RMnO3 (R=Ho-Lu, Y)) [4, 97]. Another possible origin for improper
ferroelectricity is charge ordering, where ions of different valence states must order
non-symmetrically in order to give a net spontaneous electric polarization (e.g. in
LuFe;Oy4) [4, 97]. Besides geometric ferroelectricity and charge ordering induced fer-
roelectricity, improper ferroelectricity can also arise due to an ordering of magnetic
moments, which breaks the inversion symmetry of a crystal structure (e.g. ThMnO3)

4, 97).

2.6.2 (Anti-)Ferromagnetism

Similar to (anti-)ferroelectricity, the (anti-)ferromagnetism can be characterized by a
non-vanishing spontaneous magnetization M below, for instance, a critical temper-
ature 1. gy without the application of an external magnetic field H. An external
magnetic field H can switch the direction of the spontaneous magnetization by 180°,
which is also similar to the switching of the spontaneous polarization in ferroelectricity
by an electric field E. This means that a ferromagnetic compound will show, analogue
to a ferroelectric compound, a magnetic hysteresis curve M (H ) with a non-vanishing
spontaneous magnetization, whereas an antiferromagnetic compound will not show
such a behavior, as the microscopic magnetic moments sitting on two different sublat-
tices cancel each other out!.

The microscopic mechanisms, which lead to the formation of magnetic structures
with ferromagnetic, antiferromagnetic and ferrimagnetic ordering is given by differ-
ent coupling mechanisms between the magnetic moments. One of these mechanism
is for instance the direct exchange mechanism, where the magnetic moments couple
directly, if the wave functions have a sufficient overlap [7]. This direct coupling can
be described in the Heisenberg model by the following Hamiltonian H:

H=-JYS-5; | (2.51)

0,

where J is the exchange constant between the two spins S of the atoms i and 7 [99].

1 In a ferrimagnetic compound a net spontaneous magnetization and therefore a magnetic hysteresis
curve can be observed, as the magnetic moments on the two sublattices do not cancel themselves
completely out.
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Another exchange mechanism is the superexchange, where the exchange interaction
between two magnetic ions is mediated by a nonmagnetic ion and commonly an an-
tiferromagnetic ordering of the magnetic moments is established [99]. A similar but
not equal exchange mechanism is given by the double exchange, where the exchange
interaction between two magnetic ions is also mediated by a nonmagnetic ion, but
usually a ferromagnetic ordering of the magnetic moments is established [99]. A fur-
ther exchange mechanism is given by the Ruderman-Kittel-Kasuya-Yosida exchange,
where the exchange interaction between two magnetic moments is mediated by the
polarization of the conduction electrons [99].

2.6.3 Ferroelasticity

A ferroelastic compound exhibits a macroscopic spontaneous strain € below, for in-
stance, a critical temperature 7, ppra without the application of an external stress
o. Similar to the hysteresis effects in ferroelectric and/or ferromagnetic compounds
an elastic hysteresis o(¢) can be observed, if an external stress o is applied. Above
a critical temperature 7T ppr4 the macroscopic spontaneous strain vanishes and the
occurring phase is called a paraelastic phase [7, 68].

2.6.4 Multiferroics

According to the definition given by Schmid in his publication in 1994 [100], a multifer-
roic material is a material which exhibits two or more ferroic properties simultaneously
in the same phase. This definition is nowadays extended, as most of the multiferroic
materials show a coupling between at least two of these ferroic orders, why the term
“multiferroics” is now often used for materials exhibiting not only different ferroic or-
ders but also a full or partial coupling between them [3, 98].

As already explained in the introduction (see chapter 1), of special interests are mul-
tiferroic materials which exhibit a magnetoelectric coupling, as these materials are
potential candidates for new magnetoelectronic devices. Therefore a short overview
of the basics of magnetoelectric coupling mechanisms will be given.

2.6.4.1 Magnetoelectric coupling

The magnetoelectric coupling mechansims in multiferroics can be explained, if either
the Helmholtz free energy F' [3, 101] or the Gibbs free energy G [7, 102] is given as an
expansion in dependence on the electrical field E and on the magnetic field strength
H. Using the Einstein summation convention, the expansion for the Gibbs free energy
is given by:
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G(E,ﬁ) = GO - PZSEZ - ,quZSHZ
1 1
_§5O€ijEiEj - §M0Mz'sz‘Hj — oy B Hj

1 1
_iﬂijkEiHin - §7iijzEjEk — ... ; (2.52)

where G is the Gibbs free energy in the phase without spontaneous polarization
or spontaneous magnetization, P is the i-th component of the spontaneous polar-
ization, M; is the i-th component of the spontaneous magnetization, Ej, E;, Ej are
components of the electrical field E, H,, H;, Hy, are components of the magnetic field
strength H , €0 is the vacuum permittivity, puo is the vacuum permeability, €;; is the
relative permittivity, which is related to the electric susceptibility x. by x. = €;; — 1,
ii; is the relative permeability, which is related to the magnetic susceptibility x,, by
Xm = Mij — 1, ; is a tensor, which describes a linear magnetoelectric coupling, ;i is
a third-rank tensor, which describes a electrobimagnetic coupling and 7, is a third-
rank tensor, which describes a magnetobielectric coupling.

The influence of the magnetoelectric coupling on either the polarization or the magne-
tization becomes obvious, if the derivatives of the expansion of the Gibbs free energy
with respect to the electric field vector or the magnetic field strength vector are built.
For the polarization this gives

e
JF,

1
= PZ.S + 505ijEj + Ozinj + éﬂUkHsz + ’YUkHzEj 4+ ... , (253)

P(E.H) =

whereas for the magnetization the following equation can be obtained

0G
OH,

1

M(EH) =

From both equations it is evident, that a magnetic field can influence the polarization
and that a electric field can influence the magnetization.






CHAPTER 3

Temperature dependent in situ investigations of Bi;_,Sr,FeO3_s

3.1 Motivation

Among the multiferroic materials the bismuth ferrite (BiFeO3) perovskite is one of
the most important ones, as it exhibits a magnetoelectric coupling between two fer-
roic properties, which is present at room temperature and is therefore interesting for
the integration in new electronic devices [9]. The crystal structure of the BiFeOj
perovskite at room temperature is trigonal (more specific rhombohedral) with the
non-centrosymmetric space group R3c [103], which allows for proper ferroelectric-
ity!. The ferroelectric properties of BiFeOs were discovered in 1970 by Teague et al.
[104], who reported a dielectric hysteresis in a single crystal of BiFeOs. In a detailed
theoretical study by Ravindran et al. it could be confirmed that the driving force
for the ferroelectricity is the stereochemically active Bi 6s? “lone pair”, which is re-
sponsible for the shift of the Bi** cation away from a centrosymmetric position to a
non-centrosymmetric one? [9, 106, 107].

At 825°C (corresponds to 1098 K) the crystal structure of a-BiFeO3 changes to (-
BiFeOg3, which is believed to have a centrosymmetric most probable orthorhombic
space group [9, 108], therefore this structural phase transition is also connected with
the ferroelectric Curie temperature, as this marks the ferroelectric to paraelectric phase
transition [9].

Besides the ferroelectricity, BiFeOs has also antiferromagnetic properties with a quite
high Néel temperature of 380°C (corresponds to 653 K) [109, 110]. On a local scale by
considering only one crystallographic unit cell the magnetic moments show a typical
G-type antiferromagnetic arrangement [9, 103, 110, 111]. This picture changes dramat-
ically if several hundred crystallographic unit cells are considered. By careful neutron
time-of-flight measurements, Sosnowska et al. were able to demonstrate that the ac-
tual magnetic structure consists of a spin cycloid which propagates along the [110]

1 In this work solely the hexagonal setting and not the rhombohedral setting will be used in order
to describe the trigonal/rhombhohedral crystals structure of BiFeOg

2 The shift of the cations is along the hexagonal [001] direction, therefore the spontaneous polar-
ization does also occur in this direction [9, 105].

41
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direction of the rhombohedral crystal structure in the hexagonal setting [9, 112, 113].
The magnetic propagation vector which they found is k = (0.0045,0.0045,0)T, which
leads to a huge spin cycloid length of approximately 620 A [9, 112-114]. Although there
were many attempts to look for additional magnetic phase transitions (e.g. [115]), it
seems that the magnetic structure of the spin cycloid is preserved from low tempera-
tures of 2 K up to the Néel temperature® [9, 117-119).

In 2008, Lebeugle et al. [120] and Lee et al. [121] were able to show that the change
of the polarization direction by applying a voltage on a single crystal of BiFeO3 also
changes the magnetic planes, which is a direct evidence for the magnetoelectric cou-
pling in this material [9, 107]. Nowadays it is known that the magnetoelectric coupling
is not a linear but rather a quadratic coupling, which arises due to the “lone pair” in-
duced polarization, which breaks the inversion symmetry and which therefore induces
a small canting of the spins which can be described using a Dzyaloshinskii-Moriya
interaction [9, 122].

Already in 2003, Wang et al. published an article in which they could show that
they can achieve an enhanced polarization and an enhanced magnetization in a thin
film of BiFeO3 compared to the polarization value reported for the bulk system [123].
Although it was later shown from a single crystal study that the large polarization
is intrinsic, the research on BiFeOgs thin films and heterostructures became more and
more important [9)].

In order to tune the amazing phenomena observed in the BiFeOgs perovskite, doping
with other chemical elements is an appropriate way to change the ferroic properties.
Different studies showed that a high doping of the A-site of the BiFeOs perovskite
can lead to an enhancement of the magnetic properties, which is mainly explained by
the formation of a collinear antiferromagnetic structure of the magnetic moments of
the Fe®* cations and the resulting suppression of the spin cycloid (see for instance
[105, 124, 125]). Another possibility in order to influence the spin cycloid was given
in 2002 by Sosnowska et al., who demonstrated, that also a doping of the perovskite
B-site by manganese can lead to a suppression of the spin cycloid?® [126].

Among numerous studies, which investigated the doping of the A-site of the BiFeO3
perovskite, the doping with diamagnetic strontium cations gained special attention,
as many contradictory results regarding the doping dependent crystal structures and
multiferroic properties were reported. One of the first studies from 1966, concerning
the solid solution series between BiFeOj; and SrFeO3 was performed by MacChesney
et al. [127], who reported from X-ray powder diffraction data that the Bi;_,Sr,FeO3_;
perovskites have rhombohedral symmetry for x = 0 — 0.1, cubic symmetry for x =
0.2 — 0.6, tetragonal symmetry for x = 0.7 and again cubic symmetry for x = 0.8 — 1.

1 An overview of different obtained Néel temperatures for BiFeO3 was already given in 1980 in the
publication of Fischer et al. [116].

2 In general, there are numerous publications on doping either the A-site or the B-site or both
in order to influence the spin cycloid, the ferroelectricity or the strength of the magnetoelectric
coupling.
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In addition, they observed from measurements of a Biy4SrggFeOs g3 perovskite with a
magnetometer weak ferromagnetism from which they concluded, that it must originate
from an antiferromagnetic ordering with additionally canted magnetic moments.
Another X-ray powder diffraction study was performed by Li et al. in 2001, who re-
ported in agreement with the study of MacChesney et al. [127], that the crystal struc-
tures of the Bi;_,Sr,FeO3_;s perovskites between x = 0.2 and x = 0.67 exhibit cubic
symmetry [128]. However more importantly, they performed also detailed Méssbauer
spectroscopy measurements for the entire investigated doping range from which they
could show that no intermediate valence state between Fe?* and Fe** cations can be
found, although the oxygen deficiency suggests one [128]. Instead of a certain amount
of Fe'* cations due to the oxygen deficiency, they found solely Fe?* cations which
possess two different coordination environments, an octahedral one and a tetrahedral
one [128]. Furthermore they could also demonstrate from the Mdssbauer spectroscopy
measurements that the amount of tetrahedral coordinated Fe?" cations increases with
the doping concentration of diamagnetic Sr** cations [128]. Besides the decrease of the
octahedrally coordinated Fe?" cations with increasing strontium dopant, they could
also prove that an increase of the strontium dopant leads additionally to a decrease of
the observed spontaneous magnetization [128].

Regarding Mossbauer spectroscopy studies, Lepoittevin et al. reported for the

Bi; /35r3/3FeO, g7 perovskite that the Fe3* cation has three different coordination envi-
ronments, namely an octahedral one, a pyramidal one and a distorted pyramidal one
[129]. Similar findings were made for Big5Srg5FeO3_s by V.V. Pokatilov et al., who
found octahedral, tetrahedral and square-pyramidal coordinations for the Fe3* cation
[130], whereas V.S. Pokatilov et al. found octahedral and square-pyramidal coordina-
tions for the Fe3t cation in the Big 75510 25FeO3_; perovskite [131]. In 2012, Gippius
et al. showed from Mossbauer spectroscopy measurements that the spin cycloid of the
solid solution end member BiFeOj is destroyed upon a strontium doping concentration
of 7% [132].

Further structural studies were given by V.S. Pokatilov et al., who reported from X-ray
powder diffraction rhombohedral symmetry up to a composition of x = 0.1, a mixed
rhombohedral and cubic phase for x = 0.1 to x = 0.15 and cubic symmetry up to a
composition of x = 0.67 [133], which is in agreement with the studies of MacChesney
et al. [127] and Li et al. [128]. Similar findings from X-ray powder diffraction data
by Anokhin et al., additionally stated that for x = 0.7 to x = 0.9 a mixed cubic and
tetragonal phase must be assumed and that for x = 1 a tetragonal symmetry occurs?
[138]. Likewise to these authors, Brinkman et al. and Zheng-Zheng et al. reported
also cubic symmeties for the Bi; _,Sr,FeOs s perovskites with x = 0.3 to x = 0.8 [139]
and x = 0.4 to x = 0.6 [140].

Although many authors reported cubic symmetry, some authors claimed also other

1 Depending on the oxygen deficiency §, the SrFeOs_s can possess different crystal structures
ranging from cubic symmetries to orthorhombic incommensurate symmetries (see for instance
Takeda et al. [134], Hodges et al. [135], Schmidt and Campbell [136] and Reehuis et al. [137]).
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symmetries like Lepoittevin et al., who reported an orthorhombic symmetry found
by electron diffraction for the Bi/3Srs/3FeOs 67 perovskite [129]. Also rhombohedral
symmetries were reported, for instance by Khomchenko et al., who used the BiFeOj3
space group R3c in order to model the Bi;_,Sr,FeO3_;5 perovskites with x = 0.2 and
0.3 [105, 141-143]. Interestingly, Withers et al. reported cubic symmetry by X-ray
powder diffraction investigations for the Big 5451 46FeOq 77 perovskite, although they
found by transmission electron microscopy investigations that the crystal structure
must be described by a complicated superspace symmetry [144, 145].

However, the most important study with respect to neutron powder diffraction, (which
is more sensitive to oxygen positions than X-ray powder diffraction), was carried out
by Troyanchuk et al. [146, 147], who reported that the best refinement results for a
composition above x = 0.2 could be achieved assuming a tetragonal symmetry with
G-type antiferromagnetic moments. For a Bi;_,Sr,FeO3_s perovskite with x = 0.5,
they stated that the (200) reflection with respect to the cubic system is significantly
broadened compared to the (111) reflection and therefore they explained this observa-
tion by a tetragonal distortion [146, 147]. Furthermore they observed also a transition
region for the composition of x = 0.07 to x = 0.14, were they assumed a rhombohedral
and a tetragonal phase [147]. Interestingly, these results are partially in contradiction
to a study performed by Pachoud et al., who showed from synchrotron X-ray powder
diffraction and neutron powder diffraction that the Bi;_,Sr,FeO3_s perovskite with x
= (.75 can be described in a cubic symmetry! [148].

Concerning the multiferroic properties there were also different results reported. Khom-
chenko et al. reported that they could confirm spontaneous electric polarization by
piezoresponse force microscopy for the Bi;_,Sr,FeO3_s perovskites with x = 0.2 and x
= 0.3 [105, 141-143]. From their measurements they concluded that a doping by Sr?*
cations leads to a suppression of the displacement of the Bi** cation and therefore
to a suppression of the ferroelectricity [105]. In addition, for the same compositions,
they carried out measurements of the spontaneous magnetization (similar to MacCh-
esney et al. [127] and Li et al. [128]) from which they found weak ferromagnetism
in the Big7Srg3FeOs perovskite [105, 142] and no spontaneous magnetization for the
Big gSrg2FeO3 perovskite [141, 143]. Similar to Khomchenko et al., Wang et al. found
the highest spontaneous magnetization for a composition with x = 0.3, although they
also observed spontaneous magnetization for a composition of x = 0.2 [149] and no
spontaneous magnetization for x = 0.1, which in turn is in contradiction to results
from Zheng-Zheng et al. [140], who reported the highest value for the spontaneous
magnetization at a composition level of x = 0.1. However, Zheng-Zheng et al. agreed
on the ferroelectric behavior of the Bi;_,Sr,FeO3_;s perovskites found by Khomchenko
et al. [105, 141-143] and they stated that it can be observed within a compositional
range of x = 0 to x = 0.4 [140].

A possible explanation for the contradictory results regarding the weak ferromagnetism

1 The modeling of the cubic symmetry by Pachoud et al. was done either by using a disorder model
within the cubic symmetry or by using anisotropic displacement parameters [148].
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was given by Troyanchuk et al., who observed that the spontaneous magnetization is
probably affected by the synthesis conditions [146]. In addition, they assumed that
the spontaneous magnetization above a composition of x = 0.2 is caused by impurities
[147]. Further, they explained that it is very likely that a small number of oxygen
vacancies leads to the destruction of the spin cycloid and to a canting of the anti-
ferromagnetically aligned magnetic moments [147]. In addition, they believed that
the lowering of the octahedral distortions due to the loss of the rhombohedral R3c
symmetry at x = 0.15 also leads to the loss of ferroelectricity [146], which in turn
would stand in contradiction to the findings of Khomchenko et al. [105, 141-143] and
Zheng-Zheng et al. [140].

From this extended overview, it can be stated that the amount of oxygen vacancies
and the actual crystal structure symmetries play a crucial role for the ferroelectric and
magnetic behavior in the Bi;_,Sr,FeO3_s perovskite system. Therefore, in this work,
an accurate symmetry determination at room temperature for the Bi;_,Sr,FeOg3_s
perovskites with a compositional range of x = 0 to x = 0.5 was carried out, using
synchrotron X-ray and neutron powder diffraction. In addition, using neutron powder
diffraction, high temperature experiments were performed in order to determine the
behavior of the oxygen stoichiometry and therefore the oxygen vacancies using a spe-
cial gas environment which possibly allows for fast oxygen exchange kinetics within
the powder. As some authors reported a weak ferromagnetic behavior above a com-
position of x = 0.1 (which suggest a spin canting of the G-type antiferromagnetically
aligned magnetic moments), detailed reinvestigations of the magnetic structure were
undertaken in order to search for peak asymmetries which probably can indicate such
canting behaviors. Furthermore the critical Néel temperatures for the Bi;_,Sr,FeO3_s
perovskites are determined from neutron powder diffraction and differential scanning

calorimetry, as the literature values seems also to be ambiguous®.

3.2 Synthesis

The synthesis of the Bi;_,Sr,FeO3_s perovskites (with x = 0, 0.1, 0.2, 0.3, 0.4 and
0.5) was carried out at the Max Planck Institute for Solid State Research by Dr. Anja
Wedig. The synthesis of the reddish-brown colored Bi;_,Sr,FeO3_s powders with x
= 0.1, 0.2, 0.3, 0.4 and 0.5 was performed by solid state reactions of Bi;O3, SrCOs;
and Fe,O3 powders, which were first ground in a mortar and then calcined for 2 hours
at 770°C in an oven. After the first calcination process, the powders were ball-milled
for 1 hour in a zirconia ball mill (Fritsch, Germany) and then calcinated again for 8
hours at the corresponding temperature given in table 3.1 below, followed by another

1 For instance V.S. Pokatilov et al. reported a value of Ty = 670(3) K [131] for the
Big.75510.205FeO3_5 perovskite from Mossbauer spectroscopy measurements , whereas Pachoud
et al. reported a value of Ty = 643 K for the same composition from neutron powder diffraction
measurements [148].
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ball-milling of the powders for 1 hour. The last step with 8 hours heating and 1 hour
ball-milling was repeated for a second time until the final synthesized Bi;_,Sr,FeO3_s
powders (with x = 0.1, 0.2, 0.3, 0.4 and 0.5) were obtained. Further details of the
above described solid state reactions can be found in the doctoral thesis of Dr. Anja
Wedig [150].

For the synthesis of the BiFeO3_s perovskite powders a different synthesis route was
used. The glycine-nitrate process [151] requires two solutions of Bi;O3 in a 3:2 volume
mixture of double-distilled water and 65% nitric acid and Fe(NOj3)3 in double-distilled
water. Combustion of a mixture of both solutions together with glycine yielded a solid
residue, which was ground in a mortar and then heated for 2 hours at 700°C in an
oven. As final step the BiFeO3_5 powder was ball-milled for 1 hour. Further details of
the used glycine-nitrate process for the synthesis of the BiFeO3_s perovskite powder
can be found in the doctoral thesis of Dr. Anja Wedig [150].

Table 3.1: Oven temperatures for the synthesis of the Bi;_,Sr,FeO3_;5 perovskite
powders. The heating rate of the oven was 10 K/min and the cooling rate was 20
K/min.

Compound Oven temperature
Bio_5SI‘0.5F603_5 1050°C
Bio_ﬁSI'OAFeOg_(S 1050°C
Bio_7SI‘0.3F603_5 950°C
Big.gSrp2FeO3_s 950°C
Big.9Srp1FeO3_s 950°C
BiFeO3_s 700°C

3.3 Experimental setup

Room temperature synchrotron X-ray powder diffraction measurements of the

Big 5Srg5FeO3_s sample in a capillary were performed by Dr. Andy Fitch at the Euro-
pean Synchrotron Radiation Facility (ESRF), Grenoble at the former beamline ID31.
The collection of the diffraction patterns was done in Debye-Scherrer mode using a
wavelength of A\ = 0.30646(1) A (= 40.46 keV) with a channel cut Si(111) monochro-
mator. Diffracted X-rays were detected using scintillation counters integrated in a
9-channel Si(111) multianalyzer stage.

Further room temperature synchrotron X-ray powder diffraction measurements of the
Bi;_,Sr,FeO3_s perovskites (with x = 0, 0.2 and 0.5) in capillaries were carried out by
Dr. Oksana Magdysyuk, Frank Adams, Dr. Tomce Runcevski and Prof. Dr. Robert
E. Dinnebier at the PETRAIII Deutsche Elektronensynchrotron (DESY), Hamburg at
beamline P02.1. The collection of the diffraction patterns was done in Debye-Scherrer
mode using a wavelength of A = 0.206834(1) A (=~ 59.94 keV) obtained by a double
crystal Laue monochromator of diamond(111) and Si(111) crystals. Diffracted X-rays
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were detected using a fast area Perkin Elmer image plate detector.

The integration of the collected two-dimensional Debye-Scherrer rings to one-dimensional
powder diffraction patterns was subsequently performed using the computer program
FIT2D [152]. The parameters which were required for this integration were deter-
mined from a LaBg reference sample.

Temperature dependent neutron powder diffraction measurements of the Bi;_,Sr,FeO3_;
samples (with x = 0, 0.1, 0.2, 0.3 and 0.5) were performed by the author and col-
laborators (Dr. Anatoliy Senyshyn, Dr. Dominik Samuelis, Dr. Anja Wedig, Nils
Ohmer) at the neutron research reactor Heinz Maier-Leibnitz (FRM II), Garching at
the SPODI high resolution neutron powder diffractometer. During neutron irradia-
tion, the samples were stored in niobium containers, which had a diameter of 12 mm,
a wall thickness of 50 pm and a fill height of the powders of approximately 30 mm.
The collection of the neutron diffraction patterns was done in Debye-Scherrer geome-
try using two different wavelengths (see table 3.2). Monochromatic neutrons at these
wavelengths were obtained using Ge(551) crystals. Diffracted neutrons were detected
by 80 position sensitive 3He counting tubes with a height of 30 cm which covered a 26
range of 0° to 160°. Each counting tube covers an angle range of 0.05° which requires
40 steps in order to measure the full 2° range which corresponds to the measurable
range of one counting tube. Further details of the SPODI diffractometer can be found
in the publication of Hoelzel et al. [153].

The integration of the collected cuts of two-dimensional Debye-Scherrer rings to one-
dimensional powder diffraction patterns was subsequently performed by a non-commercial
beamline scientist written program. The resulting usable range of the so obtained pow-
der diffraction patterns is 0.95° 20 to 151.9° 26. In order to obtain a sufficient counting
statistic for the measured diffractograms, each diffractogram was integrated for half an
hour and five diffractograms were collected at each temperature step and subsequently
added to a single diffractogram.

Table 3.2: Wavelengths for the high resolution neutron powder diffraction measure-
ments of Bij_;Sr,FeO3_s perovskite powders.

Compound Neutron wavelength
Big5Sro5FeO3 5 | 1.548140(20) A

Bio_7SI‘0.3F603_5 1548296(20)
Bi.S10.2FeO3_5 1.548140(20)
Bio_gSI‘o,lF603,5 1.548296(20)
BiFeO3_s 1.548140(20)

In order to perform temperature dependent neutron powder diffraction measure-
ments, the niobium containers were put into a high temperature furnace [153], which
can be used either evacuated or with gases at small pressures.

Due to the fact that the temperature dependent neutron powder diffraction experi-
ment should also reveal the oxygen kinetics of the Bi;_,Sr,FeO3_s perovskite powders,
a special gas environment and special heating procedures were required. For the room
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temperature measurements the furnace was evacuated until a high vacuum of 10™* —
10~° mbar was reached. For all elevated temperature measurements the furnace was
filled with a special argon-oxygen gas mixture with a partial oxygen pressure of pO,
= 49.27 ppm. For the temperature dependent measurements below 300 °C, approxi-
mately 20 mbar of this special gas was filled into the furnace, whereas for temperature
measurements of 300 °C and above a gas pressure of approximately 50 mbar was cho-
sen. Before changing the gas pressure at a temperature of 300 °C, the samples were
equilibrated for 20-30 min at 300 °C and a gas pressure of approximately 20 mbar.
The heating rate for all temperature steps was 0.5 % and the neutron powder diffrac-
tion measurements were at the earliest started, when the temperature fluctuation was
below 0.1 °C at a particular temperature step.

The reason for this special gas-filling and heating procedure as described above is the
following: Below temperatures of 300 °C it can be expected that only oxygen from
the surface is exchanged with the gas environment, therefore a smaller defined partial
oxygen pressure can be used as the amount of exchanged oxygen is lower than for the
exchange of oxygen from the bulk [154, 155]. The annealing step at a temperature
of 300 °C is performed in order to activate the bulk diffusion of the oxygen in the
Bi;_,Sr,FeO3_s perovskites [154, 155]. The elevated pressure at 300 °C and above is
used in order to have a defined oxygen environment [154, 155]. Such a defined oxygen
partial pressure ensures that the oxygen in the powders is in balance with the envi-
ronment and that the maximum of the diffusion coefficient can be reached® [154-156].
With respect to the temperature dependent neutron powder diffraction measurements,
this entire procedure is crucial, as it ensures that not only the loss of oxygen in these
perovskites can be studied, but also the incorporation kinetics of oxygen into the
Bi;_,Sr,FeO3_s compounds. General informations about the oxygen kinetics in per-
ovskites (especially SrTiO3) can be found in the publication of Merkle and Maier
[154, 155] and detailed informations about the oxygen kinetics in Bi;_,Sr,FeO3_s per-
ovskites can be found in the doctoral thesis of Dr. Anja Wedig [150].

The measurement of the heat flow was done using a commercial differential scanning
calorimeter Pyris 1 of the PerkinElmer corporation. The measured temperature range
was 50 K to 600 K and the heating rate was 10 K/min. Measurements were kindly
carried out by Ewald Schmitt, who provided for the author the measured raw data.

1 For SrTiO3 the maximum of the chemical diffusion coefficient for oxygen at elevated temperatures
is reached at a partial oxygen pressure of approximately 1078 bar [154-156]. If it is assumed that
the Bij_;Sr,FeO3_s perovskites have the maximum chemical diffusion coefficient for oxygen at
elevated temperatures at a similar level of the partial oxygen pressure, then the required gas
pressure of an Ar/Os gas mixture with a partial oxygen pressure of pOs &~ 50 ppm can be
calculated. Taking Dalton’s law for partial pressures and roughly the estimation that the number
of parts in a gas are equivalent to the partial pressure, then a value of 50 mbar Ar/Os (pO2 & 50
ppm) corresponds to a partial oxygen pressure of 250-1078 bar. Please note that this value is much
higher then the desired value of 10~8 bar, which leads to a lower chemical diffusion coefficient for
oxygen at these temperatures.
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3.4 Determination of crystal structures at room temperature
from powder diffraction data

The investigation of the Bi;_,Sr,FeO3_s perovskites (with x > 0.14) by different au-
thors showed (see section 3.1), that these compounds can be in general described with
a cubic crystal structure in space group Pm3m or with a tetragonal crystal struc-
ture in space group P4/mmm?!? [146, 147, 157]. In order to unveil the most probable
symmetry and therefore the most probable crystal structure for the Bi;_,Sr,FeOs3_s
perovskites (with x = 0.1, 0.2, 0.3 and 0.5) different synchrotron X-ray powder diffrac-
tion measurements and high resolution neutron powder diffraction measurements at
room temperature were performed?.

All measured synchrotron X-ray powder diffractograms were treated with Rietveld
analysis which was performed using a commercial version of the TOPAS 4.2 program
[57] offered by the Bruker AXS Corporation. Rietveld refinements of neutron powder
diffractograms were done using a test version of the TOPAS 5 program, as this new
version is able to carry out Rietveld refinements of commensurate magnetic structures.
The refinement of the high resolution neutron powder diffraction data of BiFeO3 was
performed with the FullProf program suite [83], due to the presence of an incom-
mensurate magnetic structure. For all data sets, independent from the particle type
(photon or neutron), the diffraction background was modeled by refineable Chebyshev
polynomials and the peak shape modeling of the Bragg reflections was done using the
fundamental parameter approach? [159, 160]. The zero shift was individually deter-
mined for each room temperature powder diffraction pattern. Peak broadening of
all crystalline phases due to sample dependent effects was modeled by the integrated
crystallite size and phenomenological strain macros (a detailed explanation of these
macros can be found in the TOPAS 4.2 manual [57] and partially in section 4.4). The
synchrotron as well as the neutron radiation was assumed to be 100% horizontally
polarized.

Due to the influence of the different radiation types and the different diffractome-
ter setups on the physical observable peak shape, different peak shape corrections
were required for a successful Rietveld refinement. For the synchrotron X-ray powder
diffraction measurements carried out at beamline ID31, the peak asymmetry due to

1 The usage of a tetragonal space group by some authors is owed to the fact that they claim
that a slight tetragonal distortion can be present in the crystal structure, which means that the
tetragonal lattice parameter c is almost equal to the tetragonal lattice parameter a

2 There exist also approaches to describe the Biy 7Srg.3FeOs_s perovskite with the trigonal crystal
structure of the undoped BiFeO3 compound [105].

3 The crystal structure of the BiFeO3 perovskite in space group R3c is well known from extensive
powder and single crystal studies, therefore this compound will be not treated within this section

4 Except for the refinement of the BiFeOgs perovskite, where for the refinement in FullProf refineable
Chebyshev polynomials for the background and a pseudo Voigt peak shape with a modeling of
the full width half maximum (FWHM) by the phenomenlogical Caglioti formula FWHM? =
W+ V -tanf + U - tan? § [158] was used.
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axial divergence was corrected by a model developed by Finger et al. [161]. For the
synchrotron X-ray powder diffraction measurements carried out at beamline P02.1, no
obvious peak asymmetry in the diffraction patterns could be observed, therefore no ad-
ditional correction was necessary. For the high resolution neutron powder diffraction
measurements several corrections had to be applied. These corrections were deter-
mined by carrying out careful Rietveld refinements of silicon reference samples. The
first applied correction is a simple axial model which corrects for the peak asymmetry
due to axial divergence. A second more phenomenological correction had to be applied
for the aperture of the detector slit and a third also more phenomenological correction
had to be applied for the variable beam divergence!.

In addition to the observable Bi;_,Sr,FeO3_s perovskite phase another phase can be
seen throughout all neutron powder diffraction patterns. This phase belongs to the
niobium containers, which were used as sample holders and therefore this phase was
modeled as an additional Rietveld phase.

In order to determine whether the Bi;_,Sr,FeO3_s perovskites (with x = 0.1, 0.2,
0.3 and 0.5) possess a cubic or tetragonal crystal structure at room temperature,
careful Rietveld refinements in both space groups were carried out. For all Rietveld
refinements, the occupancy between the Bi cation and the Sr cation was constrained
in such a way, so that the real composition can be directly obtained by the refinement.
Contrary, the occupancy of the Fe cation was fixed to full occupation, whereas the
occupancies of the oxygen anions are refined. Symmetry dependent anisotropic dis-
placement parameters (ADP) were used for all atomic positions, as these parameters
can be very sensitive to false space groups. In the neutron powder diffraction measure-
ments, magnetic Bragg reflections were incorporated using the results from section 3.5.
The results of all these refinements are given representatively by the corresponding
R, values in table 3.3.

Although the R,, values of the tetragonal crystal structure in table 3.3 are always
lower than those of the corresponding cubic crystal structure, it is very unlikely that
the Bi;_,Sr,FeO3_s perovskites (with x = 0.2, 0.3 and 0.5) posses a tetragonal sym-
metry. This can be explained by the fact, that in general the difference between the
corresponding R,,, values for the synchrotron X-ray powder diffraction measurements
is always smaller than 0.1 %, which is a too small difference in order to give a clear
indication of a symmetry change. In addition, the refined ADPs in the tetragonal
crystal structure gave unreasonably large values for the oxygen anions, whereas the
ADPs for the cubic crystal structure are all in a physical acceptable range (e.g. for
the refinement of BigsSrgsFeO3_s measured at ID31: Bi/Sr: ull = u22 = u33 =
0.05268(18), ul2 = ul3 = u23 = 0; Fe: ull = u22 = u33 = 0.01569(23), ul2 = ul3

1 These corrections are in principle phenomenological, but the mathematical calculus accounts for
the way, how the neutron intensity is detected by the horizontally aligned detectors and how
the cuts of the two-dimensional Debye-Scherrer rings are integrated into one-dimensional powder
diffraction patterns. For the refinement of the BiFeOj3 perovskite, the integrated asymmetry
corrections in FullProf were used.
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Table 3.3: Space group dependent R, values determined for the refined
Bi;_,Sr;FeO3_; perovskite powder patterns measured at different synchrotron X-ray
powder diffractometers (ID31, P02.1) and a neutron powder diffractometer (SPODI).
For the diffraction pattern of BiggSrg.1FeO3_s a clear determination of the space
group could not be carried out.

Compound Beamline | Pm3m Ry, (%) | P4/mmm R,, (%)
Bi&5SI’0_5F€Og_5 ID31 10.144 10.116
Bi&5SI’0_5F€Og_5 P02.1 6.296 6.200

Big 55195FeO3_s | SPODI 8.117 7.919
BiojSI’Q_gF@Og_g SPODI 7.427 7.334
Bi&gSI’Q_QF@Og_g P02.1 8.181 8.144

Big gSr¢.2FeO3_s | SPODI 8.148 8.063
Bio.gsro_lFGO;J,_g SPODI - -

= u23 = 0 and O: ull = 0.02630(195), u22 = u33 = 0.06835(198), ul2 = ul3 =
u23 = 0)!. The same effect can be observed for the high resolution neutron powder
diffraction measurements, where the difference in the R,,, values is a bit higher (< 0.2
%): The cubic crystal structures have reasonable ADPs, whereas the tetragonal crystal
structures posses ADP values, which imply too large anisotropic displacements of the
corresponding atomic positions at room temperature.

Interestingly, for the Biy¢Srg1FeO3_s sample the symmetry could not be determined
unambiguously. The majority of the room temperature neutron powder diffraction
pattern can be refined with a trigonal phase (space group R3c), which is almost
isostructural to the crystal structure of the BiFeOs perovskite at room temperature,
except for the shared atomic position of the Bi and Sr cation. Unfortunately the Ri-
etveld refinement of this phase does not cover the entire observable intensity, although
the corresponding magnetic Bragg reflections are accounted. Troyanchuk et al. re-
ported the same phenomenon, namely, that they could not synthesize a phase pure
Big 9Srg.1FeO3_s perovskite which consists of only one crystalline phase[147]. In detail,
they were not able to synthesize phase pure compounds in a range of 0.07 < z < 0.14
and they concluded that these compounds must be a mixture of two phases of rhom-
bohedral/trigonal and pseudo-tetragonal (or in the present case cubic) character [147].
Although it is very likely that this assumption is correct, it was not possible to carry
out a two-phase mixture Rietveld refinement of the powder diffraction pattern of
Big9Srp1FeO3_s which is precise enough to use it for further investigations of the
temperature dependent magnetic behavior or for the clear determination of the oxy-
gen stoichiometry. Therefore this sample will be neglected in the following discussions.

Although many authors claim that the Bi;_,Sr,FeO3_; perovskites with 0.2 < x < 0.5

1 The reported values of the anisotropic displacement parameters are of the same order as reported
by Pachoud et al. [148].
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have a tetragonal distortion [146, 147, 157], the present study cannot find any clear
evidence for that. Certainly it cannot be ruled out that special synthesis conditions
favor a tetragonal rather than a cubic symmetry, but in the present case under the
synthesis conditions described in section 3.2, the Bi;_,Sr,FeO3_s perovskites with
0.2 < x < 0.5 have most probable a cubic crystal structure. Therefore these com-
pounds will be treated as cubic perovskites in the subsequent sections.

3.4.1 Investigation of the diffraction background

In all (temperature dependent) powder diffraction patterns of the Bi;_,Sr,FeO3_s per-
ovskites (with x = 0.1, 0.2, 0.4 and 0.5) the background shows a very corrugated be-
havior, which especially can be seen if the intensity is plotted in a logarithmic scale. In
figure 3.1 the background of the powder diffraction experiments of the Biy 5Srg sFeO3_s
perovskite with different radiation types is exemplarily shown.

Bio.ssro.sFeos-s -RT  [—Frmir-spopi

v T ' T . T . ' — — PETRAIII - P02.1
* = Magnetic peak ——ESRF - ID31
10° 4 ** = Niobium capillary ]

. !
b WM
f ;

Intensity (arb. units)

35 30 25 20
d-spacing (A)

Figure 3.1: Corrugated background in the room temperature powder diffraction
measurements of the Big 55rg5FeO3_5 perovskite. Peak like observations are marked
with green circles.

Some parts of the corrugated background have almost peak like character of very
broadened peaks, therefore it was tried to find superstructure models, which are able to
fit the observed broadened peaks. In doing so, cubic and tetragonal crystal structures
where probed with a maximal unit cell volume of 64 times the primitive perovskite



3.5 Sequential Rietveld refinement of high-temperature neutron powder diffraction data 53

unit cell volume. Although it was partially possible to model some of these broadened
peaks, no unit cell could be found which was able to model all observed peak like corru-
gations. Even the assumption of two phases, one which is a crystalline phase without
superstructure and one which is a crystalline phase with superstructure, failed.

A possible explanation for the observed corrugated background in a most likely pure
phase can be given, if the assumption is made that the powder grains contain stacking
faults. In general, there are different options how stacking faults become noticeable in
a powder diffraction pattern. In many cases, if stacking faults are present, the Bragg
reflection gets unnatural broadened at the base of the peak [162]. This broadening
is often very asymmetric giving rise to a hump on one side of the base of the peak.
Besides this option how stacking faults can become visible, there exist also cases where
the stacking faults can produce sharp or almost sharp peaks. The reason for that is
quite simple. If the stacking faults exhibit a more or less regular packing, than some-
thing like a crystal structure with a larger unit cell is created. This larger unit cell
can be often described as superstructure of the basic crystal structure and therefore
sharp Bragg reflections are expected. If the packing of the stacking faults is no longer
regular, than no distinct superstructure can be assumed and this gives rise to very
broadened nearly amorphous like peaks.

In the special case of the Bi;_,Sr,FeO3_s perovskites it seems to be possible to find
an approximate structure, perhaps with a lower symmetry than probed with the first
trials above. However, it is a challenging task to find an appropriate superstructure
model which is able to model the observed background behavior, as computer pro-
grams, which allow a direct modeling of stacking faults from a powder diffraction
pattern, are still under development!. Therefore the investigation of the stacking
faults in the Bi;_,Sr,FeO;_s perovskites is a subject of future investigations?.

In order to handle the present corrugated background, especially for the neutron pow-
der diffraction data refinements, Chebyshev polynomials of very high order (up to 14th
order) must be applied.

3.5 Sequential Rietveld refinement of high-temperature neutron
powder diffraction data

In this section, detailed investigations of the high resolution neutron powder diffraction
data of the Bi;_,Sr,FeOs3_s perovskites are presented, in order to reveal the behav-
ior of the intrinsic oxygen stoichiometry under heating and the given environmental
conditions by the application of a special gas environment. Another aspect of this
investigation is a detailed temperature dependent analysis of the magnetic structure,

1 A promising approach for the modeling of stacking faults in TOPAS is given by Bette et al., who
used global optimization methods in order to model different stacking fault types in NiCl(OH)
[163].

2 Different attempts to find the superstructure lattice parameters with the program K_ Search [83]
from the FullProf program suite [83] failed.
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which will be compared to the results given in the literature. Furthermore the Néel
temperature of these compounds will be, to the knowledge of the author, for the first
time accurately determined by a power-law fit of the Rietveld refined components of
the magnetic moments.

3.5.1 Determination of the magnetic propagation vectors

In general, the determination of the magnetic propagation vectors kis similarly done
as the determination of the propagation vector of a crystallographic superstructure.
First the positions of the magnetic Bragg peaks in a neutron powder diffraction have to
be identified, which then, together with the information of the basic crystal structure,
are subjected to a program like K_Search [83] from the FullProf program suite [83].
With K_ Search, it is possible to search either for commensurate or incommensurate
magnetic or crystallographic superstructures. The result after a run of the K_ Search
program is a list with probable propagation vectors, which are judged by the following
R-factor:

|Sobs - Scalc,closest|
Rfactor = Z g ) ) (31)

Given observations

where S, is an observed reciprocal d-spacing é and Scaie,closest 15 the closest calcu-
lated reciprocal d-spacing.

For all Bi;_,Sr,FeO3_; perovskites (with x = 0, 0.2, 0.3 and 0.5) the magnetic Bragg
peaks were identified and the individual magnetic propagation vectors k were deter-
mined by K_ Search. The results for the cubic and as well as for the tetragonal crystal
structures can be found in table 3.4, where the determined k vector and the correspond-
ing Ryactor are given. Please note that the results for the tetragonal crystal structures
were only determined in order to perform Rietveld refinements for the symmetry de-
termination in section 3.4. Please note further that for the diffraction pattern of the
Big.¢Srg1FeO3_s perovskite no clear determination of the space group of the crystal
structure could be carried out and therefore no magnetic propagation vector could be
determined. Interestingly, for all cubic Bi;_,Sr,FeO3_s perovskites with x = 0.2, 0.3
and 0.5 the same commensurate magnetic propagation vector of k= (0.5,0.5,0.5) is
found. This magnetic propagation vector with a value of 0.5 for each component sug-
gests a doubling of the crystallographic unit cell in each direction, which would lead
to a magnetic unit cell volume of 8 times the crystallographic unit cell volume. Later
in section 3.5.2 we will see that with an appropriate choice of the crystallographic unit
cell a magnetic unit cell with a volume of 4 times the crystallographic unit cell volume
can give a sufficient description of the observed ordering of the magnetic moments. A
commensurate magnetic propagation vector of k= (0.5,0.5,0.5)7 was also determined
for the Bi;_,Sr,FeO3_s perovskites (with x > 0.14) by Troyanchuk et al. [146, 147]
and Pachoud et al. [148].
In contrast to the determination of the magnetic propagation vectors for the
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Table 3.4: Commensurate magnetic propagation vectors k determined for the
Bij_,Sr FeO3_s perovskites. For the diffraction pattern of Biy ¢Srg1FeO3_s a clear
determination of the space group of the crystal structure could not be carried out and
therefore no magnetic propagation vector could be determined. The values for the
space group P4/mmm were determined in order to perform a refinement of the mag-
netic Bragg reflections in section 3.4 in order to determine the most probable symme-
try of the Bi;_,Sr,FeOg_; perovskites with 0.2 < z < 0.5.

Compound B Pm3m ) P4/mmm
k R-factor (%) k R-factor (%)
BiosSt0sFe05 5 | (05,055,057 | 0.0477 | (0.5,0.5,057 |  0.0442
Bio.1910.5Fe05_5 | (05,0.5,0.5)7 | 0.0483 | (0.5,0.5,0.5)7 | _ 0.0460
Bio.sSr0.sFe05_5 | (0.5,0.5,0.5)7 | 0.0855 | (0.5,0.5,05)7 |  0.0791

Big 9Sro.1FeO3_s - - - -

Bi;_,Sr,FeOs_s perovskites (with x = 0.2, 0.3 and 0.5), the determination of the mag-
netic propagation vector of BiFeOjs is far more challenging. From the literature it is
known that for the BiFeOj perovskite the local description of the alignment of the
magnetic moments can be given by a G-type antiferromagnetic model of the magnetic
moments parallel to the crystallographic c-axis with a magnetic propagation vector of
k = (0,0,0)T [109-111]. Such a magnetic propagation vector with only zero compo-
nents means that the magnetic unit cell coincidences with the crystallographic unit cell
[111]. Amazingly, this model is not correct on a larger scale as it could be shown by
Sosnowska et al. in 1982 from time-of-flight neutron measurements of a polycrystalline
sample of BiFeO3 [112, 113]. With the much higher resolution from the neutron time-
of-flight diffractometer it was possible to show, that the first magnetic Bragg peak,
consists of four different peaks!, which led to the determination of a new incommen-
surate magnetic propagation vector of k= (0.0045,0.0045,0)T [112, 113]. Therefore,
the model of the magnetic structure of the BiFeOg3 perovskite had to be revised. The
new model of the alignment of the magnetic moments gave a spin cylcoid in the a-b
plane of the crystal structure with a huge period of the cycloid of approximately 620
A [112].

Unfortunately, the resolution of the high resolution neutron powder diffractometer
SPODI was not sufficient to see the splitting of the first magnetic Bragg peak, al-
though a hint on a non-zero magnetic propagation vector was given by the asymmetry
of the observed peak shape. Investigations with K_ Search revealed that the correct in-
commensurate magnetic propagation vector could not be determined. A determination
of a possible commensurate solution with K_ Search suggested a magnetic propagation
vector with k = (2/3,0,2/3)7 (Rfactor = 0.3673) which is even more incorrect than

1 1In particular, the first magnetic Bragg peak is build by two reflections, (003) and (101), of a
simple G-type antiferromagnetic model. In the time-of-flight measurements, these two reflections
are clearly distinguishable and in addition, the (101) has two satellite reflections. which results
in a total number of 4 magnetic Bragg reflections at the observed position.



56 3 Temperature dependent in situ investigations of Bi;_,Sr,FeO3_g

the local picture with a magnetic propagation vector of k= (0,0,0)7 (the Ryetor for
this solution determined by K Search is Ryqe0r = 0.507707).

In order to determine which magnetic model is suited to model the observed mag-
netic Bragg peaks, different Rietveld refinements with different magnetic models were
carried out. Finally, it turned out that the best fit could be achieved, if the descrip-
tion with a magnetic propagation vector of approximately k= (0.0045,0.0045,0)T as
determined by Sosnowska et al. [112] is applied, because this accounts best for the
observed asymmetry of the peak shape.

3.5.2 Determination of the magnetic structure using symmetry modes

With the knowledge of the magnetic propagation vector k= (0.5,0.5,0.5)7 and the
basic crystal structure in space group Pm3m it is possible to explore probable com-
mensurate magnetic structures for the Bi;_,Sr,FeO3_s perovskites (with x = 0.2, 0.3
and 0.5). For the exploration of probable magnetic structures two very powerful tools,
which are available online, can be used: “ISODISTORT” developed by Campbell et
al. [64] and “MAXMAGN” developed by Perez-Mato et al. [164] which is part of
the “Bilbao Crystallographic Server” [76-78]. With this tools it is possible to derive
different probable magnetic structures using group theoretical methods and represen-
tation theory, which can then be subsequently tested by a Rietveld refinement on the
experimentally observed powder diffraction pattern.

Similar to the description of a crystal structures, it is always mandatory to find the
highest possible symmetry with the lowest unit cell volume which is able to give a
full description of the magnetic structure. Therefore, in the first instance two solu-
tions with tetragonal symmetry given by ISODISTORT were considered!. The first
solution has a Shubnikov group label of 1.4/mem (140.550) in the BNS setting and a
label of Pr4/mm/m’ (123.19.1017) in the OG setting. The volume of this magnetic unit
cell is four times the volume of the crystallographic unit cell with lattice parameters
a=+v2- ap, b= V2. a, and ¢ = 2 - a, (a, is the simple cubic lattice parameter of the
Bi;_,Sr,FeO3_s perovskites). In this model, the magnetic moments are aligned along
the c-axis of the cubic perovskite with a G-type antiferromagnetic arrangement. The
second solution has also tetragonal symmetry and it seems to be a crystallographi-
cally equal solution to the first one?. The Shubnikov label for this symmetry is Iymma
(74.562) in the BNS setting and Cym/mm (65.18.562) in the OG setting. The volume
of this magnetic unit cell is equivalently also four times the crystallographic unit cell
with another choice of the lattice parameters a = V2 - ap, b=2-a, and ¢ = V2 - a,
In this model, the magnetic moments are aligned along the face diagonal of the a-c

1 For both solutions the primary order parameter, which allows for a continuous phase transition
[64], is given by the irreducible representation mR5-.

2 In 1959, Gen Shirane showed that for a collinear magnetic structure with tetragonal symmetry only
the angle between the magnetic moments and the unique crystallographic axis can be determined
unambiguously in a neutron powder diffraction experiment [65, 84, 165].
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plane of the cubic perovskite with a G-type antiferromagnetic arrangement. Individ-
ual Rietveld refinements with both models in TOPAS 5 using magnetic symmetry
modes determined from ISODISTORT revealed, that both solutions resulted in the
same values of the residual factors, which was expected due to the equivalence of both
models. Although both models can be chosen in order to describe the correct G-type
antiferromagnetic structure, it is better to use the first one, as the index ¢ of the
isotropy subgroup relative to the cubic parent space group is lower and the alignment
of the magnetic moments along the c-axis is more convenient for visualization (see
figure 3.2).

Figure 3.2: Tetragonal magnetic unit cell and magnetic moments of the
Bi;_,Sr,FeO3_s perovskite (with x = 0.2, 0.3 and 0.5) for Shubnikov group I.4/mecm
(140.550) in the BNS setting. The cubic parent structure is indicated by the pink cube
edges. The drawn axes correspond to the larger tetragonal cell.

Due to the fact, that the tetragonal solutions gave almost a perfect Rietveld refine-
ment of the magnetic Bragg reflections, other solutions given by ISODISTORT with
lower symmetries (trigonal, monoclinic, triclinic) were not considered®.

Besides the solution of ISODISTORT, the solutions from the program MAXMAGN
can be also evaluated. As expected MAXMAGN found the same tetragonal solutions
as ISODISTORT. However, as MAXMAGN is calculating the maximal magnetic space
groups for a given propagation vector, it gives the same symmetries with the same

1 Interestingly, a weak ferromagnetism would suggest, that the magnetic propagation vector k has
a small deviation from the ideal value of k = (0.5,0.5,0.5)7, which would be observable as a slight
peak asymmetry of a magnetic Bragg peak. Such peak asymmetries for the magnetic Bragg reflec-
tions cannot be observed in the present Rietveld refinements, therefore it is concluded, that either
the resolution of the neutron powder diffractometer is too low or that no weak ferromagnetism
occurs above a composition of x = 0.2.
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Shubnikov groups but with larger unit cell lattice parameters of a =2-a,, b =2 - q,
and ¢ = 2-a,. As it is possible to model the magnetic structure of the Bi;_,Sr,FeO3_s
perovskites (with x = 0.2, 0.3 and 0.5) correctly by the same Shubnikov groups with
a lower unit cell volume, the solutions given by MAXMAGN were neglected.

As already stated in the last subsection, the magnetic structure of the BiFeOjs per-
ovskite on a long range scale is incommensurate, if not a local environment is consid-
ered. Therefore it is not possible to find a Shubnikov group with high symmetry and
small unit cell volume, which allows for the modeling of the spin cycloid in BiFeO3.
The magnetic structure of BiFeOj in the local environment as well as the magnetic
structure on a larger scale are shown in figure 3.3. Locally a clear G-type antifer-
romagnetic spin structure is established, whereas at a larger scale, parts of the spin
cycloid can be intriguingly seen.

A Rietveld refinement of the room temperature neutron powder diffraction of BiFeOz
with the FullProf program [83] revealed that the physical correct spin model must
be applied in order to account for the obvious peak asymmetry of the (101)/(003)
magnetic reflection. This application is done by a direct refinement of three of the six
components of the complex Fourier coefficients. Interestingly, the result of the Rietveld
refined magnetic propagation vector of the spin cycloid at room temperature differs
from the value given by Sosnowska et al. [112, 113]. Sosnowska et al. gave a value
of the magnetic propagation vector of k= (0.0045,0.0045,0)% [112, 113], whereas
the Rietveld refinement of the high resolution neuton powder diffraction pattern of
BiFeO; resulted in a magnetic propagation vector of k& = (0.0034(3),0.0034(3),0)7,
which corresponds to a spin cycloid length of approximately 820 A. The reason for that
difference can be explained if the different resolutions of the used neutron diffractome-
ters are considered. The resolution of the used time-of-flight neutron diffractometer
by Sosnowska et al. in 1982 was % = 7-10% at dpyy = 4.5 A [112], whereas the
resolution of SPODI is much lower with A20 = 0.05° [153], which corresponds to a
% of % ~ 2.5- 10 at the same dy;; value as above. Therefore the ambiguity for a
measurement of a small magnetic propagation vector is much higher for SPODI.

3.5.3 Results of the sequential Rietveld refinement

The temperature dependent (pseudo-)cubic lattice parameter a for the Biy _,Sr,FeO3_4
perovskites (with x = 0, 0.2, 0.3 and 0.5) can be found in figure 3.4.

From this figure several findings can be confirmed, which were also observed by other
authors [127, 128, 138, 139, 147]. Depending on the Sr** cation doping level and the
amount of oxygen vacancies, which can be derived from the oxygen non-stoichiometry



3.5 Sequential Rietveld refinement of high-temperature neutron powder diffraction data 59

Bi+3
Fe+3
0-2

(a) BiFeO3 (local)

Prrrttrrrrttrrrrsy

§

(b) BiFeOs (long range). View along b-axis.

[
(W FEELLEEEEEEE LRI E TSI 2 127777 /S S

I

(c) BiFeOs3 (long range). View along [110]-direction

Figure 3.3: a) Local view of the magnetic structure of the BiFeOs perovskite. The
local alignment of the magnetic moments seems to be G-type antiferromagnetic.
Choosing one layer of magnetic moments and enlarging the unit cell to 20x20, a part
of the spin cycloid can be seen: b) view along the b-axis and c¢) view along the [110]
face diagonal (in order to see the propagation of the spin cyloid in the [110]-direction).
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Figure 3.4: Temperature dependent (pseudo-)cubic lattice parameter a for the
Bi;_,Sr;FeO3_; perovskites obtained by Rietveld refinements of neutron powder
diffraction data. The trigonal lattice parameters of the BiFeOg perovskite are trans-
formed to pseudo-cubic lattice parameters (transformation matrix is given in appendix
C). The lines are guides to the eye.

in figure 3.5, the lattice parameters of the cubic Bi;_,Sr,FeOs_s perovskites shrink!?.
The temperature dependent investigations of the lattice parameter reveal that the
Bi;_,Sr,FeO3_s perovskites are at least stable up to 600°C (=~ 873 K) and that no
phase transitions can be observed in the investigated temperature range®. Interestingly
for the Big5Srg5FeO3_s perovskite, a non-linear thermal expansion behavior can be
observed, whereas for the Bi;_,Sr,FeOs;_s perovskites with x = 0.2 and x = 0.3 an al-

1 Interestingly, this phenomenon was also observed by several other studies [127, 128, 138, 139, 147],
whereas Zheng-Zheng et al. reported an increase in the lattice parameters of the Bi;_,Sr,FeO3_5
perovskites with an increase of the Sr®* cation concentration [140].

2 Previously it was assumed that the lattice parameters of Bi;_,Sr,FeO3_s5 perovskites are also
affected by the lower Shannon radii of the Fe'* cations in contrast to the Fe3* cations [127, 166],
but this could be disproved by the Mdssbauer spectroscopy investigations which revealed that
only Fe3* cations are present [128-131].

3 It can be expected, that this holds also true for the Biy 7Srg.3FeOs_s perovskite, where not
enough data points could be collected due to the limited measurement time at the neutron powder
diffractometer SPODI.
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most linear thermal expansion of the lattice parameters as for the BiFeO3 perovskite
can be found. Unfortunately, this non-linear behavior cannot be explained by the
amount of oxygen vacancies as the oxygen non-stoichiometry of the Biy5SrgsFeOs_s
perovskite follows an approximately linear trend. Furthermore, this phenomenon can-
not be coupled to the behavior of other crystallographic parameters obtained by the
sequential Rietveld refinement, as they all show almost linear temperature-dependent
behaviors.

Another noticeable observation is the similarity of the lattice parameters between
the Bi;_,Sr,FeOs_s perovskites with x = 0.2 and x = 0.3. Although they possess
a different oxygen stoichiometry!, the temperature-dependent lattice parameters are
nearly identical, which is unusual as the synthesis conditions for both compounds were
formally the same?.
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Figure 3.5: Temperature dependent oxygen stoichiometry 3 — ¢ for the
Bi;_,Sr;FeO3_; perovskites obtained by Rietveld refinements of neutron powder
diffraction data.

The temperature dependent oxygen stoichiometry in figure 3.5 shows that there is a
small linear decrease in the amount of oxygen within the Bi;_,Sr,FeO3_s perovskites

1 At room temperature the chemical formulas are given as Biy 7Srg 3FeO2 g4 and Big.gSrg 2FeOs g9.
2 This effect was also observed by Li et al. [128], who assumed that this phenomenon can be ascribed
to the synthesis conditions as the they used different temperatures for the synthesis process.
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with x = 0.3 and x = 0.5. This is in contrast to the Bi;_,Sr,FeO3_s perovskite with
x = 0.2, where the slope of the decrease is much more pronounced. Interestingly, this
behavior of the Bi;_,Sr,FeO3_s perovskite with x = 0.2 coincides with the observance
of the corresponding lattice parameter behavior, which probably suggests that the
real synthesis conditions for the compound with the composition with x = 0.2 were
different from that given in section 3.21.

For all temperature dependent high resolution neutron powder diffraction patterns
the magnetic Bragg reflections were fitted by the given magnetic structure models
from subsection 3.5.2. For the Bi;_,Sr,FeO3_s perovskites with x = 0.2, 0.3 and
0.5, this means, that sequential Rietveld refinements of the magnetic Bragg reflections
could be performed using a single amplitude of a magnetic symmetry mode (mR5-, see
also subsection 3.5.2), which in turn is directly connected with the value of the mag-
netic moment at that temperature?. The obtained refined results of the temperature
dependent magnetic moments can be found in figures 3.6a)-c).

In contrast to the Bi;_,Sr,FeOs3_s perovskites with x = 0.2, 0.3 and 0.5 which are
refined using the program TOPAS 5, the magnetic moments of the temperature de-
pendent measurement series of the BiFeO3 perovskite can be directly obtained from
the Fourier components which are refined using the FullProf program (see also subsec-
tion 3.5.2). The resulting magnetic moments of the BiFeO3 perovskite can be found
in figure 3.6d).

Careful inspections of all neutron powder diffraction patterns in the temperature
range of 350 °C to 400 °C (= 623 K to 673 K) revealed, that the magnetic Bragg
peaks (which show only a moderate intensity at such high temperatures) are signif-
icantly broadened at their base®. The reason for this phenomenon is, that with the
increase of the temperature and the gradual approach to the critical Néel temperature,
the long-range ordering of the magnetic moments becomes perturbed by temperature-
dependent fluctuations and therefore a short-range ordering character of the magnetic
moments becomes apparent. This means that with increasing temperature, the mag-
netic domain sizes become smaller and smaller due to increasing fluctuations, which
have the same broadening effect on the magnetic Bragg peaks, as small powder parti-
cles have a broadening effect on the nuclear Bragg peaks of the crystal structure.

For a Rietveld refinement of the magnetic Bragg peaks this implies that two contribu-
tions must be modeled, from the long-range and the short-range ordering, as the sharp
long-range ordering magnetic peaks can be normally seen on top of the broadened

1 At the present moment, there is no obvious reason why the oxygen kinetics in the Bi;_,Sr,FeO3_;
perovskite with x = 0.2 should differ from that of the Bi;_,Sr,FeO3_s perovskite with x = 0.3.
Therefore it is more likely that the formal synthesis conditions were not exactly reached.

2 All other parameters which are required for a Rietveld refinement of the magnetic Bragg reflections
are constrained to corresponding values of the nuclear crystal structure phase.

3 This behavior can be best seen for the first magnetic reflection of a given compound, as this
reflection usually shows the highest intensity.
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Figure 3.6: Temperature dependent magnetic moments for the Bi;_,Sr,FeOs_s per-
ovskites obtained by Rietveld refinements of neutron powder diffraction data. The val-
ues in brackets were not considered in the fitting with the shown power-law behavior

(see also explanations given in the text).

short-range ordering magnetic peaks. Unfortunately, for none of the Bi;_,Sr,FeOs3_s
perovskites it was possible to obtain a stable refinement with both contributions,
therefore only the long-range ordering contribution was taken for the modeling of the
magnetic Bragg reflections. Therefore, the values for the magnetic moments in a tem-
perature range of 350 °C to 400 °C in figures 3.6a)-d) are given in brackets, as the
refined values are certainly not consistent with the real magnetic moments at the cor-
responding temperatures.

The antiferromagnetic to paramagnetic phase transition of the Bi;_,Sr,FeO3_s per-
ovskites can be modeled by a power-law behavior, for instance one, which can be
derived from Landau theory [67-69]:

(3.2)
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where M (T') is the value of the magnetic moment at a certain temperature T, M (0)
is the magnetic moment at zero temperature, the critical temperature T,;; is identical
to the Néel temperature Ty, at which the magnetic moment approaches zero and
is the critical exponent, whose value depends on the type of the observed thermody-
namic system?!.

In the modeling of the corresponding given Néel temperatures and critical exponents
in figure 3.6a)-d), the values in brackets were left out in order to ensure that short-
range ordering effects do not affect the determined critical values.

The determined critical Néel temperature of Ty = 650(4) K for the BiFeOs per-
ovskite is in quite good agreement with the values, which are given in the literature
(e.g. Kiselev et al. reported a value of 653 K [109, 110]. Other values can be found
in the publication of Fischer et al. [116]). Interestingly, the determined critical tem-
peratures of the Bi;_,Sr,FeO3_s perovskites (with x = 0.2, 0.3 and 0.5) from neutron
powder diffraction have similar Néel temperatures, although quite different values
were reported in literature. For instance V.V. Pokatilov et al. reported from Moss-
bauer spectroscopy measurements a value of Ty = 637(3) K for the Big5Srgs5FeO5_;
perovskite [130], V.S. Pokatilov et al. reported from Mossbauer spectroscopy mea-
surements a value of Ty = 670(3) K for the Big 75510 25FeO3_s perovskite [131] and for
the same Big 7551025 FeO3_s perovskite, Pachoud et al. reported a value of Ty = 643 K
from neutron powder diffraction measurements. Concerning the present critical Néel
temperatures determined from temperature dependent high resolution neutron pow-
der diffraction data, it can be stated that an A-site doping by Sr?* cations up to 50%
certainly destroys the spin cycloid, whereas it seems that the critical temperatures for
the antiferromagnetic to paramagnetic phase transitions are unaffected.

3.6 Thermal analysis by differential scanning calorimetry

In addition to the determination of the Curie or Néel temperature by neutron diffrac-
tion, it is also possible to observe magnetic phase transitions by thermal analysis using
differential scanning calorimetry (DSC) [167]. The reason for that is that the heat ca-
pacity C), at constant pressure, which is sensitive to first and second order (magnetic)
phase transitions, is proportional to the measured heat flow in a DSC experiment:

1 The experimental value for the critical exponent, which is typically determined for a(n)
(anti)ferromagnetic to paramagnetic phase transitions is in the range of 8 = 0.34 - 0.37 [94].
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dQ
G = 5 (3.3)
dH dt
- = .7 4
Co dt dT (34)
dH

where () is the heat, T" is the temperature, H is the enthalpy which is equal to the
heat @ in this case and t is the time. Equation 3.3 gives the definition of the heat
capacity. The term % in equation 3.4 is the measured heat flow and the term % is
the inverse heating rate.
The explanation of the sensitivity of the heat capacity with respect to first and second
order phase transitions results from the definition of the order of a phase transition.
For a first order phase transition the first derivative of the Gibbs free energy is discon-
tinuous, whereas for a second order phase transition the first derivative of the Gibbs
free energy is continuous and the second derivative is discontinuous®. In thermody-
namics, it is possible to relate the second derivative of the Gibbs free energy with the
heat capacity, therefore the DSC measurements can be used to investigate the onset of
(magnetic) phase transitions (a detailed calculation of the derivatives and all relations

can be found in appendix D).

Although the second derivative of the Gibbs free energy and therefore the heat ca-
pacity must be discontinuous at the occurrence of a second order phase transition, it
is often difficult to determine accurately the endothermic peak of a magnetic phase
transition? in a DSC curve. According to Williams and Chamberland, the endother-
mic peak of a magnetic phase transition “can be weak or strong depending upon the
sample weight, rate of heating, the magnetic interactions involved, and the purity of
the sample” [167]. Due to this reason a sensitive DSC apparatus with an appropriate
heating rate and a sufficient calibration is required?®.

The raw data of the heat flow for the Bi;_,Sr,FeO3_s perovskites (with x = 0, 0.1,
0.2, 0.3, 0.4 and 0.5) from the DSC experiment can be found in figure 3.7a). For all
obtained datasets the baselines (definition see [170]) were determined by using 25-30
points of the corresponding data curve which were interpolated with a spline curve.
The so obtained baseline was then subsequently subtracted from the heat flow curves

1 This classification is also known as the Ehrenfest classification [92] (see also section 2.5.1).

2 In principle it is possible to measure first and second order magnetic phase transition as in both
cases the second derivative of the Gibbs free energy is discontinuous. Please note, that in general
magnetic phase transitions are of second order as long as they are not coupled with other effects,
like structural phase transitions [168].

3 The visibility of the endothermic peak of a magnetic phase transition can be enhanced by an
external magnetic field [169], however this method was not used in the present work.
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(see figure 3.7b)). Although the noise in the baseline subtracted DSC curves is quite
high, the endothermic peaks of the magnetic phase transitions are clearly visible for
the Bi;_,Sr,FeO3_s perovskites samples with x = 0, 0.2, 0.3 and 0.4. In contrast
to that the endothermic peak of the Bi;_,Sr,FeOs_s sample with x = 0.5 shows a
strange splitting which can be possibly accounted to the noise in the DSC curve. For
the sample with x = 0.9, the endothermic peak is too small, so that it was simply not
possible to determine its position.

—— BiFeO,
T T T T T Bi,,Sr, ,FeO,
100| —BFe0s / - —— Biy,S1, ,Fe0,
— Bi,,Sr, ,FeO, Bi,,Sr, ;FeO,
% 80 T peteare: 8 —Bi,Sr,,Fe0,
= Biy ,Sry;Fe0, o —Bi, .Sr, FeO.
= — Bi,;Sr, ,FeO, S - 05°705" ©5
% 60 . ——BiusSr,,Fe0, é —
© a i
O
g Al e ]
S 401 . N
© T
o} = = ) w
£ 20
100 200 300 400 500 600 300 350 400 450 500
Temperature (°C) Temperature (°C)
(a) DSC raw data (b) DSC data with subtracted baseline

Figure 3.7: Temperature dependent heat flow of the Bi;_,Sr,FeOs_s perovskites (x
=0, 0.1, 0.2, 0.3, 0.4 and 0.5) measured by DSC. Picture a) shows the raw data and
picture b) shows the heat flow with subtracted baseline.

In general, the enthalpy of the transition can be determined by a simple integra-
tion of the heat flow over temperature, but in this work the focus lies more on the
determination of the critical Néel temperature of the antiferromagnetic phase transi-
tion. Williams and Chamberland showed that the top of the endothermic peak can
be approximately used as the critical temperature [167] (see also [171]), therefore the
top of the peak was used for the determination of the Néel temperature, whereas the
largest assumed error bar can be given by the base width of the peak. The result of
these determinations is summarized in the phase diagram in figure 3.8.
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Figure 3.8: Néel temperature of the antiferromagnetic to paramagnetic phase tran-
sition determined from the top position of the endothermic peaks of the corresponding
DSC measurements of the Bij_,Sr,FeO3_s perovskites.

3.7 Conclusion

Investigations of the room temperature synchrotron X-ray and neutron powder diffrac-
tion measurements of the Bi;_,Sr,FeO3_s perovskites (x = 0 to x = 0.5) revealed that
the crystal structure of the undoped BiFeOj perovskite can be described using space
group R3c, whereas it was not possible to determine accurately the crystal structure
of the Big¢Srg1FeO3_s perovskite, as this compound consists most likey of a rhom-
bohedral and a cubic phase [133, 147]. For the other investigated Bi;_,Sr,FeO3_;
perovskites (x = 0.2, 0.3 and 0.5), it could be shown that the best description of these
crystal structures is rather given by the cubic space group Pm3m than by the tetrag-
onal space group P4/mmm.

High resolution neutron powder diffraction measurements at room temperature re-
vealed that for all investigated Bi;_,Sr,FeO3_s perovskites magnetic Bragg reflections
are present. From these magnetic Bragg reflections a magnetic propagation vector
of k = (0.5,0.5,0.5)T could be determined for the Bi;_,Sr,FeOs_s perovskites with
x = 0.2, 0.3 and 0.5, whereas it was not possible to determine the incommensurate
magnetic propagation vector for the undoped BiFeOj perovskite, due to the limited
resolution of the used neutron powder diffractometer. The magnetic propagation vec-
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tor of the Bi;_,Sr,FeO3_s perovskites with x = 0.2, 0.3 and 0.5 led to a G-type
antiferromagnetic unit cell, which is 4 times larger than the crystallographic unit cell
and can be best described by the Shubnikov group with label I.4/mem (140.550) in
the BNS setting and a label of Pr4/mm/m’ (123.19.1017) in the OG setting.

Sequential Rietveld refinements of the temperature dependent neutron powder diffrac-
tion data of the BiFeO3 perovskite showed, that a clear peak asymmetry of the mag-
netic (101)/(003) reflection can be observed. Therefore Rietveld refinements were
carried out using the full description of the magnetic structure by the spin cycloid.
In contrast to the BiFeO3 perovskite, no peak asymmetries could be observed for the
magnetic reflections of the Bi;_,Sr,FeO3_s perovskites with x = 0.2, 0.3 and 0.5, which
indicates that either no weak ferromagnetism due to spin canting for these perovskites
is present or that the resolution of the neutron powder diffractometer is simply too low.

Regarding the ferroelectric properties of the doped Bi;_,Sr,FeOs_ s perovskites, it
can be stated that the transition to a cubic crystal structure with space group Pm3m
prohibits the occurrence of proper ferroelectricity, as this space group is a non-polar
space group. However, it is still possible that improper ferroelectricity due to the
magnetoelectric coupling occurs, although no magnetic structure which breaks the in-
version symmetry was observed and therefore it is very unlikely that ferroelectricity
is present above a composition level of x = 0.2. Perhaps a spin canting, which could
not be observed due to the limited resolution of the neutron powder diffractometer, is
present and this would lead to a break of the inversion symmetry and therefore would
allow for improper ferroelectricity due to magnetoelectric coupling.

Besides the determination of the magnetic and crystal structure symmetries, the tem-
perature dependent behavior of the oxygen stoichiometry was investigated, as it is
believed that the present oxygen vacancies have a crucial influence on the magnetic
and ferroelectric properties of the Bi;_,Sr,FeO3_5 perovskite system. For this reason
the temperature dependent neutron powder diffraction experiments were performed in
a special gas environment, which ensures defined conditions for the oxygen exchange
rates. As it was expected from the chosen environmental conditions for all doped
Bi;_,Sr,FeO3_s perovskites a decrease in the oxygen stoichiometry can be found and
therefore an increase in the number of oxygen vacancies.

The critical Néel temperatures for the antiferromagnetic to paramagnetic phase tran-
sitions of the Bi;_,Sr,FeO3_;s perovskites were determined by neutron powder diffrac-
tion as well as by differential scanning calorimetry measurements. The results of these
measurements are summarized in the magnetic phase diagram in figure 3.9.

From this phase diagram it is clear, that a discrepancy between the Néel tem-
peratures determined from neutron powder diffraction and the Néel temperatures
determined from differential scanning calorimetry measurements exists. A possible
explanation of this discrepancy would be, that in the differential scanning calorimetry
measurements no defined gas environment was used, in contrast to the neutron powder
diffraction measurements. Perhaps this led to a different amount of oxygen vacancies
in the Bi;_,Sr,FeO3_s perovskites, which, as already mentioned, has certainly an effect
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Figure 3.9: Néel temperature of the antiferromagnetic to paramagnetic phase tran-
sition determined for the Bi;_,Sr,FeO3_s perovskites. Blue points are obtained from
Rietveld refinements of neutron powder diffraction data, whereas black points are ob-
tained by the top position of the endothermic peaks of the corresponding DSC mea-
surements.

on the magnetic properties of these perovskites'. Although, this is still a speculation
at the moment, it shows intriguingly that the role of the oxygen vacancies on the
magnetic properties of the Bi;_,Sr,FeOs_s perovskites must certainly be investigated
in more detail?.

1 1In a theoretical study of Borisov et al. [172], it was shown that the critical Néel temperature
decreases with an increasing oxygen vacancy level in the ATcO3 (A = Ca, Sr, Ba) perovskites.

2 Please note that for the full stoichiometric BiFeO3 where no oxygen exchange takes place, the
agreement between the critical Néel temperature determined from neutron powder diffraction and
from differential scanning calorimetry measurements is much better.






CHAPTER 4

High pressure in situ investigations of LaFeOj3

The results of this chapter are already published in three different publications: “M.
Etter, M. Miiller, M. Hanfland, R.E. Dinnebier - High-pressure phase transitions in
the rare-earth orthoferrite LaFeOs” [173], “M. Etter, M. Muller, M. Hanfland, R.E.
Dinnebier - Possibilities and limitations of parametric Rietveld refinement on high
pressure data: The case study of LaFeOs” [174] and “M. Etter & R.E. Dinnebier -
Direct parameterization of the pressure-dependent volume by using an inverted ap-
proximate Vinet equation of state” [175].

4.1 Motivation

The investigation of perovskites under high pressure has nowadays became a standard
method in order to tune the fascinating properties of this material class. For instance
in 1994, Gao et al. [176] were able to shift the critical superconducting temperature of
cuprate perovskites to higher values. However, this is only one aspect why the inves-
tigation of perovskites under high pressure can be very intriguing. Often the simple
investigation of the change of the perovskite crystal structure under high pressure is
decisive. For instance, the structural investigation of the MgSiO3 perovskite is very
important since this material is the most common material in the earth mantle and the
understanding of this material can give rise to a better understanding of the earth’s
interior. Although both examples are very extreme cases of the high pressure research
of perovskites, they show remarkably how important high pressure investigations of
perovskites can be.

A fascinating perovskite, which is a typical representative of the rare-earth orthofer-
rites is the lanthanum ferrite (LaFeO3) perovskite with space group Pbnm (space group
number 62). This perovskite has interesting characteristics as it exhibits three different
ferroic properties. At ambient conditions! the insulating LaFeOs possess a G-type like
antiferromagnetic behavior, where the magnetic moments are roughly aligned along
the orthorhombic a-axis [177]. Detailed investigations showed that the magnetic mo-

1 The author denotes with ambient conditions an air pressure of 1 atm and a temperature of 20°C.

71
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ments are slightly canted [178, 179], which leads to a weak ferromagnetic component
parallel to the c-axis [180]. The magnetic interaction in this compound results from a
Dzyaloshinskii-Moriya interaction with an angle of approximately 157° between Fe-O-
Fe atoms at room temperature and ambient conditions [179-181]. In addition to the
antiferromagnetic ordering, Abrahams et al. [182] reported that LaFeOs possess also
ferroelastic order (see also Fossdal et al. [183]) and Acharya et al. [184] reported that
they observed ferroelectric order, due to magnetoelectric coupling!. Therefore LaFeOs
exhibits three ferroic phenomena, making it an interesting multiferroic compound?.
A high temperature X-ray powder diffraction study of the LaFeO3 perovskite revealed
that the orthorhombic unit cell becomes less distorted with increasing temperature,
until a distortion minimum at the Néel temperature Ty of approximately 735 K is
reached [185-187]. Above this temperature an increase of the unit cell distortion can
be observed until at a temperature of approximately 1228 K a first order phase tran-
sition to the trigonal space group R3c occurs. At this transition point the Glazer tilt
system [188] changes from a~a~b* to a”a~a™ [185, 189]. In the study of Selbach et
al. [185], they observed also that, while the unit cell distortion reaches its minimum,
the distortion of the corner-sharing FeOg octahedra becomes larger in the temperature
range of 500 K < T < 850 K. An explanation for this behavior can be given by looking
at the size mismatch between the Fe3t and La3" cations which leads to a Goldschmidt
tolerance factor [190] which is too low [185].

Since already thermal energy is able to influence the distortion phenomena occurring
in LaFeQs, it is worthwhile to investigate the behavior of the distortions in this per-
ovskite by directly applying high pressure. A Mossbauer spectroscopy study of Xu
et al. [191] at the room temperature isotherm revealed that in the pressure range of
30 GPa < p < 50 GPa a partial high-spin (S = g) to low-spin (S = %) transition of
the Fe3* cation takes place and therefore two different magnetic sublattices are estab-
lished. At higher pressure values of approximately 60 GPa a complete spin-crossover
to the low-spin state occurs [191]. This experimentally observed spin-crossover is
in agreement with recent density functional theory (DFT) calculations performed by
Javaid et al. [192, 193]. They found that the pressure dependent spin-crossover can
be explained by the increase of the crystal-field splitting energy, which increases with
the distortion level of the FeOg octahedra and the shortening of the bondings within
the FeOg coordination polyhedra due to the increase of the applied pressure [181, 192].

Although Xu et al. [191] performed synchrotron X-ray powder diffraction measure-
ments of LaFeOg3 in order to support their Mossbauer results, they did not carry out
a full crystallographic treatment of their data with Rietveld refinements, which is es-
sential in order to understand the structural evolution and the behavior of LaFeO;

1 Proper ferroelectricity is not allowed in this compound, as the structural investigations clearly
state that this compound has a centrosysmmetric structure with a non-polar space group. There-
fore magnetoelectric coupling is required in order to develop improper ferroelectricity.

2 To the knowledge of the author, there exists no study about investigations of a possible coupling
between ferroelastic properties and the other ferroic properties.
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under high pressure. Therefore, the high pressure behavior of LaFeO3 powder samples
were investigated by synchrotron X-ray powder diffraction measurements up to pres-
sures of 48 GPa employing different pressure media (nitrogen, argon and a mixture of
methanol-ethanol in a ratio of 4:1).

This investigation focused on three different aspects. The first aspect was the full
investigation by Rietveld refinements of the crystal structure at every pressure value
and the modeling of the volume and lattice parameters by equations of state (EoS) in
order to determine the bulk modulus, its pressure derivative and the lattice parameters
at zero pressure. The second aspect was the investigation of the measured data sets
by different alternative crystallographic approaches (see sections 4.4.2, 4.4.3, 4.4.4 and
4.4.5), in particular the application of different models for the refinement of the atomic
positions in the atomic configuration space, in order to investigate which model is the
most suitable one to investigate multiferroics like the LaFeO3 perovskite under high
pressure. The third and last aspect is to perform parametric Rietveld refinements of
the measured data sets in order to investigate the ability of this approach with respect
to high pressure synchrotron X-ray powder diffraction data sets.

4.2 Synthesis

The synthesis of the LaFeO3 perovskite was performed by a solid state reaction of a
stoichiometric mixture of La;O3 and Fe,O3 powders as described by Peterlin-Neumaier

and Steichele [178] and by Selbach et al. [185].

4.3 Experimental setup

High pressure synchrotron X-ray powder diffraction measurements were performed
by Dr. Michael Hanfland at the European Synchrotron Radiation Facility (ESRF),
Grenoble at beamline ID09 in 1996. Four samples of the LaFeO3 powder were loaded
into membrane driven diamond-anvil cells (DAC) together with either nitrogen or ar-
gon or a mixture of methanol-ethanol in a ratio of 4:1 as pressure media. A single
X-ray powder diffraction measurement of the LaFeO3 powder in a capillary at ambient
conditions at a wavelength of 0.45555 A was made, in order to guarantee that there
are no impurities of other phases present. The first high pressure measurement series
was carried out for LaFeO3 with nitrogen as pressure medium using 300 pm diame-
ter culet diamonds and a maximum pressure of 40.5 GPa. In a second run the DAC
was equipped with 600 pm diameter culet diamonds and with a mixture of methanol-
ethanol in ratio of 4:1. In this run the pressure was successively increased up to 13.3
GPa. In a third run, 350 pm diameter culet diamonds together with argon were used
and the pressure was successively increased up to 47.9 GPa. In the fourth and last
run, again a mixture of methanol-ethanol in a ratio of 4:1 was used, together with
350 pm diameter culet diamonds and this time the pressure was successively increased
up to 46.9 GPa. All high pressure measurements were done at the room temperature
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isotherm. For the determination of the pressure, the ruby fluorescence method was
used by applying a non-linear hydrostatic pressure scale given by Mao et al. [194]. The
collection of the diffraction patterns was done in Debye-Scherrer mode with monochro-
matic radiation at wavelengths of 0.45555 A (first run (nitrogen)), 0.45587 A (second
run (meth.-eth. 4:1)), 0.45582 A (third run (argon)) and 0.45584 A (fourth run (meth.-
eth. 4:1)). The monochromatic radiation was obtained by irradiating a water-cooled
Si-(111) monochromator with a standard undulator with a 46 mm period. A beam size
of 30 x 30 pm? was obtained by using horizontal slits, whereas the vertical focusing
was achieved by using a Pt-coated silicon mirror. Diffracted X-rays were detected by
using A3 format image plates with an offline Molecular Dynamics image plate scanner
with a pixel size of 100 pm?.

The integration of the collected two-dimensional Debye-Scherrer rings to one-dimensional
powder diffraction patterns was subsequently performed by using the computer pro-
gram FIT2D [152]. The parameters which were required for this integration were
determined from a Si reference sample.

Simulated two-dimensional Guinier patterns of these high pressure synchrotron X-ray
powder diffraction measurements can be found in figure 4.1a)-d).
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Figure 4.1: Simulated two-dimensional Guinier patterns of the pressure depen-
dent in situ synchrotron X-ray powder diffraction measurements of LaFeOg at room
temperature for different pressure media: a) nitrogen, c) argon and b)+d) methanol-
ethanol in a mixture of 4:1. In the investigated 26 range (5° < 26 < 20.8°) 71 reflec-
tions of the Pbnm phase are present.

4.4 Sequential and parametric Rietveld refinements of pressure
dependent synchrotron X-ray powder diffraction data with
different approaches

Sequential and parametric Rietveld refinements for all high pressure synchrotron X-
ray powder diffraction data sets were performed by using the commercial version
of the TOPAS 4.2 program [57] offered by the Bruker AXS Corporation. Due to
geometric restrictions for the synchrotron X-ray beam passing through the DAC, the
refined 26 range of every diffraction pattern was limited to 5° to 20.8° 26, except
for the diffractogram of the capillary measurement, where the fitted range was from
5% to 37.4° 20. For all data sets and each pattern the diffraction background was
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modeled by refineable Chebyshev polynomials and the peak shape modeling of the
Bragg reflections was performed using the fundamental parameter approach [159, 160].
The synchrotron radiation was assumed to be 100% horizontally polarized and the zero
shift of a particular data set was determined for the first measurement and then kept
fixed throughout the corresponding data set (the values of the zero shifts can be found
in table 4.1).

Table 4.1: Zero shifts which were determined for the first pattern of a data set and
then fixed throughout the corresponding data sets.

Data set Zero shift (° 26)
Capillary 0.00163(10)
Nitrogen (1. run) 0.00120(9)
Meth.-Eth. 4:1 (2. run) -0.00004(6)
Argon (3. run) -0.00026(19)
Meth.-Eth. 4:1 (4. run) -0.00062(6)

Peak broadening of all crystalline phases due to sample dependent effects were mod-
eled by the integrated crystallite size and phenomenological strain macros'. During
the refinements it turned out, that a greater stabilization of the refinement can be
achieved, when the phenomenological Gaussian and Lorentzian strain parameters are
constrained to the same value. For the modeling of the crystallite size it became
apparent, that at lower pressures the Gaussian as well as the Lorentzian crystallite
size can be determined by the macros, whereas at higher pressures the crystallite size
cannot be any longer correctly modeled by these macros. Therefore the Gaussian and
Lorentzian crystallite size contribution to the peak width modeling was neglected at
higher pressure values.

Although for LaFeOg, a modeling with anisotropic displacement parameters (ADP) of
the individual atoms at room temperature and ambient conditions is possible, it is
more convenient to use an overall isotropic atomic displacement parameter for each
diffraction pattern when pressure is applied as such a parameter is not that sensitive
and therefore more stable compared to the ADPs, especially when the diffraction peaks
start to broaden due to increased pressure.

At higher pressure values symmetry-adapted spherical harmonics of 4th or even 6th

1 In TOPAS the sample dependent peak broadening is modeled by macros which influence the full
width half maximum (FWHM) of a peak at a given point 20. As the sample dependent peak shape
is normally a convolution between a Gaussian and a Lorentzian peak shape there are macros
which influence the peak shape of the Gaussian FWHM and the Lorentzian FWHM individually.
The broadening of the FWHM due to the finite crystallite size is given by the Scherrer formula:
FWHMp,,¢(20) = %, where K is the Scherrer constant which is equal to 1, A is the
used wavelength and L is the refineable crystallite size parameter. The subscripts L and G
denote the Lorentzian and Gaussian contribution, respectively. The broadening of the FWHM
due to strain phenomena is given by the following phenomenological equation: FWHM, ,(20) =
strainparametery - tanf. A more detailed explanation of these macros can be found in the
TOPAS 4.2 manual [57].
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order were used, in order to describe phenomenologically the severe anisotropic peak
broadening caused by the visible loss of hydrostatic conditions of the used pressure
medial?.

Pre-investigations of the raw data of the nitrogen and argon measurement series re-
vealed, that some additional peaks can be observed in these data sets. These additional
peaks can be ascribed to solid phases of argon and nitrogen, respectively. Argon crys-
tallizes at room temperature and a pressure of ~ 1.3 GPa [196-198] and nitrogen
crystallizes at room temperature (300 K) and a pressure of ~ 2.44 GPa [199-201].
To account for these phases, an additional structureless whole powder pattern decom-
position (WPPD method, in particular a WPPD according to Le Bail et al. [63] (also
known as Le Bail method), was used.

The argon phase could be modeled in space group F'm3m over the entire pressure range
(197, 202], whereas the nitrogen phase required 4 different space groups P63/mmec (-
nitrogen), Pm3n (-nitrogen), P42/nem (§*-nitrogen) and R3c (e-nitrogen), due to
the fact that nitrogen undergoes 4 different phase transitions in the measured pressure
range [199, 203].

4.4.1 Crystal structure at room temperature and ambient conditions

Although the room temperature crystal structure of LaFeOs at ambient conditions is
known since it was determined by Geller and Wood in 1956 [204], a synchrotron X-ray
powder diffraction measurement of the sample in a capillary and a detailed Rietveld
refinement in space group Pbnm (space group no. 62) was performed in order to
ensure the phase purity of the used sample. With the Rietveld refinement shown in
figure 4.2 it could be proved that the sample does not contain any impurities.

The refined lattice parameters are a = 5.5549(1) A, b = 5.5663(1) A and ¢ =
7.8549(2) A, resulting in a volume of V = 242.876(9) A3. These values are in good
agreement with the values which were given by Geller and Wood [204] and Marezio
and Dernier [205] (see also table 4.2). The calculated density and the calculated linear
absorption coefficient as well as the residual values of the refinement are listed in table
4.2.

In table 4.3 the refined atomic positions and the refined overall atomic isotropic
displacement parameter can be found. All atomic positions are fully occupied. Al-

1 Tt was also tried to model the anisotropic broadened peak shapes by a multi-dimensional dis-
tribution of lattice metrics within a powder sample [195], however, the application of spherical
harmonics seems to give better refinement results.

2 The author wants to note, that independent from the individual onsets of the non-hydrostatic

regimes, which depend on the used pressure media, the spherical harmonics were necessary above

pressure values of 9.5 GPa

As defined in Topas 4.2: GOF = Ry / Reap-

4 For image plate data a GOF < 1 can occur if a pixel-splitting algorithm is used [206].

w
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Figure 4.2: Rietveld refinement of LaFeOgs at ambient conditions. The measurement
of the sample was done in a capillary in Debye-Scherrer geometry.

Table 4.2: Lattice parameters, volume, density, linear absorption coefficients and
residual values obtained from the Rietveld refinement of LaFeO3 in Pbnm at ambient
conditions. For reasons of comparison the literature values of Geller and Wood [204]
and Marezio and Dernier [205] are also shown.

This work | Geller and Wood [204] | Marezio and Dernier [205]

a (A) 5.5540(1) 5.556 5.553(2)
b (A) 5.5663(1) 5.565 5.563(2)
¢ (A) 7.8549(2) 7.862 7.867(3)
Volume (A?) 242.876(9) 243.09 243.02
Density p (%) 6.6387(2) - -
Linear absorption | 82.423(3) - -
coefficient (=)

Resy 3.843 i ;
Ru,p 3.761 i ;

R, 2.634 - ;

T (Pauicy) 1224 : :
GOF? 0.979* - -
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though a refinement of the capillary measurement of LaFeOs; with ADPs might be
possible, these parameters were not applied, as a comparison with the high pressure
results is much easier using solely an overall isotropic atomic displacement parameter.
A presentation of the crystal structure of LaFeO3 at room temperature and ambient
conditions can be found in figures 4.9a)+-c).

Table 4.3: Wyckoff positions, oxidation states, Cartesian coordinates and overall
isotropic atomic displacement parameter obtained from the Rietveld refinement of
LaFeOg in space group Pbnm at ambient conditions.

Wyckoft- | Oxidation 9
Atom position state x Y g Biso (A )
La 4c +3 -0.0064(2) | 0.0293(1) 0.25
Fe 4b +3 0 0.5 0
01 4c -2 0.0765(19) | 0.4875(9) 0.25 0.318(8)
02 8d -2 -0.2817(13) | 0.2853(12) | 0.0366(10)

Taking the values of the refined atomic coordinates it is possible to investigate
the octahedral environment of the Fe3t cation by calculating the bond lengths and
the bond angles within the FeOg octahedron (due to symmetry reasons all octahedra
within the crystal structure are equivalent). Exemplary, such an octahedron is shown
in figure 4.3. By calculating the corresponding bond lengths between iron and oxygen
atoms in the FeOg octahedron, it is obvious that this coordination polyhedron is not
regular but rather distorted. Due to symmetry reasons the octahedron exhibits two
different bond lengths between the iron atom and the oxygen O2 anion on the Wyckoff
position 8d in the equatorial plane. The first bond length Fe-O2 is 1.99(1) A (labeled
with O21), whereas the second bond length Fe-O2 is 2.0185(8) A (labeled with 022).
The bond lengths between the apical O1 anion in Wyckoff position 4¢ and the Fe
cation is 2.0104(22) A. The other three bond lengths within the FeOg octahedron are
given by inversion symmetry where the center of inversion lies at the position of the
iron atom. The bond angle given by 021, Fe and 022 is 88.83(8)°, whereas the adja-
cent bond angle given by 022, Fe and 021 is 91.17(8)°. The other two bond angles
in the equatorial plane are again given by inversion symmetry. The bond angle given
by O1, Fe and O21 is 89.76(33)°, whereas the bond angle given by O1, Fe and 022
is 89.13(30)°. All other angles are either given as adjacent angles (for instance 180° -
angle “O1-Fe-O21”) or by inversion symmetry.

From these investigations it is clear, that although the Fe3* cation is not Jahn-Teller
active, its corresponding coordination octahedron is rather distorted at ambient con-
ditions.

4.4.2 Approach A: Free Rietveld refinement

In this section the first Rietveld refinements of the high pressure synchrotron X-ray
powder diffraction data are carried out in order to investigate all structural changes
which occur in the LaFeOg3 perovskite if the applied pressure is successively increased.
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Figure 4.3: Coordination spheres of the FeOg octahedron at ambient conditions
in the LaFeO3 perovskite. Please note that due to the symmetry two different bond
lengths between the central iron cation and the oxygen O2 anion exist.

The term “free” in the “free Rietveld refinement” denotes that a traditional atomic
coordinate refinement is used, where all atomic coordinates on general positions can
be freely refined. The results of the sequential free Rietveld refinement will also be
used to judge the quality of the results of the other approaches carried out in sections
4.4.3-4.4.5.

4.4.2.1 Sequential Rietveld refinement

The sequential Rietveld refinements of the high pressure synchrotron X-ray powder
diffraction measurements were carried out individually for each pressure media depen-
dent data set, as the changes of the crystalline properties of the LaFeO3 perovskite
are not necessarily pressure media independent. Therefore, in this section, all figures
contain the results of all 4 different data sets in order to exhibit the pressure media
dependent effects.

In figure 4.4 the pressure dependent orthorhombic lattice parameters and the pressure
dependent unit cell volume are presented. Due to the increasing pressure all three
crystalline lattice vectors as well as the volume are decreasing, until at approximately
38 GPa a volume cell drop of around 3% can be observed. By following the lattice
parameter b, this drop is obviously pronounced, whereas the lattice parameters a and
¢ give only a small indication for such a drop. This findings already indicate a first
order phase transition of the LaFeO3 perovskite, for which the crystallographic and
physical details will be given later.
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Figure 4.4: Pressure dependent orthorhombic a)-c) lattice parameters and d) unit
cell volume of LaFeOs. For the lattice parameter b, a jump, indicating a structural
first order phase transition, at approximately 38 GPa is visible.

If the lattice parameters a and b are plotted within one figure (see figure E.1 in
appendix E), a crossing of these parameters at approximately 2.1 GPa can be ob-
served. Such a crossing of lattice parameters allows a crystallographic description
with a tetragonal unit cell, although the crossing of the lattice parameters is not nec-
essarily connected with a phase transition to a tetragonal crystal structure. Therefore,
the description of the lattice parameters at this point were kept in the orthorhombic
crystal system framework. Interestingly a similar crossing of the lattice parameters a
and b can be observed, if the LaFeO3 perovskite is heated to a temperature of 675 K at
ambient conditions [185]. However, such a crossing of the pressure dependent lattice
parameters could not be observed below 8 GPa for the structurally similar GdFeOj3
perovskite [207].

Detailed investigations of the pressure dependent changes in the atomic coordinates
revealed, that the atomic La y-coordinate exhibits a typical power-law behavior, as
it shows a continuous shift with increasing pressure towards a special position which
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indicates that the crystal structure probably adopts a higher symmetry. In order to
model a probable phase transition, a fit of the pressure dependent La y-atomic co-
ordinate by a suitable power-law behavior according to Landau theory was done by
applying the following equation [67-69]:

Pcrit - P
Pcrit

where La,(P) is the value of the lanthanum y-coordinate at a certain pressure P,
P..;; is the critical pressure, where the phase transition to the higher symmetry takes
place, Lagg is a constant which accounts for non-zero values of the atomic coordinates
in the high symmetry phase! and f3 is the critical exponent, whose value depends on
the type of the observed thermodynamic system?.

The resulting fit of the refined data of the La y-coordinate with the power-law behavior
according to equation 4.1 can be seen in figure 4.5b)3.

The determined critical pressure value by the La y-coordinate is P..;; = 20.5(6)
GPa and the corresponding critical exponent was determined to 5 = 0.48(5). As the

1
2

La,(P) = La,(0) - ( )B + Lags (4.1)

value of the critical exponent is very close to the expected value of g = = for a dis-
placive second order phase transition without any coupling to strain, etc. [69], it can
be assumed that the LaFeOs perovskite undergoes a structural second order phase
transition to a higher symmetry at the determined critical pressure value. A similar
behavior as for the La y-coordinate can be observed for some oxygen coordinates, in
particular the O1 y-, O2 x- and O2 y-coordinate, although the determination of the
oxygen positions is not as precise as for the lanthanum coordinates?. For these oxygen
coordinates also a trend to a special position can be found (see figures 4.5 and 4.6).

Assuming that the structural phase transition is of second order, a group-subgroup re-
lationship can be established, whereas the crystal structure at ambient conditions with
space group Pbnm must be regarded as the subgroup in this relationship. Different
Rietveld refinements of the data sets between 21 and 30 GPa with probable super-

1 In the case of the La y-coordinate, the constant Lagg is equal to zero.

For displacive phase transitions of second order without any coupling to strain, etc., the value of
the critical exponent can be expected to be %, which can be found experimentally as well as it
can be determined theoretically by mean-field theory [69].

3 In this graph, the atomic coordinates are fixed to their special positions after reaching the critical
phase transition point. However, the fit was done by using the non-fixed values of the La y-
coordinate above the phase transition.

4 The reason for the vague determination of the oxygen coordinates lies in the usage of X-rays,
because X-rays are not that sensitive to oxygen as compared to lanthanum, as the scattering
power of an oxygen anion is much smaller than the scattering powder of a lanthanum cation. In
addition, the applied pressure has also an influence on the intensity of the phase peaks, as the
peaks become unnaturally broadened above the hydrostatic limit of the used pressure medium

and this makes an unambiguous determination of the oxygen positions also rather complicated.
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Figure 4.5: Pressure dependent atomic coordinates of the LaFeOs perovskite. The
lanthanum y-coordinate in b) gives a clear indication of a second order phase transi-

tion. A subsequent power-law fit for this coordinate resulted in a critical exponent of
B = 0.48(2) and a critical pressure of P..;; = 20.5(6) GPa. (The figures of the atomic
coordinates are continued in figure 4.6).
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Figure 4.6: a) Continued pressure dependent atomic coordinates of the LaFeOgs per-
ovskite from figure 4.5. b) Pressure dependent overall isotropic atomic displacement
parameter for all datasets.

groups of the space group Pbnm! revealed that the best refinement can be achieved
with the minimal non-isomorphic supergroup Ibmm. A plot of the Rietveld refinement
of the high pressure synchrotron X-ray powder diffraction pattern of the fourth run at
approximately 24.8 GPa with methanol-ethanol as pressure medium can be found in
figure 4.7. The crystallographic details of this second order phase transition as well as
the refined atomic coordinates in space group Ibmm can be found in the Barnighausen
tree [208] in figure 4.8.

The crystal structure of the LaFeOg3 perovskite at room temperature and ambient
conditions in space group Pbnm as well as the crystal structure at room temperature
and at a pressure of 24.8 GPa in space group Ibmm are displayed in figure 4.9. It is
obvious, by looking at figures 4.9c) and d), which give a viewing direction along the
crystallographic c-axis, that the FeOg octahedra must rotate respectively tilt contin-
uously until a higher symmetry and therefore a higher structural ordering is reached
in the high pressure phase?.

For the determination of the crystal structure above 38 GPa the high pressure syn-
chrotron X-ray powder diffraction pattern of the fourth run at approximately 43.1 GPa
with methanol-ethanol as pressure medium was used. An indexing of this powder pat-
tern revealed that tetragonal and orthorhombic crystal structures have comparable

1 The space group Pbnm is a non-standard setting of the space group Pnma, therefore supergroups
in the standard setting as well as in the non-standard setting were used in order to preform the
Rietveld refinements

2 The rotation/tilting of the FeOg octahedra must be continuously due to the assumption of a second
order phase transition of the entire crystal structure of the LaFeO3 perovskite. An evidence for
this behavior will be also given in subsection 4.4.5, where the rotation/tilting is modeled by
rotational symmetry modes of a rigid body
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Figure 4.7: Rietveld plot of the LaFeO3 perovskite at 24.8 GPa using methanol-
ethanol as pressure medium (fourth run). The limited 26 range is due to the geometric
restriction by the DAC.

figure of merits'. In order to determine the most probable crystal structure and cor-
responding space group, different whole powder pattern fittings (WPPF) according to
the Le Bail method [63] were performed. These WPPFs showed, that orthorhombic
crystal structure solutions have considerably lower R,, values (e.g. R, of Cmmm is
1.766 % with 70 reflections in the investigated range) in contrast to tetragonal crys-
tal structure solutions which have significantly enhanced R,, values (e.g. R,, of P4
is 2.228 % with 108 reflections in the investigated range)?. Subsequent Rietveld re-
finements of different possible orthorhombic crystal structure showed, that the best
refinement can still be achieved in space group Ibmm, which characterizes this phase
transition as an isostructural or isosymmetric first order phase transition (for details
of this isostructural phase transition see also the Barnighausen tree in figure 4.8).

1 The figure of merit in TOPAS 4.2 [57] is defined according to the de Wolff figure of merit [45].

2 The author would like to mention, that at such high pressure values in the non-hydrostatic
regime, the obvious peak broadening can hamper the determination of the real crystal structure.
Although, due to this reason such an indexing can be sometimes doubtful, the difference of almost
0.5 % is believed to be high enough in order to state that the orthorhombic crystal structure has
a higher probability.
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Figure 4.8: Birnighausen tree [208] for the first and second order phase transitions
in LaFeOgs at the room temperature isobar and at pressures below 45 GPa. Lattice
parameters for the Ibmm phase at 24.8 GPa are a = 5.429(1) A, b = 5.357(1) A and
c = 7.543(3) A. Lattice parameters for the Ibmm phase at 43.1 GPa are a = 5.262(2)
A, b =5.253(2) A and ¢ = 7.306(2) A.

The finding of an isostructural first order phase transition is in agreement with other
high pressure studies of the LaFeO3 perovskite (and also some other orthoferrites),
where Mossbauer spectroscopy, X-ray powder diffraction and density functional the-
ory (DFT) calculations revealed that in the pressure range of 30 GPa < p < 50 GPa
a high-spin (S = 2) to low-spin (S = 1) transition of the Fe*" cation takes place
[181, 191-193, 209]. Although Xu et al. attributed the phase transition with a vol-
ume drop of approximately 3% to a first order phase transition from an orthorhombic
crystal structure to a tetragonal one [191], it could be clearly shown by Rietveld refine-
ments that this is not the case, as the phase transition is isosymmetric and therefore
the crystal structure maintains the orthorhombic symmetry. This result is also in
accordance with the study of Rozenberg et al. [209], who showed that other RFeOg
orthoferrites (with R = Pr, Eu, Lu) also possess an isostructural first order phase
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Figure 4.9: Crystal structure of the LaFeOgs perovskites at different pressures. Am-
bient crystal structure in space group Pbnm, a) view along ¢ and c¢) view along b.
Crystal structure at 24.8 GPa in space group Ibmm, b) view along ¢ and d) view

along b.
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transition within approximately the same pressure range!. Despite the fact, that the
LaFeOg3 perovskite does not show a first order phase transition to a tetragonal crystal
structure, Xu et al. reported from X-ray powder diffraction that the phase transition
seems to be very “sluggish” [191]. This finding can be confirmed by the inspection
of the lattice parameters and the volume in figure 4.4. The reason for this behavior
is, that the region around the approximate critical phase transition value of 38 GPa
can be regarded as a coexistence region of two different phases, for which an evidence
is given by the Mossbauer study of Xu et al., which demonstrated that at the room
temperature isotherm in the pressure range of 30 GPa < p < 50 GPa the high-spin
to low-spin transition takes only partially place, which therefore leads to two different
magnetic sublattices and to two different crystal structures with different lattice pa-
rameters and volumes? [191]. Interestingly for a similar orthoferrite, namely PrFeO3,
this coexistence region can be much better observed by synchrotron X-ray powder
diffraction, in contrast to LaFeOs, as it was shown by Xu et al. [191] and Rozenberg
et al. [209].

The DFT calculations by Javaid et al. proofed that the pressure dependent spin-
crossover can be explained by the pressure dependent increase of the crystal-field
splitting energy, which increases due to the change of the distortion level of the FeOg
octahedron, which in turn results from the shortening of the Fe-O bondings within
the FeOg octahedron [181, 192, 193]. Therefore the high-spin to low-spin transition
is not only connected to the shrinkage of the entire unit cell volume of the crystal
structure, but also to the shrinkage of the octahedral volume of the FeOg coordination
polyhedron. In figure 4.10 the volume of the FeOg octahedron is plotted.

In this figure the three pressure dependent crystal structure phases can clearly be
observed by the evolution of the octahedral volume. Until the occurrence of the second
order phase transition at the critical pressure value of approximately 20.5 GPa, the
octahedral volume decreases almost linearly. Above that value, there is also an almost
linear decrease of the octahedral volume, although the slope of that linear decrease
has changed. At higher pressure values an abrupt decrease of the octahedral volume
at an approximate critical phase transition value of 38 GPa can be observed. This
volume drop indicates the reduction of the Fe-O bond lengths due to the high-spin to
low-spin transition.

Transitions to the non-hydrostatic regime and determination of the equation of state pa-
rameters

For the determination of reliable equation of state (EoS) parameters, special atten-

1 For these orthoferrites an isostructural first order phase transition in space group Pbnm was
observed [209].

2 Unfortunately, in the literature no discussion was found, if the partial high-spin to low-spin
transition is attributed to an intra-domain or inter-domain phenomenon.
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Figure 4.10: Pressure dependent volume of the FeOg octahedron in the LaFeOg3 per-
ovskite. Three different regions (separation by black solids lines) can be distinguished,
which correspond to the three crystal structure phases.

tion has to be paid on to the onset of non-hydrostatic conditions, which will be shown
later. In the hydrostatic regime the pressure on the sample and therefore the com-
pression of the sample is mediated by the used pressure medium, which acts as an
isotropic quantity, whereas in the non-hydrostatic regime, the pressure on the sample
cannot be any longer regarded as being isotropic. The reason for that behavior of
the pressure medium depends mainly on two effects, firstly the pressure dependent
intermolecular forces within the gas or liquid which is used as pressure medium and
secondly on the geometry of the high pressure experiment, which is given by the DAC.
As in most experiments the DAC cannot be modified due to the geometry of the per-
formed experiments (e.g. powder diffraction experiments), the limiting factor is given
by the type of the used pressure medium.

In order to determine the corresponding hydrostatic limits, at which the non-hydrostatic
conditions set in, single crystal as well as powder diffraction experiments with stan-
dard samples like silicon (Si), lanthanum hexaboride (LaBg) or quartz (SiOs) can be
carried out, as the measured peak width of these samples is highly sensitive to the
onset of non-hydrostatic conditions [210]. Using this method, Angel et al. deter-
mined the following hydrostatic limits for the used pressure media performing X-ray
diffraction experiments with quartz single crystals: ~1.9 GPa for argon, ~3 GPa for
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nitrogen and ~ 9.8 GPa for a mixture of methanol and ethanol (ratio 4:1) [210]. In
contrast, if these hydrostatic limits are determined by another method like the ruby
fluorescence method, then different values for the onset of non-hydrostatic conditions
can be determined [211]. Nevertheless, in this work, the hydrostatic limits determined
by Angel et al. [210] will be used, as these values agree with the observed pressure
dependent phenomena which occur for the refined LaFeO3 parameters.

As it was already explained at the beginning of section 4.4, a constrained phenomeno-
logical Gaussian and Lorentzian strain parameter together with Gaussian and Lorentzian
crystallite size parameters were used in order to model the peak broadening due to sam-
ple dependent effects. During the pressure dependent Rietveld refinements it turned
out, that especially the constrained phenomenological Gaussian and Lorentzian strain
parameter is very sensitive to the onset of non-hydrostatic conditions as can be seen
in figure 4.11b).
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Figure 4.11: a) Pressure dependent lattice parameter a of LaFeO3 obtained for the
first methanol-ethanol measurement series. The onset of the non-hydrostatic regime
of the used pressure media is obvious, as there is clear kink at approximately 9.8 GPa
observable in the sequential refined data sets. b) Pressure dependent phenomenologi-
cal strain parameters for the different pressure media dependent data sets. From this
figure the onset of the non-hydrostatic regime for the different pressure media can be
estimated (the definition of the phenomenological strain parameter is given in a foot-
note earlier in this chapter).

The reason for the increase of the value of the phenomenological strain parameter
at the hydrostatic limit is rather simple, as it is directly connected to the FWHM of
the diffraction peaks and therefore it is the same phenomenon as it was used in the
method of the determination of the hydrostatic limit by Angel et al. [210]. From
figure 4.11b) it is also obvious that the onset of the non-hydrostatic regime is at low
pressures for the pressure media argon and nitrogen and at much higher pressures for
the methanol-ethanol mixture in a ratio of 4:1. This means, that the measured and
refined data sets below the hydrostatic limit of the methanol-ethanol measurement
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series are in fact more reliable than the values determined for the argon and nitrogen
measurement series.

Interestingly, the onset of the non-hydrostatic conditions can also be observed in the
behavior of the lattice parameters. If, for instance, the pressure dependent lattice pa-
rameter a of the methanol-ethanol measurement series of the second run is displayed
in detail, then a kink in the trend of this parameter can be observed (see figure 4.11a)).
This shows remarkably, that the fit of the lattice parameters and of the volume of the
LaFeOg3 perovskite by EoS will be only reliable up to the hydrostatic limit.

Due to this reason, the determination of EoS parameters from the results of the se-
quential Rietveld refinements of the LaFeO3 perovskite will be only carried out for the
methanol-ethanol measurement series.

In order to determine the bulk modulus, the first pressure derivative of the bulk mod-
ulus and the volume at ambient pressure of the LaFeOs perovskite, different semi-
empirical EoS can be used. Although today many authors prefer the usage of the
Birch-Murnaghan EoS [212, 213], the focus in this work was laid on the Murnaghan
EoS [214] and the Vinet EoS [215], as the Murnaghan EoS is an analytical invertible
equation and for the Vinet EoS a suitable approximation, which makes this EoS invert-
ible, can be found®.

In general, EoS are presented as a pressure equation which depends on the volume,
the bulk modulus, the first or higher pressure derivatives of the bulk modulus and
the volume at zero pressure. Most of these EoS are valid on the room temperature
isotherm although they do not possess a special term which accounts for the temper-
ature. Among the many proposed isothermal EoS, the Murnaghan EoS is well known:

P(V) = %Z . l(%fo - 1] , (4.2)

where P(V) is the pressure, which depends on the volume V', V4 is the volume at
zero pressure®, By is the bulk modulus and Bj is the first pressure derivative of the
bulk modulus.
The benefit of this equation for parametric Rietveld refinements is, that it is analyti-
cally invertible, and the inversion is given by the following equation:

BéP)‘?a @3

By

As the Murnaghan EoS is a semi-empirical equation, it is only valid over a certain
range of volume compression. In the case of the Murnaghan EoS a validity up to

V(P) =V, <1+

1 The possible invertibility of the EoS is of great importance for e.g. parametric Rietveld refinements
(see subsection 4.4.2.2).

2 The difference between the volume in vacuum/at zero pressure and ambient conditions is that
small, so that we can assume that both volumes are approximately equal.
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a volume compression of 10% can be assumed [216, 217]. For the determination of
the EoS parameters for the LaFeO3 perovskite this means, that a volume compression
of 10% is first reached at approximately 25 GPa, which is far beyond the hydrostatic
limit of the used methanol-ethanol 4:1 pressure medium. Therefore it can be assumed,
that the Murnaghan EoS will provide reliable values below 9.8 GPa in the case of the
LaFeOg3 perovskite.

Although the inverted Murnaghan EoS is now a volume equation, it is still not a
suitable equation for a parametric Rietveld refinement, as the volume of the unit cell
is in general a quantity, which can be derived from the results of the refinement of a
powder diffraction pattern, but not refined itself. In order to have a refineable quantity
the inverted Murnaghan EoS must be transformed from a bulk equation to a linear
equation. A suitable transformation for such a “linearized” Murnaghan EoS is given
by Angel [217], which results in the following “linearized” inverted Murnaghan EoS:

a(P) = ag - (1 + — , (4.4)
By,

where a(P) is the value of the lattice parameter at a certain pressure, aq is the
lattice parameter at ambient conditions, By, is the linear modulus and By is the first
pressure derivative of the linear modulus.
In order to derive this “linearized” equation, simply the cube root of both volumes
from equation 4.3 is taken and the bulk modulus parameters are replaced by pseudo-
linear modulus parameters. The validity of this approach for cubic, tetragonal and
orthorhombic crystal systems was also demonstrated by Angel, as he stated that the
second-order strain tensor and the second-order bulk tensor are diagonal matrices and
that the entries on the diagonal represent the main axis of the corresponding crystal
system [217].

In table 4.4 the Murnaghan EoS parameters for the bulk modulus, the first pres-
sure derivative of the bulk modulus as well as all linear parameters belonging to the
corresponding crystal axis for the LaFeO3 perovskite can be found.

In addition, in this table also the theoretical values of the bulk modulus, of the first
pressure derivative of the bulk modulus and of the volume at ambient conditions for a
cubic LaFeOj crystal structure with ferromagnetic (FM) or G-type antiferromagnetic
(AFM) moment configuration are listed [219]. Shein et al. calculated these theoreti-
cal values using an ab initio pseudo-potential method with the inclusion of single-site
Coulomb correlations [219]. The employed EoS in these calculations was the Birch EoS
[220].

In contrast to the Murnaghan EoS, the Vinet EoS is believed to be more “univer-
sal”, as it is applicable to a wide range of solids, including metals, ionic solids and
simple organic compounds [218]. In addition, the range of validity for the Vinet EoS
is much higher compared to the Murnaghan EoS, as it is applicable even at high com-
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Table 4.4: Bulk modulus, its pressure derivative and the volume at ambient condi-
tions of the LaFeOgs perovskite determined by an inverted Murnaghan EoS [214] from
sequential Rietveld refinement of the first and second 4:1 methanol-ethanol measure-
ment series (second and fourth run) up to the hydrostatic limit (approximately 9.8
GPa [210]). Below the bulk values, the corresponding values of the “linearized” in-
verted Murnaghan EoS [216, 217] are given, namely the linear modulus, the first pres-
sure derivative of the linear modulus and the lattice parameter at ambient conditions
for all orthorhombic lattice parameters a, b and ¢. In addition, the corresponding bulk
and linear values determined for the Vinet EoS are given. The values were determined
by the program EOSFIT 5.2 [218]. Theoretical values from the literature are taken

by Shein et al. [219] and are calculated for a cubic crystal structure of LaFeO3 with
either ferromagnetic (FM) or G-type antiferromagnetic (AFM) moment configuration
using for both the Birch EoS [220]. Furthermore the corresponding literature values
for the isostructural GdFeO3 perovskite derived from single crystal X-ray diffraction
measurements are given for reasons of comparison [221].

Birch EoS [220] | Birch EoS [220] Birch-
Vinet FoS Murnaghan | Cubic LaFeOs | Cubic LaFeO3 | Murnaghan EoS
HeL O EoS (FM) (AFM) (3rd order) [221]
GdFeOs5
Vo (A®) 242.87(1) | 242.87(1) 57.16 56.67 230.384(10)
By(GPa) 172(1) 172( ) 197.9 198.4 182( )
B 4.3(2) 4.3(3) 5.4 5.4 6.3(3)
ag (A) 5.557(1) D. 556(1) 3.852 3.841 5. 35105(23)
By, (GPa) | 212(2) 209( ) 188( )
B, 83(5) | 9.2(7) 5.2(7)
by (A) 5.564(1) | 5. 564(1) 5. 61249(10)
By, (GPa) 141(1) 142( ) 181( )
5, 14(2) | 420) 5.7(4)
co (A) 7.855(1) 7. 86(1) 7. 67106(11)
By, (GPa) 176(1) 176(1) 172(2)
By, 1.6(3) 1.5(3) 8.2(5)

pression ratios up to volume compressions of vlo > 0.6 [218]. Different studies showed
also, that the accuracy of the Vinet EoS is quite good, therefore it is believed that this
equation, which is based on an empirical potential [215], is among the most accurate
EoS [222, 223].

The Vinet EoS is given by the following equation [215]:

L-J ex P
) P
where f is given as (VK )

Although the equation of the Vinet EoS looks quite simple, it is not possible to find

P(V):3'BO'< @-v-a-n . (4.5)

Wl
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an analytical inversion V' (P) for this equation. However, as already explained above,
for a parametric Rietveld refinement it is mandatory to have an inverted version of
this equation and furthermore it must be also possible to find a “linearized” form of
this equation. A suitable possibility to overcome this challenge is to expand the ex-
ponential part of the Vinet EoS by a Taylor series up to third order and to invert the
resulting approximation [175]. This will result in four extensive equations of which
two are physically meaningful, as they cover the experimental accessible range of the
bulk modulus and the first pressure derivative of the bulk modulus [175]. Following
the approach of Angel [217], it is also possibe to create a “linearized” version of this
inverted third-order Vinet EoS approximation [175], which can be used in a parametric
Rietveld refinement (see appendix F).

With the program EOSFIT 5.2 [218] it is possible to fit a bulk and a “linearized”
version of the Vinet EoS to a set of data points!', which in turn are retrieved by the
sequential Rietveld refinements of the powder diffraction patterns of the LaFeOg3 per-
ovskite (for the results see table 4.4).

The comparison between corresponding values in table 4.4 shows, that both equa-
tions give almost the same result for an individual parameter, therefore both EoS seem
to be suitable in order to model the pressure dependent behavior of the unit cell
volume and lattice parameters of the LaFeO3 perovskite.

4.4.2.2 Parametric Rietveld refinement

As it was already stated in section 2.2.1, parametric Rietveld refinements can be very
useful in many regards, as the application of constraints in form of equations will lead
to a reduction of parameters and therefore the smaller number of parameters can lead
to a stabilization of the least-square iteration process. Furthermore, the application
of such equations can even sharpen the global refinement minimum, as long as the
chosen equations are inherent to the investigated powder diffraction patterns.

This statement already shows, that is not possible to perform a parametric Rietveld
refinement with all four measurement series of the LaFeO3 perovskite, as the onset
of the non-hydrostatic regimes is different for the different used pressure media and
therefore the parameterization with a single EoS would certainly lead to wrong physical
results. In addition, it cannot be fully excluded that wrong results will be obtained,
if two different measurement series with the same pressure medium are constrained?.

1 These data points must be given as P(V) table, therefore it is directly possible to use the Vinet
EoS in order to determine the corresponding bulk and linear EoS parameters.

2 To the knowledge of the author, it exists no study where, for instance, the dependence of the
hydrostatic limit on the particle size is investigated. If it is now assumed, that such a dependency
exists, then two differently ground samples of LaFeOg3 are no longer comparable, even if the same
pressure medium is used.
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In order to apply an EoS to the widest possible pressure range, only the methanol-
ethanol measurement series can be taken, as the hydrostatic regimes for argon and
nitrogen cover only a limited pressure range (see section 4.4.2.1).

Besides the parameterization of the lattice parameters of LaFeO3; with EoS, also a
parameterization of some of the atomic coordinates can be done, as some of them
obey the power-law behavior given by equation 4.1. However, in order to speed up
the computational process of the parametric Rietveld refinement, the unnormalized
version of equation 4.1 was used, which is given by:

La’y(P) =A- (Pcrit - P)ﬁ + LaHS s (46)

where the amplitude A can be analytical converted to the physical amplitude La, (0)
by A= La,(0) - Pcé’it'
To carry out a parametric Rietveld refinement with both parameterization approaches,
the EoS parameterization for the lattice parameters and the power-law behavior pa-
rameterization for the atomic coordinates, a suitable measurement series must be used,
in order to fulfill all of the above mentioned requirements for a parametric Rietveld
refinement. This suitable measurement series is only given by the methanol-ethanol
measurement series of the fourth run, as this series has a wide hydrostatic regime and
there are enough data points in order to model the behavior of the atomic coordinates
even up to high pressures of 46.9 GPa.

The results of the parameterization of the lattice parameters by a “linearized” in-
verted Murnaghan EoS! can be found in figure 4.12 and in table 4.5. An overview of
the differences between the parameters in the sequential and in the parametric Ri-
etveld refinement is given in table 4.6. From this table it can be seen, that up to the
hydrostatic limit of 9.8 GPa, the lattice parameters are modeled by the Murnaghan
EoS, whereas the lattice parameters above can be either refined individually or they
can be fixed to the values determined by the sequential Rietveld refinement?.

Unfortunately, in the hydrostatic regime of this measurement series only 4 data
points are present, which explains the observed differences between the values of
the parametrically determined EoS parameters and the corresponding EoS parameters
which were determined from the sequentially refined data sets®.

The parameterization of the atomic coordinates with equation 4.6 is shown in figure

1 The results of the parameterization of the lattice parameters by a “linearized” inverted third
order Vinet EoS approximation are within one estimated standard deviation in agreement with
the results of the “linearized” inverted Murnaghan EoS and therefore they are not shown here.

2 In the particular case of the parametric Rietveld refinement of LaFeOg, these values were fixed to
the results from the sequential Rietveld refinement, in order to reduce the number of refineable
parameters, which leads to a better stabilization of the refinement.

3 Please note, that the difference is only 3 times the estimated standard deviation, which is sur-
prisingly small, considering the amount of data points and the number of equation variables.
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Figure 4.12: Pressure dependent orthorhombic a)-c) lattice parameters and d) unit
cell volume of LaFeO3 from sequential as well as from parametric Rietveld refinement.
For the parametric Rietveld refinement, the red lines denote that these parts were pa-
rameterized with the “linearized” inverted Murnaghan EoS, whereas the red points
denote that these values were refined individually. The red line for the volume is cal-
culated by the parameterized values of the lattice parameters.

4.13. Although four atomic coordinates, namely the La y-, the O1 y-, the O2 x- and
the O2 y-coordinate take part in the structural second order phase transition and
therefore they should obey a power-law behavior with a common critical exponent?, it
was only possible to parameterize the La y- and O1 y-coordinates with this model, as
the modeling of the other coordinates by a power-law behavior either with individual
critical exponents or a common critical exponent led always to unphysical values.
Probably this phenomenon can be attributed to the uncertainty of the determination
of the atomic O2 positions at higher pressure values (see also the comment about the
determination of the oxygen positions in subsection 4.4.2.1). Due to this reasons, the

1 The reason for the common critical exponent is given by the collective motion of all atoms, which
in sum lead to the structural second order phase transition of the LaFeO3 perovskite.
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Table 4.5: Linear moduli, corresponding pressure derivatives and the lattice param-
eters at ambient conditions of the LaFeOgs perovskite determined by an inverted Mur-
naghan EoS [214] from parametric Rietveld refinement of the second 4:1 methanol-
ethanol measurement series (fourth run) up to the hydrostatic limit (approximately
9.8 GPa [210]). Please note that in the parameterized region, only 4 data points were
present.

Murnaghan EoS
ao (A) 5.557(1)
By, (GPa) 215(7)
B 8.1(11)
by (A) 5.564(1)
By, (GPa) 150(3)
By, 2.4(5)
co (A) 7.854(1)
By, (GPa) 186(3)
By, -0.1(6)

02 x- and O2 y-coordinates were refined individually.

The critical pressure value for the structural second order phase transition is au-
tomatically determined by the parametric Rietveld refinement out of the power-law
behavior for the La y- and Ol y-coordinate and is given as P..; = 20.6(10) GPa.
This value is in almost perfect agreement with the value of P.,;; = 20.5(6) GPa, which
was determined using the La y-coordinate of the sequential Rietveld refinements of all
measurement series. The same agreement can be seen for the critical exponent, which
is determined to the same value of 5 = 0.48(5) for the sequential as well as for the
parametric Rietveld refinement.

In order to judge the reliability of the determined parameter values by the parametric
Rietveld refinement, a comparison between the R,, values of the sequential Rietveld
refinement and the R, values of the parametric Rietveld refinement was carried out
(see figure 4.14).

As can be seen from figure 4.14 the R,, values are almost identical, which indicates
that the parametric Rietveld refinement has reached the same quality as the sequential
Rietveld refinements®.

1 In cases where wrong equations or constraints are applied in the parametric Rietveld refinement,
the R, values of the parametric Rietveld refinement usually show a significant enhancement
compared to the R,,, values of the sequential Rietveld refinement. However, the deviation between
the EoS parameters states clearly, that, although the same refinement quality is reached, both
refinement types must not be necessarily 100% identical.
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Table 4.6: Incomplete overview of used parameters in the sequential and parametric
Rietveld refinement of approach A. The term “refined” in the column of the paramet-
ric Rietveld refinements denotes that a parameter was individually refined for each
diffraction pattern.

Sequential Parametric
Background refined refined
Murnaghan EoS up to the
Lattice parameters a, b, ¢ | refined hydrostatic limit of 9.8 GPa,

above fixed to sequential results
Atomic coordinates:
La., Fe,, Fe,, Fe,, O1, fixed fixed

La,, O1,, O2,, 02,, O2, | refined refined

power-law equations with
common critical exponent
La,, O1, refined up to up to the parametrically
20.5 GPa, above fixed | determined P.,;,

above automatically fixed
Phenomenological strain

refined refined
parameter
Qverall isotropic atomic rofined rofined
displacement parameter
Scale factor refined refined
Zero shift fixed fixed
Spherical harmonics for
anisotropic peak refined refined

broadening (if required)

4.4.3 Approach B: Rigid body refinement

Modeling atomic groups by rigid bodies is nowadays a common method in order to
refine single crystal and powder diffraction data, as the number of free atomic co-
ordinates can be strongly reduced. With this reduction, the degrees of freedom or
in other words the dimension of the parameter space of the Rietveld refinement (in
case of powder diffraction) will be also reduced, which usually gives rise to a greater
stabilization of the refinement and in addition, if the right constraints are applied, it
will sharpen the global minimum [59, 224].

In general, rigid bodies are defined by fixed bond lengths and fixed bond angles be-
tween atoms within the rigid body, although in modern Rietveld refinement programs
(e. g. Topas 4.2 [57]) it is possible to set up rigid bodies which are rather deformable,
as internal bond lengths and bond angles can be also a subject of a refinement. There-
fore these rigid bodies are no longer rigid, which is why they should be denoted as
deformable body or much better, as it is related to the refinement, they should be
called constrainable atomic group.
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Figure 4.13: Pressure dependent sequentially and parametrically refined atomic
coordinates of the LaFeO3 perovskite. The lanthanum y-coordinate and the O1 y-
coordinate are parametrically modeled with a power-law behavior and a common criti-
cal exponent.

In the case of the LaFeQOys it is quite clear from the sequential refinements by traditional
atomic coordinates (see subsection 4.4.2.1), that a rigid body will be not applicable,
as the internal bond lengths and bond angles will certainly change under the applied
pressure (see as an indicator also the change of the volume of the FeOg octahedron
in figure 4.10). In figure 4.15 a schematic picture of the applied constrainable atomic
group is given, which highlights the three internal degrees of freedom, which are re-
quired in order to model the FeOg octahedron under pressure correctly.

From this picture, it can be seen that the bond lengths r3 and 9 between the central
Fe3t cation and the anion ligands O1 and O2; will be refineable parameters. The bond
length between the central Fe3* cation and the ligand O2, anion will be automatically
calculated by the refinement software due to the given symmetry operations of the
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Figure 4.14: Comparison between the R,,, values of the sequential and parametric
Rietveld refinement of approach A.The congruence of the R, values indicates the
correctness of the applied physical constraints.

space group Pbnm!. The last necessary refineable internal parameter of the FeOg

octahedron is the angle a1, between the O1, Fe and O2; ions.

Besides the three internal degrees of freedom r3, ro and a1 three outer degrees of
freedom must be employed, in order to rotate the FeOg octahedron around three axes
which are in this case collinear to the three crystallographic axes?. In the following,
these rotation angles will be denoted as cva, cvb and cvc.

A comparison with the number of degrees of freedom with the traditional atomic
coordinate refinement shows, that the above given description of the atomic con-

1 Although the LaFeO3 perovskite exhibits at approximately 20.5 GPa a structural second order
phase transition to a space group of higher symmetry, it is still possible to model the observed
data by a lower symmetry, as a powder diffraction pattern can always be modeled by a subgroup
of the actual space group.

2 There will be no degrees of freedom for the translation of the FeOg octahedron, as the Fe?* cation
lies on a special position and therefore the translational degrees of freedom are fixed.
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Figure 4.15: Schematic picture for the applied constrainable atomic group for the
pressure dependent Rietveld refinement of the LaFeO3 perovskite. The constrainable
atomic group is build by the Fe3*t cation in the middle of the picture and the oxygen
anions O1 and O2;. The full octahedron which is received by symmetry operations of
space group Pbnm is shown in semi-transparent.

strainable group has one additional degree of freedom too much!. In order to prevent
an overdeterminacy of the applied model, one parameter must be constrained to an-
other parameter either within the modeling of the FeOg4 octahedron or by a parameter
which also takes part in the Rietveld refinement. Fortunately, the bond length r3 has
a dependency on the lattice parameter ¢ and on the rotation angles cva and cvb, which
is given by the following equation:

_c !
4 cos(cva) - cos(cvb)

r3 (4.7)

This equation can be obtained, if the allowed movements of the O1 anion are ana-

1 In the traditional atomic coordinate refinement, the oxygen anions have in sum five refineable
parameters for their coordinates, whereas the constrainable atomic group model up to now has
six refineable parameters.



102 4 High pressure in situ investigations of LaFeQOs

lyzed. From the traditional atomic coordinate refinement it is known, that a single O1
anion can only move in a given xy-plane of the LaFeOj3 crystal structure. This means
that rotations around the three rotation axes have to leave this plane invariant and
therefore the position of this plane relative to any other xy-plane can only be affected
by the lattice parameter ¢, as the distance between two of such xy-planes will shrink
with the lattice parameter c. By checking the symmetry operations acting on the O1
atom it is obvious, that the distance between two of these planes must always be il.
As the rotation around the rotation axis which is collinear with the crystallographic
c-axis does not affect the length of r3, it can be disregarded. The length r3 is only
affected by the rotation axis which is collinear with the crystallographic a-axis as this
rotation will produce a shift of the O1 atom in the y-direction and by the rotation
axis which is collinear with the crystallographic b-axis as this rotation will produces
a shift of the O1 atom in the z-direction. From trigonometric considerations it can
be shown that the projection of the bond length r3 onto the crystallographic c-axis is
then exactly given by the above defined equation 4.7.

Although the constrainable atomic group model does not comprise a reduction of
the number of refineable parameters, it will give a new perspective on collective move-
ments of atomic groups within LaFeOgs perovskite under high pressure, as the modeled
parameters are directly connected with these movements.

4.4.3.1 Sequential Rietveld refinement

As expected, the sequential Rietveld refinements with the constrainable FeOg atomic
group using rigid body techniques provided the same refinement results as they were
obtained from approach A, which is confirmed by the comparison of the R,, values of
both approaches in figures 4.16a)-d).

The exact results for the lattice parameters, the unit cell volume, the atomic coor-
dinates, the overall isotropic atomic displacement parameter and the constrained phe-
nomenological Gaussian and Lorentzian strain parameter can be found in appendix G.

The behavior of the bond lengths r3 and ry as well as the behavior of the bond angle
a2 is displayed in figures 4.17a)-c), whereas the behavior of the three rotation angles
cva, cvb and cvc is displayed in figures 4.17d)-f).

For all parameters the shown behavior can be expected, except for the fact, that the
Rietveld refinements at high pressure gave very small estimated standard deviations,
although in reality these values are certainly much larger at such pressures. Sole
exception is given for the rotation angle cvc of the argon measurements series, where
the refinement was not able to determine the correct parameter value, which can be
attributed to the insufficient data quality. This is also the reason, why the R,, value
of approach B is higher in figure 4.16¢) compared to the R,, value of approach A in

1 Simply said, this is the distance between two O1 anions in the c-direction.
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Figure 4.16: Pressure dependent weighted residual values (R,,) for the a) nitro-
gen (first run), b) 4:1 methanol-ethanol (second run), c) argon (third run) and d) 4:1
methanol-ethanol (fourth run) measurement series of the high pressure synchrotron
X-ray powder diffraction measurements of the LaFeO3 perovskite.

the same figure.

4.4 3.2 Parametric Rietveld refinement

As already explained in subsection 4.4.2.2, soley the methanol-ethanol measurement
series of the fourth run will be used in order to perform a parametric Rietveld refine-
ment of approach B.

Similar to approach A, the lattice parameters up to the hydrostatic limit can be
parameterized with the “linearized” inverted Murnaghan EoS. Likewise as in approach
A, the lanthanum y-coordinate was modeled by the power-law behavior from equation
4.6 in order to determine the critical transition pressure P,.;; of the structural second
order phase transition.

In addition to the lattice parameters and the lanthanum y-coordinate, all three ro-
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Figure 4.17: Pressure dependent a)-b) bond lengths, ¢) bond angles and d)-f) ro-
tation angles of the FeOg octahedron in the LaFeO3 perovskite. Please note that the
bond length r3 is calculated from the lattice parameter ¢ and the two rotation angles

cva and cvb via equation 4.7.
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tation angles of the FeOg octahedron were parameterized. Although it is hard to
determine from figures 4.17d)-f), it can be roughly assumed, that the rotation angles
cva and cvb can be fixed to their corresponding arithmetic mean value, whereas the
rotation angle cvc follows the same power-law behavior as the lanthanum y-coordinate.
From different attempts to perform a parametric Rietveld refinement of approach B, it
became apparent by comparing the different R,,, values, that this assumptions can be
made, as long as the overall critical exponent is fixed to g = % A similar restriction
must be given for the last parameter which can be parameterized, as the modeling of
the bond length r3 by an empirical linear equation over the entire investigated pressure
range requires a fixing of the slope and the constant of that linear equation®.

The parameterization of the lattice parameters as well as the parameterized lanthanum
y-coordinate looks similar to figures 4.12a)-c) and figure 4.13a), respectively, for ap-
proach A. The behavior of the parameterization of the three rotation angles and the
bond length rj is shown in figures 4.18a)-d).

From these figures it is obvious that the rotation angle cva can be fixed to a value of

9° and that the rotation angle cvb can be fixed to a value of 8°, whereas the rotation
angle cvc in combination with the lanthanum y-coordinate can be regarded as primary
order parameter of the system, which drives the structural second order phase transi-
tion.
The behavior of the bond length r3 is in so far interesting, as no onset of the non-
hydrostatic regime can be seen, which is also suggested by the possible modeling of
this parameter over the entire pressure range by a simple empirical linear equation.
Interestingly, this effect can be always seen for all parameters which depend on the
atomic coordinates and for all approaches?.

The quality of the parametric Rietveld refinement is again given by the comparison
of the R,, values of the sequential Rietveld refinement and the parametric Rietveld
refinement of approach B (see figure 4.19).

The critical pressure value of P,.;; = 20.8(5) GPa which is parametrically determined
for the structural second order phase transition is within one estimated standard devi-
ation identical to the one determined sequentially and parametrically from approach A.

An overview of the differences between the parameters in the sequential and in the
parametric Rietveld refinement of the rigid body approach is given in table 4.7 and
the parametrically determined EoS parameters are given in table 4.8. The deviation
of the EoS parameters from the EoS parameters determined for the sequential Rietveld
refinement of approach B are similarly explained as in subsection 4.4.2.2.

1 The values for the slope and the constant are determined by a linear fit of the sequential Rietveld
refined values.

2 Perhaps, this behavior can be best explained as a deconvolution of the absolute atomic coordinates
(which are in fact affected by the hydrostatic limit) into relative atomic coordinates x, y and z
and hydrostatic limit affected lattice parameters.
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Table 4.7: Incomplete overview of used parameters in the sequential and parametric
Rietveld refinement of approach B. The term “refined” in the column of the paramet-
ric Rietveld refinements denotes that a parameter was individually refined for each

diffraction pattern.

Sequential Parametric

Background refined refined

Murnaghan EoS up to the
Lattice parameters a, b, ¢ | refined hydrostatic limit of 9.8 GPa,

above fixed to sequential results
Atomic coordinates:
La, fixed fixed
La, refined refined

power-law equation up to
La refined up to the parametrically

Y

“Rigid body” coordinates:

72 (Fe-021)
r3 (Fe-O1)

a2 (angle 02;-Fe-O1)
cva (rotation around a)
cvb (rotation around b)

cvc (rotation around c)

Phenomenological strain
parameter

Overall isotropic atomic
displacement parameter
Scale factor

Zero shift

Spherical harmonics for
anisotropic peak
broadening (if required)

20.5 GPa, above fixed

refined
calculated by eq. 4.7

refined
refined
refined

refined

refined

refined

refined

fixed

refined

determined P.,;;,
above automatically fixed

refined

straight line with fixed
slope and intercept
refined

fixed

fixed

power-law equation up to
the parametrically
determined P.,;;,

above automatically fixed

refined

refined

refined

fixed

refined
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Figure 4.18: Pressure dependent a)-b) bond lengths, ¢) bond angles and d)-f) ro-
tation angles of the FeOg octahedron in the LaFeO3 perovskite. Please note that the
bond length 73 is calculated from the lattice parameter ¢ and the two rotation angles
cva and cvb via equation 4.7.

4.4.4 Approach C: Symmetry mode refinement

Perovskites as a material class with general formula ABOj3 are particularly suited for
the investigation by symmetry modes, as the observed tilting phenomena of the BOg
octahedra usual obeys group-subgroup relationships' [188, 225-230]. Such a group-
subgroup relationship is naturally given for the LaFeOs perovskite as the pressure
induced structural second order phase transition can be described by a tilting of the
FeOg octahedra, as it was shown by the parameterization of the rotation angles of the

1 The basic tilting of the octahedra depends on the chemical composition of the A- and B-site
and additionally on variables like temperature, pressure, etc. if, in the case for temperature as
variable, between 0 K and the decomposition temperature one or more phase transitions occur.
Even for structural phase transitions of first order, often a group-subgroup relationship can be
established due to the possibility to describe the orientation of the BOg octahedron as tilting
phenomenon.
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Figure 4.19: Comparison between the R,,, values of the sequential and parametric
Rietveld refinement of approach B. The congruence of the R,,, values indicates the
correctness of the applied physical constraints.

Table 4.8: Linear moduli, corresponding pressure derivatives and lattice parameters
at ambient conditions of the LaFeOs perovskite determined by an inverted Murnaghan
EoS [214] from parametric Rietveld refinement of the second 4:1 methanol-ethanol
measurement series (fourth run) up to the hydrostatic limit (approximately 9.8 GPa
[210]). Please note that in the parameterized region, only 4 data points were present.

Murnaghan EoS
ao (A) 5.557(1)
By, (GPa) 207(7)
B 9.5(11)
by (A) 5.564(1)
By, (GPa) 150(3)
By, 2.6(5)
co (A) 7.853(1)
By, (GPa) 192(3)
By, -1.2(6)
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FeOg constrainable atomic group in subsection 4.4.3.2.

This opens up two different possibilities in order to describe the pressure dependent
LaFeOg3 perovskite crystal structure by symmetry modes. The first option would be
to use the natural occurring higher symmetric space group Ibmm in order to describe
the lower symmetric space group Pbnm as a distortion of the parent/higher sym-
metric space group. Although this looks like a rational option, it is not commonly
accepted, as the tilting of perovskites is normally described by the second option us-
ing the perovskite aristotype space group Pm3m [188, 225-230]. Therefore, symmetry
mode investigations with ISODISTORT [64] will be done using a virtual cubic crystal
structure of the LaFeOs perovskite!.

The investigations of the distorted cubic parent crystal structure of the LaFeO3 per-
ovskite revealed, that there are two primary order parameters, the R4+ and the M3+
modes?, which correspond to modes which allow the FeOg octahedra to tilt. Besides
the primary order parameters, there exist three secondary modes, namely the modes
R5+, X5+ and M2+, which can be either attributed to shifts of the lanthanum cation
or to distortions of the FeOg4 octahedron. A full overview of all symmetry modes and
their influence on different atomic positions is given in table 4.9.

For a possible continuous structural phase transition of the crystal structure from
space group Pm3m to space group Ibmm the primary order parameter R4+ is re-
quired in order to tilt the FeOg octahedra into the corresponding position. Further
the secondary parameter R5+ is required in order to induce a slight distortion of
the FeOg octahedron and to shift the lanthanum cation along the crystallographic a-
direction. For a further continuous structural phase transition of the crystal structure
from space group Ibmm to space group Pbnm the primary order parameter M3+ must
be activated, which is responsible for a rotation of the FeOg octahedron around the
crystallographic c-axis. In addition the secondary modes M2+ and X5+ are required
in order to distort the FeOg octahedron further. The X54 mode is also responsible
for a shift of the lanthanum cation along the crystallographic b-direction. As a re-
sult, the pressure dependent structural second order phase transition in the LaFeOj3
perovskite from space group Ibmm to the subgroup Pbnm can be described by the

1 For the description of a simple ABO3 perovskite in space group Pm3m, there exist two different
possibilities. The first possibility is to place the A cation in the cube corner and therefore on
Wyckof! site 1la (B cation on Wyckoff site 1b and the oxygen anion on Wyckoff site 3c) and the
second possibility is to place the A cation in the cube center on Wyckoff position 1b (B cation
on Wyckof! site 1a and the oxygen anion on Wyckoff site 3d). As the labeling of the irreducible
representations and therefore the labeling of the symmetry modes are highly dependent on the
given parent structure, one has to choose a standard setting in order to make different tilting
descriptions with symmetry modes comparable. The commonly accepted standard setting is
given by placing the A cation to Wyckoff site 1b (as can be seen by the mode labeling given in
the literature [228-230]).

2 The labeling of the irreducible representations and therefore the mode description follows the
notation of Miller and Love [71].



110 4 High pressure in situ investigations of LaFeQOs

Table 4.9: Symmetry modes (denoted with a*) and strain modes (denoted with sx)
as determined from ISODISTORT [64] for the group-subgroup relationships in the
LaFeOg3 perovskite using a cubic parent structure with space group Pm3m. The mode
description follows the notation of Miller and Love [71].

Name | Mode description Influence on
al Pm3m[1/2,1/2,1/2]R5+(0,a,a)[Lal:b]T1u(a) | La,
a2 Pm3m[0,1/2,0]X5+(0,0,0,0,a,a)[Lal:b]Tlu(a) | La,

a)

[

)

[ [
a3 Pm3m|1/2,1/2,1/2]R4+(0,a,-a)[O1:d]Eu(a) | O1,, 02,
ad Pm3m|1/2,1/2,1/2]R5+(0,a,a)[O1:d]Eu(a) O1,, 02,
ab Pm3m[0,1/2,0]X5+(0,0,0,0,a,a)[O1:d]Eu(a) | O1,
a6 Pm3m[1/2,1/2,0]M2+(a,0,0)]
[
[
[
[

[
O1:d]A2u(a) 02,, 02,
a’ Pm3m[1/2,1/2,0)M3+(a,0,0)[O1:d]Eu(a) 02,, 02,
sl Pm3m|0,0,0/GM1+(a)strain(a) Lattice parameter
s2 Pm3m|0,0,0/GM3+(a,0)strain(a) Lattice parameter
s3 Pm3m|0,0,0]GM5+(a,0,0)strain(a) Lattice parameter

three symmetry breaking parameters M3+, M2+ and X5+, where the M3+ mode can
be regarded as primary order parameter and the M2+ and the X54 mode can be
regarded as secondary modes.

4.4 4.1 Sequential Rietveld refinement

The power of the symmetry mode concept becomes evident in the case of the LaFeO3
perovskite under high pressure. As the secondary mode M2+ has an amplitude which
is 25 times lower compared to the M3+ tilting mode, it can be safely set to zero even in
the low-symmetric Pbnm phase. Due to this fixing of the M2+ mode it can be expected
that the refinement is more stable compared to the sequential Rietveld refinements in
approach A and B. That this is intriguingly the case can be seen by the comparison of
the R, values of the sequential refinements between the traditional atomic coordinate
approach (A) and the symmetry mode approach (C) in figures 4.20a)-d).

For all measurement series with all pressure media it can be seen that an enhance-
ment of the refinement quality, especially at higher pressure values, can be achieved.
This enhancement at higher pressure values can be attributed to the way how the
different atomic coordinates are constrained by the same symmetry modes®.

The refined pressure dependent amplitudes of all symmetry and strain modes are
shown in figures 4.21 and 4.22, whereas the results of the lattice parameters, the unit
cell volume, the atomic coordinates as calculated from the amplitudes of the symmetry
modes, the overall isotropic atomic displacement parameter and the constrained phe-

nomenological Gaussian and Lorentzian strain parameter can be found in appendix
H.

1 For instance the Ol x- and O2 z-coordinate are crosswise constrained by the R4+ and Rb5+
symmetry modes.
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Figure 4.20: Pressure dependent weighted residual values (R,y,) for the a) nitro-
gen (first run), b) 4:1 methanol-ethanol (second run), c) argon (third run) and d) 4:1
methanol-ethanol (fourth run) measurement series of the high pressure synchrotron
X-ray powder diffraction measurements of the LaFeO3 perovskite.

In general, the application of strain modes! is not a necessary requirement in order
to model pressure dependent lattice parameters, however, it is an exemplary case in
order to show, that they are also applicable for the LaFeO3 perovskite.

4.4 472 Parametric Rietveld refinement

Similar to the parametric Rietveld refinement in approach A and B, only the methanol-
ethanol measurement series of the fourth run will be used in order to perform a para-

1 Strain modes are a possibility how ISODISTORT [64] can treat the changes in the lattice pa-
rameters, if the lattice parameters of the subgroup are not simply derived by the multiplication
of integer transformation matrices to the parent space group. According to the ISODISTORT
manual each strain mode consists of a linear combination of the six strain components, exx, eyy,
ezz, €yz, exz, exy [64].
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Figure 4.21: Pressure dependent amplitudes of the symmetry modes for the LaFeOgs
perovskite (continued in figure 4.22).
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Figure 4.22: a) Continued pressure dependent amplitudes of the symmetry modes
of the LaFeO3 perovskite from figure 4.21. b)-d) pressure dependent amplitudes of the
strain modes.

metric Rietveld refinement of approach C.

In contrast to the lattice parameters, it is in general not possible to model the strain
modes by equations of state as a single lattice parameters has not necessarily a linear
relationship with a single strain mode®. Therefore, the strain modes in the paramet-
ric Rietveld refinement were replaced by ordinary lattice parameters, which can be
modeled with a Murnaghan EoS as in approach A and B. An overview of the para-
metrically determined EoS parameters is given in table 4.10. The deviation of the EoS
parameters from the EoS parameters determined for the sequential Rietveld refinement
of approach A are similarly explained as in subsection 4.4.2.2.

1 In general, the lattice parameters are calculated by a linear transformation of a linear combination
of strain modes. Therefore there is no mathematical necessity, why a single strain mode should
show a behavior which can be modeled by an EoS.
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Table 4.10: Linear moduli, corresponding pressure derivatives and lattice parame-
ters at ambient conditions of the LaFeOs perovskite determined by an inverted Mur-
naghan EoS [214] from parametric Rietveld refinement of the second 4:1 methanol-
ethanol measurement series (fourth run) up to the hydrostatic limit (approximately
9.8 GPa [210]). Please note that in the parameterized region, only 4 data points are
present.

Murnaghan EoS
ao (A) 5.557(1)
By, (GPa) 216(6)
B, 7.8(9)
by (A) 5.563(1)
By, (GPa) 153(3)
By, 1.9(4)
co (A) 7.854(1)
By, (GPa) 182(3)
By, 0.6(5)

From the investigation of the behavior of the amplitudes of the different symmetry
modes in the sequential Rietveld refinement it is obvious, that only the X5+ mode with
the amplitudes a2 and a5 can be modeled by the former used power-law behavior. The
reason for that is simply, that these modes are individually connected with the La y-
and O1 y-coordinates. All other atomic coordinates are given as linear combinations of
different symmetry modes and therefore there exists no mathematical necessity, why a
single symmetry mode must obey a power-law behavior, as was already stated above
for the case of the strain modes and EoS. The only exception is given by the amplitude
a6 of the M2+ symmetry mode, as the amplitude was almost zero in the sequential Ri-
etveld refinement and was therefore fixed to zero in the parametric Rietveld refinement.

The behavior of the parameterized symmetry modes in the parametric Rietveld re-
finement together with the corresponding values of the sequential Rietveld refinement
are shown in figures 4.23a)-c).

As the a2 and a5 amplitude belong to the same irreducible representation, they must
be modeled by a common critical exponent. This procedure is identical to the proce-
dures of the common critical exponent in approach A and B and can be attributed
to the collective atomic motion, which must occur in order to result in a structural
second order phase transition. From the parametric Rietveld refinement of the mode
amplitudes, the critical pressure value can be determined to P..;; = 21.0(12) GPa,
which agrees also within one estimated standard deviation with the value determined
from sequential and parametric refinements using approach A.

Finally, an overview of the differences between the parameters in the sequential and in
the parametric Rietveld refinement of the symmetry mode approach is given in table
4.11 and the quality comparison of the R,,, values of the parametric Rietveld refine-
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Figure 4.23: Parameterized pressure dependent amplitudes of the symmetry modes
X5+ and M5+ of the LaFeOgs perovskite. The modeling of the amplitudes of the X5+
mode was done using a common critical exponent.

ment against the R,, values of the sequential Rietveld refinement is given in figure
4.24).

4.4.5 Approach D: Refinement with rotational symmetry modes of a rigid
body

Structural variations within a crystal structure can normally be regarded as a collective
motion of atoms. Therefore, in order to get a deeper understanding of such collective
atomic motions, it is advisable to find a model which describes the collective atomic
motion as a whole. The usage of rigid bodies and/or constrainable atomic groups in
Rietveld refinements is a first step towards to such a holistic approach. Besides the
intuitive rigid body approach, also the symmetry mode concept gives in parts such
a holistic approach, as the different atomic shifts can be sometimes constrained by
a single irreducible representation. Although both approaches have their strengths,
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Table 4.11:

Incomplete overview of used parameters in the sequential and paramet-

ric Rietveld refinement of approach C. The term “refined” in the column of the para-
metric Rietveld refinements denotes that the parameter was individually refined for

each diffraction pattern.

Sequential

Parametric

Background
Lattice parameters a, b, ¢

Atomic coordinates:
La., Fe,, Fe,, Fe,, O1,
Symmetry modes:

al

a2

a3
a4

ab

ab
a7

Phenomenological strain
parameter

Overall isotropic atomic
displacement parameter
Scale factor

Zero shift

Spherical harmonics for
anisotropic peak
broadening (if required)

refined
calculated from
three refineable
strain modes

fixed
refined

refined up to P..;
above fixed

refined
refined

refined up to P..;
above fixed

fixed to zero
refined up to P,
above fixed

refined

refined

refined
fixed

refined

refined

Murnaghan EoS up to the
hydrostatic limit of 9.8 GPa,
above fixed to sequential results

fixed

refined

power-law equation up to
the parametrically
determined P.,,;,

above automatically fixed
refined

refined

power-law equation up to
the parametrically
determined P.,,;,

above automatically fixed
fixed to zero

refined up to P,

above fixed

refined

refined

refined

fixed

refined
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Figure 4.24: Comparison between the R,,, values of the sequential and parametric
Rietveld refinement of approach C.The congruence of the R,,, values indicates the
correctness of the applied physical constraints.

they have also some weaknesses. For instance if in the rigid body/constrainable atomic
group approach, too many internal degrees of freedom must be used or if in the sym-
metry mode approach too many irreducible representations are required in order to
give an easy description of the collective atomic motions.

Recently a new approach came up, where both methods, rigid bodies and symmetry
modes, are naturally combined [231]. This new approach uses rotational symmetry
modes, which are able to rotate a rigid body or a constrainable atomic group in a
crystal structure, therefore these rotational symmetry modes give direct access to
the polyhedral tiltings in crystal structures for instance to octahedral tiltings in per-
ovskites. In detail, the rigid body or constrainable atomic group is rotated around an
unique rotation axis, which is given by a vector, whose components are in turn given
by the rotational symmetry modes. Due to this reason the length of the vector is
defined by the three rotational symmetry modes. Furthermore, the degree of rotation
of the rigid body or the constrainable atomic group is given by the length of this
vector, which ensures a natural connection between the rotation of the rigid body or
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the constrainable atomic group and the unique rotation axis!.

In the case of the Rietveld refinement of the high pressure synchrotron X-ray powder
diffraction data of the LaFeOj perovskite, the three rotational symmetry modes can
be determined by the ISODISTORT software [64], using as parental space group the
space group Ibmm instead of the perovskite aristotype space group Pm3m?. Unfor-
tunately, the constrainable atomic group from approach B cannot be maintained, as
the bond length r3 was calculated from two rotation angles, which do not exist in
the approach of rotational symmetry modes of a rigid body. Therefore a new con-
strainable atomic group had to be constructed, which is similar but not equal to the
constrainable atomic group in approach B (see figure 4.25).

Likewise to the constrainable atomic group in approach B, the bond length r3 is
defined between the central Fe?™ cation and the O1 anion, the bond length r2 is
defined between the central Fe?" cation and the O2; anion and the bond angle al2 is
defined between the O1-Fe-O2; atoms. Due to the total number of degrees of freedom,
which amounts to 5 for the traditional atomic coordinates in approach A, one degree of
freedom must be constrained to another parameter of the refinement. From approach
B, it is known, that such a suitable constraint can be found for the pressure dependent
bond length 3, which could be calculated by the lattice parameter ¢ and two rotation
angles. As the degrees of freedom of all three rotation angles are replaced by the
rotational symmetry modes, another constraint than in approach B had to be found.
Such a constraint can be given by the definition of another angle a1l between the
O1 anion and a dummy atom X1 which has zero occupancy and therefore does not
influence the refinement. The position of the dummy atom is defined in such a way,
that the distance between the dummy atom and the Fe?* cation is always parallel to
the crystallographic c-axis. The reason for the introduction of such a dummy atom
is simply a technical one, as the TOPAS program [57] does not allow the calculation
of the angle all between the O1 anion and the crystallographic c-axis. With this
introduction of the dummy atom, TOPAS is able to calculate intrinsically the angle
all, therefore the angle all is not an additional refineable parameter. Knowing the
angle between O1, Fe and X1 it is then possible to modify equation 4.7 to a new form,
as the bond length r3 can still be expressed as a projection onto the c-axis:

o 1
4 cos(all)

With this definition, only the pressure dependent bond length 72 and the pressure
dependent bond angle a12 are refineable parameters. Therefore, the total number of

r3 (4.8)

1 Mathematically it can be shown, that rotations around three coordinate axes can be combined into
a rotation around a unique axis, as the successive multiplication of a vector by three rotational
matrices can be converted into a single rotational matrix.

2 The reason for the adoption of the lower symmetric space group is simply, that this new crys-
tallographic approach can be investigated having fewer dependencies in contrast to the higher
symmetric aristotype space group.
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Figure 4.25: Schematic picture for the applied constrainable atomic group for the
pressure dependent Rietveld refinement of the LaFeOg perovskite. The constrainable
atomic group is build by the Fe3T cation in the middle of the picture and the oxygen
anions O1 and O2;. The full octahedron which is received by symmetry operations of
space group Pbnm is shown in semi-transparent. The unique rotation axis is build by
the Fe?* cation and a dummy atom X2 with zero occupancy. Further explanations of
this constrainable atomic group are given in the text.

degrees of freedom for the FeOg octahedron is the same as in approach A and B.

In addition to the degrees of freedom for the FeOg octahedron, the La x- and y-
coordinates must be modeled by ordinary symmetry modes' and the lattice parameters
are treated by strain modes as integrated in ISODISTORT. An overview of the different
symmetry modes, strain modes and rotational symmetry modes is given in table 4.12.

4.4.5.1 Sequential Rietveld refinement

That the new approach of the rotational symmetry modes of a rigid body (abbreviated
in the following as RBSM) is competitive to the other approaches can be clearly seen

1 Another possibility would be to treat these coordinates by the traditional atomic coordinate
approach, as different approaches can be combined within the same Rietveld refinement.
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Table 4.12: Symmetry modes (denoted with ax), rotational symmetry modes (de-
noted with mms) and strain modes (denoted with sx) determined from ISODISTORT
[64] for the group-subgroup relationships in the LaFeOs perovskite using the higher
symmetric space group Ibmm as parent structure. The mode description follows the
notation of Miller and Love [71].

Name | Mode description Influence on
al Ibmm|0,0,0|GM1+(a)[Lal:e]Al(a) La,
a2 Ibmm[1,1,1]X4+(a)[Lal:e|Bl(a) La,

[1,1,1]

mml | 7bmm[0,0,0lmGM1+(a)[Fel:b]Ag(a) | “RB” rotation
mm?2 | [bmm[1,1,1)mX4+(a)[Fel:b|Bg 1(a) | “RB” rotation
mm3 | [bmm[1,1,1)jmX4+(a)[Fel:b|Bg_2(a) | “RB” rotation
sl Ibmm]0,0,0|GM1+(a)strain_ 1(a) a

s2 Ibmm]0,0,0]GM1+(a)strain_ 2(a)
s3 Ibmm]0,0,0]GM1+(a)strain_ 3(a)

if the pressure dependent R, values are compared to the R,,, values of the traditional
atomic coordinate approach (see figure 4.26a)-d))

The quality of the different refinements given by the R,,, is comparable, although at
higher pressure values, the R,, values of the RBSM approach are slightly enhanced.
The sequentially refined pressure dependent values of the bond lengths and the bond
angles are presented in figures 4.27a)-d)!, whereas the results of the refinement of the
amplitudes of the symmetry modes and the rotational symmetry modes are shown in
figures 4.28a)-e). The rotation angle given in figure 4.28f) is calculated from the three
rotational symmetry modes.

The pressure dependent values of the atomic coordinates of the LaFeOgs perovskite,
which are calculated from the symmetry modes and the constrainable atomic group
in cooperation with the rotational symmetry modes can be found in appendix I. In
appendix H, also the pressure dependent results of the the overall isotropic atomic dis-
placement parameter and the constrained phenomenological Gaussian and Lorentzian
strain parameter are given, as well as the unit cell volume and the lattice parame-
ters, whereas the latter mentioned lattice parameters are calculated by the pressure
dependent amplitudes of the strain modes, which are presented in figure 4.29.

In contrast to the strain modes of approach C, fortunately the strain modes in ap-
proach D are not a set of linear equations, as a single strain mode can be directly

1 Interestingly, the TOPAS refinement program calculated quite unreasonable estimated standard
deviations. Such unreasonable high estimated standard deviations can occur, if the correlation
between the parameters becomes too high, which seems to be the case for this set of parameters,
as the correlation matrix of the refined and calculated parameters r3, r2, al2, all, mml, mm2
and mm3 gives a 100% correlation between each pair of the mentioned parameters.
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Figure 4.26: Pressure dependent weighted residual values (R,,) for the a) nitro-
gen (first run), b) 4:1 methanol-ethanol (second run), c) argon (third run) and d) 4:1
methanol-ethanol (fourth run) measurement series of the high pressure synchrotron
X-ray powder diffraction measurements of the LaFeO3 perovskite.

transformed via a linear transformation to its corresponding lattice parameter!. The
straightforward proportionality between strain modes and lattice parameters opens up
the possibility to model phenomenologically the strain modes by “linearized” and in-
verted EoS (which was done in the parametric Rietveld refinement), which are normally
only used for the modeling of the pressure dependent lattice parameters.

4.4 5.2 Parametric Rietveld refinement

Similar to the parametric Rietveld refinement in approach A, B and C only the
methanol-ethanol measurement series of the fourth run was used in order to perform

1 The reason for that is, that the group-subgroup relation is chosen within the same crystal system
and that both space groups have the same setting, therefore the transformation matrix between
the lattice parameters of both orthorhombic phases is given by the unit matrix.
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Figure 4.27: Pressure dependent a)-b) bond lengths and c)-d) bond angles of the
FeOg octahedron in the LaFeOs perovskite. Please note that the bond length r3 is
calculated from the lattice parameter ¢ and the bond angle all via equation 4.8 and
that the bond angle all is calculated intrinsically by the refinement program.

a parametric Rietveld refinement using approach D.

As already stated in the last subsection, it is possible to model phenomenologically the
amplitudes of the strain modes by “linearized” and inverted EoS. Such a phenomeno-
logical parameterization of the amplitudes of the strain modes can be for instance
done with the Murnaghan EoS up to the hydrostatic limit of 9.8 GPa, which is shown
in figures 4.30b)-d)*.

In figure 4.30a) also the modeling of the amplitude of the X4+ mode, which is
responsible for the y-coordinate shift of the lanthanum cation, by a power-law be-
havior according to equation 4.6 is shown. The critical exponent of this symmetry

1 Unfortunately, this modeling implies that no physical values of the linear moduli, etc. can be
given, as no transformation rule between the linear moduli of the amplitudes of the strain modes
and the linear moduli of the lattice parameters could be found.
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Figure 4.28: Pressure dependent a)-b) symmetry modes and c)-e) rotational sym-
metry modes in the LaFeOgs perovskite. The rotation angle shown in f) is calculated
from the rotational symmetry modes and is responsible for the tilting of the FeOg oc-

tahedron.
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Figure 4.29: Pressure dependent amplitudes of the strain modes in the LaFeOg per-
ovskite.

mode parameterization is constrained to the same value of the critical exponent of the
power-law modeling of the rotational symmetry mode mm?2 in figure 4.31b). The para-
metrically determined critical pressure from the power-law behaviors for the structural
second order phase transition in the LaFeO3 perovskite is P..;; = 20.8(35) GPa, which
is within one estimated standard deviation in agreement with the values determined
sequentially and parametrically from approach A. The other two rotational symmetry
modes mm1 and mm3 had no significant influence on the behavior of the rotation
angle as it could be seen from the sequential Rietveld refinements, therefore the values
of these rotational modes were kept fixed to their arithmetic mean (see figures 4.31a)
and 4.31c)).

A general overview of the differences between the parameters in the sequential and
in the parametric Rietveld refinement of the rotational symmetry modes of a rigid
body approach is given in table 4.13.

By comparing the R,, values of the parametric Rietveld refinement with the R,,,
values of the sequential Rietveld refinements (see figure 4.32), it can be clearly stated
that the new approach of rotational symmetry modes of a rigid body is quite compre-



4.4 Sequential and parametric Rietveld refinements of pressure dependent synchrotron X—ra¥25
powder diffraction data with different approaches

Table 4.13:

Incomplete overview of used parameters in the sequential and paramet-

ric Rietveld refinement of approach D. The term “refined” in the column of the para-
metric Rietveld refinements denotes that the parameter was individually refined for

each diffraction pattern.

Sequential

Parametric

Background
Lattice parameters a, b, ¢

Atomic coordinates:
La,, dummy atom X1
Symmetry modes:

al

a2

Rotational modes:
mml

mm?2

mma3

r2 (Fe-021)
r3 (Fe-O1)

ap; (angle O1-Fe-X1)

ap2 (angle 02;-Fe-O1)
Phenomenological strain
parameter

Overall isotropic atomic
displacement parameter
Scale factor

Zero shift

Spherical harmonics for
anisotropic peak
broadening (if required)

“Rigid body” coordinates:

refined
calculated from
three refineable
strain modes

fixed
refined

refined up to P.,.;
above fixed

refined

refined

refined

refined
calculated by eq. 4.8

dependent on
rotational modes
and automatically
determined
refined

refined

refined

refined
fixed

refined

refined

Murnaghan EoS for strain modes

up to the hydrostatic limit of 9.8 GPa,
above fixed to sequential results

fixed

refined

power-law equation up to
the parametrically
determined P.,;,

above automatically fixed

fixed

power-law equation up to
the parametrically
determined P.,;;,

above automatically fixed

fixed

refined

straight line with fixed
slope and intercept
dependent on
rotational modes

and automatically
determined

refined

refined

refined

refined

fixed

refined
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Figure 4.30: Parameterized pressure dependent a) amplitudes of the symmetry
mode X4+ and b)-d) phenomenological parameterized amplitudes of the strain modes
of the LaFeO3 perovskite. The modeling of the amplitudes of the X4+ mode was done
using a power-law behavior with the same critical exponent as for the modeling of the
amplitude of the mm2 (mX4+) mode (see figure 4.31b)).

hensive and can be regarded as being competitive compared to the well-established
approaches A-C.
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Figure 4.31: Parameterized pressure dependent a)-c) rotational symmetry modes of
the LaFeOg perovskite, which are responsible for the tilting of the FeOg octahedron.
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Figure 4.32: Comparison between the R, values of the sequential and parametric
Rietveld refinement of approach D. The congruence of the R,,, values indicates the
correctness of the applied physical constraints.
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4.5 Conclusion

Investigations of the high pressure synchrotron X-ray powder diffraction measurements
of the LaFeOj3 perovskite using different pressure media along the room temperature
isotherm revealed, that this perovskite can be describes by an orthorhombic crystal
structure with space group Pbnm up to a critical pressure value of approximately
20.5(6) GPa, where a structural second order phase transition to another orthorhombic
crystal structure with higher symmetry and therefore with higher structural order
occurs (see figure 4.33).

¢ Sequential
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Figure 4.33: Pressure dependent structural phase diagram of the LaFeOgs perovskite
along the room temperature isotherm.

The observed orthorhombic high pressure crystal structure of the LaFeO3 perovskite
in the pressure range of approximately 20.5 GPa to approximately 38 GPa could be
best described using the space group Ibmm. At approximately 38 GPa a “sluggish”
isostructural first order phase transition with a volume drop of approximately 3%
is observed, which is in agreement with previous synchrotron X-ray powder diffrac-
tion measurements of the orthorhombic lattice parameters and the unit cell volume
performed by Xu et al. [191]. In the present work, due to intensive sequential and
parametric Rietveld refinements, it could be clearly shown, that the first order phase
transition is isosymmetric/isostructural and therefore a transition to a tetragonal crys-
tal structure can be excluded, which is in contrast to the assumptions of Xu et al. [191].
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As was shown by high pressure Méssbauer studies carried out by Xu et al. [191] at
the room temperature isotherm, this first order phase transition can be attributed to
a pressure induced high-spin (S = 2) to low-spin (S = 3) transition of the Fe*" cation,
which was recently underlined by density functional theory (DFT) studies of Javaid et
al. [192, 193].

Besides the structure determinations, the influence of different pressure media onto
the LaFeOgs perovskite was investigated in detail. It could be shown that a pressure
medium with a mixture of methanol-ethanol in a ratio of 4:1 is the most suitable one,
in order to determine the parameters for different equations of state (EoS). Using a
Murnaghan EoS the bulk modulus for the LaFeOj perovskite could be determined to
By = 172(2) GPa, the first pressure derivative of the bulk modulus could be deter-
mined to B, = 4.3(3) and the volume at ambient conditions could be determined to
Vo = 242.87(1) A%

Furthermore, the application of “linearized” and inverted EoS in parametric Rietveld
refinements was investigated and proved to be stable and accurate enough in order to
determine linear moduli directly from refinements of X-ray powder diffraction data.

Different approaches to describe the behavior of the atomic coordinates during a Ri-
etveld refinement by rigid bodies/constrainable atomic groups and symmetry modes
were tested and it was found that from each of these approaches fundamental informa-
tion about the collective motion of atoms can be obtained. Using the symmetry mode
approach it could be shown that primary order parameters in conjunction with sec-
ondary modes are responsible for the structural second order phase transition, whereas
the rigid body/constrainable atomic group approaches were able to give a more di-
rect picture, as the pressure dependent tilting of a single FeOg octahedron within the
LaFeOg3 perovskite can be described as rotation around a unique axis in the case of
the approach of rotational symmetry modes of a rigid body or it can be described by
rotations around the crystallographic axes in the case of the rigid body/constrainable
atomic group approach.

Concerning the multiferroic properties of the LaFeO3 perovskite, it could be shown
that the pressure dependent structural second order phase transitions is a transition
between centrosymmetric / non-polar space groups and therefore no proper ferro-
electricity can be expected in the high pressure phase of the LaFeOs3 perovskite. If
ferroelectricity is maintained at higher pressure values, it can be expected that it is
also induced by a magnetoelectric coupling, as it is the case for the present ferroelec-
tricity at ambient conditions [184]. However, many questions regarding the pressure
dependent ferroic properties and the pressure dependent coupling between them, could
not be resolved by the present study and give rise to future studies.



CHAPTER 5

Temperature dependent in situ investigations of BiCu3CrsOqs

5.1 Motivation

A-site ordered quadruple perovskites' with general chemical formula AA’3B,01, (with
A, A’) B = metallic cations) exhibt a rich field of temperature- or pressure-dependent
electronic phenomena like inter-site charge transfer (ISCT) between the A’ and B
cations [233-246] as well as charge disproportionation (CD) of the B cations [233-
237, 242, 247-254], where the CD often leads also to charge ordering (CO) effects on
the B-site. In addition to the temperature or pressure dependent electronic transi-
tions, magnetic (antiferromagnetic (AFM), ferromagnetic (FM) or ferrimagnetic (FiM))
and /or structural phase transition occur conjointly at the same critical temperature/-
pressure. Simultaneously the conductivity /resistivity is often changing so that the
quadruple perovskites cover the entire range from insulators up to metallic behavior.
An overview of the particular properties of different quadruple perovskites is given in
table 5.1. Common to nearly all of these quadruple perovskites is the paramagnetic be-
havior and the structural description in space group I'm3 in the high-symmetry /high-
temperature phase (a description of the cubic crystal structure is given in section 5.4.1).

Except for the interesting ISCT and CD phenomena in quadruple perovskites even mul-
tiferroic properties were recently discovered. For instance, in CaMn3Mn,O;5, which
shows antiferromagnetic behavior below T.; = 90 K, magnetically induced ferroelec-
tric polarization was found [255, 256]. In outstanding studies of Zhang et al. [255]
and Johnson et al. [256] it could be shown that the electric polarization occurs si-
multaneously with the first antiferromagnetic transition and that the electric polar-
ization is perpendicular to the in-plane rotation of the magnetic moments. Therefore
CaMn3Mn,Oq5 is an interesting example for an improper ferroelectric behavior. An-

1 The term “quadruple perovskite” is chosen as the formula sum is four times the formula sum of
a normal perovskite with general formula ABOg3. The term “quadruple perovskite” follows also
the terminology of Howard et al. [232], who gave a definition for the term “double perovskites”.
Following this terminology by considering the ratio of 1:3 of the cations on the A-site, it is logical
to name these perovskites quadruple perovskites.
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other example for combined antiferromagnetic and proper ferroelectric phenomena is
the quadruple perovskite BiMngMn,Oq5 [257]. Small deviations of the anisotropic
displacement parameters (ADP) of the Bi cation showed that the symmetry must be
lowered from the centrosymmetric space group 12/m to the non-centrosymmetric space
group I'm, which allows for proper ferroelectricity in this compound [257]. These two
examples show nicely that quadruple perovskites are also interesting study objects for
proper as well as improper ferroelectricity.

Detailed experimental and theoretical studies for the quadruple perovskites with Cu
on the A’-site and Fe on the B-site were performed by Yamada et al. [236] and Rezaei
et al. [237], respectively. Depending on the size of the lanthanide cation on the A-site,
these compounds exhibit either inter-site charge transfer (A = La, Pr, Nd, Sm, Eu,
Gd, Tb) or charge disproportionation phenomena (A = Dy, Ho, Er, Tm, Yb, Lu).
The ISCT is accompanied by metal-to-insulator, antiferromagnetic and isostructural
phase transitions with a negative thermal expansion of the volume upon heating. In
contrast to the ISCT, the CD is accompanied by metal-to-semiconductor, ferrimagnetic
and structural phase transitions without drastic volume changes. In addition to the
CD, a rock-salt type charge ordering of the B-site can be observed. Rezaei et al. [237]
performed density functional theory calculations and showed “that the strength of
the crystal-field splitting and the relative energy ordering between Cu 3d,, and Fe 3d
states are the key parameters determining the ISCT/CD in light/heavy lanthanides”.
Although similar ISCT and CD phenomena were found for other quadruple perovskites
(e.g. BiCuzFe 015 (ISCT) [244, 245], CaCugFe O (CD) [242, 247, 248], CeCugFe 019
(CD) [249], YCuszFe 015 (CD) [250]), it is not yet clear if exactly the same mechanisms
are causal for these transitions.

However not only the substitution of the A-site cations leads to different phenom-
ena; also the substitution of the Fe cation on the B-site (for example by Cr cations)
can differ from the above described mechanisms. For instance the two quadruple per-
ovskites LaCu3CrsOq3 and YCu3CrsOq, reveal both an ISCT effect between Cu and Cr
[246], although the yttrium analogue YCuzFe O15 possess a CD effect [250]. Different
from the Fe analogues, they show also a metallic Pauli paramagnetic behavior over
the entire temperature range as well as a positive thermal expansion upon heating,
which is in contrast to the given properties of LaCuszFe;O15 and YCuzFe ;O15 in table
5.1. This is a clear indicator that the mechanisms of the quadruple perovskites with
Cr on the B-site can differ from the Fe analogues.

In order to shed light on the properties of other Cr-containing compounds, the high-
pressure synthesized quadruple perovskite with the chemical formula BiCugCr 015 was
investigated in this work. A detailed synchrotron X-ray Powder Diffraction study
was carried out to reveal all structural properties of this compound in the tempera-
ture range from 100 K to 350 K. The obtained diffraction results are supported by
magnetic susceptibility and electric resistivity measurements.



Table 5.1:

Properties of different quadruple perovskites. Used abbreviations are as follows: inter-site charge transfer (ISCT),

charge disproportionation (CD), positive thermal expansion (PTE), negative thermal expansion (NTE), ferromagnetic (FM), fer-
rimagnetic (FiM), antiferromagnetic (AFM). Please note that for many quadruple perovskites the change of properties occurs
concordantly at the same critical temperature/pressure. Please note also that the classification of the conductivity with met-
al/metallic, semiconductor and insulator is given by the authors in the corresponding literature (often the term semiconductor
covers a huge range of conductivity/resistivity from heavily p-doped semiconductors to heavily n-doped semiconductors). In
general this table gives only an overview of selected publications, thus some information in this table can be already revised.

Quadrul_;)lc ‘ Space group Charge phenomena Volume change lvlag_nctism Metal / semi- Electric resistivity ‘ Literature
perovskite (ISCT, CD) (PTE, NTE) (FM, FiM, AFM) conductor / insulator p (£2-cm)
B = Fe
CaCu3Fes 012 Im3 (T = RT) CD: Ca?FCu;'FejT 07, PTE FiM insulator p~2-10-2 (T = 300 K) [242, 247, 248]
Pn3 (T = 90 K) - ca2+cu2+Fc3+Fc;+o N below T, = 210 K pa~1-10"1 (T =0 K)
CeCusFesO12 Im3 (T = RT) CD: Ce?TCujTFePT0O7, - AFM 7 semiconductor p~ 1(T = 300K) [249]
Im3 (T = 100 K) - Ce4+0u_2+Fej°’+Fe5+o£* below T, pa1-10% (T = 0 K)
T. = 260-280 K
YCuzFesO12 Im3 (T = RT) CD: Y3t CusTFRe] T T07, PTE FiM metal / p~1 (T = 300 K) [250]
Pn3 (T = 100 K) — Y3FcultFed LRt 02 below T = 250 K semiconductor p~1.2-10! (T =0K)
SrCugzFesO12 Im3 (T = RT) Mossbauer: NTE AFM semiconductor p~1(T =300 K) [233-235]
(isostr. transition) cD: sr?*tcultreyto?y below T, = 180 K p A 2-10% (T = 20 K)
— Sr2+0u2+FeBJr Fe‘r’Jr 027
XR
ISCT: Cu2:20+ 4 ped:55+
_ Cu2 35+ + Fe? 43+
LnCusFe 012 Im3 (T = RT) CD: Ln®TCuj T Fe? T 02 PTE FiM metal / [236, 237)
(Ln = Dy, Ho, Er, Pn3 (T = 100 K) — Ln2+Cu§+Feg_JgFei’f501; below T, semiconductor
Tm, Yb, Lu) . = 250-260 K
LnCusgFe 012 Im3 (T = RT) ISCT: L3t CulTFe} 70T 07 NTE AFM metal / [236, 237]
(Ln = La, Pr, Nd, (isostr. transition) — Ln3+Cug+FeZ+Of; below T, insulator
Sm, Eu, Gd, Tb) T, = 360-240 K
with decreasing
Ln size
LaCugFesO12 Im3 (T = RT) ISCT: La®TCu; ' Fe T 0% NTE AFM metal / p~1-10-2 (P = 8 GPa) [238-240]
(isostr. transition) — La®tCul *Fe”o“’* below T, = 393 K insulator p~4-101 (P = 0.5 GPa) [241-243]
BiCugFesO12 Im3 (T = RT) ISCT: B13+cu?+Fc3 75*02* NTE AFM metal / [244, 245]
(isostr. transition) — B13+Cu2+FCZ+()?; below T, = 428 K semiconductor
B = Cr
CaCu3zCrsO12 Im3 (T = RT) Pauli paramagnetic metal pA~1-10-°2 (T = 300 K) [258]
pr4-1074 (T=0K)
LaCu3CrsO12 Im3 (T = RT) ISCT: La3+Cu2+Cr3 75+027 PTE Pauli paramagnetic metal pr6-10"3 (T = 350 K) [246]
(isostr. transition — La3+Cu%+Cr%+()27 pA~10-1073 (T = 0 K)
at T, = 220 K)
YCuzCrsO12 Im3 (T = RT) ISCT: Y3+Cu2+Cr3 75+O27 PTE Pauli paramagnetic metal prR2- 10~3 (T = 350 K) [246]
(isostr. transition — Y3+Cu3+Cr3+O27 pr2-1073 (T =0 K)
at T, = 250 K)
B = Mn
BiCusMn;O12 Tm3 (T = RT) 7 7 FiM (T, = 350 K) semiconductor / b~ 12.5-10 3 (T = 300 K) [248, 259]

metallic

pA~T7-107% (T =0 K)

Continued on next page
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Table 5.1 — Continued from previous page
Quadrul_;)lc Space group Charge phenomena Volume change lvlag_nctism Metal / semi- Electric resistivity Literature
perovskite (ISCT, CD) (PTE, NTE) (FM, FiM, AFM) conductor / insulator p (£2-cm)
CaCu3zMnyO12 Im3 (T = RT) ? ? FM (T, = 355 K) semiconductor p~ 1.8-10° (T = 300 K) [260, 261]
p~0.7-1071 (T =0K)
LaCuzMngO12 Tm3 (T = RT) 7 7 FiM (T, = 361 K) metallic p~1.3-10 T (T = 300 K) [262]
p~0.7-10"1 (T =0 K)
BiMnsMngO12 12/m (T = RT) 7 7 FM (T, = 59 K) insulator / p~1-10% (T = 300 K) [257, 263, 264]
Im3 (T = RT) (spin canting?) semiconductor
depending on AFM (T, = 28 K)
oxygen content for cubic
(for ferroelectricity phase only
Im (T = RT)) AFM (T, = 27 K)
CaMnzMnyO12 Im3 CD: Ca?TMnTMn} 2P T 07 NTE AFM (T.,1 = 90 K) [255, 256, 265]
R3 — Ca?Tmnd ™t MnngMn‘ﬁol% (helical ordered)
(transition interval AFM (T¢ 2 = 48 K)
between T = 409 K (?77)
and T = 448 K)
NaMnsMngO12 Im3 (T = RT - 168 K) CD: NaZtMn3TMn3PT 0% - AFM (T, = 125 K) insulator p~ 1.2 (T = 300 K) [251, 252]
12/m [ C/2m - Na2+Mn§+Mng+Mn§+O§; p~1-10° (T = 100 K) [253, 254]
(T < 176 K) pA~1-10° (T = 100 K)
B=V
MnCuzV40Oi2 Im3 (T = RT / 100 K) Paramagnetic metal p~1.7-10"3 (T = 300 K) [266]
p~1.3-1073 (T =0K)
B = 1Ir
Im3 (T = RT) Paramagnetic metallic p~6.5-10" 1 (T = 300 K) [267]

LaCuglIryO12 ‘

p~50-10"1 (T =0K)

12!

cIoVaHen)lg Jo suolle8iissaul nys ui uspusdsp sunjessdws) g



5.2 Synthesis 135

5.2 Synthesis

High pressure synthesis of the quadruple perovskite BiCuzCr,O15 was carried out at
the National Institute for Materials Science (NIMS) in Tsukuba (Ibaraki) / Japan by
Dr. Hiroya Sakurai' and Dr. Masahiko Isobe. The synthesis of the black colored
powder was done by using a stoichiometric mixture of Bi;O3, CuO, Cr,O3 and CrO,
powders which were sealed in a gold capsule. The gold capsule was then subsequently
pressed applying a pressure of 7.7 GPa and simultaneously heated to a temperature
of 1473 K for 2 hours. For the high pressure synthesis a belt-type apparatus was used.
After this treatment the sample was quenched to room temperature and the pressure
was gradually released. The product of the synthesis is a polycrystalline black colored
pellet.

5.3 Experimental setup

Synchrotron X-ray powder diffraction measurements were performed by Dr. Tomce
Runcevski and Prof. Dr. Robert E. Dinnebier at the National Synchrotron Light
Source (NSLS), Brookhaven at beamline X17B1. The collection of the diffraction pat-
terns was done in Debye-Scherrer mode using a wavelength of A = 0.1839 A(= 67.42
keV) with a Si(311) sagittal focusing double Laue crystal monochromator. Diffracted
X-rays were detected by using a Perkin Elmer image plate detector. The sample was
sealed in a glass capillary of 0.5 mm diameter and cooled/heated with an Oxford
cryostream 700 cold gas blower.

The sample was first measured at room temperature and then cooled down to 100
K in temperature steps of 4 K. Thereafter, the sample was heated from 100 K to
352 K with the same temperature steps. Unfortunately upon cooling the data sets
between 140 K and 106 K are lost, as there was a technical issue with the beam shutter.

The integration of the collected two-dimensional Debye-Scherrer rings to one-dimensional
powder diffraction patterns was subsequently performed by using the computer pro-
gram FIT2D [152]. The parameters which were required for this integration were
determined from a LaBg reference sample.

A simulated two-dimensional heating/cooling Guinier pattern of these temperature
dependent synchrotron X-ray powder diffraction measurements can be found in figure
5.1.

1 Dr. Hiroya Sakura, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki
305-0044, Japan



136 5 Temperature dependent in situ investigations of BiCugCrsO12

T

150
Figure 5.1: Simulated two-dimensional heating/cooling Guinier pattern of the tem-
perature dependent in situ synchrotron X-ray powder diffraction measurements of
BiCu3CrsO19. A first inspection of the graph indicates a reversible first order phase
transition at approximately 188 K. On cooling the beam shutter was closed between
140 K and 106 K. In an interval of approximately 16 K, horizontal streaks with in-
creased intensity can be observed in the simulated heating/cooling Guinier pattern.
It seems that at these values the patterns have a higher intensity potentially due to a
better position of the capillary (possibly caused by the spinning frequency of the cap-
illary). However this small difference in the background intensity does not influence
the refinement as it is compensated by the modeling of the background with variable
Chebyshev polynomials?.
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The magnet susceptibility was measured using a SQUID magnetometer (MPMS,
Quantum Design). The measured temperature range was 5 K to 350 K and the ap-
plied magnetic field strength was between 0 T and 5 T. Measurements of the direct
current (DC) electric resistivity were performed using a Physical Property Measure-
ment System (Quantum Design) in a temperature range of 2 K to 300 K. For the DC
electric resistivity measurement a sample of the size 0.5 x 0.5 x 1.0 mm?® was used.
Measurements (raw data) of the electric resistivity and the magnetic susceptibility
were kindly provided by Dr. Masahiko Isobe.

5.4 Sequential Rietveld refinement of temperature dependent
synchrotron X-ray powder diffraction data

Sequential Rietveld refinements for all synchrotron X-ray powder diffraction data sets
were performed by using the commercial version of the TOPAS 4.2 program [57] of-
fered by the Bruker AXS Corporation. For all data sets the diffraction background
was modeled by refineable Chebyshev polynomials and the peak shape modeling of the
Bragg reflections was done using the fundamental parameter approach [159, 160]. The
zero shift was determined to -0.00368(12)° 26 for the room temperature measurement
and kept fixed for all other temperature-dependent refinements. Peak broadening
of all crystalline phases due to sample dependent effects were modeled by the inte-
grated crystallite size and phenomenological strain macros (detailed explanation of
these macros can be found in the TOPAS 4.2 manual [57] and partially in section 4.4).
The synchrotron radiation was assumed to be 100% horizontally polarized.

5.4.1 Crystal structure at room temperature

BiCu3CrsO1y crystallizes at room temperature in space group I'm3 with cubic per-
ovskite lattice parameters of 2a, x 2a, x 2a, (2a, = 7.3028(1) A with respect to the
primitive cubic lattice parameters of a perovskite a,) and a volume of V' = 389.46(2)
A3, isostructural to other A-Site ordered quadruple perovskites with chemical formula
ACu3CryOq2 (A = La, Y)[246], LnCusFe,O12 (Ln = lanthanide cation)[236], etc. (see
table 5.1 for more examples and see figure 5.3 for a view of the crystal structure at
room temperature. A description of the room temperature crystal structure is given
below). A Rietveld refinement of the synchrotron X-ray powder diffraction data mea-
sured at room temperature structure is presented in figure 5.2. In addition to the
main phase, small amounts of CryO3 (wt% 0.40(14)) and CrO (wt% 0.58(21)) were
identified, which both persist over the entire investigated temperature range. These

2 The same phenomenon was observed for another compound which was measured during the
same measurement period, so it can be excluded that it is a sample dependent effect. The time
dependence which can be estimated by checking the time stamps of the collected raw data seems
to be approximately 12 and/or 16 minutes which corresponds to a very low frequency of 0.00139
Hz and/or 0.00104 Hz, respectively.
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impurities were satisfactory modeled by taking their structural models and refining
the peak shapes and lattice parameters. Additionally to these impurity phases three
other small peaks are observed which possibly belong to another impurity. Unfortu-
nately this impurity could not be identified, therefore the phase was simply neglected
during the refinement. As the peaks of this unidentifiable impurity persist also over
the entire temperature range, they are not considered as superstructure reflections of
the BiCu3CrsOq2 phase as there is no change in intensity upon crossing the phase
transition. Structural details as the Wyckoff positions, the atomic coordinates, the
anisotropic/isotropic displacement parameters as well as the residual factors of the
room temperature Rietveld refinement can be found in table 5.2.
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Figure 5.2: Rietveld plot of the BiCusCrysO;2 quadruple perovskite (BCCO) in
space group Im3 at room temperature. Known impurities like CroOz (wt% 0.40(14))
and CrO (wt% 0.58(21)) were also modeled by the Rietveld method. Unknown impu-
rities are marked by asterisks.



Table 5.2: Structural details as well as the residual factors of the room temperature structure of BiCugCrsO12 in space group
Im3. All positions are fully occupied. Cubic lattice parameter is a = 7.3028(1) A with a cell volume of V = 389.46(2) A3. The
residual factors are: Rpragg = 1.705 %, Rezp = 1.751 %, Ryp = 8.781 %, GOF = 5.015 (as defined in TOPAS 4.2 [57]).

Wy ckoft- Anisotropic displacement parameters (A?)
Atom | psition | X Y i w2 | w33 | w2 | w13 | u23
Bi %a 0 0 0 0.01043(44) | 0.01043(44) | 0.01943(44) 0 0 0
Cu 6b 0 1/2 1/2 0.0005(36) | 0.0097(39) 0 0 0
Cr s8¢ |14| 1/ 1/4 | 0.00272(47) | 0.00272(47) | 0.00272(47) | 0.00062(97) | 0.00062(97) | 0.00062(97)
o) 24g 0 | 0.3057(7) | 0.1809(7) Isotropic displacement parameter B: 0.18(13) (A?)
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The crystal structure of the BiCuzCr O quadruple perovskite at room tempera-
ture is displayed in figure 5.3. Isostructural to the other members of the AA’3B4O15
quadruple perovskite family (A = e.g. lanthanide cation; A’, B = metallic cations)
(for citations see table 5.1) the crystal structure consists of a three-dimensional frame-
work of corner-sharing BOg polyhedra (here B = Cr). Interstitials are occupied by A
cations in an icosahedral environment (here A = Bi) and square-planar coordinated
A’Oy configurations (here A’ = Cu) which are aligned perpendicular to each other.
The square-planar coordination of the A’-site can be explained by the occupation of
this site with Jahn-Teller active cations like Cu®*™ or Mn** cations [248]. In gen-
eral, the nominal oxidation states of this quadruple perovskite can be presented as
Bi**Cuz"Cr}"™*t0%;, which will be later experimentally confirmed by the calculation
of the bond valence sums (BVS) in section 5.4.4. The nominal oxidation state of the
Cr cation with a mixed valence state of 3.75+ explains also the absence of a Jahn-
Teller effect of the CrOg octahedron, as only for Cr?* cations a Jahn-Teller distorted
octahedron can be expected.

Figure 5.3: Crystal structure of the BiCusCrsO12 quadruple perovskite with space
group I'm3 at room temperature. The crystal structure consists of a three-dimensional
framework of corner-sharing CrOg polyhedra. Interstitials are occupied by Bi cations
in an icosahedral environment and square-planar coordinated CuQy4 configurations
which are aligned perpendicular to each other.
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5.4.2 Determination of the crystal structure at low temperatures

As already shown in the simulated two-dimensional heating/cooling Guinier pattern
of the temperature dependent in situ synchrotron X-ray powder diffraction measure-
ments in figure 5.1 in section 5.3 a reversible potential first order phase transition
occurs upon cooling as well as upon heating at a temperature of approximately 188
K. A magnification of the phase transition region upon heating is presented in fig-
ure 5.4. Together with the overview in figure 5.1, this magnification shows that the
intensity of the main Bragg reflections is unaffected during the phase transition and
that additionally only satellite reflections are arising. This behavior suggests that
the room temperature crystal structure is in general preserved and that the phase
transition is leading to a commensurate or incommensurate modulation of the under-
lying quadruple perovskite crystal structure. Another aspect of this magnification is
that the previously assumed potential first order phase transitions seems to be in fact
rather a second order phase transition as the intensities of the satellite reflections are
either slowly decreasing (on heating) or slowly increasing (on cooling) over a certain
temperature range'. This observation of a second order phase transition simplifies
the search for the crystal structure of the new phase, as the new space group can be
found by looking for a subgroup of the parental space group Im3 as a structural phase
transition of second order always obeys group theory.

In order to narrow the possible solution space for a subgroup of the parental space
group I'm3, the propagation vector (or also called modulation vector) of the new com-
mensurate or incommensurate crystal structure must be found. This was done by using
the program K_ Search [83] from the FullProf program suite [83]. A first search for pos-
sible commensurate crystal structures gave a propagation vector of k= (0.5,0.5,0)T.
Other commensurate solutions for propagation vectors which were close to the first
solution are k = (0.5,0,0.5)7 and k = (0,0.5,0.5)7. A second search for incommensu-
rate crystal structures gave propagation vectors which were close to the commensurate
solutions, thus incommensurate solutions were no longer considered.

Investigations with the software ISODISTORT [64] revealed that the subgroup Pn3
can be directly excluded from the search for applicable space groups as this space
group posses a propagation vector of k= (0,0,0)T or k= (1,1,1)T. Interestingly, this
discovery, that the space group Pn3 cannot be used, immediately excludes a phase
transition to a simple rock-salt type order crystal structure as is usually found for
the charge disproportionated quadruple perovskites mentioned in section 5.1. Using
the ISODISTORT software different possible subgroups with a propagation vector of
k= (0.5,0.5,0)T were determined. Probable cubic space groups with matching prop-
agation vectors were quite large in volume therefore smaller unit cells with lower sym-
metry were considered first. As no matching tetragonal space groups could be found by
ISODISTORT, the focus went on to possible orthorhombic and trigonal space groups

1 This interpretation assumes that the investigated sample is of single phase at every temperature
step. It will be later shown that this assumption is justified.
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Figure 5.4: Magnified simulated two-dimensional heating Guinier pattern of the
temperature dependent in situ synchrotron X-ray powder diffraction measurements of
BiCu3Crs015. The observable Bragg reflections of the main phase show no intensity
changes during the phase transition. The potential first order phase transition cannot
be maintained as the intensity of the satellite peaks is increasing/decreasing over a
wider temperature range and therefore a second order phase transition is more likely.

(hexagonal space groups were also not considered by ISODISTORT). Structural fits
of possible space group candidates with orthorhombic and trigonal space groups in
Cmmm and R3, respectively, showed that the observed synchrotron powder pattern
could be almost fitted, except for the problem of unrealistic large anisotropic displace-
ment parameters (ADPs) for the Bi cations. As no other corrections could improve
the fit and reduce the ADPs, a even lower symmetry was considered. As a possible
candidate the triclinic space group P1 with lattice parameters a = 6.3271(467) A,
b = 12.1016(1038) A, ¢ = 12.1015(952) A, a = 117.0501(1308)°, 5 = 99.8813(9171)°
and v = 100.0542(9490)° was tested and the problem of unrealistic ADPs could be
solved. A subsequent check with the software PLATON [268] for missed symmetries
showed that the found triclinic crystal structure can be also described in the mono-
clinic space group C2/m (in a first test of possible monoclinic space groups given by
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ISODISTORT, the necessary origin shift was disregarded, which therefore led also to
large ADPs for the Bi cation, which was the reason why the monoclinic solutions were
at first not considered).

In figure 5.5 the final Rietveld refinement of the powder diffraction data set at a tem-
perature of 100 K of BiCuzCr4O15 in space group C2/m is presented. The monoclinic
lattice parameters at a temperature of 100 K are a = 10.34320(62) A, b = 7.29306(42)
A, ¢ =10.32178(63) A and B = 90.09037(693)°. These lattice parameters can be
transformed into pseudo-cubic lattice parameters by using the given transformation
matrix between space group I'm3 and space group C2/m in appendix J. The cal-
culated pseudo-cubic lattice parameters are a = 7.30042(67) A, b = 7.29306(42) A,
c = 7.31193(47) A, = 90.11883(377)° and o = v = 90°. The monoclinic cell
volume 18 Vonoctinic = 778.6(1) A3 which is twice the unit cell volume of the cubic
room-temperature crystal structure.

500 T=100K ° Yops -
Ycalc
—_— Y -Y
obs ™ "calc

400 | Bragg Positions |
X *  Unknown
impurities

300 F .

200

100

Intensity (arb. units)
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Figure 5.5: Rietveld plot of the BiCu3CrsO12 quadruple perovskite in space group

C2/m at a temperature of 100 K. Known impurities like CraO3 and CrO were also
modeled by the Rietveld method. Unknown impurities are marked by asterisks.

The atomic positions at a temperature of 100 K were determined by the refinement
of the amplitudes of symmetry modes which in turn were calculated using the ISODIS-
TORT software [64]. The details of the final Rietveld refinement at a temperature of
100 K with the atomic positions and the isotropic and anisotropic displacement pa-
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rameters can be found in table 5.3. The residual factors of this Rietveld refinement
can be found in the caption of table 5.3.



Table 5.3: Structural details as well as the residual factors of the low-temperature monoclinic structure (at a temperature of

100 K) of the BiCu3CrsO12 quadruple perovskites. The space group is C2/m. All positions are fully occupied. Monoclinic lat-

tice parameters are a = 10.3432(6) A, b = 7.2931(4) A, ¢ = 10.3218(6) A, B = 90.09(1)° with a cell volume of V = 778.6(1) A3.
The residual factors are: Rprqgg = 2.005 %, Reyp = 1.355 %, Ryyp = 6.077 %, GOF = 4.485 (as defined in TOPAS 4.2 [57]).

Atom Wy ckoff- < , Anisotropic displacement parameters (AQ)
Position ull u22 u33 ul2 ul3 u23

Bi 1 0.7756(5) 0.2485(5) | 0.00571(97) | 0.0111(19) | 0.0129(23) | 0.0080(35)" | -0.0087(23) | 0.0121(78)"
Cul 1 0.2535(1) 0.2487(1)

Cu2 2d 0 1/2

Cu3 2a 0 0 Overall isotropic displacement parameter B for Cu: 0.15(3) (A?)
Cu4 2b 0 0

Cub 2c 0 1/2

Crl 8] 0.0083(8) 0.2473(2)

Cr2 4f 1/4 1/2 Overall isotropic displacement parameter B for Cr: 0.05(3) (A?)
Cr3 4e 1/4 0

01 4i -0.0019(6) 0.3033(6)

02 4i 0.4937(6) 0.8060(6)

03 4i 0.8239(6) 0.4853(6)

8; ng 82?3?52; _(?55320((46)) Overall isotropic displacement parameter B for O: 0.0(2) (A?)

06 8j 0.3492(4) 0.8414(4)

o7 8j 0.9022(5) 0.0996(5)

08 8j 0.3962(5) 0.5924(5)
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The crystal structure of BiCu3zCr,O15 at a temperature of 100 K is presented in
figures 5.6a)-c). As the Cr cation splits into three distinct Wyckoff positions, a different
color coding was used for the three different Cr positions (Crl = orange, Cr2 = purple,
Cr3 = light blue). With this color coding it is obvious that the CrOg octahedra show
a columnar ordering along the b axis. In contrast to the Cr position, the Cu position
splits into 5 distinct crystallographic positions, however the square-planar coordination
of the Cu cation is preserved. The square-planar CuO, configuration of the Cu4 and
the Cub cation is oriented parallel to the a-c-plane, whereas the configuration of the
Cul cation is perpendicular to the [-101] direction and the configuration of the Cu2
and Cu3 cations is perpendicular to the [101] direction. In general, the motif of the
crystal structure in the cubic phase is preserved in the monoclinic crystal structure
upon cooling.

The above described crystal structure of the BiCu3CrsO15 quadruple perovskite at
100 K is isostructrual to the recently discovered crystal structure of the quadruple
perovskite NaMn3zMn,Oq5 by Prodi et al. [254]. In this compound the manganese
cation at the B position splits into the Wykoff positions 8j, 4e and 4f likewise to the
Cr cation in BiCu3CrsOq5. Later it will be shown that even similar oxidation states
in equivalent positions will be adopted (see section 5.4.4).

The coordination spheres around the Cr and Bi cations at a temperature of 100 K
are shown in figures 5.7a)-e). From these figures it is already obvious that the bond
lengths within each polyhedron can differ considerably and that all of these polyhedra
are no longer regular at low temperatures. Especially the coordination sphere of the
Crl cation exhibits a huge distortion of the Cr(1)Og octahedron as the inner bond
lengths between the Crl cation and the next oxygen ligands cover a range of 1.802 A
to 1.985 A. A similar distortion can be found for the Cr(2)Og octehdron with a range
of inner bond lengths between 1.862 A to 2.039 A. In contrast to the Cr(1)Og and
Cr(2)Og octahedra the Cr(3)Og octahedron is much less distorted as the difference
of inner bond lengths is smaller than 0.03 A (1.955 A to 1.980 A). Besides the dis-
torted CrOg octahedra a distortion at low temperatures can be also observed for the
BiO5 icosahedron. Here the bond lengths between the central Bi cation to the oxygen
cations differ from 2.369 A to 2.841 A. The development of different bond lengths and
therefore the development of the distortion over temperature will be described in the
next section.

1 Mathematically the anisotropic displacement parameters (ADPs) ul2 and u23 parameter must be
zero. Unfortunately no constraints were applied for the ADPs in this refinement. All results which
are presented here for the low-temperature phase of BiCu3zCrsO12 were refined without these
constraints. In order to guarantee that these faults do not influence the results too much, selected
temperatures were refined with the correct constraints for the ADPs for the low-temperature phase.
Due to this reason the author can guarantee, that the error in the atomic positions and therefore
the error in bond lengths and calculated bond valence sums is smaller than one estimated standard
deviation compared to the refinements with the correct constraint ADPs.
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(c) view along b-direction

Figure 5.6: Projections of the crystal structure of the BiCu3CrsO12 quadruple
perovskite in space group I'm3 at a temperature of 100 K: a) view along the a-axis,

b) view along the c-axis and c¢) view along the b-axis. Likewise to the crystal struc-
ture at room temperature, the low temperature crystal structure consists of a three-
dimensional framework of corner-sharing CrOg polyhedra. Interstitials are occupied by
Bi cations in an icosahedral environment and square-planar coordinated CuQOy4 config-
urations which are aligned perpendicular to each other. In contrast to the room tem-
perature crystal structure, three different Cr positions are present (these different Cr
positions are color coded: Crl = orange, Cr2 = purple, Cr3 = light blue). The view
along the b-axis reveals that the different Cr positions are ordered in columns.



148 5 Temperature dependent in situ investigations of BiCugCrsOq2

(c) Coordination sphere of Cr3 (d) Coordination sphere of Bi (close)

(e) Coordination sphere of Bi (distant)

Figure 5.7: Coordination spheres at a temperature of 100 K around the a)

Crl cation, the b) Cr2 cation, the ¢) Cr3 cation and the d)+e) Bi cation of the
BiCu3Crs012 quadruple perovskite. Please note the distorted character of the corre-
sponding polyhedra of Crl, Cr2 and Bi.
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5.4.3 Results of the sequential Rietveld refinement with symmetry modes

In order to get an overview and deeper insight into the structural phase transition
all synchrotron X-ray Powder Diffraction patterns were treated with a sequential Ri-
etveld refinement. In this sequential Rietveld refinement atomic coordinates of all
patterns were refined using the amplitudes of a symmetry mode model, which was
obtainedfrom the ISODISTORT software [64] (for this purpose the group-subgroup
relationship between the cubic Im3 phase and the monoclinic C'2/m phase was used).
A list of order parameters and a list of all symmetry modes which were obtained by
ISODISTORT can be found in appendix K.

The refinement of the monoclinic lattice parameters was performed by refining the
pseudo-cubic lattice parameters and then transforming these lattice parameters with
the transformation matrix given in appendix J to the monoclinic ones. This method
allows a simultaneous investigation of the pseudo-cubic as well as of the monoclinic
lattice parameters. The result of the refined lattice parameters is presented in figure
5.8.

Examining the behavior of the pseudo-cubic lattice parameters in figure 5.8 it is ob-

vious that the cubic-monoclinic phase transition is completely reversible as the cooling
and the heating data points are almost congruent. By looking carefully at the behav-
ior of the different lattice parameters it can be deduced that the pseudo-cubic lattice
parameters a and ¢ are potentially showing a power-law behavior (which is expected
for a structural second order phase transition according to Landau theory [68]), in
contrast to the pseudo-cubic lattice parameter b. This situation becomes even clearer,
if the monoclinic lattice parameter 3 is considered. The graph of this lattice parameter
obviously shows a first order phase transition, as this angle does not approach the 90°
angle in the cubic phase by a typical power-law behavior. Due to these reasons the as-
sumption of a second order phase transition cannot be longer sustained!. Fortunately,
this observation does not influence the modeling of the diffraction data by symmetry
modes as the group-subgroup relationship between Im3 and C2/m is preserved and
the values of the amplitudes of the symmetry modes must not necessarily be continu-
ous.
In the same range (between &~ 168 and 188 K), where the monoclinic § angle shows
something like a peak, an interesting behavior of the monoclinic unit cell volume can
be observed. In this region, the monoclinic unit cell volume shows a steep continuous
decrease of the volume which can be understood as a large negative thermal expansion
upon heating. This is in high contrast to other Cr-containing quadruple perovskites
like LaCu3CrsO19 and YCuszCrsO19, where a positive thermal expansion was observed
[246].

1 Another evidence for a weak first order phase transitions is given by the determination of the peak
width. Using the fundamental parameter approach, the peak width in TOPAS is modeled by the
Gaussian and Lorentzian crystallite size and the phenomenological Gaussian strain component.
The typical weak first order phase transition behavior over temperature of this components is
shown in figure L.1 in the appendix.
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Figure 5.8: Pseudo-cubic lattice parameters, monoclinic 5 angle and monoclinic
unit cell volume upon heating and cooling of the Rietveld refined synchrotron X-ray
powder diffraction patterns of the BiCuszCr O quadruple perovskite. The phase
transition at a temperature of approximately 188 K is shown by the vertical dotted
line. Please note that there are no data points for the cooling arm between 140 K and
106 K due to the closed beam shutter.
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The observed negative thermal expansion of the monoclinic unit cell volume can be
satisfactory modeled by the simple assumption of a linear thermal expansion of the
volume given by the following equation:

Vmonoclinic(T) = %,monoclinic . (1 + Qy - AT) . (51)

Here Viyonociinic is the monoclinic unit cell volume at a given temperature T, Vi monoctinic

is the monoclinic unit cell volume at a temperature of 0 K and «y is the coefficient of
the linear volume expansion.
If a fit of the monoclinic unit cell volume in the region between 168 K and 188 K is
made, a linear volume contraction ay of —111(2)-107% K=! can be obtained. This value
is even higher than the value which was reported by Yamada et al. for SrCuskFe ;019
(SCFO) [233]. They reported a linear expansion coefficient of ajinear.scro = —2.26 -
107 K~'. As SCFO is a cubic quadruple perovskite during all phases, this value
can be easily transformed to the isotopic volume expansion value by the following
equation:

av.50r0 = 3 * Minear,scro = —67.8 - 107 0K~ : (5.2)

This shows intriguingly that the negative volume expansion value for BiCuzCr O19
is almost twice the value of the SrCuszFe,O15 quadruple perovskite. At this point
one should not draw the conclusion that SrCuszFe;O1, and BiCuzCrs;O;5 show similar
ISCT and CD behavior as will be later seen during the bond valence sum calculations
in section 5.4.4.

However, the behavior of the lattice parameters and unit cell volume within the tem-
perature range from 168 K to 188 K is still not yet clear. Detailed investigations
showed that this “transition region” is most likely single phase and that it can be
only accurately modeled by the C'2/m space group. In general this “transition region”
can be observed in the investigation of almost all refined and subsequent calculated
parameters, for which reason this region will be assigned to the monoclinic phase as
the possibility of an additional phase is speculative.

The behavior of the amplitudes of the symmetry modes is shown in figures 5.9a)-
e). From these figures, especially from figures 5.9a)-c), it is obvious that the heating
and the cooling values in the monoclinic phase are mirror symmetric. Such a behavior
of the amplitude of the symmetry modes can happen, if there is a bigger gap between
the refinement of two consecutive diffraction patterns (as it is the case when we start
with a sequential Rietveld refinement of the cooling arm and approach the gap where
the beam shutter was closed and therefore diffraction data is missing). In such cases
the values of the amplitudes can jump to symmetry equivalent values if the crystal
structure allows for such a behavior. In general this does not influence the behavior
of bond lengths, etc., however the following investigations of bond lengths and bond
valence sums will be done by simply investigating the heating arm.

The order of the phase transition can also be investigated by fitting a power-law be-
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Figure 5.9: Temperature dependent amplitudes of the symmetry modes which are
responsible for atomic coordinate shifts of the a) Bi cations, b) Cu cations, c¢) Cr
cations and d) oxygen cations in the BiCuzCrsO12 quadruple perovskite. A detailed
investigation of the a2 mode with a fit of a power-law behavior according to Landau
theory is given in e).
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havior to the amplitudes of selected symmetry modes. A suitable power-law behavior
according to Landau theory is given by the following equation [67-69]:

T. —T\"
asm(T) = asmyp - ( T ) + € ) (5.3)

where ag)s is the value of the amplitude of the symmetry mode at a certain temper-
ature T, agpr is the amplitude at a temperature of 0 K, 7., is the critical temperature,
where the phase transition occurs, [ is the critical exponent and ¢ is a possible shift
away from zero (in this case € is zero as there is no additional shift required as the
amplitudes in the high symmetry phase are always zero).
Empirically, it seems that in particular the symmetry modes of heavy cations are suit-
able for such investigations, as the positions and therefore the mode amplitudes of
these cations can be determined by X-ray diffraction with high accuracy. Therefore,
one of the symmetry modes which is responsible for the shift of the Bi cation is taken
in order to perform a power-law fit with equation 5.3 (see figure 5.9¢)). The obtained
critical values are T. = 188.33(17) K for the critical temperature and 5 = 0.17(1) for
the critical exponent. Especially the value for the critical exponent shows intriguingly
that the monoclinic-to-cubic phase transition is not of second order but instead of
weak first order!. This result is also supported by the behavior of other temperature
dependent mode amplitudes as well as by the temperature dependent behavior of the
lattice parameters, which all give a typicial indication for a weak first order phase
transition.

In addition to the figures of the temperature dependent lattice parameters (see figure
5.8) and the temperature dependent amplitudes of the symmetry modes (see figure
5.9), the temperature dependent bond length behavior of all cations to the next oxygen
cations is shown in figures 5.10 and 5.11.

The temperature dependent behavior of the bond lengths is very informative as
it shows clearly that most of the cation coordination polyhedra are distorted to a
large extent at lower temperatures. For instance for the Bi cation (see figure 5.10a))
the mean bond length is still preserved in the low temperature regime, although the
icosahedron becomes completely distorted when the critical temperature on cooling
is crossed. A similar behavior can be found for the three different CrOg octahedra
despite the fact that the mean bond length is also changing by passing the critical tem-
perature. By looking at figures 5.10b)-d) it is obvious that for the Cr(1)Og octahedron
the mean bond length is decreasing while it is increasing for the Cr(2)Og and Cr(3)Og
octahedra. Interestingly all three CrOg octahedra show a totally different distortion
behavior. The Cr(3)Og octahedron shows only a slight distortion as all bond lengths
are increasing by approximately the same extent, which leads to an enlargement of the
octahedral volume. The uniform bond length of the Cr(2)Og octahedron splits into
three different bond lengths, which leads to a small elongation in the vertical direction

1 The theoretical critical exponent for a perfect second order phase transition is 8 = 0.5.
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Figure 5.10: Temperature dependent bond lengths of the a) Bi, b) Crl, ¢) Cr2 and
d) Cr3 coordination polyhedra in BiCuzCrgO1s.

and into an elongation and also a compression within the plane (this description refers
to the illustration in figure 5.7b)). In contrast to the bond lengths in the Cr(2)Og and
Cr(3)Og octahedra, the bond lengths in the Cr(1)Og octahedron exhibit a very compli-
cated temperature dependent behavior. Three of the six bond lengths are increasing
when the BiCu3zCr;O15 quadruple perovskite is cooled over its phase transition point.
This leads to a slight elongation along these directions, whereas for the other three
bond lengths partially a drastic compression can be observed. If the crystal structure
is cooled further, two of the compressed bond lengths show only small changes (within
a range of 0.05 A), whereas the distance between the Crl cation and the O1_5 cation
relaxes to a less compressed bond length by reducing the amount of compression by
almost 0.1 A. This means that the distortion of the Cr(1)Og octahedron slightly after
the phase transition point is much higher than at lower temperatures, which is a cru-
cial information if one tries to understand the behavior of the calculated bond valence
sums in section 5.4.4. A comparison between the two CrOg octahedra at temperatures
of 100 K and 188 K is given by the pictures of the coordination spheres in figure 5.12.

The behavior of the different Cu coordination polyhedra can be described in three
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(a) Coord. sphere Crl (100K) (b) Coord. sphere Crl (188K)

Figure 5.12: Coordination spheres of the Cr(1)Og octahedron at temperatures of
a) 100 K and b) 188 K in the BiCu3CryO12 quadruple perovskite. Although it is not
visible by bare eye, the octahedron at 188 K is much more distorted.

different groups. The first group is the group of the Cul square-planar coordination
with site multiplicity 4 (see figure 5.11a)). For this coordination polyhedra an expan-
sion of all bond lengths can be found by passing the critical transition point, which
leads to an enlargement of the size of the coordination plane. An opposite behavior
can be found for the Cu2 and Cu3 coordination polyhedra each with site multiplicity
2 (see figure 5.11b)+c)). Upon cooling, directly after the phase transition, the size of
the coordination polyhedra is first decreasing until it relaxes over a range of 20 K to
its previous size. The third group is built by the Cu4 and Cub coordination polyhedra
with each site multiplicity 2 (see figures 5.11d)+-e)). For these coordination polyhedra
an elongation along one direction and a compression along the other direction can be
observed.

Besides the investigation of the bond lengths, the distortion level of the different
coordination polyhedra can also be investigated by calculating the shifts of the central
cations away from the center of gravity of the corresponding coordination polyhedra.
The shift of the Cr1-Cr3 and Bi cations along the monoclinic crystal axis away from
the center of gravity of the corresponding coordination polyhedra is shown in figures
5.13a)-d), whereas the absolute shift/distance of these cations away from the center
of gravity of the corresponding coordination polyhedra is shown in figures 5.13e)-f).
From these figures it is clear, that the Cr2 and Cr3 cations are not shifted with respect
to their center of gravity, in contrast to the Bi and Crl cations which show a quite
large shift away from their center of gravity. Please note also that the shift of the Bi
cation is approximately along a single crystallographic axis, whereas the Crl cation is
moving along a body diagonal.
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Figure 5.13: Temperature dependent shifts of the different cations (Crl-3 and Bi)
away from their center of gravity of the corresponding coordination polyhedra along
the monoclinic crystal axis a)-d) in the BiCuzCrsO12 quadruple perovskite. e)-f) add
up shifts away from the center of gravity of the corresponding coordination polyhedra.
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5.4.4 Bond valence sum calculations

The temperature dependent bond valence sums (BVS) presented in figure 5.14 were
calculated according to equations 5.4 and 5.5 [269], which are defined below.

V, = Z Si; (5.4)

where V; is the bond valence sum of a certain cation ¢ in its chemical environment
and S;; is a single bond valence which is empirically defined as

]

where r;; is the experimental determined bond length between an (oxygen) anion
and a cation and rq is a tabulated bond valence parameter depending on the effective
coordination number. The value of b in the denominator of the power of the exponen-
tial is empirically determined to 0.37 [269]. The tabulated bond valence parameters
which were used for the calculations are ry = 1.724 for Cr*" to O?~ valences [269], o
= 1.756 for Cr** to O%~ valences [246], 1y = 1.679 for Cu?* to O~ valences [269] and
ro = 2.094 for Bi*T to O?~ valences [269].

As can be seen in figure 5.14, at room temperature, the value of 3.11 valence units
(v.u.) of the Bi cation and the value of 1.98 v.u. of the Cu cation are very close to
their ideal values of 3+ and 24, respectively. In contrast, at room temperature, the
BVS of Cr (which is calculated by the theoretical ratio of a mixed-valence state of 1:3
of Cr®* and Cr'* cations) with a value of 3.6 v.u. seems to be underestimated, as
the theoretical BVS value of this mixed-valence Cr cation should be +3.75 v.u.. In
general there are several possibilities to explain too low values of the observed BVS,
of which the most likely is given here. For instance, if a partial substitution of B
cations (B = Cr) by A’ cations (A’ = Cu) is assumed, than the effective BVS value is
lowered!. In the case of the BiCu3Cr,;O,5 quadruple perovskite this would mean that
8% Cu?* cations should be present on the Cr site, which would lead to a theoretical
BVS value of 3.61 v.u. which is almost in perfect agreement with the observed BVS
value. However, the assumption of 8% Cu?*t on the Cr site must be also in agreement
with the results of the Rietveld refinement. And indeed, if a Rietveld refinement of
the room temperature synchrotron X-ray powder diffraction measurements is carried
out with a ratio of 0.08:0.92 of Cu and Cr cations on the cubic Wyckoff position 8c,
the refinement results are almost unaffected. The obtained parameters of such a re-
finement have values, which lie all within one estimated standard deviation as for a

1 The calculated values with 8% Cu?t on the Cr site are shown in figure N.1 in the appendix.
The difference of the models with and without Cu?* is that marginal, so that the discussion
of particular values even for the substituted model will be done by taking the values of the
unsubstituted model presented in figure 5.14.
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Figure 5.14: Temperature dependent bond valence sum calculations for all cations
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refinement without Cu on the Cr site!. In addition, such a B-site substitution would
also explain why only impurities of CroO3 and CrO are observed, but no impurities
of Cu-compounds are found, although the synthesis was done with the correct stoi-
chiometric ratio. Later it will be shown that the assumption of 8% Cu?* on the Cr
site will also give a better explanation of the observed saturated magnetization at low
temperatures and high applied fields.

Below the transition temperature of 188 K, the BVS value of Cu splits into three arms,
which can be explained by the distortion of the particular Cu coordination polyhe-
dra (see also the behavior of the bond lengths of Cu in figure 5.11, which are also
a measure for the distortion of the square-planar coordinated polyhedra). However,
the average BVS value of all Cu cations in the low-temperature phase is still approx-
imately 24, thus an ISCT between the Cu and the Cr cations is rather unlikely. A
similar distortion behavior as for the Cu cations can be found for the Bi cation. Below
the critical temperature the BVS value of Bi starts to rise from approximately 3.1 v.u.
to 3.3 v.u. at a temperature of 100 K. This behavior can be correlated with the bond
lengths of the Bi cation to its coordinated oxygen anions (see figure 5.10a)) and also
with the shift of the Bi cation away from its center of gravity of the corresponding
coordination polyhedron (see figure 5.13a)+¢)). To the same amount as the BiOq
icosahedron becomes distorted over the temperature by cooling, to the same amount
the BVS value of the Bi cation is increasing. Intriguingly, this is a nice example to
show how the empirical bond valence parameters rqy are affected by the distortion of
the corresponding coordination polyhedra (further literature about that phenomenon
is given by Wang and Liebau [270]).

Besides the interesting behaviors of the BVS of the Bi and Cu cations, the behavior
of the Cr cation leads to the most crucial part of the BVS investigations. Below the
critical transition temperature of approximately 188 K, the unique BVS of Cr splits
into three arms (due to the lowering of the symmetry and the splitting of the cubic
Wyckoff position), where one arm jumps up to BVS values of approximately 4+ and
the other two arms jump down to BVS values of approximately 3.5+. Therefore, the
upper arm, which belongs to the Crl cation, is calculated with the corresponding bond
valence parameters of a Cr'™ cation, whereas the two lower arms of the Cr2 and Cr3
cations are calculated with a ratio of 1:1 of Cr** and Cr?* in order to keep the mean
oxidation state of 3.75+4. This implies that in summary the BiCu3Cr,;O15 quadruple
perovskite undergoes a CD at the critical phase transition temperature, which ends up

1 The fact, that the refinement results are almost unaffected allows also the circumstance that all the
refinements which were done above can be treated as there is no Cu?* on the Cr-site. The reason
for that is, that each refinement can not discriminate between the correct solution as both models
have almost the exact same refinement minimum and therefore the results of both solutions will
have nearly congruent error bars. This argument is also understandable if the difference in the
scattering power of this atomic position is considered. A full occupation with Cr3* cations means
that 21 electrons contribute to the scattering power, whereas 8% Cu?* on the Cr site gives a
contribution of 21.48 electrons. For an X-ray diffraction experiment a difference in the scattering
power of 0.48 electrons is not observable.
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in a columnar checkerboard ordering of the Crl cation which has an oxidation state
of 4+ and of the Cr2 and Cr3 cations which are in a mixed-valence state of 3.5+.
Nevertheless, this a very simple model which is superimposed by other effects. For
instance the observed BVS values of the Cr2 and Cr3 cations directly after the phase
transition are too low (Cr2: 3.07 v.u. / Cr3: 3.13 v.u), although they are approaching
values of 3.37 v.u. and 3.22 v.u. at a temperature of 100 K for the Cr2 and Cr3 cations,
respectively, on further cooling. If the assumption of 8% Cu?* on all Cr sites is valid,
then a theoretical value of 3.38 v.u. can be calculated. This is in good agreement with
the observed value for the Cr2 cation at 100 K, although this value is not perfectly
reached by the BVS of the Cr3 cation at the same temperature (potentially this can
be explained by the isotropic enlargement of the volume of the Cr(3)Og octahedron,
which also leads to a decrease in the calculated BVS value). In contrast to the BVS
of the Cr2 and Cr3 cations, the BVS value of the Crl cation shows a totally different
behavior. For all temperatures below the critical phase transition temperature, the
BVS value of the Crl cation is too high. An explanation for this behavior might be
given by looking at the huge deformation which the Cr(1)Og octahedron undergoes
directly after the phase transition upon cooling. Below 188 K the deformation of the
Cr(1)Og octahedron has the largest value as can be estimated from the picture of its
coordination polyhedron bond lengths in figure 5.10b). Although the bond length be-
tween the Bi cation and the oxygen O1_ 2 anion is further decreasing the bond length
between the Bi cation and the oxygen O1_ 7 anion is increasing to a much larger extent
giving rise to a reduction of the distortion of the Cr(1)Og octahedron. This reduction
of the distortion explains also the trend of the BVS of the Crl cation as a reduced
distortion leads to better BVS values. However the BVS value of Crl1 is still too high as
the 8% Cu?* on the Crl site should lead to a theoretical value of 3.84 v.u.. Possibly
the high value at 100 K can still be attributed to the large distortion of the Cr(1)Og
octahedron.

Howsoever, the reason for the large distortion of the Cr(1)Og octahedron can be ex-
plained by a visual inspection of the crystal structure over temperature. With a new
simulation method for TOPAS, created by Etter and Dinnebier [271], it is possible
to create video simulations for all temperature dependent results of the Rietveld re-
finements. With this visual inspection tool it is very convenient to see what happens
within the crystal structure during the phase transition. If the simulation is started in
the high temperature / high symmetry phase and then the crystal structure is cooled,
it is easy to determine that the shift of the Bi cation in the low temperature / low
symmetry phase forces a shift of the Crl cation, which causes the distortion of the
corresponding Cr(1)Og octahedron.

Although the behavior of the different BVS is not easily explained, it seems that
the BiCu3CrsOq5 quadruple perovskite undergoes a typical CD phenomenon, which
is quite similar to the one which occurs in the A-site ordered quadruple perovskite
NaMn3zMn,O15 [254], also in regard to the occurring distortions.
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5.5 Measurements of the electric resistivity and magnetic
susceptibility

In figure 5.15 the electric resistivity and the electric conductivity are shown, respec-
tively. At a temperature of 300 K the electric resistivity (electric conductivity) is
approximately p ~ 5.2-1073Q2cm (0 ~ 191.3 27 'em™!), which indicates that the
BiCu3Cr 015 quadruple perovskite has a metallic behavior at room temperature. At
a temperature of approximately 187 K (which is almost the same temperature as de-
termined for the structural phase transition) the resistivity starts to increase until at
approximately a temperature of 123 K a value of the resistivity of p ~ 18.4-10732cm
is reached. On further cooling the electric resistivity starts to decrease until at a
temperature of 2 K an electric resistivity (electric conductivity) of approximately
p~13.1-1073Qcm (0 ~ 76.6 27 tem™!) is reached. Although there is a sharp increase
below the structural transition point of 188 K, the BiCu3zCr,O15 quadruple perovskite
exhibits metallic conductivity in each phase and at all temperatures. The values of
the temperature dependent electric resistivity /conductivity and the metallic behavior
is comparable to other Cr-containing quadruple perovskites like CaCuzCryOq [258],
LaCuzCryOq2 [246] and YCu3CryOqy [246] (see also table 5.1).

The field-cooled (FC) measurement of the magnetic susceptibility shown in figure
5.16 exhibits a typical ferromagnetic behavior with a critical transition temperature
which is the same one which is found for the electric resistivity and approximately the
same one which is found for the structural phase transition. The paramagnetic region
of the inverse susceptibility can be fitted with a Curie-Weiss law as it is given by the
following equation:

Cow
m = 5-6
Xm = o (56)
In this equation the magnetic susceptibility is given by x,, = g—]\g, where H is the

applied magnetic field strength and M is the magnetization of the material. The
constant Ceow (sometimes also Cyy) is the Curie constant, T is the temperature and
T. (sometimes also Oy ) is the paramagnetic Curie-Weiss temperature (some authors
prefer the term “Weiss temperature” or “Weiss constant”).
The values which can be obtained by the fit with the Curie-Weiss law are a Curie
constant of Coy = 2.38(1) 4K and a Curie-Weiss temperature of Toy = 148.2(2) K.
As other Cr-containing quadruple perovskites show a metallic Pauli paramagnetic
behavior [246, 258] and the electric resistivity measurements from above suggests also a
metallic behavior in the high-temperature phase, a Curie-Weiss law with an additional
constant for the Pauli paramagnetism was tested. A fit with such a modified Curie-
Weiss law was not successful, suggesting that no Pauli paramagnetic behavior in the
high-temperature phase can be observed.

The field dependent isothermal magnetization at a temperature of 5 K and field
strengths of H = -5 T to H = 5 T is presented in figure 5.17. From this figure it is
obvious that the BiCu3CrsO;2 quadruple perovskite shows no hysteresis effect but an
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Figure 5.15: Temperature dependent electric resistivity of the BiCu3CryO12
quadruple perovskite (upon heating). At 187 K there is a sharp increase in the re-
sistivity, however, the values of the electric resistivity and the electric conductivity
proves that BiCugCrsO19 exhibits metallic behavior over the entire investigated tem-
perature range.



164 5 Temperature dependent in situ investigations of BiCu3CrsO1o

| ! |
0.6 - -
= 0.4 .
£ Field-cooled (FC) |
£ H=5T
2 02- -
= [
0.0 -
—tt— 11—
1007 ¢ =2.38(1) emu K|/ mol -
W= 2.

148.2(2) K

o
o
]
@
[

1/y (mol/emu)

|
0 50 100 150 200 250 300 350
Temperature (K)

Figure 5.16: Upper picture: Field-cooled measurement of the temperature depen-
dent magnetic susceptibility of the BiCugCrsO15 quadruple perovskite at a field of H
=5 T. At 187 K the magnetic susceptibility increases showing a typical ferromagnetic
behavior. Lower picture: inverse susceptibility. The paramagnetic region of the inverse
susceptibility was fitted by a Curie-Weiss law.
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early magnetic saturation at a field strength of H = £ 1.5 T. The maximum magne-
tization in Bohr magneton units is approximately M ~ 5.63 up.

In general, the magnetic saturation can be calculated approximately with the following
simple equation (this equation can be derived by determining the low-temperature /high-
field limit of the quantum mechanical treated paramagnetic magnetization):

Ms = gs - Z S; ; (5.7)

where Mg is the magnetic saturation in Bohr magnetons, gs is the electron spin
g-factor (g stands for gyromagnetic) and its value is approximately ~ 2 for a pure
electron spin angular momentum without orbital angular momentum and S; is the
value of a single spin which contributes to the magnetic saturation.
If a ferromagnetic ordering between the Cu?t (3d%4s” — S = 1/2) and Cr* ™+ ! (Cr3*:
3d34s® — S = 3/2, Cr*t: 3d%4s® — S = 1) magnetic moments is considered, a total
magnetic saturation of 12 yip is obtained (Mgp\y =2-(3-1/2+1-3/2+3-1)). This
value is in contrast to the experimentally measured saturation magnetization.
Another possibility for the ordering of the magnetic moments is that the magnetic
moments of the Cu cations are antiparallel aligned to the magnetic moments of the Cr
cations. This would lead to a ferrimagnetic ordering and the calculated magnetic satu-
ration for such a model is 6 pp (Mg = 2-(—3-1/2+1-3/2+3-1)). This calculated
value of the magnetic saturation is in much better agreement with the experimentally
observed magnetic saturation, for which reason the BiCu3zCr,O15 quadruple perovskite
is considered to be a ferrimagnet in its low-temperature phase. The difference between
the theoretical and the observed value can be potentially attributed to the Cu®* sub-
stitution of the Cr site. If it is assumed that the magnetic moments of the 8 % Cu?*
cations on the Cr site are parallel aligned to the magnetic moments of the Cr cations,
a theoretical saturated magnetization of 5.6 pp can be obtained. This is in almost
perfect agreement with the experimentally observed value of M ~ 5.63 up.
In general, the finding that BiCu3CrsO15 is ferrimagnetic stands in contrast to other
Cr-containing quadruple perovskites as they show only Pauli paramagnetic behavior
in all temperature dependent phases [246, 258] (see also table 5.1). On the other hand
this result of a ferrimagnetic quadruple perovskite which undergoes a charge dispro-
portionation is similar to the behavior in the charge disproportionated Fe analogues
(see also table 5.1).

1 An average oxidation state of 3.75+ for the Cr cations can also be assumed in the low temperature
phase, as suggested by the calculated average bond valence sum of all Cr cations which has a value
close to 3.75+ (see figure 5.14).
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Figure 5.17: Field dependent isothermal magnetization at a temperature of 5 K and
field strengths from H = -5 T to H = 5 T of the BiCu3zCr4012 quadruple perovskite.

5.6 Conclusion

Investigations of synchrotron X-ray powder diffraction measurements of BiCu3Cr ;019
A-site ordered quadruple perovskite revealed that the compound has a typical cubic
crystal structure at room temperature (space group I'm3), identical to all other A-
site ordered quadruple perovskites listed in table 5.1. Below a temperature of 188 K
the quadruple perovskite undergoes a structural weak first order phase transition to
a monoclinic crystal structure (space group C2/m), which was previously only ob-
served for NaMnzMnyO1s [254]. In a temperature range of 20 K between 168 K and
188 K a large negative thermal expansion of the volume with a volume expansion
coefficient of ayy = —111(2) - 107% K™! is observed upon cooling, which is two times
higher than the value which was observed for the quadruple perovskite SrCuszFe ;019
[233]. Extensive structural investigations in the low-temperature phase revealed that
most of the coordination polyhedra around the cations are heavily distorted, which
also influences the numerical results of the bond valence sum calculations. However,
the bond valence sum calculations over the entire temperature range proofed, that the
BiCu3Cr 015 quadruple perovskite shows a charge disproportionation phenomenon of
the Cr cations on the B-site, which occurs simultaneously with the structural phase
transition: Bi*TCuitCri™t0%, — Bi*TCuitCriTCr3t 0?5 . The distortions of the co-
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ordination polyhedra and also the charge disproportionation seem to be very similar
to the isostructural NaMn3Mn,O;2 quadruple perovskite [254], except for the charge
disordered Wyckoff 4e and 4f sites.

Measurements of the electric resistivity /conductivity showed that this compound ex-
hibits metallic behavior in both structural phases, although the resistivity is slightly
increasing at the critical transition temperature. Measurements of the magnetic sus-
ceptibility illustrated, that this compound shows ferromagnetic behavior, which was
further specified as ferrimagnetic behavior by the measurement of the field dependent
isothermal magnetization.

For the BVS calculations as well as for the obtained saturated magnetization at low
temperatures and high applied magnetic fields it could be shown that an assumption
of 8 % Cu?* on the Cr site leads to much better agreement of theoretically calculated
and experimentally observed values. Furthermore it was also shown that this assump-
tion of 8 % Cu?* on the Cr site does not influence the results which were obtained by
the Rietveld refinement of the synchrotron X-ray powder diffraction data.
Concerning the multiferroic properties, BiCu3CrsO;2 seems to be a single-ferroic ma-
terial as only a ferrimagnetic phase transition could be observed. From the cen-
trosymmetric / non-polar space groups in the high- and low-temperature phase it
can be excluded that this quadruple perovskite shows proper ferroelectricity. As the
synchrotron X-ray powder diffraction measurements were only done down to a tem-
perature of 100 K, another structural phase transition to a polar space group below
100 K cannot be fully excluded. However, the measurements of the electric resistivity
and the magnetic susceptibility do not give a hint on a further structural phase tran-
sition below 100 K, so it is very unlikely that proper ferroelectricity occurs at lower
temperatures. Other types of improper ferroelectricity are also unlikely as a collinear
ferrimagnetic ordering does not break the inversion symmetry of the crystal struc-
ture and therefore a magnetically driven ferroelectricity is hindered. Also geometrical
frustration combined with charge ordering can be excluded as mechanism for ferroelec-
tricity, as the observed charge disproportionation leads to a columnar checkerboard
charge ordering and no geometrical frustration of the corresponding sites is present.
The only mechanism which can not be fully excluded at lower temperature is a lone
pair driven ferroelectricity, but as already mentioned, the measurement of the electric
resistivity and the magnetic susceptibility do not support another phase transition in
this temperature regime.






Summary

The investigation of the crystal and magnetic structures of potential multiferroic per-
ovskites by synchrotron X-ray and neutron powder diffraction is a first step in order
to reveal ferroic orders. Moreover, the determined symmetries of the crystal and mag-
netic structures can give a hint on probable coupling effects between them, as it is the
case of the BiFeO3 perovskite, where the spin cycloid suppresses a linear magnetoelec-
tric coupling between the ferroelectric and the antiferromagnetic order [3, 4, 8, 9] (see
also chapter 1). In order to investigate the crystal and partially magnetic structures
of interesting perovskites with possible multiferrroic behavior, numerous temperature
or pressure dependent in situ synchrotron X-ray and neutron powder diffraction mea-
surements of three different perovskite systems were carried out.

The first investigated compounds were the Bi;_,Sr,FeO3_s perovskites, which build
a solid solution series between the two end members BiFeO3; and SrFeOs;. A detailed
Rietveld refinement study from synchrotron X-ray and high resolution neutron pow-
der diffraction measurements of the Bi;_,Sr,FeO3_s perovskites (with x = 0..0.5) at
room temperature revealed, that the crystal structure above a composition of x > 0.2
must be regarded as cubic with a centrosymmetric space group Pm3m. This cen-
trosymmetric space group already forbids the possibility of a proper ferroelectricity,
which is in contrast to the BiFeO; end member (non-centrosymmetric polar space
group R3c), where proper ferroelectricity is driven by the stereochemically active Bi
652 “lone pair”. The analysis of the temperature dependent high resolution neutron
powder diffraction data sets showed, that the composition level not only influences
the crystal structure but also the magnetic structures. From the obtained neutron
powder data of the BiFeOg3 perovskite, for instance, the spin cycloid could be observed
due to a slight asymmetry of the magnetic Bragg reflections. Interestingly this asym-
metry vanishes above a composition of x > 0.2 and a pure G-type antiferromagnetic
ordering of the magnetic moments is established. It was found by Rietveld refine-
ments with magnetic symmetry modes, that this magnetic ordering can be described
by a tetragonal magnetic Shubnikov group with label I.4/mcem (140.550) in the BNS
setting, where the magnetic unit cell is 4 times larger than the crystallographic unit
cell. The determination of the critical Néel temperatures from the refined temperature
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dependent magnetic moments' revealed, that the antiferromagnetic to paramagnetic
phase transitions of the Bi;_,Sr,FeO3_s perovskites (with x = 0, 0.2, 0.3 and 0.5)
occur in a narrow temperature range between 650 and 660 K. Interestingly, the deter-
mination of the critical Néel temperatures of the Bi;_,Sr,FeO3_; perovskites (with x
= 0.2, 0.3 and 0.5) from differential scanning calorimetry measurements gave elevated
values, which can possibly be attributed to different oxygen environmental conditions
during the measurements. Although the underlying quantitative dependency between
oxygen vacancies and magnetic properties is not yet clear, it can be stated that an
increase in oxygen vacancies in the crystal structure certainly leads to a reduction of
the critical Néel temperature [172].

Investigations by Rietveld refinements of the high pressure synchrotron X-ray powder
diffraction data of the LaFeOgs orthoferrite perovskite confirmed two phase transitions
up to a pressure of 50 GPa along the room temperature isotherm. The first phase
transition at approximately 20.5(6) GPa was identified to be a structural second or-
der phase transition from the lower centrosymmetric space group Pbnm to the higher
centrosymmetric space group Ibmm. Applying different crystallographic approaches,
like rigid bodies/constrainable atomic groups, symmetry modes and a recently devel-
oped approach with rotational symmetry modes of a rigid body/constrainable atomic
group, for the modeling of the atomic coordinates in sequential Rietveld refinements, it
could be demonstrated that this second order phase transition is mainly driven by the
rotation of the FeOg octahedron and secondarily by a shift of the lanthanum cation.
This is in contrast to the isostructural first order phase transition at approximately
38 GPa, which is driven by a pressure induced high-spin (S = 2) to low-spin (S =
%) transition of the Fe3" cation. Interestingly, all observed phase transitions occur
between centrosymmetric crystal structures, which instantly prohibits the occurrence
of proper ferroelectricity. However, further investigation techniques are required in
order to investigate the dependency between pressure and the at ambient conditions
reported ferroelasticity and improper ferroelectricity.

In addition to the investigation of the different phase transitions in LaFeOs, sequential
and parametric Rietveld refinements were performed in order to determine the equa-
tion of state (EoS) parameters for the volume and the lattice parameters below the
hydrostatic limit. Using a Murnaghan EoS for the pressure dependent volume of the
LaFeO3 perovskite, a bulk modulus of By = 172(2) GPa, a first pressure derivative of
the bulk modulus of B}, = 4.3(3) and a volume at ambient conditions of V = 242.87(1)
A3 could be obtained. Corresponding values for the lattice parameters were determined
by an adapted inverted Murnaghan EoS as well as by a newly developed adpated in-
verted third order Vinet EoS approximation and the determined values were in quite
good accordance with each other.

1 The values of the magnetic moments for the Bi;_,Sr,FeOs_s perovskites (with x = 0.2, 0.3 and
0.5) were determined by the refinement of amplitudes of magnetic symmetry modes, whereas the
magnetic moments for the BiFeO3 perovskite were directly determined from the refinement of the
complex magnetic Fourier coefficients.
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The third and last investigated compound was recently synthesized and belongs to
the class of the quadruple perovskites. Synchrotron X-ray powder diffraction patterns
of this BiCu3Cr;O15 quadruple perovskite exhibited, that it possess a centrosymmet-
ric crystal structure at room temperature, which can be described in the cubic space
group I'm3. Rietveld refinements of temperature dependent synchrotron X-ray pow-
der diffraction data sets showed, that a structural reversible weak first order phase
transition from a cubic to a monoclinic crystal structure occurs upon cooling at ap-
proximately 188 K. The symmetry of this monoclinic crystal structure was determined
to be centrosymmetric in space group C2/m with a unit cell that is twice the unit
cell of the cubic crystal structure at room temperature. Detailed investigations of the
atomic coordinates and the different cation coordination polyhedra in the monoclinic
phase revealed, that these polyhedra exhibit a high degree of distortion. Moreover, it
could be shown from bond valence sum calculations that this cubic to monoclinic struc-
tural phase transition is accompanied by a charge disproportionation of the chromium
cations into equal amounts of Cr®5* and Cr**. Besides the charge disproportionation
also a charge ordering of the chromium cations can be observed, which exhibits a
checkerboard ordering of Cr3?* and Cr** and a columnar ordering along the crystal-
lographic b-axis. However, the structural investigations showed that proper ferroelec-
tricity is forbidden by symmetry.

Besides the charge disproportionation and the charge ordering, which accompanies the
structural phase transition, also a ferrimagnetic ordering of the magnetic moments of
the copper and chromium cations, which was determined from magnetization and
magnetic susceptibility measurement, can be simultaneously observed at the critical
temperature. In contrast to the structural, magnetic and charge changes, the measured
electric resistivity does not change over the entire investigated temperature range.
However, with respect to the possible multiferroic properties of the BiCu3Cr ;019
quadruple perovskite, proper ferroelecticity cannot occur in the investigated temper-
ature range, as was already mentioned above. Nevertheless the quadruple perovskites
are certainly an interesting material class in order to search for magnetoelectric cou-
pling effects which are connected with proper or improper ferroelectricity and which
therefore allow their usage in industrial applications.






Zusammenfassung

Die Untersuchung der Kristall- und Magnetstrukturen moglicher multiferroischer Per-
owskite mittels Synchrotron Rongten- und Neutronenpulverdiffraktion ist ein erster
Schritt um ferroische Ordnungen aufzudecken. Dariiber hinaus kdnnen die ermittelten
Kristall- und Magnetstruktursymmetrien Hinweise auf mogliche Kopplungsmechanis-
men entsprechender ferroischer Ordnungen geben, wie es zum Beispiel der Fall fiir den
BiFeO3 Perowskit ist, bei dem der vorhandene Spinzykloid eine lineare magnetoelek-
trische Kopplung zwischen ferroelektrischer und ferromagnetischer Ordnung unter-
driickt [3, 4, 8, 9] (siehe auch Kapitel 1). Um die Kristall- und Magnetstrukturen inter-
essanter Perowskite mit moglichen multiferroischen Verhalten zu untersuchen, wurden
zahlreichen temperatur- und druckabhéngige in situ Synchrotronréntgen- und Neu-
tronenpulverdiffraktionsmessungen an drei verschiedenen Perowskitsystemen durchge-
fiihrt.

Die zuerst untersuchten Verbindungen waren die Bi;_,Sr,FeO3_s Perowskite, welche
eine Mischkristallreihe mit den Engliedern BiFeO3 und SrFeOj3 ausbilden. Eine de-
taillierte Rietveldverfeinerungsstudie von Synchrotronréntgen- und hochauflésenden
Neutronenpulverdiffraktionsmessungen der Bi;_,Sr,FeO3_s Perowskite (mit x = 0 bis
x = 0.5) bei Raumtemperatur ergab, dass die Kristallstruktur oberhalb einer Komposi-
tion von x > 0.2 als kubisch mit der zentrosymmetrischen Raumgruppe Pm3m ange-
sehen werden muss. Dabei verbietet diese zentrosymmetrische Raumgruppe bereits
die Moglichkeit eigentlicher Ferroelektrizitat, was im Gegensatz zum BiFeO3 Endglied
(nicht-zentrosymmetrische polare Raumgruppe R3c) steht, bei dem eigentliche Fer-
roelektrizitit aufgrund des stereochemisch aktiven Bi 6s% “lone pair” gegeben ist.
Die Analyse der temperaturabhéangigen hochauflésenden Neutronenpulverdiffraktions-
datensétzen zeigte, dass der Kompositionsanteil nicht nur die Kristallstruktur sondern
auch die magnetische Struktur beeinflusst. Zum Beispiel kann aus den gemessenen
Neutronenpulverdaten des BiFeO3 Perowskits der Spinzykloid aufgrund einer kleinen
Asymmetrie der magnetischen Braggreflexe beobachtet werden. Interessanterweise
verschwindet diese Asymmetrie oberhalb einer Komposition von x > 0.2 aber und
eine reine G-Typ antiferromagnetische Anordnung der magnetischen Momente wird
etabliert. Mit Hilfe der Rietveldverfeinerung mit magnetischen Symmetriemoden kon-
nte gezeigt werden, dass diese magnetische Ordnung als tetragonale magnetische Shub-
nikov Gruppe mit der Bezeichnung 1.4/mem (140.550) im BNS Setting beschrieben
werden kann, wobei die magnetische Einheitszelle die vierfache Grole der kristallo-
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graphischen Einheitszelle aufweist. Die Bestimmung der kritischen Néeltemperatur
aus den verfeinerten temperaturabhingigen magnetischen Momenten! zeigte, dass der
antiferromagnetische zu paramagnetische Phasentiibergang der Bi;_,Sr,FeO3_ 5 Per-
owskite (mit x = 0, 0.2, 0.3 und 0.5) in einem schmalen Temperaturband zwischen
650 K und 660 K zu finden ist. Interessanterweise ergab die Bestimmung der kritis-
chen Néeltemperatur der Bi;_,Sr,FeO3_s Perowskite (mit x = 0.2, 0.3 und 0.5) durch
die dynamische Differenzkalorimetrie erhohte Werte, was womoglich auf die unter-
schiedliche Sauerstoffumgebungsbedingungen wahrend der Messungen zuriickgefiihrt
werden kann. Obwohl die zugrundeliegende Abhéangigkeit zwischen Sauerstoffleer-
stellen und magnetischen Eigenschaften noch nicht ganz klar ist, kann gesagt werden,
dass der Anstieg an Sauerstoffleerstellen in der Kristallstruktur sicherlich zu einer Re-
duktion der kritischen Néeltemperatur fithrt [172].

Untersuchungen des LaFeOj Orthoferrit Perowskit durch Rietveldverfeinerungen von
Hochdrucksynchrotronrontgenpulverdiffraktionsdaten offenbarten, dass zwei Phasen-
iibergange bis zu einem Druck von 50 GPa entlang der Raumtemperaturisothermen
beobachtet werden kénnen. Dabei wurde der erste Phaseniibergang bei ungefihr
20.5(6) GPa als struktureller Phasentibergang zweiter Ordnung identifiziert, der einen
Ubergang von der niedrigeren zentrosymmetrischen Raumgruppe Pbnm zu der hoheren
zentrosymmetrischen Raumgruppe Ibmm darstellt. Unter Anwendung verschiedener
kristallographischer Ansétze zur Modellierung der Atomkoordinaten in sequentiellen
Rietveldverfeinerungen, wie den starren Kérpern/verschrankten atomarer Gruppen,
den Symmetriemoden und dem erst kiirzlich entwickelten Ansatz der Rotationssym-
metriemoden starrer Korper /verschriankter atomarer Gruppen, konnte gezeigt werden,
dass dieser Phasentiibergang zweiter Ordnung hauptséchlich von der Rotation des FeOgq
Oktaeders und sekundar von der Verschiebung des Lanthankations getragen wird.
Dies steht im Gegensatz zu dem isostrukturellen Phaseniibergang erster Ordnung bei
ungefihr 38 GPa, welcher durch den druckinduzierten high-spin (S = 2) to low-spin
(S = %) Ubergang des Fe3* Kations getragen wird. Interessanterweise treten alle
beobachteten Phaseniibergénge zwischen zentrosymmetrischen Kristallstrukturen auf,
welche instantan das Auftreten eigentlicher Ferroelektrizitiat verhindern. Allerdings
wurden unter Umgebungsbedingungen Ferroelasitizitat und uneigentliche Ferroelek-
trizitat beobachtet, so dass weitere Untersuchungsmethoden von Noten sind, um die
Druckabhéngigkeit dieser ferroischen Ordnungen aufzuklédren.

Zusatzlich zu den untersuchten, in LaFeOj3 auftretenden, Phaseniibergéingen wurden
sequentielle und parametrische Rietveldverfeinerungen durchgefiithrt, mit dem Hin-
tergrund die Parameter der Zustandsgleichungen (EoS) fiir das Volumen und fur die
Gitterparameter unterhalb des hydrostatischen Limits zu bestimmen. Unter Verwen-
dung einer Murnaghan EoS fiir das druckabhéingige Volumen konnten folgende Werte

1 Die Werte der magnetischen Momente der Bi;_,Sr,FeOs_s Perowskite (mit x = 0.2, 0.3 and 0.5)
wurden durch die Verfeinerung der Amplituden der magnetischen Symmetriemoden bestimmt,
wohingegen die magnetischen Momente des BiFeO3 Perowskits direkt aus der Verfeinerung der
komplexen magnetischen Fourierkoeffizienten bestimmt wurden.
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fir den LaFeO3; Perowskit bestimmt werden: Kompressionsmodul By = 172(2) GPa,
erste Ableitung des Kompressionsmoduls nach dem Druck Bj = 4.3(3) und Volu-
men bei Umgebungsbedingungen V, = 242.87(1) A3. Entsprechende Werte fiir die
Gitterparameter wurden mittels einer adaptierten invertierten Murnaghan EoS sowie
mit einer adaptierten invertierten und approximierten Vinet EoS dritter Ordnung bes-
timmt, wobei die bestimmten Werte eine gute Ubereinstimmung aufwiesen.

Die dritte und letzte untersuchte Verbindung wurde erst kiirzlich synthetisiert und
gehort zu der Klasse der Quadrupelperowskite. Synchrotronrontgenpulverdiffraktions-
bilder des BiCu3Cr;O15 Quadrupelperowskits offenbarten, dass dieser eine zentrosym-
metrische Kristallstruktur bei Raumtemperatur besitzt, welche mit der kubischen
Raumgruppe Im3 beschrieben werden kann. Rietveldverfeinerungen der temper-
aturabhéngigen Synchrotronrontgenpulverdiffraktionsdatensitze zeigten, dass beim
Abkiihlen bei ungefahr 188 K ein strukturell reversibler Phaseniibergang schwacher
erster Ordnung von einer kubischen zu einer monoklinen Kristallstruktur auftritt. Die
Symmetrie dieser monoklinen Kristallstruktur konnte mit der zentrosymmetrischen
Raumgruppe C2/m beschrieben werden, wobei die monokline Einheitszelle die zweifache
GroBe der kubischen Einheitszelle bei Raumtemperatur besitzt. Detaillierte Unter-
suchungen der Atomkoordinaten und der verschiedenen Kationenkoordinationspolyeder
in der mononklinen Phase ergaben, dass die Polyeder Verzerrungen hohen Grades
aufweisen. Mehr noch, es konnte mittels Bindungsvalenzsummenberechnungen gezeigt
werden, dass diese strukturelle kubische zu monokline Phasenumwandlung von einer
Ladungsdisproportionierung der Chromkationen in gleiche Anteile von Cr3**+ und Cr**
begleitet wird. Neben dieser Ladungsdisproportionierung kann zudem eine Ladung-
sordnung der Chromkationen beobachtet werden, welche ein Schachbrettmuster der
Cr35* und Cr** Kationen aufweist, welches in Saulen entlang der kristallographischen
b-Achse angeordnet ist. Wie dem auch sei, die strukturellen Untersuchungen belegen,
dass eigentliche Ferroelektrizitat durch die Symmetrie verboten ist.

Neben der Ladungsdisproportionierung und der Ladungsordnung, welche den struk-
turelle Phasentiibergang begleiten, kann simultan bei der kritischen Temperatur, durch
Magnetisierungs- und magnetische Suszeptibilitdtsmessungen, eine ferrimagnetische
Ordnung der magnetischen Momente der Kupfer- und Chromkationen beobachtet
werden. Im Gegensatz zu den strukturellen, magnetischen und Ladungsdnderungen
weiflt die elektrische Widerstandsmessung allerdings im gesamten untersuchten Tem-
peraturbereich keine Anderung auf.

Wie bereits oben erwdhnt zeigt sich, dass in Bezug auf die moglichen multiferrois-
chen Eigenschaften des BiCu3Cr O12 Quadrupelperowskit festgestellt werden kann,
dass eigentliche Ferroelektrizitdt im untersuchten Temperaturbereich nicht auftreten
kann. Nichtsdestotrotz sind die Quadrupelperowskite mit Sicherheit eine interessante
Materialklasse um nach magnetoelektrischen Kopplungseffekten zu suchen, die mit
eigentlicher oder uneigentlicher Ferroelektrizitdt verbunden sind und welche sich da-
her in industriellen Anwendungen verwenden lassen.






APPENDIX A

Calculation of the magnetic moments with general complex
Fourier coefficients

The first part of equation 2.43 in subsection 2.4.1.1 gives the full description of the
magnetic moment configuration by the general complex Fourier coefficients:

7 L g G —2.mi-ky R
mljzzi(s,;ﬁsf,gj) e 2mike R (A.1)
k
where g,;j is given by:

al D .7 —2-m-1- Py
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Using equation A.1 and putting in A.2 gives:
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(A.3)
If now the positive and negative magnetic propagation vectors are considered, then
equation A.3 can be written as follows:
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Using the Euler formula and substituting 2 -7 -4 - (@Ej + k- él) by wu:
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-

1 = - -
my = Z 5 {(R,;j -cos(—u) +1i - Ry, - sin(—u) + i Iy, - cos(—u) — I - sin(—u))
k
+ (ﬁgj -cos(u) +1 - ﬁgj -sin(u) —1i - f,;j -cos(u) + f,;j : sin(u))} . (A.D)

Using now the symmetry of the sine (sin(—z) = —sin(x)) and the cosine (cos(x) =
—cos(z)) leads to the final result:

—

my; = : KEISJ ~cos(u) —1 - ]%,;j -sin(u) +1 - I%j - cos(u) + I%j : sin(u))

N | —

(
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APPENDIX B

Calculation of the absorption correction for the refinements of
neutron data

One of the phenomena which occur in matter, when it is probed by particles like X-ray
photons, electrons or neutrons is absorption. This means that particles act in a way
with the matter, so that they can no longer contribute to elastic scattering processes
as they are used for instance in powder diffraction. In general that would not be a
problem, if the absorption effect would be an isotropic phenomenon. However, in a
powder diffraction experiment the investigated samples are limited objects often in a
spherical shape like a capillary and therefore often the geometry of the experiment and
the geometry of the probed sample prohibits an isotropic absorption effect. Especially
for a transmission experiment (like the Debye-Scherrer geometry in a powder diffrac-
tion experiment), this argument is quite obvious. If we assume for instance an X-ray
powder diffraction experiment in this geometry, it is geometrically clear, that at a
higher diffraction angle the way for the diffracted X-rays through the sample is much
shorter than for diffracted X-rays at a lower diffraction angle. Therefore a diffrac-
tion angle dependent absorption correction must be applied in a Rietveld refinement,
where the absorption correction depends also on the type of matter!. Fortunately,
the absorption of X-rays and neutrons in matter was quite good investigated allowing
to calculate the correct absorption correction for a given chemical composition from
tabulated values.

In most Rietveld refinement programs like TOPAS [57] or FullProf [83] the absorp-
tion correction for the refinement of a powder diffraction patterns is simply given by
the linear attenuation factor p and the radius R of the investigated sample or by the
product of them. In the following it will be shown, how the product of i - R for the
absorption correction of the neutron powder diffraction data of the Bi;_,Sr,FeOg3_s

1 In the case of light elements in X-ray diffraction, an absorption correction makes no big difference
in a Rietveld refinement, therefore it is often simply neglected. The same holds true in neutron
diffraction for atoms which show only small values for incoherent scattering and absorption of
neutrons.
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perovskites for the Rietveld refinement in Fullprof is calculated.

A suitable tool in order to calculate the absorption of neutrons in matter depending
on the chemical composition, the wavelength of the neutrons and the crystal density
is given online by the “NIST center of Neutron Research” [272]. This tool is very user
friendly, as it calculates the linear attenuation factor by taking into account that the
linear attenuation of neutrons in matter depends on the incoherent scattering and the
absorption.

In the case of the Bi;_,Sr,FeO3_s perovskites, the chemical composition and also
the used neutron wavelength is known, thus only the crystal density has to be calcu-
lated in order to use the online tool of NIST.

In order to calculate the crystal or crystallographic density, the connection between
different formulas for the molar volume can be used:

VM Na-Ve

Vin
n p Z

, (B.1)

where V,, is the molar volume, V is the volume of the sample, n is the amount of
the substance, M is the molar mass, p is the density of the sample, Z is the number
of formula units in the unit cell, V. is the volume of the unit cell and N, is the
Avogadro constant.
By the rearrangement of equation B.1, we get an expression for the crystal density:

M-Z
p = —
Veeu - Na
For a known or an assumed crystal structure, the number of formula units in the unit

cell Z is known. The molar mass M can be calculated from the chemical composition
by the following formula:

(B.2)

where ¢ is the summation over all atom types, m; is the atom weight of a particular
element and k; is the number of atoms inside the chemical composition of this partic-
ular element.
Finally, the unit cell volume can be determined by the knowledge of the unit cell pa-
rameters a, b, ¢, a, B and . These unit cell parameters can be determined by a whole
powder pattern decomposition (WPPD) method according to Pawley [62] or Le Bail et
al. [63]. With the formulas given in table B.1 it is possible to calculate the unit cell
volume for each crystal system.

With the atomic weights from table B.2 it is now a straightforward calculation of
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Crystal system | Formula for the unit cell volume

Cubic V=a3

Tetragonal V=ac

Hexagonal V =a?-c-sin(60°)

Trigonal (H) V =a?c-sin(60°)

Trigonal (R) V=a*+V1-3 cos2a+2-cos®a

Orthorhombic | V. =a-b-c

Monoclinic V=a-b-c-sin(p)

Triclinic V=a-b-c1—cos?a—cos?f—cos?y+2-cosa-cosf3-cosy

Table B.1: Calculation of the unit cell volume V for different crystal systems [273]
depending on the lattice parameters a, b, ¢, o, 8 and . For the trigonal system the
formula for H = hexagonal setting and R = rhombohedral setting are given.

the molar mass and therefore of the crystal density for each compound®.

Element | Atomic weight (u)
Bi 208.98
Sr 87.62
Fe 55.845
0 15.999

Table B.2: Atomic weights of Bi, Sr, Fe and O from [274].

The calculated molar mass of the Bi;_,Sr,FeOs_s perovskites as well as the corre-
sponding unit cell volumes, the corresponding number Z of formula units in the unit
cell and the corresponding density can be found in table B.3. In this table also the
calculated linear attenuation factor p as well as the product of 1 and the radius R can
be found. The radius R is given as 0.6 cm, as all used niobium or vanadium containers
had a diameter of 1.2 cm.

1 In reality, the crystal density is lower than the calculated value, due to the loose packing of
the material. Empirically, it can be determined that the “packing factor” is between 0.5 and
0.7. Therefore an average packing factor of 0.6 was assumed for the calculation of the linear
attenuation factors for the Bi;_,Sr,FeO3_s perovskites.




Chemical Molar mass Unit cell 7 Crystal Approximate packed | Linear attenuation R
composition M (=) | volume V. (A®) density p (7%3) density p (%) factor p (=) a

BiFeO3 312.822 374.159 6 8.330 4.998 0.025 0.0150
Big.gSrg.1FeO3_; 300.686 372.204 6 8.049 4.829 0.027 0.0162
BiggSrg2FeO3_g 288.55 61.803 1 7.753 4.652 0.028 0.0168
Big.7Srg3FeO3_s 276.414 61.759 1 7.432 4.459 0.029 0.0174
Big.5Srg5FeO3_s 252.142 61.466 1 6.812 4.087 0.031 0.0186
Big2SrgsFeOs_s 215.734 59.186 1 6.053 3.632 0.036 0.0216
SrFeO3_s 191.462 57.405 1 5.539 3.323 0.039 0.0234

Table B.3: Molar mass, unit cell volume, number of formula units in the unit cell and density of the Bi;_,Sr,FeO3_s per-

ovskites at room temperature. For the calculation of the molar mass, oxygen was assumed to have a stoichiometric value of 3.

The approximate packed density is calculated using an empirical factor of =~ 0.6. The wavelength for the calculation of the lin-
ear attenuation factor was 1.54814 A for x = 0, 0.2, 0.5, 0.8, 1 and 1.548296 A for x = 0.1 and x = 0.3. The linear attenuation
factor was calculated with [272]. The radius of the niobium or vanadium containers was 0.6 cm.
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APPENDIX C

Transformation between Pm3m and R3c

C.1 Lattice transformation
Mathematical details of lattice transformations are presented in appendix J.

The transformation from the lattice parameters of Pm3m to the lattice parameters of
R3c in subsection 3.5.3 is given by the following transformation matrix:

1 0 =2
W=10 1 2 (C.1)
1 -1 2
The inverse of W is given by:
2 1 1
3
w1 22 C.2
IR N (©2)
6 6 6
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APPENDIX D

Heat capacity as second derivative of the Gibbs free energy

For the proof that the heat capacity of constant pressure can be expressed as second
derivative of the Gibbs free energy, it is possible to start from the definition of the
heat capacity:

_9Q
Cpi=5n (D.1)

where Q) is the heat and T is the temperature.
If we now assume that the inner energy U solely depends on the heat Q we can write!:

o0 U
Proor or
In general, the inner energy U depends on the entropy S and the entropy S depends
on the temperature T, so we can expand the last term by the chain rule:

LU _oUds
PaTr 9S8 oT

The term ‘g—g is given as temperature T, if we look at the definition of the total

differential of the inner energy U:

(D.2)

(D.3)

oU
dU = —dS + ... . D4
55 45+ (D.4)
—~—
T
Further terms of volume, pressure, etc. are neglected as the heat capacity of con-

stant pressure does not depend on these variables.

With the substitution by T the following expression can be received:

oS

cp:T.a_T

(D.5)

1 This argument holds also true for the enthalpy H, why the heat capacity at constant pressure can
_ oH

be also written as C, = 5T
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For the term g—;, one can have a look at the definition of the total differential of the

Gibbs free energy G:

oG
dG = —dT + ... . D.
or (D-6)
—~—
-S
So the entropy S in equation D.5 can be replaced by the negative of the first deriva-

tive of the Gibbs free energy:

0?G

oT?
This equations proofs the assumption that the heat capacity at constant pressure

can be expressed as second derivative of the Gibbs free energy.

C,=-T- (D.7)



APPENDIX E

Additional figures for the pressure dependent investigations of
LaFeO3 - Approach A
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Figure E.1: Pressure dependent lattice parameters a and b of the LaFeOs per-
ovskite. The crossing at approximately 2.1 GPa allows the description of the crystal
structure with a tetragonal unit cell, although it does not indicate a phase transition
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APPENDIX F

Inverted third order Vinet EoS approximation

The “linearized” inverted third order Vinet EoS approximation is given by

a(P)=ag x f(P) (F.1)

where aq is the lattice parameter at ambient conditions and f(P) is given as

f(P) =
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APPENDIX G

Additional figures for the pressure dependent investigations of

LaFeO3 - Approach B
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Figure G.1: Pressure dependent orthorhombic a)-c) lattice parameters and d) unit

cell volume of LaFeOs.
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Figure G.2: Pressure dependent atomic coordinates of the LaFeO3 perovskite. The
lanthanum y-coordinate in b) gives a clear indication of a structural second order
phase transition (The figures of the atomic coordinates are continued in figure G.3).
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APPENDIX H

Additional figures for the pressure dependent investigations of

LaFeO3 - Approach C
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Figure H.1: Pressure dependent orthorhombic a)-c) lattice parameters and d) unit

cell volume of LaFeOs.
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Figure H.2: Pressure dependent atomic coordinates of the LaFeOs perovskite. The
lanthanum y-coordinate in b) gives a clear indication of a structural second order
phase transition (The figures of the atomic coordinates are continued in figure H.3).



199

0.06 7

T T T T T < T = N, T T
M < A Meth-Eth. 4:1 (I)
W l.i'i&? » 5 1.2 v Ar b
° O_OS_WW“ L 2 * 5 § % i o % & Meth.-Eth. 4:1 (Il) B
-~ E € Y
© % C S § o8 :
S v g K 3
S 0.004 _ o Q ¥ v
] a i My, v Vv gy J
g S & Vgl it
N Y 8 E R Y +
o , ; 2 L
8 o0af | 4 Memenaro v ] Soof 7 IR SEIR
& Meth-Eth. 4:1 (Il) v &
0 10 20 30 40 50 0 10 20 30 40 50
Pressure (GPa) Pressure (GPa)
(a) O2 z-coordinate (b) Overall isotropic atomic displace-
ment parameters
% T T T T T T
2 159 .
(2]
B .12
OG- ¢ v
(] _
& £009 wet, T ¢
Ng add
o Lo6 e
Q. 0.6-
‘5 c WV...‘II m N,
T3] M A Meth-Eth. 4:1 ()
8 (“,:)' : é” v Ar
£ 4 Meth.-Eth. 4:1 (Il)
S 001 ]
E T T T T T T
8 0 10 20 30 40 50

Pressure (GPa)

(c) Phenomenological strain parameter
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(the definition of the phenomenological strain parameter is given in a footnote in sec-

tion 4.4).
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Additional figures for the pressure dependent investigations of

LaFeO3 - Approach D
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Figure I.1: Pressure dependent orthorhombic a)-c) lattice parameters and d) unit

cell volume of LaFeOs.
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Figure 1.2: Pressure dependent atomic coordinates of the LaFeOs perovskite. The
lanthanum y-coordinate in b) gives a clear indication of a structural second order
phase transition (The figures of the atomic coordinates are continued in figure 1.3).
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Figure 1.3: a) Continued pressure dependent atomic coordinates of the LaFeO3 per-
ovskite from figure 1.2. b) Pressure dependent overall isotropic atomic displacement
parameter for all datasets. b) Pressure dependent phenomenological strain parame-
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of the non-hydrostatic regime for the different pressure media can be estimated (the
definition of the phenomenological strain parameter is given in a footnote in section

44).






APPENDIX J

Transformation between Im3 and C2/m

J.1 Lattice transformation

Generally, the transformation of a crystallographic space lattice A to a crystallographic
space lattice B is given by a similarity transformation:

Gp=WT"-G,-W (J.1)

where G4 and Gp are the metric tensors (= fundamental matrices) of the corre-
sponding crystallographic space lattices, W is the transformation matrix and W7 the
transposed transformation matrix.

The metric tensor is defined as:

g1 G912 913 a? a-b-cosvy a-c-cosf
G= |91 922 ga3|=1|a-b-cosvy b? b-c-cosa (J.2)
931 932 933 a-c-cosfB b-c-cosa 2

where a, b, ¢, a, § and ~ are the lattice parameters of a given crystallographic space
lattice.

The transformation from the lattice parameters of Im3 in section 5.4.1 to the lat-
tice parameters of C'2/m in section 5.4.2 is given by the following transformation
matrix:

0 —1
10 (1.3)
0

1
W=10
1 1

Thus the transformation is:

Gooym =W Grpg - W . (J.4)

It is also possible to do the reverse transformation (C2/m — I'm3), which is given
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by:
W Gogm - W =W WL .Grps - W - W . (1.5)
T T

The inverse of W is given by:

Wt =

[esR I
O = O
= O

—

[

(@]

N—

DO [

J.2 Coordinate transformation

Generally, the transformation of a given atomic coordinate x, y, z of a crystallographic
space lattice B to the atomic coordinate x’,3, 2’ of a crystallographic space lattice A
is given by a transformation which consists of a rotational part W (which is the above
mentioned transformation matrix) and of an origin shift w (which is a vector):

X' = (Wa)X =W - X +w (J.7)
where X = (2,9, 2)T and X' = (2/, v/, 2/)T.

The transformation for the atomic coordinates of the crystal structure in space group
I'm3 in section 5.4.1 to the atomic coordinates of the crystal structure in space group
C2/m in section 5.4.2 is given by the relation:

Xeom =W (Xpp3 —w) (J.8)

where W~1 is given in equation J.6 and the orgin shift w is given as:

w=(0,0,0.5)" . (1.9)

In order to obtain all required atomic coordinates in space group C2/m, first all
symmetry equivalent positions of each atom have to be calculated first. After the cal-
culation of each atomic position in the unit cell, the transformation is carried out and
a look into the International Tables Vol. A [275] shows which atomic position is a new
one and which can be omitted due to symmetry equivalence. The full transformation
calculation for all Bi, Cu, Cr and O atoms is listed in table J.1.
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Table J.1: Transformation table of all Bi, Cu, Cr and O atomic positions in space
group I'm3 to the atomic positions in space group C2/m. In the first column the
atomic identifier is shown. In the second column the position in space group Im3 is
given. In the third column all symmetry equivalent atomic positions are calculated.
The fourth column are the transformed coordinates in space group C2/m. And in
the fifth column the Wyckoff positions in the new space group are identified as well
as symmetry equivalent doublets, triplets, etc.. The tables with symmetry equiva-
lent coordinates and Wyckoff positions can be obtained either by the International
Tables Vol. A [275] or by the Bilbao Crystallographic Server (Online links: http://
www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-1list?gnum=204 (Im3) and
http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-1list?gnum=12&gua=b

(C2/m)).
Atom | Coordinate | Symmetry equivalent Coordinate Wyckoft position
in I'm3 coordinate in I'm3 in C2/m in C2/m
0 0 —0.25
Bil 1 0 0 0 44
0 0 —0.25
0.5 0.25
Bil_2 0.5 0.5 4i (— Bil_1)
0.5 —0.25
0 0 0
Cul_1 0.5 0.5 0.5 2b
0.5 0.5 0
0.5 0.25
Cul_2 0 0 4
0.5 —0.25
0.5 0
Cul_3 0.5 0.5 2d
0 —0.5
0.5 0
Cul 4 0 ( 0 ) 2¢
0 —0.5
0 —0.25
Cul_5 0.5 0.5 4i (= Cul_2)
0 —0.25
0 0
Cul_6 0 0 2a
0.5 0
0 0.25 0
Crl 1 0.5 0.25 0.25 8j
0.5 0.25 —0.25
0.75 0.25
Crl_2 0.75 0.75 4f
0.25 —0.5



http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list?gnum=204
http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list?gnum=204
http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list?gnum=12&gua=b

208

0.75 0.5
Crl 3 0.25 0.25 8 (— Crl_1)
0.75 —0.25
0.25 0.25
Crl_4 0.75 0.75 de
0.75 0
0.75 0.5
Crl_5 0.75 0.75 8j (— Crl_1)
0.75 ~0.25
0.25 0.25
Crl_6 0.25 0.25 de (— Crl_4)
0.75 0
0.25 0
Crl 7 0.75 0.75 8j (— Crl_1)
0.25 —0.25
0.75 0.25
Crl_8 0.25 ( 0.25 ) 4f (= Crl_2)
0.25 —0.5
0 0 ~0.15955
01 1 ( 0.3057 ) 0.3057 0.3057 8j
0.1809 0.1809 —0.15955
0 —0.15955
01 2 0.6943 0.6943 8 (— O1_1)
0.1809 —0.15955
0 0.15955
01 3 0.3057 0.3057 8 (— 01_1)
0.8191 0.15955
0 0.15955
01 4 0.6943 ( 0.6943 ) 8 (— O1_1)
0.8191 0.15955
0.1809 —0.0067
01 5 0 0 4
0.3057 —0.1876
0.1809 0.1876
Ol 6 0 0 4
0.6943 0.0067
0.8191 0.3124
01 7 0 0 4
0.3057 —0.5067
0.8191 0.5067
01 8 0 0 4
0.6943 —0.3124
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01 9

O1_10

01 11

01 12

01 13

01 14

01 15

O1_16

01 17

01 18

O1_19

O1_20

01_21

01 22

0.3057
0.1809

0.6943
0.1809

0.3057
0.8191

0.6943
0.8191

0.5
0.8057
0.6809

0.5
0.1943
0.6809

0.5
0.8057
0.3191

0.5
0.1943
0.3191
0.6809

0.5
0.8057
0.6809

0.5
0.1943
0.3191

0.5
0.8057
0.3191

0.5
0.1943
0.8057
0.6809

0.5
0.1943
0.6809

0.5

|
|

—0.09715
0.1809
—0.40285
0.09715
0.1809
—0.59715
—0.09715
0.8191
—0.40285
0.09715
0.8191
—0.59715
0.34045
0.8057
—0.15955
0.34045
0.1943
—0.15955
0.15955
0.8057
—0.34045
0.15955
0.1943
—0.34045
0.4933
0.5
—0.1876
0.1876
0.5
—0.4933
0.3124
0.5
—0.0067
0.0067
0.5
—0.3124
0.40285
0.6809
—0.40285
0.09715
0.6809
—0.09715

|
|

8 (— O1_09)

8 (— 01_9)

8 (— 01_9)

8 (— O1_1)

8 (— O1_1)

8j (— O1_15)

4i (— O1_5)

4i (— 01_7)

4i (= O1_6)

4i (— O1_38)

8 (— 01_9)

8]
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O1_23

01 24

|

0.8057
0.3191
0.5
0.1943
0.3191
0.5

|

|

0.40285
0.3191
—0.40285
0.09715
0.3191
—0.09715

|

8 (— 01_9)

8 (— O1_22)




APPENDIX K

Order parameters and symmetry modes for the quadruple
perovskite BiCu3Cr 015

Im-3
Im-3
Im-3
Im-3

0,0,0]GMI+(a)
0,0,0]GM2+GM3+(a,b)
0,0,0]GM4+(0,a,0)
1/2,1/2,0]N2-(0,0,0,a,0,0)

————

Table K.1: Order parameters of the phase transition in BiCugCrsO12.The order
parameter descriptions are in the notation of Miller and Love [71].
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al | Im-3[1/2,1/2,0]
a2 | Im-3[1/2,1/2,0]
a3 | Im-3[1/2,1/2,0]
ad | Im-3[1/2,1/2,0]
a5 | Im-3[1/2,1/2,0]
ab |1 ]

m
m

m

a7 | Im-3
m
m
m

N2-(0,0,0,a,0,0)[Bil:a]Tu_1(a)
N2-(0,0,0,a,0,0)[Bil:a]Tu_2(a)
N2-(0,0,0,a,0,0)[Cul:b|Blu(a)
N2-(0,0,0,2,0,0)[Cul:b]B2u(a)

N2-(0,0,0,a,0,0)[Crl:c]Au(a)
1/2,1/2,0]N2-( ]
1/2,1/2,0]N2-( )

-(0,0,0,a,0,0)[Crl:c]Eu*_1(a)
-(0,0,0,a,0,0)[Crl:c|Eu* 2(a)
a8 | Im-3[0,0,0]GM1+(a)[O1:g]A’ 1(a)
a9 | Im-3]0,0,0]GM1+(a)[O1:g]A’ 2(a)
a10 | Im-3[0,0,0]GM2+GM3+(a,b)[01:g]A”_1
all | Im-3[0,0,0]GM2+GM3+(a,b)[01:g]A”_1
al12 | Tm-3[0,0,0)GM2+GM3+(a,b)[01:g]A’ 2
al3 | Im-3[0,0,0)/GM2+GM3+(a,b)[O1:g]A’ 2

] JA

] JA’

] JA’

3]
3]
3
[
[
3]
3]
3
[
[
i
3[0,0,0)GM4+4(0,,0)[O1:¢
[
[
[
3]
3
[
[
[
3]
3]
3

al4 | Im-3[0,0,0|GM4+(0,a,0)[O1:g]A’ 1(a)

alb | Im-3[0,0,0|GM4+(0,a,0)[O1:g]A’ 2(a)

al6 | Im-3 [ 1(a)

al7 | Im-30,0,0]GM4+(0,a,0)[O1: g]AL (a)

als | Im-3[1/2,1/2, O]NQ (0,0,0,a,0,0)[OL:g]A’ 1(a)
al9 | Im-3[1/2,1/2,0]N2-(0,0,0,,0,0)[OL:g]A’ 2(a)
a20 | Im-3[1/2,1/2,0]N2-(0,0,0,2,0,0)[O1:g]A’ 3(a)
a21 | Im-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[O1:g]A’_4(a)
a22 | Tm-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[O1:g]A’ 5(a)
a23 | Im-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[01:g]A’ 6(a)
a24 | Im-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[O1:g]A’ 7(a)
a25 | Im-3[1/2,1/2,0]N2-(0,0,0,2,0,0)[O1:g]A’ 8(a)
a26 | Im-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[O1:g]A”_1(a)
a27 | Im-3[1/2,1/2,0]N2-(0,0,0,a,0,0)[O1:g]A”_2(a)

Table K.2: Symmetry modes of the phase transition in BiCuzCrsO12.The order pa-
rameter descriptions are in the notation of Miller and Love [71].



APPENDIX L

Peak width modeling of the quadruple perovskite BiCu3Cr,O15
by Gaussian and Lorentzian crystallite size and Gaussian strain
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Figure L.1: Temperature dependent behavior of the Gaussian and Lorentzian crys-
tallite size parameters as well as of the phenomenological Gaussian strain parameter
(for information about these parameters see also section 4.4). The combination of
these parameters is used to calculate the peak width of the BiCugCrsO12 quadruple
perovskite.



APPENDIX M

Strain calculation for the quadruple perovskite BiCu3Cr 015

0.0035 =+——— T ——
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Figure M.1: Calculation of the temperature dependent pseudo-cubic lattice strains
in the BiCu3CryO12 quadruple perovskite. The cubic phase is assumed to be strain-
free. The strains of the pseudo-cubic lattice parameters of the monoclinic phase are
calculated in relation to the lattice parameters of the strain-free cubic phase at the
same temperature.

Strain ¢ = AI/I0
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APPENDIX N

Bond valence sum calculations for the quadruple perovskite
BiCu3CryO15 with 8% Cu®' on the Cr-site

100 150 200 250 300 350
4,4 4 T T T T T T

| - Bi1 1 "]
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“7 —A-Cr2
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— 3,8—- 8% Cu2+ on Cr pos.:_'
3
z _
~ 3,6
g |
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T T T v T v T
1 —m-Cut_1 1
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Figure N.1: Temperature dependent bond valence sum calculations for all cations in
the BiCu3zCrsO12 quadruple perovskite. This is in principle the same picture as given
in figure 5.14, except that additional data points are calculated for a model where 8%
Cu?* is assumed on each Cr-site (see purple data points).
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Symbols and Abbreviations

Symbols
Table 1: Physical constants from [276, table XLI].
Symbol Value Measurement unit Description
c 2.99792458 108 m-s! speed of light in vacuum
e 1.602176565(35) 10719 C elementary charge
eV 1.602176565(35) 10719 J electronvolt
h 6.62606957(29) 10734 J-s
4.135667516(91) 1015 eV s
1.054571726(47) 10734 J-s Planck constant
6.582118928(15) 10716 eV.-s
ks 1.3806488(13) 107 JoK } Boltzmann constant
kp 8.6173324(78) 1075 eV-K-1
mo 9.10938291(40) 103! kg electron mass
€0 8.854187817... 10712 F-m electric constant
o 12.566370614... 107 N A2 magnetic constant
G 6.67384(80) 10~ m3 - kg~ s72 Newtonian constant of gravitation
Na 6.02214129(27) 10?3 mol ™1 Avogadro constant
u 1.660538921(73) 10727 kg (unified) Atomic mass unit -5 m (*2C)
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Abbreviations

ADP

AFM

BNS

BVS

CD

co

Cu

DAC

DC

DFT

DSC

EoS

FC

Fe

FiM

FM

FOM

FWHM

GOF

HS

ISCT

La

anisotropic displacement parameter (dt. anisotroper
Verschiebungsparameter)

antiferromagnetic (dt. antiferromagnetisch)

bismuth (dt. Bismut)

Belov, Neronova and Smirnova setting

bond valence sum (dt. Bindungsvalenzsumme)

charge disproportionation (dt. Ladungsdisproportionierung)
charge ordering (dt. Ladungsordnung)

copper (dt. Kupfer)

chromium (dt. Chrom)

diamond anvil cell (dt. Diamantstempelzelle)

direct current (dt. Gleichstrom)

density functional theory (dt. Dichtefunktionaltheorie)
Differential Scanning Calorimetry (dt. Dynamische Differenzkalorimetrie)
equation of state (dt. Zustandsgleichung)

field-cooled (dt. feldgekiihlt)

iron (dt. Eisen)

ferrimagnetic (dt. ferrimagnetisch)

ferromagnetic (dt. ferromagnetisch)

figure of merit (dt. Gutezahl)

full width at half maximum (dt. Halbwertsbreite)
goodness of fit (dt. Giite der Anpassung)

higher symmetry (dt. hohere Symmetrie)

inter-site charge transfer (dt. Ladungstransfer zwischen verschiedenen
Atomen)

lanthanum (dt. Lanthan)
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LS lower symmetry (dt. niedrigere Symmetrie)

NTE negative thermal expansion (dt. negative thermische Ausdehnung)
0] oxygen (dt. Sauerstoff)

0G Opechowski and Guccione setting

PTE positive thermal expansion (dt. positive thermische Ausdehnung)
RB rigid bbody (dt. starrer Korper)

Sr strontium (dt. Strontium)

WPPD  whole powder pattern decomposition (dt. Zerlegung des gesamten
Pulverdiffraktogramms)

WPPF whole powder pattern fitting (dt. Anpassung des gesamten
Pulverdiffraktogramms)
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Visualization of the a) Laue equation and the b) Bragg equation with
two point scatters. For the Bragg equation the optical path which must
be a multiple of the wavelength is shown in red. Please note that the
visualization of the Bragg equation is only a simple representation as
the point scatters can lie anywhere on the lattice planes as they must
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Simulated two-dimensional diffraction patterns of different types of crys-
talline materials. From left to right the evolution of these patterns is
shown, when a single crystal is crushed and the disorder is increased.
a) Diffraction pattern of a single crystal. b) Diffraction pattern of a
textured powder with preferred orientation. c¢) Diffraction pattern of a
powder with particles in micrometer size and d) in nanometer size. e)
Diffraction pattern of an amorphous material (also valid for gases and
liquids). . . . . . o
a) Two-dimensional projection of the reciprocal space lattice with the
Ewald sphere and the limiting sphere (the limiting sphere determines
the maximal reachable hkl values in a powder diffraction experiment).
The radius of the limiting sphere is given by % (therefore the maximum
reachable dpx; value is given by dpx; = %) Please note that the incoming
beam within the Ewald sphere does not necessarily start at a reciprocal
lattice point. b) 24 single crystal diffraction patterns each rotated by
an angle of 2°. It is obvious that in a powder where ideally all possible
orientations of crystal grains exist, the single spots in 2 dimensions will
merge into a continuous diffraction ring, which becomes a continuous
diffraction sphere in 3 dimensions. . . . . . . . . . ... ... ... ...
Diffracted X-rays of a a) single crystal specimen and diffracted X-rays
in b) Debye-Scherrer cones for a powder sample. The Debye-Scherrer
rings result from a cut projection of the spheres which arise due to the
smearing of reciprocal lattice points onto different spheres in reciprocal

space. The cone shape is simply given by the propagation of the radiation. 14
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2.5 Cubic reciprocal lattice where the reciprocal lattice points are continu-
ously smeared onto the surfaces of different spheres. If these spheres are
arbitrarily cut through the center, continuous two-dimensional powder
diffraction rings can be observed. Another cut projection through the
center of the diffraction rings gives the one-dimensional powder diffrac-
tion pattern (In an experiment normally the one-dimensional powder
diffraction pattern are obtained by the integration of the rings along a
cut which is perpendicular to the rings). Indexing of the single peaks
in this powder diffraction pattern can be done by following the orange
dashed lines and then by following the corresponding lines of the circle
to the reciprocal lattice points. Please note that for instance the recip-
rocal lattice points 100 and 001 merge into a single peak (this is the
case of reflection multiplicity) as well as the reciprocal lattice points 500
and 340 merge into a single peak (this is the case of systematic overlap
of reflections). . . . . . ...

2.6 The deviation of the scattering angle by a constant angular misalign-
ment leads to different percentage errors for the obtained % values as
can be seen by the different curves. For instance a misalignment of
A260 = 0.01° for a measured peak at 20 = 20° and at a wavelength of
A = 1.54059 A leads to an error (= estimated standard deviation) in
d of Ad = 0.057 A. The curves can be calculated through the equa-
tion ‘%ﬁi‘ ~ % which follows from the total differential of the Bragg
equation [24]. . . ...

2.7 Examples for magnetic structures for different magnetic propagation
vectors and different real and complex Fourier coefficients. a) ferro-
magnetic (FM) configuration with S» = (0,0, w)” (w = real) and k =
(0,0,0)7, b) antiferromagnetic (AFM) configuration with S}; = (0,0,w)T
(w=real) and k = (0,0, 0.5)7 and ¢) cycloid configuration with S}; com-
plex and k = (1/3,1/3,0)7. The unit cells which are shown by the black
squares are given by the lattice vector R; = (0,1,0)” with [ as integer. .

2.8 Temperature and order parameter dependent energy landscape for a a)
2-4 Landau potential and for a b) 2-3-4 Landau potential. The red solid
line marks the path of the lowest Gibbs energy. . . . . . . . .. .. ..

3.1 Corrugated background in the room temperature powder diffraction
measurements of the Big 551 5FeO3_;5 perovskite. Peak like observations
are marked with green circles. . . . . . . ... ...

3.2 Tetragonal magnetic unit cell and magnetic moments of the Bi;_,Sr,FeO3_;

perovskite (with x = 0.2, 0.3 and 0.5) for Shubnikov group I.4/mcm
(140.550) in the BNS setting. The cubic parent structure is indicated by
the pink cube edges. The drawn axes correspond to the larger tetrago-
nal cell. . . . . .
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a) Local view of the magnetic structure of the BiFeO3 perovskite. The
local alignment of the magnetic moments seems to be G-type antiferro-
magnetic. Choosing one layer of magnetic moments and enlarging the
unit cell to 20x20, a part of the spin cycloid can be seen: b) view along
the b-axis and c¢) view along the [110] face diagonal (in order to see the
propagation of the spin cyloid in the [110]-direction). . . . . . . .. ..

Temperature dependent (pseudo-)cubic lattice parameter a for the Bi;_,Sr,FeO3_s

perovskites obtained by Rietveld refinements of neutron powder diffrac-
tion data. The trigonal lattice parameters of the BiFeO3 perovskite are
transformed to pseudo-cubic lattice parameters (transformation matrix
is given in appendix C). The lines are guides to the eye. . . . . . . . ..

Temperature dependent oxygen stoichiometry 3—4 for the Bi;_,Sr,FeO3_;

perovskites obtained by Rietveld refinements of neutron powder diffrac-
tiondata. . . . ...
Temperature dependent magnetic moments for the Bi;_,Sr,FeO3_; per-
ovskites obtained by Rietveld refinements of neutron powder diffraction
data. The values in brackets were not considered in the fitting with the
shown power-law behavior (see also explanations given in the text).
Temperature dependent heat flow of the Bi;_,Sr,FeO3_s perovskites (x
=0, 0.1, 0.2, 0.3, 0.4 and 0.5) measured by DSC. Picture a) shows the
raw data and picture b) shows the heat flow with subtracted baseline. .
Néel temperature of the antiferromagnetic to paramagnetic phase tran-
sition determined from the top position of the endothermic peaks of the
corresponding DSC measurements of the Bi;_,Sr,FeO3_s perovskites.
Néel temperature of the antiferromagnetic to paramagnetic phase tran-
sition determined for the Bi;_,Sr,FeO3_s perovskites. Blue points are
obtained from Rietveld refinements of neutron powder diffraction data,
whereas black points are obtained by the top position of the endother-
mic peaks of the corresponding DSC measurements. . . . . . . . .. ..

Simulated two-dimensional Guinier patterns of the pressure dependent
in situ synchrotron X-ray powder diffraction measurements of LaFeOgs
at room temperature for different pressure media: a) nitrogen, c) argon
and b)+4d) methanol-ethanol in a mixture of 4:1. In the investigated 26
range (5° < 260 < 20.8°) 71 reflections of the Pbnm phase are present. .
Rietveld refinement of LaFeOs; at ambient conditions. The measure-
ment of the sample was done in a capillary in Debye-Scherrer geometry.
Coordination spheres of the FeOg octahedron at ambient conditions
in the LaFeOj perovskite. Please note that due to the symmetry two
different bond lengths between the central iron cation and the oxygen
O2 anion exist. . . . . . ..
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Pressure dependent orthorhombic a)-c) lattice parameters and d) unit
cell volume of LaFeOgs. For the lattice parameter b, a jump, indicating
a structural first order phase transition, at approximately 38 GPa is
visible. . . . .
Pressure dependent atomic coordinates of the LaFeOs perovskite. The
lanthanum y-coordinate in b) gives a clear indication of a second order
phase transition. A subsequent power-law fit for this coordinate resulted
in a critical exponent of 5 = 0.48(2) and a critical pressure of P..; =
20.5(6) GPa. (The figures of the atomic coordinates are continued in
figure 4.6). . . . . . L
a) Continued pressure dependent atomic coordinates of the LaFeOg per-
ovskite from figure 4.5. b) Pressure dependent overall isotropic atomic
displacement parameter for all datasets. . . . ... ... .. ... ...
Rietveld plot of the LaFeOgs perovskite at 24.8 GPa using methanol-
ethanol as pressure medium (fourth run). The limited 26 range is due
to the geometric restriction by the DAC. . . . . . . ... .. ... ...
Bérnighausen tree [208] for the first and second order phase transitions
in LaFeO3 at the room temperature isobar and at pressures below 45
GPa. Lattice parameters for the Ibmm phase at 24.8 GPa are a =
5.429(1) A, b = 5.357(1) A and ¢ = 7.543(3) A. Lattice parameters for
the Tbmm phase at 43.1 GPa are a = 5.262(2) A, b = 5.253(2) A and
c=T306(2) A, ..
Crystal structure of the LaFeO3 perovskites at different pressures. Am-
bient crystal structure in space group Pbnm, a) view along ¢ and c)
view along b. Crystal structure at 24.8 GPa in space group Ibmm, b)
view along ¢ and d) view along b. . . . . .. ... ...
Pressure dependent volume of the FeOg octahedron in the LaFeOs per-
ovskite. Three different regions (separation by black solids lines) can

be distinguished, which correspond to the three crystal structure phases. 89

a) Pressure dependent lattice parameter a of LaFeOgz obtained for the

first methanol-ethanol measurement series. The onset of the non-hydrostatic

regime of the used pressure media is obvious, as there is clear kink at
approximately 9.8 GPa observable in the sequential refined data sets.
b) Pressure dependent phenomenological strain parameters for the dif-
ferent pressure media dependent data sets. From this figure the onset
of the non-hydrostatic regime for the different pressure media can be
estimated (the definition of the phenomenological strain parameter is
given in a footnote earlier in this chapter). . . . .. .. ... ... ...
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Pressure dependent orthorhombic a)-c) lattice parameters and d) unit
cell volume of LaFeO3 from sequential as well as from parametric Ri-
etveld refinement. For the parametric Rietveld refinement, the red lines
denote that these parts were parameterized with the “linearized” in-
verted Murnaghan EoS, whereas the red points denote that these values
were refined individually. The red line for the volume is calculated by
the parameterized values of the lattice parameters. . . . . . . . .. .. 96
Pressure dependent sequentially and parametrically refined atomic co-
ordinates of the LaFeOj perovskite. The lanthanum y-coordinate and
the O1 y-coordinate are parametrically modeled with a power-law be-
havior and a common critical exponent. . . . . . . . ... ... . 99
Comparison between the R, values of the sequential and parametric
Rietveld refinement of approach A.The congruence of the R, values
indicates the correctness of the applied physical constraints. . . . . . . 100
Schematic picture for the applied constrainable atomic group for the
pressure dependent Rietveld refinement of the LaFeO3 perovskite. The
constrainable atomic group is build by the Fe?" cation in the middle
of the picture and the oxygen anions O1 and O2;. The full octahedron
which is received by symmetry operations of space group Pbnm is shown
in semi-transparent. . . . . . ... L0000 Lo 101
Pressure dependent weighted residual values (R,,) for the a) nitrogen
(first run), b) 4:1 methanol-ethanol (second run), ¢) argon (third run)
and d) 4:1 methanol-ethanol (fourth run) measurement series of the
high pressure synchrotron X-ray powder diffraction measurements of
the LaFeOg3 perovskite. . . . . . . . ... .. ... .. 103
Pressure dependent a)-b) bond lengths, ¢) bond angles and d)-f) rota-
tion angles of the FeOg octahedron in the LaFeOgs perovskite. Please
note that the bond length 73 is calculated from the lattice parameter ¢
and the two rotation angles cva and cvb via equation 4.7. . . . . . . .. 104
Pressure dependent a)-b) bond lengths, ¢) bond angles and d)-f) rota-
tion angles of the FeOg octahedron in the LaFeOgs perovskite. Please
note that the bond length r3 is calculated from the lattice parameter ¢
and the two rotation angles cva and cvb via equation 4.7. . . . . . . .. 107
Comparison between the R, values of the sequential and parametric
Rietveld refinement of approach B. The congruence of the R,, values
indicates the correctness of the applied physical constraints. . . . . . . 108
Pressure dependent weighted residual values (R,,) for the a) nitrogen
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high pressure synchrotron X-ray powder diffraction measurements of
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a) Continued pressure dependent amplitudes of the symmetry modes
of the LaFeO3 perovskite from figure 4.21. b)-d) pressure dependent
amplitudes of the strain modes. . . . . . . . ... ... ... ... ...
Parameterized pressure dependent amplitudes of the symmetry modes
X5+ and M5+ of the LaFeO3 perovskite. The modeling of the ampli-
tudes of the X5+ mode was done using a common critical exponent. . .
Comparison between the R, values of the sequential and parametric
Rietveld refinement of approach C.The congruence of the R, values
indicates the correctness of the applied physical constraints. . . . . . .
Schematic picture for the applied constrainable atomic group for the
pressure dependent Rietveld refinement of the LaFeO3 perovskite. The
constrainable atomic group is build by the Fe?* cation in the middle
of the picture and the oxygen anions O1 and O2;. The full octahe-
dron which is received by symmetry operations of space group Pbnm
is shown in semi-transparent. The unique rotation axis is build by the
Fe3* cation and a dummy atom X2 with zero occupancy. Further ex-
planations of this constrainable atomic group are given in the text.
Pressure dependent weighted residual values (R,,) for the a) nitrogen
(first run), b) 4:1 methanol-ethanol (second run), c¢) argon (third run)
and d) 4:1 methanol-ethanol (fourth run) measurement series of the
high pressure synchrotron X-ray powder diffraction measurements of
the LaFeOs3 perovskite. . . . . . . . . . . .. ... L.
Pressure dependent a)-b) bond lengths and c)-d) bond angles of the
FeOg octahedron in the LaFeO3 perovskite. Please note that the bond
length 73 is calculated from the lattice parameter ¢ and the bond angle
all via equation 4.8 and that the bond angle all is calculated intrinsi-
cally by the refinement program.. . . . . . . . .. .. ... ... ....
Pressure dependent a)-b) symmetry modes and c)-e) rotational symme-
try modes in the LaFeOs perovskite. The rotation angle shown in f) is
calculated from the rotational symmetry modes and is responsible for
the tilting of the FeOg octahedron. . . . . . . ... ... ... .. ...
Pressure dependent amplitudes of the strain modes in the LaFeOg3 per-
ovskite. . . .o
Parameterized pressure dependent a) amplitudes of the symmetry mode
X4+ and b)-d) phenomenological parameterized amplitudes of the strain
modes of the LaFeOg3 perovskite. The modeling of the amplitudes of the
X4+ mode was done using a power-law behavior with the same critical
exponent as for the modeling of the amplitude of the mm2 (mX4+)
mode (see figure 4.31b)). . . . . ..o
Parameterized pressure dependent a)-c) rotational symmetry modes of
the LaFeOj perovskite, which are responsible for the tilting of the FeOg
octahedron. The rotation angle in d) of the FeOg octahedron is calcu-
lated by the three rotational symmetry modes. . . . . . . . . ... ...
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Comparison between the R, values of the sequential and parametric
Rietveld refinement of approach D. The congruence of the R,,, values
indicates the correctness of the applied physical constraints. . . . . . .
Pressure dependent structural phase diagram of the LaFeOg3 perovskite
along the room temperature isotherm. . . . . . ... .. .. ... ...

Simulated two-dimensional heating/cooling Guinier pattern of the tem-
perature dependent in situ synchrotron X-ray powder diffraction mea-
surements of BiCu3CryO15. A first inspection of the graph indicates
a reversible first order phase transition at approximately 188 K. On
cooling the beam shutter was closed between 140 K and 106 K. In an
interval of approximately 16 K, horizontal streaks with increased inten-
sity can be observed in the simulated heating/cooling Guinier pattern.
It seems that at these values the patterns have a higher intensity poten-
tially due to a better position of the capillary (possibly caused by the
spinning frequency of the capillary). However this small difference in
the background intensity does not influence the refinement as it is com-
pensated by the modeling of the background with variable Chebyshev
polynomials. . . . . . . ...
Rietveld plot of the BiCuzCryOis quadruple perovskite (BCCO) in
space group I'm3 at room temperature. Known impurities like CroO4
(wt% 0.40(14)) and CrO (wt% 0.58(21)) were also modeled by the Ri-
etveld method. Unknown impurities are marked by asterisks. . . . . . .
Crystal structure of the BiCu3Cr;Oq5 quadruple perovskite with space
group Im3 at room temperature. The crystal structure consists of a
three-dimensional framework of corner-sharing CrOg polyhedra. Inter-
stitials are occupied by Bi cations in an icosahedral environment and
square-planar coordinated CuQy configurations which are aligned per-
pendicular to each other. . . . . . . . .. ... oL
Magnified simulated two-dimensional heating Guinier pattern of the
temperature dependent in situ synchrotron X-ray powder diffraction
measurements of BiCu3CrsO5. The observable Bragg reflections of
the main phase show no intensity changes during the phase transition.
The potential first order phase transition cannot be maintained as the
intensity of the satellite peaks is increasing/decreasing over a wider
temperature range and therefore a second order phase transition is more

Rietveld plot of the BiCu3CrsO15 quadruple perovskite in space group
C2/m at a temperature of 100 K. Known impurities like CroO3 and
CrO were also modeled by the Rietveld method. Unknown impurities
are marked by asterisks. . . .. ... oL oL
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Projections of the crystal structure of the BiCu3Cr 015 quadruple per-
ovskite in space group Im3 at a temperature of 100 K: a) view along
the a-axis, b) view along the c-axis and c¢) view along the b-axis. Like-
wise to the crystal structure at room temperature, the low temperature
crystal structure consists of a three-dimensional framework of corner-
sharing CrOg polyhedra. Interstitials are occupied by Bi cations in an
icosahedral environment and square-planar coordinated CuO,4 configu-
rations which are aligned perpendicular to each other. In contrast to
the room temperature crystal structure, three different Cr positions are
present (these different Cr positions are color coded: Crl = orange, Cr2
= purple, Cr3 = light blue). The view along the b-axis reveals that the
different Cr positions are ordered in columns. . . . . .. ... .. ...
Coordination spheres at a temperature of 100 K around the a) Crl
cation, the b) Cr2 cation, the ¢) Cr3 cation and the d)+e) Bi cation
of the BiCu3Cr,O15 quadruple perovskite. Please note the distorted
character of the corresponding polyhedra of Crl, Cr2 and Bi. . . . . . .
Pseudo-cubic lattice parameters, monoclinic § angle and monoclinic
unit cell volume upon heating and cooling of the Rietveld refined syn-
chrotron X-ray powder diffraction patterns of the BiCu3CrsO15 quadru-
ple perovskite. The phase transition at a temperature of approximately
188 K is shown by the vertical dotted line. Please note that there are
no data points for the cooling arm between 140 K and 106 K due to the
closed beam shutter. . . . . .. ... .. .00
Temperature dependent amplitudes of the symmetry modes which are
responsible for atomic coordinate shifts of the a) Bi cations, b) Cu
cations, c¢) Cr cations and d) oxygen cations in the BiCuzCr;O15 quadru-
ple perovskite. A detailed investigation of the a2 mode with a fit of a
power-law behavior according to Landau theory is given ine). . . . . .
Temperature dependent bond lengths of the a) Bi, b) Crl, ¢) Cr2 and
d) Cr3 coordination polyhedra in BiCusCryOqp. . . . . . . . . . . ...
Temperature dependent bond lengths of the Cu coordination polyhedra
in BiCUgCT4012 ................................
Coordination spheres of the Cr(1)Og octahedron at temperatures of a)
100 K and b) 188 K in the BiCu3zCr,O15 quadruple perovskite. Although
it is not visible by bare eye, the octahedron at 188 K is much more
distorted. . . . . . ...
Temperature dependent shifts of the different cations (Crl-3 and Bi)
away from their center of gravity of the corresponding coordination
polyhedra along the monoclinic crystal axis a)-d) in the BiCuzCryOs
quadruple perovskite. e)-f) add up shifts away from the center of gravity
of the corresponding coordination polyhedra. . . . . . . . . . ... ...
Temperature dependent bond valence sum calculations for all cations
for the BiCuzCr;O15 quadruple perovskite. Detailed information about
the calculation of the bond valence sums is given in the text. . . . . . .
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Temperature dependent electric resistivity of the BiCu3Cr,O15 quadru-
ple perovskite (upon heating). At 187 K there is a sharp increase in the
resistivity, however, the values of the electric resistivity and the electric
conductivity proves that BiCusCrsOq5 exhibits metallic behavior over
the entire investigated temperature range. . . . . . . .. .. ... ...
Upper picture: Field-cooled measurement of the temperature dependent
magnetic susceptibility of the BiCu3Cry;O15 quadruple perovskite at a
field of H =5 T. At 187 K the magnetic susceptibility increases showing
a typical ferromagnetic behavior. Lower picture: inverse susceptibility.
The paramagnetic region of the inverse susceptibility was fitted by a
Curie-Weiss law. . . . . . . . . ...
Field dependent isothermal magnetization at a temperature of 5 K and
field strengths from H = -5 T to H = 5 T of the BiCu3Cr,015 quadruple
perovskite. . . . .. L L

Pressure dependent lattice parameters a and b of the LaFeO3 perovskite.
The crossing at approximately 2.1 GPa allows the description of the
crystal structure with a tetragonal unit cell, although it does not indi-
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