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R É S U I ~ .  Après une revue sommaire de la méthode de projection quelques propriétés 

des quasi-cristaux sont derivées pour des structures obtenues à l'aide de cette méthode. 

On deiuontre en particulier la wnnection entre le9 spectres de Fourier et les classes 

d'équivalence induites par un isonlorphisnie local. On propose que l'entropie résiduelle 

est zéro a T = O . Enfin certaines propriétés associées à la self-similarité son6 discutées. 

ABSTRACT. After briefly reviewing the projection method, some properties of qua- 

sicrystal structures obtained by projection are discussed. In particular, the connection 

between the Fourier spectra and the local isonlorphisrn class of a quasicrystal is worked 

out. It is argued that quasicrystals have no residual entropy a6 T = 0 . Finally, certain 

self-similarity properties of quasicrystals are discussed. 

1. Introduction 

The discovery of an icosahedral phase of AI - Mn alloy by Shechtman et al. [l] ha8 initiated much 

activity in the field, both experiniental and theoretical. Such quasiperiodic structures have been 

termed quasicrystals 121. Meanwhile, several other quasicrystals have been described, some with 

different rotational symmetry [3,4], and many with different chemical composition (for references, 

see these proceedings). On the theoretical side, the interest has concentrated on strnctures obtained 

by the strip or projection method 151, which is based on de Bruijn's work 16) on Penrose tilings 17). 

These projected patterns can be obtained also with a different but equivalent algorithm [8] (the 

grid method), which goes back to de Bniijn [6] too, and which has advantages when one wants to 

generate quasicrystai patterns on a computer. 

In this paper we discuss some inatheniatical aspects of the models obtained by the projection 

n~ethod. Aiter briefly reviewing this method in section 2, we calculate the Fourier spectra of 
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quasicrystals in section 3. These Fourier transforma are formaily given by sums of 6-functions 

whoae positions fil1 reciprocal space densely. We then point out the connection between the Fourier 

transform and the concept of local isonlorphisin. Two patterns are calied iocally isomorphic if and 

only if every finite portion of one occure also in the other one, and vice versa. 

It is shown that the Fourier transfornls of locaiiy isomorphic quasicrystal patterns have the 

same positions and intensities of the 6-peaks, whereas patterns which are not localiy isoinorphic 

have Fourier transforms that differ in the peak intensities. Local isomorphism ia a standard concept 

in tiling theory 17). It has been introduced into the field of quasicrystals by Levine and Steinharàt 

\!JI, who were also the firat to discuss the connection with the Fourier tmsform of the Ammann 

quasilattice =sociated with a quayicrystal. The Fourier transfom of a quasicrystal however can 

be rather different from that of ita b a n n  quasilattice. 

In section 4 we argue that physical structures which are based on locaiiy isoniorphic patterns 

shouid be expected to be energeticaily degenerate. We then derive bounds on the nun~ber of locaily 

isonlorphic patterns that differ within a given finite region. More precisely, we obtain bounds on 

the nurnber of neighbourhoods of radius R a given vertex can have within a fixed local isomorphism 

class. It is shown that this nuniher grows at most as a power of R. This implies that quasicrystais 

have no residual entropy at T = O . 
Finalfy, in eection 5 we argue that a certain type of self-similarity occurs typically in many 

quasicrystais. It is explained how this property can be used in the anaiysis of diffraction patterns 

of quaaicrystals. 

2. The projecton method 

in this section we briefly review the projection method. More details can be found in [5,10,11]. 

Consider an n-dim. lattice 

where (e;) is a basis of P. Choose an n-dim. subspace El1 c En and let EL be its orthogonal 

complement, tw that En = EH $ EL. Denote by e l  and ef the projection of ei onto EH and EL 

respectively. In the sanie way decompose x E En aa x = x,! -t xl. 
For every vector 7 E En we define a strip 

n 



Note that the cross section of S7 , S7 n EL, is equal to the projection of an elementary n-ce11 of L 

onto EL. 

Thea the quasicrystal pattern is given by 

i.e. it is obtained by projecting al1 vertices in Ln S7 ont0 En. 

Q, ha8 a translation symmetry n if and only if n is a lattice vector of L contained in Eii. 

3. Fourier spectra and local isamorphism 

In the foiiowing we present a formal calculation of the Fourier spectra of Q, and then comment 

on how this can be made rigorous. We use the notation of Zia and Dailas 1121. 

Using the density of lattice points of L, 

we can wribe 

when! ,y7 is the characteristic function of the strip S7. Since the integral of afunction is its Fourier 

transform at O, we have 

and thus 

O7(kn) = / ~ L ~ i ( - k r K ( k i i i k r )  
(3.4) 

= &rPi(k) 

where X, is the Fourier transform of x7, and ;= p z  is the density of pointa in the reciprocal lattice 

Z. Therefore 4, ia obtained by multiplying every vertex of by ?,(-hl) and then projecting 

onto f i l .  In bbis way one obtains a sum of 6-functions which typicaUy are dense in EJI. 
Since x7 is discontinuous and thus ji7 decays only slowly, the intensitiea of tbe Q-peaks even 

in a finite region of are not summable and therefore the above calculation is only fomal. 

However Q7 and thus ,y7 can be defined as ternpered distributions. Uaing a sequence of emooth 

approximations y$ of ,y7, we obtain a sequence of tempered distributions @ converging to 6, 
(in the sense of distributions), and each element of this sequence is a (locally summable) sum of 
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6-functions. This regularisation procedure shouid be kept in mind in the rest of this section. A 

simiir approach to a rigorous theory of Fourier spectra of puasicrystala has b e n  proposeci by 

de Bruijn (131. 

Let US now go back to the patterns in direct spxe. As the subscript indicates, Q,(xll) depends 

on 7. However, two patterns with labels 7 and differ by just a translation if and only if either 

A7 = 7- is a lattice vector of L or A7 = A711. Therefore two pattern are translation equivalent 

h t  US consider the closure R of K. It is easy to see that R has the structure 

where Am is soiue in-dim. la66ice. 

If A71 E R, then there exists a sequence of patterns Q,,, such that Q," is a translation of 

Q, and 71 converges to 71. On the other hand, such a sequence exists only if A71 E K. NOW 

observe that two patterns with paranieters 7 and 7J agree in regions of radius R centered at y,, and 

$, respective&, if only /Ari/  k small enough. Therefore we have proved that every finite portion 

of a pattern Q, occurs also in Q,,, and vice versa, if and only if ArI f K.  By the same reasoning 

we find that every finite portion of a pattern occurs even infinitely often, with a density which is 

the same for al1 patterns with A ~ J .  E R. 

DEFINITION: Two patterns are called locally isomorphic if and only if every finite portion of one 

occurs al80 in the other one, and vice versa. 

THEOREM. Two patterns Q, and 0,' are local& isomorphic if and only if A71 E K. 

We now relate these properties to the Fourier transfonus. Suppose there is a lattice vector 

C m;6 in the reciprocal lattice which is contained in EL. Then there is an infinity of points in t 
which is projected onto the same spot. When we shift the strip by changing 7, each vertex of Z 
picks up a phase and under projection there may occnr interferences which could alter the intensity 

of a peak. This is the case if and only if A7 has a non-vanishing component in the direction of 

soms lattice vector contained in EL. ûtherwise al1 vertices that are projected onto the same spot 

pick np the same phase. 



THEOREM. The Fourier bransforms of two quasicrystal patterns agree in inbensiby if and on& if 

the two patterns are localiy immorphic. 

PROOF: We have to show that the span of the lattice vectors of contained in EL is identical to 

the span of the lattice vectom of hm in (3.6). Suppose n = C mi& = 2 mii$, i.e. C mis! = O. 

Then we have 

2~~ = e i . C m j ? j  = e t  , l . C m L  9 j 

and therefore u E Am, since the e t  are rationally dependent jn the direction of u. On the other 

hand Am is spanned by vectors v l  E EL which satisfy y1 . ej  = 2%mi , mi E 2. But the same 

holds true also for w = C mjëj, and since {ei) is a basis w must coincide with v ~ ,  and therefore 

w E E L .  m 

This result can be understood also in a different way. Instead of projecting the vertices inside 

the strip one can decorate each vertex of L with a piece of hyperplane parallel to EL and with 

the shape of the cross section of the strip, and then take the intersection of En with th* decorated 

periodic structure (141. This has the admtage that one can use different strips for different types 

of vertices at the saine tinle. 

If there are lattice vectors v E EL we can project the lattice L onto a lower dimensional one 

LI, which is decorated with a basis. Each iype of atom has then to be decorated with its own type 

of strip [14]. A change of local isomorphism class amounts in a change of the decoration of A', and 

it is therefore not surprising that this induces a change in the intensities of the diffraction pattern. 

4. Estimate on the number of ground etates 

Suppose a quasicrystal pattern describes the ground state of a physicai system with finite range 

interactions. S i ce  in two locally isomorphic patterns every finite portion occurs in both of them 

with the same density, a finite range interaction cannot ditinguish the two patterns. Therefore we 

conclude that ail locally isomorphic patterns (uncoutably many !) describe energetically degenerate 

(ground) states. In order to obtain a better measure on the number of ground states we first 

estimate this number for a finite volume Y and then study how fast this number grows with V in 

the thermodynauiic limit. 

More precisely, we estimate the number N(R) of diffant neighbourhoods of radius R a vertex 

of a quasicrystal pattern can have. This is done as follows. Choose a vertex x-E L and a bail 
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B(R) C El of radius R, centered at xH. Now move the strip S through EL, but subject to the 

conditions that i) x E S and ii) the local isomorphism class is prese~ed, and count the number of 

patterns distinct in B(R) we pi& up in this way. The vertices y E L which are projected onto a 

vertex of at least one of these patterns have the property that if yll E B(Rj and ii) y i  E G c EL, 
where C is some compact dornain which is independent of R. Therefore the number of theae 

vertices, n(R), can be bounded by n(R) 5 const. - V(R), where V ( R )  is the volume of B(R). 

The translations of the strip which preserve the local isonlorphism class consist of m' inde 

pendent continuous translations and a lattice Am of discrete translations (compare section 3). The 

condition that x E S restricts this to continuous translations in a compact dornain and finitely 

niany discrete translations. 

Under a continuous translation some new vertices enter the strip, others leave the strip. 

However, they enter and leave the strip in a fked order and therefore under a continuous translation 

we pick np at mosi 2n(R) patterns. Since there are m' independent continuous translations we 

obtain a bound 

N(R) 5 const . . v ( R ) ~ ' .  (4.1) 

Note that the finitely many discrete translations can affect only the constant in (4.1). Moreover 

our proof holda trne also in the case where the cross section of the strip is any compact region in 

EL. 

The bound (4.1) impiies the absence of residnal (eero temperature) entropy densi@ since 

This result can be nnderstood intuitively also from the fact that the whole quasicrystal pattern is 

completely specified by finitely many real parameters (the vector 7). 

6. Seifeimilarity propertiea 

A quaaicrystal pattern may be caiied self-similar if there exists a sydematic procedure (inflation) 

of erasing a aubeet of the verticea such that one obtains a pattern in the same local isomorphiam 

cl=, but on a larger scale. Moreover the inverse procedure (deflation) is reqnired to exist too. 

In the following we argue that this kind of self-sinularity is a typical phenornenon which is 

likely to occnr whenever the rotation symmetry of o quasicryetal is large enough. A typical scenario 

might be the foilowing one. 



Suppose there exists a spinetric invertible linear niapping M : En -+ En which maps L 

onto L. Therefore the m a t h  of M with respect to any lattice basis is contained in GL,(Z). 

This implies also that detM = f 1. Assume moreover that M leaves both El1 and EL invariant, 

MIE11 = c - lBli,c > 1, MIEL L 1 EL, and that for 3ny lattice vector v E EL we have Mv = 

Y. Such a mapping M-if it exists-haa the property that it streches directions parallel to the 

strip, while directions perpendicular to the strip shrink (with the exception of those whjch are 

lattice directions). Therefore M maps the strip onto a subset of the strip. Under this inflation 

transformation only the vertices in t h i  subset survive. The mapping M-1 enlarges the strip and 

provides thua the deiiation procedure. On the other hand, such a quasicrystalpattern is completely 

specified by the grid vectors and the tiling vectors (see ~ b f .  8). These however have just grown by 

a constant factor c. Therefore, after inflation we have a pattern of the same type, but on a Iarger 

scaie. The property M v  = v guarantees that one stays in the saine local isomorphism class. 

In ihis generality it is certainly difficuit bo decide whether such a mapping M exists. Let 

us therefore consider a more specific case. Assume that L has a point group G which acts with 

an R-reducible representation on 15, and suppose that we project on an irreducible representation 

space of G. If G is large enough this inlposes strong arithmetic conditions on the orientation with 

which El1 is embedded relative to the lattice. It seems that these conditions facilitate the search 

for an appropnate M considerably. For the icosahednl case such a niapping ha8 been given by 

Elser [15]. For 2-dim. patterns with C;, symmetry obtained by projection from an n-dim. cubic 

lattice (see e.g. 181) the author has determined such mappings for n = 5,7,8,10,12, with streching 

factors ra, 1 + ~ C O S Q -  2cos3a, 1 + @, ra, 2+@ respectively (r is the golden ratio, a = 9). In 

some of the 2d examples, the streching factor irr negative, wbich induces a rotation by r. Instead, 

we could use the square of M and therefore abo the square of the streching factor. 

It is not known whether a crystailographicafly forbidden point group acting on Ebnforces 

self-similarie, but the experience with a few examples indjcates that self-siruilarity is a typical 

phenornenon. A systematic study of a few important cases has been started also by Ostlund and 

Wright [16]. In contrast to our results these authors find no evidence for self-similarity in the 7-fold 

symnietric case. 

We should point out that the self-siniilarity deacribed here is a weaker one than that of 

Penrose patterns. In general, unlike in the Penrose case, it is not possible to give local rules for 

which vertices have to be added under deflation. To decide this one would have to know the 

whole pattern. Nevertheless, self-sinularity is an important tool in the study of quasicrystals. For 
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instance, the same anabsis can be applied to the reciprocai lattice and thii dlows one then to 

derive scaling relations for the intensities of the peaks in much the same way as Elser 1151 did in 

the icosahedral case. 
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N. RIVIER.- Continuous transformations (tunneling modes) between two 
different, non locally isomorphic configurations are physically 
observable in glasses '. 
The structure of a covalent glass can be modelled by a continuous 
random network (CRN = regular graph), made of 4-bonded tetrapods, with 
slight, random bending of the bonds. There appear rings with odd 
number of bonds, threaded through by uninterrupted lines 
("disclinations" characterized by oddness). 

Configurations are described by transporting the tetrapod about a ring 
(Burgers). They are labelled by classes of the permutation group S4 
(permutations of the feet of the tetrapod) : even permutations for 
even rings, odd permutations for odd rings. There are 2 odd classes of 
S 4, hence two configurations per odd line, which are not locally 

Tunneling between these two configurations does occur, and has been 
observed experimentally, most directly by (acoustic) echo techniques1. 
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