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RESUME. Aprés une revue sommaire de la méthode de projection quelques propriétés
des quasi-cristaux sont derivées pour des structures obtenues i Paide de cette méthode.
On demontre en particulier la connection entre les spectres de Fourier e les classes
d’équivalence induites par un isomorphisme local. On propose que Pentropie résiduelle

est 2éroa T = 0. Enfin certaines propriétés associées & la self-similarité sont discutées.

ABSTRACT. After briefly reviewing the projection method, some properties of qua-
sicrystal structures obtained by projecfion are discussed. In particular, the connection
between the Fourier spectra and the local isomorphism class of a quasicrystal is worked
out. It is argued that quasicrystals have no residual entropy at T = 0. Finally, certain

self-similarity properties of quasicrystals are discussed.

1. Introduction

The discovery of an icosahedral phase of Al — Mn alloy by Shechiman et al. {1} has initiated much
activity in the field, both experimental and theoretical. Such quasiperiodic structures have been
termed quasicrystals [2]. Meanwhile, several other quasicrystals have been described, sorme with
different rotational symmetry 3,4], and many with different chemical composiﬁon (for references,
see these proceedings). On the theoretical side, the interest has concentrated on structures obtained
by the strip or projection method [5], which is based on de Bruijn’s work [6]v on Penrose tilings [7).
These projected patterns can be obtained also with a different bui equivalent algorithm (8] {the
grid method), which goes back to de Bruijn [6] too, and which has advantages when one wants to
generate quasicrystal patterns on a computer.

In this paper we discuss some mathematical aspects of the models obtained by the projection

method. After briefly reviewing this method in section 2, we calculate the Fourier specira of
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quasicrystals in section 3. These Fourier transforms are formally given by sums of §-functions
whose positions fill reciprocal space densely. We then point out the connection between the Fourier
{ransform and the concept of local isomorphism. Two patterns are called locally isomorphic if and
only if every finite portion of one occurs also in the other one, and vice versa.

It is shown that the Fourier transforms of locally isomorphic quasicrystal patterns have the
same positions and intensities of the §-peaks, whereas patterns which are not locally isomorphic
have Fourier transforms that differ in the peak intensities. Local isomorphism is a standard concept
in tiling theory [7). It has been introduced into the field of quasicrystals by Levine and Steinhardt
[9], who were also the first to discuss the connection with the Fourier transform of the Ammann
quasilattice associated with a quasicrystal. The Fourier transform of a quasicrystal however can
be rather different from that of its Ammann quasilattice.

In section 4 we argue that physical structures which are based on locally isomorphic patterns
should be expected to be energetically degenerate. We then derive bounds on the number of locally
isomorphic patterns that differ within a given finite region. More precisely, we obtain bounds on
the number of neighbourhoods of radius R a given vertex can have within a fixed local isomorphism
class. It is shown that this number grows at most as a power of B. This implies that guasicrystais
have no residual entropy at T' =0 .

Finally, in section 5 we argue that a certain type of self-similarity occurs typically in many
quasicrystals. It is explained how this property can be used in the analysis of diffraction patierns

of quasicrystals.

2. The projecton method

In this section we briefly review the projection method. More details can be found in [5,10,11}.
Consider an n-dim. lattice

n

L:{xEE"Ix:Zk;e;,k;GZ} (2.1)

=l
where {e;} is a basis of E*. Choose an n-dim. subspace El C E™ and let £+ be its orthogonal
complement, so that B = E% @ EX. Denote by e/ and e} the projection of e; onto B% and Bt
respectively. In the same way decompose x € E* as x =x +x.

For every vector 4 € E™ we define a strip

S, ={xcE” [x=xu+7—2age} ix, €EEY a;€00,1] } (2.2)
1=1
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Note that the cross section of S, , S; N E4, is equal to the projection of an elementary n-cell of L
onto E+.

Then the quasicrystal pattern is given by
Q= Z e (2.3

i.e. it is obtained by projecting all vertices in LN Sy onto EN.

@y has a translation symmetry u if and only if n is a lattice vector of L contained in El.

3. Fourier spectra and local isomorphism

In the following we present a formal calculation of the Fourier spectra of Q. and then comment
on how this can be made rigorous. We use the notation of Zia and Dallas {12].

Using the density of lattice points of L,

prlx) = 3 (), (3.)
xeL
we can write
Qi) = [ deuxales)oato ) (2)

where y., is the characteristic function of the strip S,. Since the integral of a function is its Fourier

transform at 0, we have
@ulxs) = [ dha -kt k) (33)

and thus -
8, (k) = [ dk %o (K 1) 06y K1)

= fdkj_/?f;(k)

where ¥, is the Fourier transform of x, and ;'5'= o7, is the density of points in the reciprocal lattice

(3.4)

L. Therefore §, is obtained by multiplying every vertex of L by %,(—k 1) and then projecting
onto BN, In this way one obtains a sum of é-functions which typically are dense in B,

Since x. is discontinuous and thus ¥, decays only slowly, the intensities of the 5-peaks even
in a finite region of E" are not summable and therefore the above calculation is only formal.
However Q. and thus x4 can be defined as tempered distributions. Using a sequence of smooth
approximations x§ of x, we obtain a sequence of tempered distributions 6’; converging to Q.,

(in the sense of distributions), and each element of this sequence is a (locally summable) sum of
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§-functions. This regularisation procedure should be kept in ming in the rest of this seciion. A
similar approach to a rigorous theory of Fourier spectra of quasicrystals has been proposed by
de Bruijn (13].

Let us now go back to the patterns in direct space. As the subscript indicates, @, (x,) depends
on . However, two patterns with labels 4 and +' differ by just a translation if and only if either
Any =y~ is a lattice vector of L or Ay = A+~y. Therefore two patterns are translation equivalent
iff

A’yE{xEEllx:}’_‘:k‘eg" , ki€ Z} =K. (3.5)

1=}

Let us consider the closure K of K. It is easy to see that K has the structure
K=A"xE™ |, mim=n—4d (3.6)

where A™ is some m-dim. iattice.

If Ayy € K, then there exists a sequence of patterns @y» such that @,» is a translation of
@, and 47} converges to y1. On the other hand, such a sequence exists only if Ay; € K. Now
observe that two patterns with parameters 7 and «' agree in regions of radius X centered at y, and
7y respectively, if only [Av, | is small enough. Therefore we have proved that every finite portion
of a pattern Q, occurs also in Q.+, and vice versa, if and only if Ay, € K. By the same reasoning
we find that every finite portion of 2 pattern occurs even infinitely often, with a density which is

the same for all patterns with Ay; € K.

DEFINITION: Two patterns are called locally isomorphic if and only if every finite portion of one

occurs also in the other one, and vice versa.

THEOREM. Two patterns Qy and Q. are locally isomorphic if and only if Avy) € K.

We now relate these properties to the Fourier transforms. Suppose there is a lattice vector
Y. m;€; in the reciprocal lattice which is contained in E*. Then there is an infinity of points in L
which i8 projected onto the same spot. When we shift the strip by changing 7, each vertex of I
picks up a phase and under projection there may occur interferences which could alter the intensity
of a peak. This is the case if and only if A7y has a non-vanishing component in the direction of
some latiice vector contained in EL. Otherwise all vertices that are projected onto the same spot

pick up the same phase.
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THEOREM. The Fourier transforms of two quasicrystal patterns agree in intensity if and only if

the two patterns are locally isomorphic.

PROOF: We have to show that the span of the lattice vectors of L contained in B is identical to
the span of the lattice vectors of A™ in (3:6). Suppose u = Y mi&; = Y m&}, le. YomE! =0,
Then we have

2rm; = e; - ij'é',' =ef - E m, &}
and therefore m € A™, since the e are rationally dependent in the direction of u. On the other
hand A™ is spanned by vectors vy € B which satisfy v, - e; = 2am; , m; € Z. But the same
holds true also for w = ¥ m,€;, and since {e;} is a basis w must coincide with v, , and therefore

wekl m

This result can be understood also in a different way. Instead of projecting the vertices inside
the strip one can decorate each vertex of L with a piece of hyperplane parallel to E* and with
the shape of the cross section of the strip, and then take the intersection of E? with this decorated
periodic structure {14]. This has the advantage that one can use different sirips for different types
of vertices at the same time.

If there are lattice vectors v € BY we can project the lattice L onto a lower dimensional one
L/, which is decorated with a basis. Each type of atom has then to be decorated with its own type
of strip [14]. A change of local isomorphism class amounts in a change of the decoration of I/, and

it is therefore not surprising that this induces a change in the intensities of the diffraction pattern.

4. Estimate on the number of ground states

Suppose a quasicrystal pattern describes the ground state of a physical system with finite range
interactions. Since in two locally isomorphic patterns every finite portion occurs in both of them
with the same density, a finite range interaction cannot distinguish the two patterns. Therefore we
conclude that all locally isomorphic patterns (uncoutably many !) describe energetically degenerate
(ground) states. In order {o obtain a better measure on the number of ground states we first
estimate this number for a finite volume V' and then study how fast this number grows with V in
the thermodynamic limit.

More precisely, we estimate the number N(R) of different neighbourhoods of radius R a vertex

of a quasicrystal pattern can have. This is done as follows. Choose a vertex x~€ L and a ball
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B{R) C E* of radius R, centered at x!. Now move the strip § through EL, but subject o the
conditions that i) x € § and ii) the local isomorphism class is preserved, and count the number of
patterns distinct in B{R) we pick up in this way. The vertices y € L which are projected onto a
vertex of at least one of these patterns have the property that i) y, € B(R) and ii) y1 € C C £+,
where C is some compact domain which is independent of B. Therefore the number of these
vertices, n(R), can be bounded by n(R) < const. - V(R), where V(R) is the volume of B(R).

The translations of the strip which preserve the local isomorphism class consist of m’ inde-
pendent continuous translations and a lattice A™ of discrete translations {compare section 3). The
condition that x € § restricts this to continuous translations in a compact domain and finitely
many discrete translations.

Under a continuous iranslation some new vertices enter the strip, others leave the strip.
However, they enter and leave the strip in a fixed order and therefore under a continuous translation
we pick np at most 2n( R} patterns. Since there are m' independent continuous translations we
obtain a bound

N(R) < const. - V(R)™. {4.1)

Note that the finitely many discrete translations can affect only the constant in (4.1). Moreover
our proof holds true also in the case where ihe cross section of the strip is any compact region in
Et.

The bound {4.1) implies the absence of residual (zero temperature) eniropy density since

. 1
S(T = 0) =k- B?.me V.(—R_) In N(R) ={. (42)
This result can be understood intuitively also from the fact that the whole quasicrystal pattern is

completely specified by finitely many real parameters (the vector 7).

5. Selfsimilarity properties

A quasicrystal pattern may be called self-similar if there exists a systematic procedure (inflation)
of erasing a subset of the vertices such that one obtains a pattern in the same local isomorphism
class, but on a larger scale. Moreover the inverse procedure (deflation) is required to exist too.
In the following we argue that this kind of self-similarity iz a typical phenomenon which is
likely to occur whenever the rotation symmetry of a quasicrystal is large enough. A typical scenario

might be the following one.
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Suppose there exists a symmetric invertible linear mapping M : E® — E" which maps L
onto L. Therefore the matrix of M with respect to any lattice basis is contained in GL,(Z).
This implies also that detM = +1. Assume moreover that M leaves both EV and E' invariant,
M|EV = ¢-1gy,¢ > 1, M|E* < 1., and that for any lattice vector v € B we have Mv =
v. Such a mapping M—if it exists—has the property that it streches directions parallel to the
strip, while directions perpendicular {o the strip shrink (with the exception of those which are
lattice directions). Therefore M maps the strip onto a subset of the strip. Under this inflation
transformation only the vertices in this subset survive. The mapping M~! enlarges the strip and
provides thus the deflation procedure. On the other hand, such a quasicrystal pattern is completely
specified by the grid vectors and the tiling vectors (see Ref, 8). These however have just grown by
a constant factor c. Therefore, after inflation we have a pattern of the same type, but on a larger

scale. The property Mv = v gnarantees that one stays in the same local isomorphism class,

In this generality it is certainly difficult to decide whether such a mapping M exists. Lef
us therefore consider a more specific case. Assume that L has a point gronp G which acis with
an R-reducible representation on L, and suppose that we project on an irreducible representation
space of G. I G is large enough this imposes strong arithmetic conditions on the orientation with
which EY iz embedded relative to the lattice. It seems that these conditions facilitate the search
for an appropriate M considerably. For the icosahedral case such a mapping has been given by
Elser [15]. For 2-dim. patterns with G, symmetry obtained by projection from an n-dim. cubic
lattice (see e.g. [8]) the author has determined such mappings for n = 5,7, 8, 10,12, with streching
factors 72, 14 2cos @ — 2cos3a, 1+ /2, 12, 24 /3 respectively (7 is the golden ratio, & = 3£). In
some of $he 2d examples, the streching factor is negative, which induces a rotation by #. Instead,

we could use the square of M and therefore also the square of the streching factor.

It is not known whether a crystallographically forbidden point group acting on E¥ enforces
self-similarity, but the experience with a few examples indicates that self-similarity is a typical
phenomenon. A systematic study of a few important cases has been started also by Ostlund and
Wright [16]. In contrast to our results these authors find no evidence for self-similarity in the 7-fold

symmetric case.

We should point out that the self-similarity described here is a weaker one than that of
Penrose patterns. In general, unlike in the Penrose case, it is not possible to give local mles for
which vertices have to be added under deflation. To decide this one would have to know the

whole pattern. Nevertheless, self-similarity is an important tool in the study of quasicrystals. For
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instance, the same analysis can be applied to the reciprocal lattice and this allows one then to
derive scaling relations for the intensities of the peaks in much the same way as Elger [15] did in
the icosahedral case.
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COMMENTS AFTER THE F. GAHLER, TALKS :

N. RIVIER.- Continuous transformations (tunneling modes) between two
different, non locally isomorphic configurations are physically
observable in glasses !.

The structure of a covalent glass can be modelled by a continuous
random network (CRN = regular graph), made of 4-bonded tetrapods, with
slight, random bending of the bonds. There appear rings with odd
number of bonds, threaded through by uninterrupted lines
("disclinations" characterized by oddness).

Configurations are described by transporting the tetrapod about a ring
(Burgers). They are 1labelled by classes of the permutation group S,
(permutations of the feet of the tetrapod) : even permutations for
even rings, odd permutations for odd rings. There are 2 odd classes of
S ,, hence two configurations per odd l1ine, which are not locally

isomorphic?.

Tunneling between these two configurations dJoes occur, and has been
observed experimentally, most directly by (acoustic) echo techniques!.
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