
Z angew Math Phys 45 (1994) 0044-2275/94/030433 25 $ 1.50 + 0.20 
(ZAMP) �9 1994 Birkh/iuser Verlag, Basel 

Error estimates for the Ginzburg-Landau approximation 

By Guido Schneider, Institut ffir Angewandte Mathematik, 
Universitfit Hannover, D-30167 Hannover, Germany 

1. Introduction 

We consider evolutionary problems over a domain with one unbounded 
space-direction. Unbounded domains are a good mathematical idealization 
for large extended physical systems in which the typical wavelength is small 
compared to the size of the domain. We are interested in the behavior of 
dissipative systems close to the threshold of instability. If a spatially 
homogeneous solution becomes unstable, a whole band of Fourier modes 
with positive growth rates appears. In classical bifurcation theory with 
discrete spectrum the bifurcating solutions can be described by a finite 
dimensional system (ODE) using center manifold theory (see e.g. [VI92]). In 
our case the spectrum of the linearization at the trivial state is continuous. 
Hence two new problems appear: First the critical eigenspace is infinite 
dimensional and second it can not be separated from the uncritical part by 
a spectral gap. Thus center manifold theory is no longer available. One way 
to handle such systems is given in [Mi92] leading to PDE's with nonlocal 
terms. Another way is the so-called Ginzburg-Landau formalism [IMD89] 
which is based on multiple scaling. A formally derived PDE called the 
Ginzburg-Landau equation takes the role of the reduced problem in the 
critical subspace. It is the purpose of this paper to provide exact estimates 
between the solutions obtained via the Ginzburg-Landau formalism and 
the exact solutions. This question was first treated in [CE90] for the 
Swift-Hohenberg equation. A simpler proof was given in [KSM92] for 
cases in which the nonlinearity begins with cubic terms. The case of 
quadratic nonlinearities is more difficult: A first result in this case was given 
by A. van Harten [vH91] for scalar problems with analytic initial data. The 
case of scalar equations and initial conditions in C~([~, C) was handled in 
[Sch92b]. The present paper extends the method used there to vector-valued 
problems, in particular to parabolic systems on infinite cylindrical domains. 
Furthermore, new research ([vH92], [Eck92]) shows that the solutions 
described via the Ginzburg-Landau formalism are near the attractor of the 
system. 
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To describe the situation in which such an approximation by a 
Ginzburg-Landau  equation as modulation equation is possible we consider 
as an example B6nard's problem in a strip. Our method is based on an 
abstract approximation theorem which is proved to cover B6nard's problem. 

B6nard's problem is concerned with heat conduction and convection in 
a fluid contained between two plates. The lower plate is heated to constant 
temperature To, the upper plate is cooled to constant temperature T1 < To. 
If the difference To - Tt is smaller than a critical value the transport of heat 
is done by conduction. If the difference is greater than this critical value the 
system develops convection to transport the heat from bot tom to top. The 
system exhibits patterns, like rolls, or hexagons and rectangles, if we look at 
the three-dimensional problem. The patterns are not perfectly periodic in 
space and in some regions of small intensity. But we expect them to be only 
small modulations in time and in space of the periodic pattern. Such solutions 
are the subject of the Ginzburg-Landau  formalism based on multiple scaling. 

The mathematical equations describing B6nard's problem in a strip 
[~ x (0, zt) are the Navier-Stokes equation combined with the heat equation. 
The coordinates are denoted by y e ~ and z e (0, 7t). The velocity of the 
liquid in y-direction is called v and in z-direction w. Furthermore we have 
the temperature 0 and the pressure p. The parameters are given by 

= rio(To - T1)h3/(Tz3v 2) and x = 6/v ,  wherein 6 stands for the heat conduc- 
tivity and v for the viscosity. The buoyancy force depends linearly on the 
temperature through Co + rio T. Abbreviating u = (v, w, 0), 

L o U = l  Wyy+Wzz  L , u =  , G p =  , 

\~,(Oyy Af_ Ozz) / 

I --U1)y -- WI) z 
N(u)  = --  vwy - ww~l  , 

- -  rOy - wOz / 

the equations governing B6nard's problem in a strip are given in non-dimen- 
sional form as 

d,u = Lou  + LlU + Gp + N ( u ) ' ~  

J 0 = D u  = vy + wz 

v z = w = O = O  

Moreover, we demand vanishing mean flux 

fo �9 [v](y) = v(y, z) dz = 0 

for all y e R. 

for (t, y, z) ~ [0, oe) x N x (0, n), 

for (y, z) e [~ x {0, re}. 

(11) 
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To write (1) as a dynamical system we eliminate the pressure term Gp. 
We do that by working in the space of  functions u with Du = 0. A good 
choice for our purposes is a closed subspace of  the space of uniformly 
locally square-integrable functions 

x = x (0, 

= u I Ilull =s p lu (y , z ) l=dzc ly)  < 

which contains all L~ like fronts, spatially quasiperiodic func- 
tions and many more. Note the use of  the space L~;u in contrast  to C~(~, C) 
which was used in [Sch92b]. This new choice is very useful for problems on 
multidimensional domains, it simplifies the application of  our abstract 
theorem greatly. We establish the existence of  a projection Q from X = 
L~,u(E • (0, re), ~3) to Q X  = X ~  {Du = 0, wlz=o,. = 0, [v](y) = 0 Vy e R}, 
with QGp = 0. And so (1) transforms into a dynamical system 

Otu = QLu  + QN(u)  (2) 

in Q X  under the above boundary  conditions, where L = L0 + L~. 
To motivate the appearance of  nearly spatially periodic patterns, we 

look first at the linearized problem. It has eigenfunctions in Q X  of  the form 

r + (k, ~) e iky = ( - ik cos mz, - k 2 sin m z  /m, 

- s(s + 2 + ) sin mz/(Qm))  e iky, (m ~ ~) ,  

where s = k Z +  m 2 and the associated eigenvalues 2 + are given by 

22 + = - ( x  + 1)s _+ x/(K - 1)2s 2 + 4Qk2s -~. 

We want to look at the problem close to the threshold of  instability. 
Therefore, we fix tc and vary the control parameter  ~. Because of the 
demand of  vanishing mean flux we have m > 1. We see that the trivial 
solution is unstable for ~ = Oc + e2>  Qc = 27x/4, since 2+(k, 8 2) is positive 
close to _ kc = _ 1/x/~. 

Defining the small bifurcation parameter  e in this way, we see that in a 
(9(e)-neighborhood of  wave numbers around _+kc the Fourier  modes in- 
crease like exp(eZt). These modes are called critical in the following. Trans- 
lating this from Fourier  space into the physical space X, we are led to the 
scalings Y - - e y  and T = ~2t, and to the ansatz 

u =  00(y, z ,  t, + 2) 

= e ( A ( Y ,  T)q~+(k~,Q~)e~k~y+c.c.)  + C(e2), (t > 0 ,  y ~R).  (3) 

Inserting this into (2) we find by a formal calculation that the complex 
amplitude A, which modulates the spatially periodic pattern q~ ~-(kc, ~ )  e ~kcy 
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slowly in time and in space, has to satisfy the Ginzburg-Landau equation 

2 4x 1 
c3rA- 9(x + 1~) A + ~32A A]A[ 2. tc + 1 8(1 + x) (4) 

This approach is called the Ginzburg-Landau formalism. It was introduced 
by Newell and Whitehead (see [NW69]) in 1969 for B6nard's problem and 
in another way by di Prima, Segal and Eckhaus (see [diPES71]) in 1971. 

The question arises how good is such an approximation? Clearly we 
have to show that the error u - O0 is small compared with a real solution on 
a (9(1)-time scale of the Ginzburg-Landau equation (4). For the case of 
B6nard's problem our theorem specializes to 

Theorem 1. Let A =A(Y,  T ) e  C([0, To], H~,(R, C)) be a solution of 
the Ginzburg-Landau equation (4). Then there exists e0, C > 0, such that 
for all 0 < e < s0 solutions u(y, z, t, ~) of B6nard's problem (2) exist with 

sup Ilu(y,z,t,~)--Oo(y,z,t,e)llLL(R• 
t e [0,e -2T0] 

The space H~u(R,C) consists of all functions A: R ~ C  for which the 
derivatives ~?~A are in L~;u(E, C) for j < 3. The result is an estimate on the 
required time-interval [0, T0/e2]. The error or order (9(e 3/2) is small com- 
pared to the solution u and the approximation 0o which are of order (9(e). 

The plan of the paper is as follows: In Section 2 we describe the general 
framework, the assumptions and the main result. The proof is given in 
Section 3, it follows the lines developed in [Sch92b], but takes care of the 
difficulty arising from the vector-valuedness of u(y , . ,  t). In Section 4 
B6nard's problem is treated by checking the assumptions of Section 2. 

Throughout this paper constants are uniformly denoted by C. The 
Fourier transform of a term A will be denoted by .3. 

2. The general situation 

The situation of the introduction can appear in more general problems. 
We consider partial differential equations defined over a cylindrical domain 
R x f~, where f~ is a bounded domain of [~a. The coordinates are given by 
(y, z ) e  ~ x fL As already said in the introduction we will examine this 
system as a dynamical system. To include the Navier-Stokes equation, we 
have to introduce a projection Q which allows to work in closed subspaces 
of a Banach space, like the divergence free vector fields. In the last section 
the following abstract set-up will be applied to B~nard's problem. 

Let us first introduce some function spaces: 



Vol. 45, 1994 Error estimates for the Ginzburg Landau approximation 437 

Let Zi (i = 0 , . . . ,  rz)  be a sequence of  Hilbert spaces, where Zi+l  is 
continuously imbedded in Zi with Zrz dense in Z0. Then we define the space 
of Zk-valued locally uniformly square integrable functions 

t u(Zk) = u: llullL . z,, =sup ] lu(y) l l2z , ,dy)  < ~ . 

The space H~;u(Zk) consists of  all functions u: ~ ~ Z ~  for which the deriva- 
tives d~u are in L~u(Z,,,) for j -< i. We consider now 

X = L~,u(Zo) and X ~ = 0 H{,(Z,.z-j).  
j =  O ,  . . . , r Z 

All spaces are equipped with the natural  norm. Since we use Fourier  
transform we do not distinguish between a space and its complex extension. 

We assume now the following situation: 
Let L e ~ ( X  1, X) be a linear differential operator. This operator de- 

pends smoothly on a small parameter  e2. Next we have a Banach space Y 
with X~ c Y c X  continuously and a nonlinear mapping N e C 4 ( y , x )  
which is local in the y-variable. The quadratic and cubic terms of  the 
nonlinearity can be written as 

finite finite 

Z Bju "Ciu resp. ~, Dju "Eju "Fju, 
j = l  j = l  

where B j , . . . ,  Fj are linear differential operators and �9 denotes the compo- 
nentwise multiplication. All considered operators do not depend explicitly 
on y. To include Navier -S tokes  equation we assume 

( A | )  There exists a family of  projections 0 ~ C~(R, ~(Zo ,  Zo)). 

We show later that we can define a projection Q e L~(X, X) by this 
family ~ ~ ~e(Zo, Z0). It is our aim to show a general version of  Theorem 
1 for systems 

O,u = QL(E2)u + QN(e 2, u) (5) 

in the Banach space QX = {u ~ X ] Q u  = u}. For  notational simplicity we 
suppress the explicit dependence of N on e2. Moreover,  we define the linear 
operator  A = QL, We assume now 

(A2) A is a closed unbounded operator on QX with domain of  definition 
D(A) = (QX) 1 Moreover, there exists 0 < fl < 1, such that ( Q X ) n c  Y, 
where the space (QX) n is an interpolation space between QX and (QX) 1 which 
is equipped with the graphnorm of  An. 
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The main point in applying the Ginzburg-Landau approximation is the 
form of the spectrum. Since the problem does not explicitly depend on y, the 
eigenfunctions have the form Ok e iky with ~bk ~ Zo. Since u ~ L~, is a 
tempered distribution it is possible to define its Fourier transform. There- 
fore, we define for ~ e Z ~  the operator /~(k, e2)(~)= e--ikYA(#kY~). The 
spectrum of ,~(k, e2): Z~ z c~ {Q(k)~ = t~}-+Zon {Q(k)t~ = t~} is denoted by 
s ~2). It is assumed for k > O. 

(A3) There exists kc, O, eo > O, such that for  0 < e < ~o and Ik - kc I < ~ < 
kc/3 the spectrum splits into two parts s ~2) = Z-(k,  e2) u {7.(k, e2)}. Re-  
lated to the curve ,~( �9 , e2) ~ COO((kc _ O, k~ + Q), C) o f  single eigenvalues 
exists a curve o f  eigenfunctions (9 ( . ,  e2). Around kc this curve has an 
expansion 

2(kc + eK, e 2) = ico o + e iv lK + e2(2o + ivo) + gZK2(22 d- iv2) d -  (Q(e 3) 

uniformly for  K E [ -- 1, 1] with 2o > 0 and 22 < 0. Moreover, there exists an 
e-independent constant a > 0 such that for  0 < e < ~o 

sup 9t ? s g2) k:lk--~kcl < 0  

Since we deal with a real problem we have 2 ( k ) = 2 ( - k )  resp. 
O(k) = ~ ( - k ) .  To solve (5) at least locally in time it is natural to assume 
that A is the generator of an analytic semigroup in QX. We additionally 
need exact estimates for the exponential decay rates of the semigroup 
applied to different Fourier modes. 

(A4) There exists a ~ R, n e N, 6o, C1, C2 > 0, such that we have for  s 
S(k)  = {s ~ C ] arg(s + a + (C1/2)k 2") ~ ( - ( re /Z )  - 6o, (re/2) + 6o)} and 0 <  
e < eo the estimates 

(a) II(A(k)-  s)-'ll <zo,Zo, < c = / I s  + a  + 1 + Clk~n l, 

(b) SUpk  a,s~ s(k) II a ' ( k ) ( a ( k )  - s )  - 111 r o,zo) < c,  

(c) SUpk~ e,~S(k)II-'~"(k)(-~(k) -- s)-'ll r < c ,  

Contrary to the introduction the imaginary coefficients ~Oo and vl 
appearing in assumption (A3) give rise to fast dynamics. We get rid of Vl by 
the transformation x ~-~ x - v l  t. The coefficient co0 is taken into account in 
the approximation 

~bo(y, z, t, e) = e(A~(r ,  T)(o(kc, O) eikcy+id'~ + C.C.), (6) 

where COo • v~ kc =-" &o. The Ginzburg-Landau equation for (5) has the form 

t?rA, = (2o + ivo)A~ - (22 + iv2) ~2A~ + 7A~ ]Ai t 2, (7) 
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where 7 can be formally derived from (5) and is given for &0 = 0 in a later 
section by (9). Suppose the above situation, we can state the following 
theorem. 

Theorem 2. Let A1 = At(Y, T) e C([0, To], H~u(N, C)) be a solution of 
the Ginzburg-Landau  equation (7). Then there exists eo, C > 0, such that 
for all 0 < e < 6o solutions u(y, z, t, e) of problem (5) exist with 

sup ![u(y,z,t,e)-~bo(y,z,t,e)l[x=C(63/2). 
t e [0,e -2T0] 

Due to the form of the spectrum Ginzburg-Landau  approximation is for 
example possible in hydrodynamic problems, like B6nard's problem, Tay- 
lor -Couet te  problem, or Poiseuille flow, or in reaction-diffusion systems. 

3. The proof 

We start the proof  with a short summary of the main ideas and steps. 
We write a solution u of (5) as a sum of an approximation ~ and an error 
g3/2R: u = Ip ~- ~3/2R. Note the scaling of the error by e 3/2 contrary to 6 2 in 
[Sch92b]. This is due to the choice of the norm (see also [KSM92]). 
Inserting this into (5) we get a differential equation for R which has to be 
solved on the time interval [0, T0/62]. It has to be shown that R is of order 
(_9(1) on this time interval. 

Former work ([vH91], [KSM92]) shows that quadratic terms in the 
nonlinearity are the main difficulty in establishing the stated result. The 
quadratic terms give rise to low e-orders in front of the linear and nonlinear 
terms in the differential equations for the error. Whence it is more difficult 
to establish the estimate on the required time interval [0, To/e2]. 

This difficulty can be overcome by separating linearly exponentially 
damped modes from linearly unstable, called critical, modes and using 
different scalings for them. This method is presented in [Sch92b] and we 
refer to this paper for an introduction. The key observation is that the 
convolution of critical Fourier modes (wave numbers concentrated around 
+ kc) gives Fourier modes with wave numbers concentrated around 0, _+ 2kc 
(see Lemma 9) which are damped. Thus, the previously dangerous terms 
(with low e-order) only appear in the damped part where they can be 
controlled easily (see also system (15)). 

One basic tool is Fourier transform with respect to the unbounded 
direction. As discussed above we work in L 2 since this space is close to L 2 l;u, 

(where Fourier transform is an isomorphism), but also contains L ~176 We 
pull back linear problems from L 2 L 2 l;u to by localization and use in 
applications already known facts about the system which has to be handled. 
As another basic tool we use abstract semigroup theory via the Dunford 
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integral. Assumption (A4), which is trivially fulfilled for scalar equations, is 
needed to construct the analytic semigroup o n  L 2 l ; u  " 

The approximation 40 given in (6) is not contained completely in the 
critical subspace. For the estimation of the error we will replace 40 by 
another approximation ~ which lies completely in the critical subspace and 
satisfies [ [ f ro-~ [[L~u(Zo)= (9(•2) �9 In the vector-valued case a new difficulty 
appears here, since the eigenfunctions vary with the wave number k. 

We start the proof  with an explanation how we use Fourier transform 
i n  L 2 Next we construct the mode filters to separate the critical modes. l ; u  " 

After that we construct an approximation ~O which lies in QX and has all 
desired properties. Then we estimate the error with a method similar to 
[Sch92b], except that some new technical details appear. 

3.1. The Fourier transform set-up 

Fourier transforming a function u e L 2 gives a tempered distribution, l ; u  

for which it is not so easy to define actions of operators in Fourier space 
and to estimate later on their norms in the physical space. To handle this 
problem, we use functions in weighted spaces. 

Definition 3. Let W be a Banach space and Hm(w) the Sobolev space 
Hm(E, W). We define the space H"(W, n) (m, n ~ N) by 

u e Hm(W, n) r u(.  )(1 + l "  12) "/2 e Hm(W)" 

This space is equipped with the natural norm. 

Clearly, we write L 2 for H ~ We will make use of the fact that Fourier 
transform 

if ~(k) = (~u)(k) = ~n e-ilrYu(y) dy 

is an isomorphism between Hm(W, n) and H'(W,  m), if W is a Hilbert space 
and m, n ~ No. We see that the decay of the functions in Fourier space is 
related to the smoothness in physical space and vice versa. 

Our method depends heavily on Fourier transform with respect to the 
axial variable y. The great advantage appears in the fact that the linear part 
is a local operator in the wave number k. We call operators multipliers if 
they are defined by multiplying ~ = f l u  by a family of linear operators 
~r ~ L ~ ( ~ ,  s162 W2)) with W1, W 2 Hilbert spaces, i.e. 

__, a ) a ( .  ). 
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The associated operator in the physical space is denoted by 

M: L2(W1) ~ L2(W2); u ~ ~ -- I ( ] ~ H ) .  

Obviously M is translation invariant, i.e. z h M =  M%, where ~hu(y)= 
u(y + h) for all h E N. We have the following classical result of  multiplier 
theory. 

Lemma 4. Let m 6 Z and k ~ (1 + k2)m/2M(k) e C7,(~, s176 W2)), 
where W1, W2 are Hilbert spaces. Then M:Hq(W~, n)~Hq+m(W2, n) is 
bounded for all q 6 N o  with q+m>-O and norm <C(q,n,m)[[(l+ 
1" ]2)m/2M[[cf)I([~,~(WI,W2)), where C(q, n, m) does not depend on &r 

The proof  follows immediately from the observation that ~ r e  
5e(H~(W~, q), H~(W2, q + m)) and from the isomorphism property of  
Fourier  transform. 

We are interested in similar results for operators on HT;,(Wj). When 
does a multiplier M(k) E 5r W2) define a bounded linear operator M~;, 
f rom Htq.,u into Hlq+m? Of course Mz;. has to satisfy (~M~;.u)[cp] = 
(214( �9 )(o~u))[q~] for all test functions q~ ~ H 2 (W2, max(0, - m ) ) .  

Lemma 5. Let m ~ Z and k ~ ( 1  +k2)m/2M(k) ~ C~(E, ~ ( W t ,  W2)). 
Then Mr-," H% (W1) -~ ~q  + m ~ r;v" ~ , , 11t;~ t , ,  2j is bounded for all q ~ No with q + m > 0 
and norm 

<- C(q, m)[[(1 +]. [2)m/2MI]c2(~,~(WI,W2)) , 

where C(q, m) does not depend on M. 

Proof. We choose Z ~ C~  such that its support is contained in [ -  1, 1] 
and ~j~zZ(Y + J )  = t. We show that Ml;u can be defined as follows. For  
u ~Hqu(w1) we set uj(y)=u(y--J)z(Y).  Since uj e Hq(W1,2) we find 
vj = Muj ~ Hq+m(w2, 2). Now let Mt;uu = ~ j~z  Tjvj. Clearly this sum does 
not converge in q + m Ht;u (I412)- But, since "cjvj is concentrated around y = j  
and decays like 1 / ( l + ( y - j )  2) it is easy to see that ~j~zZjVj con- 
verges locally to a function in Hzq,+m(w2) with norm <-C(q,m)[[(l+ 
I" ]2)m/2j~I[[c2(~,.-~(W1,W2))[[U[[/~;u(WI)" Therefore, we will write l - ~  instead 
of  ~ to denote that this sum does not  converge absolutely, but locally in 
Hq+m(I, W2) on every compact  interval I. 

It remains to be shown that the extension of  M to Ml;u is also a 
multiplier. Therefore, we take a testfunction c0 e H2(W2, m a x ( 0 , - m ) ) .  
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Note  that  ~ 0  ~ H m"x~~ m)(w2, 2). SO we can use Fubini  twice to get 

(~Mt;.u)[q9] = (Mt;.u)[~ *qg] 

j e  Z / W  2 

= J~Z f(~#uj,~*~)w~dk 

= Z f(zjuj, M*~*q))w,  dk 
j ~ Z ,  

~-*M*~O)Wl dk 

= f(u, ~ - * ~ * ~ 0 ) w ~  dk = ( ~ (  �9 )(~u))[~o], 

where M* resp. ~-* denotes the adjoint  operator  of  M resp. ~ .  All 
integrals exist, since 

j e Z  

(1 1 1 dk < C j ~  z supy + [y[)2 (1 + [y + j])2 

II ,, t; II I l l l U H L 2 u ( W 1 )  I[~CCM@q)llL2(W1, 2) < 00.  • 

For  simplicity we write in the following M instead of  MI;,. 

[] 

3.2. The mode filters 

To separate now for fixed wave number  k the critical f rom the uncritical 
eigenfunctions, we define the ,~(k, E2)-invariant projection to the critical 
eigenspace. For  ~ e Z0 we do that  by 1; 

Ec(k, ~2)r '=2-~i ( [k(k, ~2) _ #Id.) -'rid#, 

where F is a closed curve a round the single eigenvalue 2(kc, 0 ) =  i&0. By 
assumption (A3) this is possible for k ~ [k s -  Q, kc + Q] and 0 < e < ~0. For  
k ~ [ - k c  - O, - k ,  + 0] we set Ec(k, e 2) = Ec( - k ,  e2). It is well known that  
the resolvent is analytic with respect to/~ in the resolvent set of/~(k).  Since 
~, is a smooth  function of  k and e 2 with values in ~ ( Z r z ,  Z0) the resolvent 
is smooth  as well. Thus,  Ee is smooth  in k and e2. Note  that  Ec(k, e2) is a 
projection with one dimensional  range span {~(k, ~2)}. Therefore we define 
for k ~ [ - kc - O, - kc + 0] w [kc - O, kc + O] and fi e Zo a complex valued 
operator/3~o = / ~ ( k ,  e2) by 

Pc(k, ~2)O.(k)~ =~(k, ~2)(~)r (k, ~). 
To extend P~ to a function for all k e ~ we use an even cut-off function 
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20 e C~ in Fourier space which is defined by 

{ ! f ~  
20(k) = for k r [ - ~ / 3 ,  +~/3], 

[0, 1] other cases. 

With help of this cut-off function we define now multipliers in Fourier 
space. 

Definition. For I lk] -  k~] < Q we define the multipliers 

~b+~ (k, e 2) = (o(k, e2)~o(k T k~), f.+~(k, ~2) = )7(k, ~2)~0(k -T- k~), 

#~+ ,(k, ~)  = #~(k, ~)~o(k T k~). 

These operators are extended by zero on whole real axis. We define the 
operator which extracts the critical modes b y / ~  = ~ +~ ~b~/~. Its counter, 
part to the uncritical modes is denoted b y / ~  = 1 - E ~ .  We ca l l /~  a n d / ~  
filters, since they separate critical from uncritical wave numbers. The 
operator E~ is no projection and so we define auxiliary mode filters 

~ ( k ,  ~2) L(k ,  ~ * = ~ )(Zo(k~ + k/2) + ]~o(-k~ + k/2)) 

and 

/~f (k, ~2) = / ~  (k, a2)(1 - ~0(k~ + 2k) - ~o( -k~ + 2k)), 

such that /~f/~ = / ~  and /~fEs =/~s. With help of Lemma 5 we can now 
define operators in the physical space which are denoted with the same 
symbol, but without .*. 

3.3. Multipliers acting on scaled functions 

Next we have to estimate multipliers acting on scaled functions, such as 
in (6). We introduce a scaling operator S, by (S,u)(y),= u(ey). One difficulty 
with the L~;u-norm is that there is no exact relation between IIS, ulIL2 and 

I;u 
IlUltL~u. This is due to the fact that locally this norm behaves like the 
L2-norm and globally like the L~ Looking at Ixl -~ with 0 -< ~ < �89 we 

1 find IIS~UltL,~u = Ce-~llulIL,2 u for every 0 < ~ <~. So, in general we have 

IIs ullL u <- ce-'/211ullL o, but Ils ull , u -< Cllull   -< Cllull,#:u. 
Lemma 6. Let m s ~ and (1 + [ .  12)-m/2~(. ) ~ C~(~, 5e(W,, 14/2)). 

q - - r  Then M[(S~. ) e;koY] �9 H~u(W1)-*HI;~ (W2) is bounded for all q-> r---m 
with norm 

<- C(q, m, r)I](1 +["  [2)--m/2~(~. _11_ ko) IIC~(~,~(W1,W2)) 

where C(q, m, r) does not depend on/~r. 
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Proof. With help of  test functions we get 

M[(S~u) e i~~ = ~ - ' M ~ [ ( S ~ u )  e ik~ 

= e - ' g  a ) ]  

= e - ' j ~  '(Sl/~Z_ko[(S, ZkoM)~] 

= 

with new multiplier 2Q~ -- &zkoM in Fourier  space. With help of  the last 
lemma the assertion follows. [] 

To motivate the next lemma we look at ~?yu(w) = e Oru(Y) = (9(e) with 
Y = ey. This means, differentiating scaled functions wins one order  of  e. In 
this way, we compute  the G i n z b u r g - L a n d a u  equation.  To generalize this, 
to e.g. Q(k), and to estimate later on the res iduum (8) we show 

Lemma 7. Assume the same situation as in Lemma 6 and ~r(k + k0) = 
(9(k ~) for k ~ 0 and s -< m. Then 

I1(1 + I" 12) -m/237I( e" + ko)II = o(e ) 

The p roo f  follows easily by simple calculations. We remark that  it is 
possible to show a similar Lemma without  loss of  regularity (see [Sch92a], 
[Sch92b]) by considering the related Green's  function or by introducing 
spaces with scaled norms.  But, for our  purposes this lemma is sufficient. 

3.4. The approximation and the residuum 

Now we have defined the operators to separate the critical f rom the 
uncritical modes.  So we can split the error R in two parts, into a critical part  
Rc = EcR and an uncritical part  Rs = EsR and scale it differently by 6~(e) 
and 6~ (e). 

I f  we insert u = 6c(e)Rc + 6s(~)Rs + ~o into (5) new problems occur. For  
hydrodynamic  problems ~0 would be in general not  in QX. If  ~0 is in QX, 
nevertheless the res iduum 

Res(~ko) = -~tff/0 -~- A~k0 + QU(~o) (8) 

remains in the equations for the error. Some terms of  it drop out, since A1 
which appears in the approximat ion  ~k0 is the solution of  the G inzbu rg -  
Landau  equation. But what  remains is of  too low e-order to estimate the 
error in the required way. Therefore we have to construct  an approximat ion  
~O, (9(e2)-close to ~ko, such that  Res(~k) is of  order (9(e n) for sufficiently large 
n e N. Moreover,  we construct  ~ in such a way that  we need only low 
regularity initial condit ions for the G i n z b u r g - L a n d a u  equation. 
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The linear part  of  the G i n z b u r g - L a n d a u  equat ion is determined by s 
The coefficient 7 in front  of  the cubic term is only determined by the 
quadrat ic  and cubic terms of  the nonlinearity. Higher order terms would 
give rise to high e-orders. So we consider 

= Au + .)  + r ( u , . ,  u) + c0(l/u ]14), 

where B is a symmetric bilinear form and T a symmetric trilinear form. 
The construct ion of  the approximat ion  is as follows. The terms of  order 

C(e) should be close to 00 and in the eigenspaces, depending on k, to the 
critical modes.  Therefore, we choose the approximat ion  0c with 

Oc( Y, z, t, e) = e~ol (As (ey, e2t) e ikCy + i&ot) 

+ eqo_ 1 (A _ l(ey, e2/) e -ikcy - i~o,), 

where Al is the solution of  the related G i n z b u r g - L a n d a u  equat ion and 
/1 - I (Y)  = A1 (Y). Note  that  cp+l are operators  defined above via multipliers 
and not  fixed eigenfunctions. For  notat ional  reason we assume now that  
03o = 0. For  the general case, 03o r 0, everything that  follows will work in 
the same way. It is only more  complicated to write it down due to the 
appearance time derivatives of  e i~~ (see also [Sch92a]). 

Inserting ~pc in the system, Res(0~) contains terms of  too low e-order. 
To eliminate these terms we extend our  approximat ion  by e2~ks. The term 
eZ0s is not  necessary for the approximat ion  property,  since it is of  order 
(9(e2), but  it is helpful in making  the res iduum small. Inserting the approx- 
imat ion 0 = e0c + ez~ts into the equat ion gives the res iduum 

Res(0) = - 0 , 0  + A0  + B(0, 0) + r ( 0 ,  0, 0) + (9(I]0ti 4) 

= - e  ~3,~ - e 2 c3,0, + eA~,c + e2A0~ + e3T(0c, O~, 0c) 

+ e2B(O~, 0c) + 2e3B(Oc, O,) + e4B(g's, ~',) + (9(e4) �9 

The construct ion and est imation of  the approximat ion  is made  local in 
Fourier  space. To eliminate the (9(ez)-terms which are not  time derivatives 
(c?, = e 2 ~?r) or which are related to the linear part  of  the G i n z b u r g - L a n d a u  
equat ion we choose 

A0,  = - B(~,~, O~). 

Since the Fourier  spectrum of  A for the appearing wave numbers  lies in the 
left half  plane, this equat ion for Os can be solved in QX. Therefore, we can 
write A -1 = ~,-l(k,  e 2) e 2'(Zo, Zrz) for k e I 2 --= [ - -2kc - 20/3, - 2 k c  + 
20/3] to [ - 2 Q / 3 ,  +2Q/3] to [2k~ - 2~/3, 2kc + 2~/3]. To eliminate the t e rm  of 
order (9(e 3) for k close to _+k~ we choose the coefficient 7 in the G i n z b u r g -  
Landau  equat ion such that  

7 e*~cY = 2p~B(a ,  A-1B(a,  a)) +P~o~ T(a, a, a), (9) 
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where a = @(kc, O) e ikcy § (p( -kc,  O) e-i~Y. Compare the estimate of s3 in 
(10). 

The properties of the approximation ff are summarized in the following 
lemma. 

Lemma 8. Let A1 ~ C([0, To], H~(C) )  be the solution of the Ginzburg-  
Landau equation (7). Then the approximation r = er + e2O~ from above 
satisfies E~r = 0, E~@~ = 0 and 

sup I10o- Otl~-- o(~b, sup 2 (ll~,s b ,  + IlOc I1~,) = ~(1), 
t e [O, T o / e 2  ] t e [0,T0/~ ] 

sup IlE~(Res(~))[lx = Co(~/=), sup 2 I lEc(Res(r  = 0(~v/2). 
t ~ [O, T o / e 2  ] t E [O, T o / e  ] 

Proof. By construction it is dear  that E ~ r 1 6 2  Since 
lIS~A, IIL~u(O) <- CllA, II.~(~) and q~• ~ ~(L~;~(C),HT~(Z~)) for all m ~ N 
by Lemma 5 we get l i n c h ,  = (9(1). Therefore IIB(O~, Oc)l[~ = o(1). Since 
~,-*(k, e}) e ~(Zo, Zr~) for k e /2  can be extended smoothly by zero to a 
multiplier ,~-1 with I](1 +1-Ibm/~-'llc~<o,~<~O,~r~)) < c for all m E N we 
also have II0~llxl -< II0~ IL,,,~o(~=~)= o(1). 

We start now with estimating the terms in Res(O). All terms which are 
formally of order (_9(e 4) are of order (9(e 4) without expanding anything with 
respect to e and so this is true in the L~u(Zo)-norm, too, because 

II0slbl = IIr = r 
The time derivative d,@~ can be estimated by 

I1~ ~ a,~,~ I1~ = ~11~,~  I1~ = [I2~4A-*B(@c, ~3rr -< c~411 r II ~ [la~r II ~ 

The last factor of this line can be estimated by 

~rr = ar  [q~, (A, (ey) e~k~Y)] + Or[(P-, (A _~ (ey) e -~k~y)] 

= q)~(e ~k~y 0rS, A1) + qo_,(e -~kcy ~rS, A_,) 

and ~3rA~ by the right hand side of the Ginzburg-Landau  equation, 

II0~&A111~L - C[IS~A111~,~o § cIIs= O~A, IIL,~, + CliS~& II3L 

-< cll.4, II,-,~;o~ + c11-4, I1-~;.. 33 

Summarized we have that ~=lle*, I1~ is of order (_Q(~4) is the X-norm, too. It 
remains to estimate the terms which are not of order C(e4), namely 

R e s ,  = ~ ~3t~l c + 8ml~c § 2/~3B(IPc, ~ts) § g.3T(r I[t c, I~c ). 

Applying Es on Res,, we get 

IIEARes,) I]~ = 112e~n(~<, 0~) + e'E~T(r 0~, 0c)I1~ <- (~0(e5/2). 
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Because of  Lemma  5 and due to the real problem it is sufficient to estimate 
Ilpol(ReSl)[[L~.(C~ instead of  [[Ec(Resl)l[x. Defining 2c (k )=  2 o ( k - k c ) ,  we 
get finally with p~ol(q~lS~Al) = zcS~AI 

p~o ~ (ReSl) = e3~c(0TS~A~ e ikcy) + ~Z~21 (S~A~ e ~k~y) 

q- g32p~o1B(Oc, - A - ' B ( ~ / / ~ ,  I//~)) q- g3po ~ T(I/Ic, 0~, Ipc). 

We subtract  the scaled G i n z b u r g - L a n d a u  equation,  after applying Z~ on it, 
f rom po~(Resl)  and get 

pex(Resl)  = sl +s2  +s3  

with 

sl = Xc((S 3 OTS~A~ - e 3 OTS~A~) e ~k~y) = O, 

s2 = Z2(e2, (S~A, e i~y) - [e3((20 + ivo)S~A, 

- (22 + iv2)e -2 O}S~A~)] e~eJ), (10) 

s3 = Ze(e3p~o~2B(O~, - A - ' B ( 0 ~ ,  tp~)) + ~3pq, 1T(@c, Oc, ~/c)) 

- ~3ylS~A1]2S~A, eik~Y. 

Note  that  (1 -Zo)(")(0) = 0 for all n ~ N. Therefore by Lemma 7 we have 
for A e H3,  

II(1 - zo)S~A -< c[1(1 - Zo(e .))(1 + [ - [  2) -3/21]c2 liSt II ~L~.,L,~,,, ItA tI-L 
= (1 l )  

The multiplier for s2 is given in Fourier  space by 

M(k, s) = (L (k) - [a 2(20 + ivo) + (22 + iv2)(k - k~) 2])Zc(k) ^ 

and so _~r(k + kc, e 2) = (9([k[ 3 + a 4 + e2]k[) for k, s --,0. As in Lemma 7 we 
get []s2[]c~,(c~ = ( Q ( e 7 / 2 )  �9 

By using several times the triangle inequality and applying Lemma  7 we 
get = 0(~7/~) uniformly in time on the required time interval. For  
the whole calculation for s3 we refer to [Sch92a]. We need m = 3 in A E n m l;u 
to get high enough powers of  e in the estimate for s2 and for (11) which is 
needed for s3. 

What  remains is the compar ison of  the approximat ion  if0 used in the 
theorem and the above approximat ion  ~p. Applying Lemma  7 on ~(k ,  e 2) - 
0(kc, 0) the required estimate follows. [] 
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3.5. The estimates for the error 

Now we have all ingredients to show Theorem 2. We know already that 
the quadratic terms generate the main difficulties. Since higher order terms 
are not problematic the following calculations are also valid when not only 
quadratic terms appear. We can write the quadratic terms of QN(u) as a 
symmetric bilinear form B(u, u). Therefore we consider again the system 

~tu = Au + B(u, u). 

We make now an approximation 0 with the properties of Lemma 8. We 
have constructed operators to separate the critical and the uncritical modes 
of the error made by the approximation 0. The right scaling would be at a 
time one el/Z-order higher for the critical resp. uncritical modes than the 
related modes of the approximation ~. Therefore, we suppose the error to 
be the sum 

R ( x ,  t, ~) --= ~ 3/2R c ( x ,  t ,  ~) + ~ 5/2R s (x, t, g) (12) 

with Rc = E)Rc ~ QX and Rs = E~R~ ~ QX. By later calculations we show 
that such an ansatz is possible. We insert now 

bl = ~t --~ R = e~t c -~ g2~[I s --~ ~3/2R c ~- gS/2R s (13) 

into equation (5). After dividing by e 3/2 and after selecting linear and 
nonlinear terms, and terms for which the application of the operator Ec 
vanishes, we get the equation 

OtR,. + e aiRs = ARc + eARs + eL2(Rc) + e2s (R) 

1 Res(0) ' (14) 

where the abbreviations stand for 

/22(Rc) = 2B(R~, ~Pc), s = 2B(R~, ~p,) + 2B(R,, ~Pc), 

N2(Rc) = B(Rc, Rc), N1(R) = B(R,, 2Rc + 2~/2~  + eRs). 

If all Rs, Rc, 0c and ~9, are of order (9(1) in Y, then I21,/22, N1, and 2V2 are 
of order (9(1) in QX, too. To get equations for Rc and R, we apply the 
mode-filters Ec and Es. Looking at the support of the Fourier modes of 
/22(R~) and N2(Rc) we have Ec/22(Rc)= Ec2V2(R~)= 0. This is due to the 
following lemma. 

Lemma 9. Let u, v ~ (QX) t~. Then h h EcB(gcu, g~v) = O. 

Proof. We know already that E~u ~ H~u(Zrz) c Y for m e N sufficiently 
large. Therefore we can consider B = QN2 with N2 as a symmetric bilinear 
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m m -*L1,,(Zo) which is local in the y-variable. mapping Ht, ,(Z~) x Ht;,(Zr~) 2 
Again we consider u = l - ~ ~,Un with u,(y)  = u(y - n)z(y). Since Q 
C2([~, ~(Z0,  Z0)) and L'~ ~ C~(N, 5~ Z~))  we have E)Qu = l - 

%E)Qu,  by Lemma 5. Similarly we have 

h h h h E~B(Ecu, Ehv) = l -- ~ EcQN2(r,  EcQu~, ZmEhQVm). 

Looking at the Fourier transform of h h EcQN2(v,,EeQu,,  r,,E)Qvm), we see 
that ~ and ~ E ) Q v m  are functions with support /c = [ - k ~ . - Q ,  

- kc + ~] w [k~ - ~o, kc + 0]. The Fourier transform of N2 gives a convolution 
of these terms with result in H2(Zo, 0) and support 12 = [ - 2 k c - 2 0 ,  
-2kc  +2~] w[ -2O,  +2Q] w [ 2 k c - 2 0 ,  2kc +20]. Since E~ h. and Q act as 
multipliers the application of E~ h. yields zero, since/2 ~ Ic = ~ .  [] 

We separate now (14) in two parts and define Rc and R~. to be the 
solutions of the system 

~?tR~ = AR~. + eZLc(R) + eS/ZN~(R) + e26c, 

OtRs = AR~ + Ls(Rc) + e'/2N~(R) + (5~ (15) 

with the abbreviations 

6~ = (1/e7/2)E~(ResOp)), 

L,.(R) = Ec(f~, (R)), 

N,. (R) = E~ (N, (R)), 

cSs = ( I/e 5/2)E~ (Res(~b)) 

L~(Rc) = EAQ(Rc)),  

N s ( R  ) = Es(~ l/2L 1 (R) -t-/~2(Rc) --t-~]gl (R)) 

and the initial data (Rl(0), R2(0))1 (0, 0). Adding the two equations of 
(15) we get (14). We remark that all terms in the equation for Rc vanish 
under the application of ( 1 - E)) and the term in the equation for R~ under 
the application of (1 - E h ) .  We solve this system in the space 

~(Qx)~ = C([0, To/e2], (QX)~) 2 

for a 0 </~ < 1 with the norm 

2 

I[(/1, R2)rl~Q~>~ = 2 sup HR, " II(ex~. 
i = 1 0 < - t < - T o / ~ 2  

In the same way we define analogous with X and Q X  instead of (QX) ~. We 
have to show that the solution is of order (9(1) in N(Qx~e. We do that by 
inverting the linear part of (15) and by applying a contraction principle. 

Because of Lemma 8 the inhomogeneity 6 = (6~., 6,) is obviously in ~Qx 
and of order (9(1). The nonlinearity N = (Nc(R), N,(R)) is a sum of linear 
and bilinear terms and therefore a local Lipschitz-continuous mapping from 
~(ex)~ to ~Qx which maps bounded sets of ~(Qx)~ in bounded sets in ~Qx. 
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What remains is the estimation of the solutions of the system 

OtRc = AR~ + e2L~(R) + e2fc 

~,R, = AR~ + L~(R~) + f~ (16) 

for ft. = E~fi and f~ = E~fi with f =  (f~,f~) e ~ex .  The existence of solu- 
tions of this system is clear. By a fixed point argument the existence of 
solutions of (16) follows on small time intervals. More interesting is the 
question of the C(1)-boundedness of these solutions on the time interval 
[0, To/e2]. We will show this by constructing an analytic semigroup in 
QX = QL~;u(Zo) with generator A. To construct the semigroup we have to 
show a resolvent estimate. The separation in critical and uncritical modes 
was done to get an exponentially damped part of the semigroup which gets 
rid of the too low e-orders. They do not appear by Lemma 9 in the equation 
for the exponentially increased modes R~. We summarize the results in the 
following lemma. 

Lemma 10. There exists a a0 > 0, such that for the semigroup e At  in QX 
generated by A we have the estimates 

Ile "E  - C max( 1, t ~) e-%t 

and 

IleA'E) []L:<ex,<Qx)/', <- C e c~2'. 

Proof. We have to show that A is a sectorial operator. By assumption 
(A2) it is a closed operator in QX. By Lemma 5 and assumption (A4) we 
have 

[l(s -- A)-'lt~(ex, ox) __ CIl(s - A(k)) 'llc~(~,~(Zo,Zo)) <- C/Is - a l  

for s in the sector Nk S(k). Therefore, A is a sectorial operator and (eAt)/> o 
is well defined by a Dunford integral (see [HeS1]). 

To get the required estimates we start with the Ech-part. Here we use the 
representation 

[ [  e z,(k,:)' e ik(y - s)2c(k ) dk p~o l  (U(S)) ds, (eA'EhcU)(y) P~ol  

where )~c(k)= )~0(k- kc). Because of IIEc u II Q :- C[[p  ulILL c) the result 
follows from 

f f e~ l (k , : ) ' e~kY~(k)dkdy<-Ce  c~2~ 

due to the compact support of )~. 
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To show the estimate for the Eh-part we notice that E h is a A-invariant 
operator. It remains to estimate 

I[( s - A)-1E~ h II~,ox, ox, -< cl l ( s  - , ~ ( k ) ) - ' ~  Ilc;,~,~,zo,Zo~, 

by C/Is + a ]  for s e S = ( O S ( k ) ) w { 9 t s  >--a /2} .  For Isl >s0 or IkL>k0, 
with So, k0 sufficiently large, this follows from assumption (A4). For  the 
remaining compact  set of  s ~ ~q and k it is sufficient to show that 
( s -  ~ , (k) ) - lE)  exists. This is true by assumption (A3) and by choosing 
0 < 2o-0 < a independent of  e which has to be done because of  the definition 
of  E h. Using well known facts about analytic semigroups the rest follows 
(see [He81]). [] 

Using this lemma we obtain from the second equation in (16) 

Rs( t  ) = eA( t - ' ) [ (Ls(Rc)  +fs ) ] ( r ) ]  dr.  

With the abbreviations Si(s),=supt~s IIRi(0H~ we find 

(; ) Ss(t) < C max( l ,  r -~) e - ~  dr (CSc(t) + Ilfl[~) 

<_ cs~(t) + cll/il~ 
Similarly we can estimate the first equation 

Sc(t  ) ~ g. 2 C eCe2(t-z)(Sc(r ) -~- Ss(r  ) -~- IIf[l~) dr  

;o <- ~2c Sc(~) d~ + CIl/[]~. 

With help of  Gronwall 's  inequality we see that 

s~(t) <_ c l l f t l ~ e  ~ o =  o(1) and S~(t) <- c[I/ll~ ~ = C(1). (17) 

Now we define the inverse J of  the linear part  by R = Jf, if R is a solution 
of (16). Therefore, J ~ ~(Yio, x, N(ox)~) is a linear operator, bounded inde- 
pendently of  e. When we apply J on (15) we obtain 

R = g ' /2JN(R)  -k J6 =:  F(R). (18) 

For  e < eo the function F: Yd(ox)~-,~(ox)~ is a contraction on a ball with 
center .16 in ,-@(ox),, because of  the Lipschitz-continuity of  N and because 
of  the e ~/2 in front of  N. Therefore, there exists a unique fixed point of  
(18) which is a solution of  order C(1) of  (15). By (12) and (13) we have 
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constructed a solution of the original problem (14). The estimate of the 
theorem follows since 

= II(~/=Rc, ~/=Rs)I1~,~,~ + 0(~2) 
= (~(~3/2). [] 

4. Application to B~nard's problem 

We put now B6nard's problem (1) in the abstract set-up of  Section 2. 
We remind that B6nard's problem is given by 

~,u Lou + Llu + Gp + 
N(u)~ for (t, y, z) e [0, oo) x R x (0, n), 

- %  

O=Du =Vy +Wz J 
v2=  w = 0  = 0  for  (y,z) e ~ x {0,~}.  

To apply the above theory we have to write (1) as a dynamical system. Like 
explained in the introduction the pressure term Gp will be eliminated by 
choosing a space Q J(,' such that the last equation of (1) is automatically 
fulfilled and the pressure term drops out. To do this we have to construct 
the projection Q with help of the pressure term Gp into the space of 
divergence free vector fields. 

Therefore, we set the linear differential operator L(e 2) = L 0 +  
Ll(oc +e2). It is a continuous mapping from X 1 =L~u(Z2) mH];u(Z~)n 
H~;,(Zo) into X = L~;,(Zo), where Zo = L2((0, n), ~3), Zl = H' ( (0 ,  n), ~3) 
and Z2 = H2((0, n), ~ 3 ) n  {boundary conditions}. Note that 

x = L L ( R  x (0, ~), ~3) 

and 

X 1 = H ~ ( ~  x (0, ~), R 3) c~ {boundary conditions}. 

It depends smoothly on e 2=  0 - 0 r  as L1 depends linearly on 0. 
The nonlinear part 

N(u) = ( -  VVy -- wv~, --VWy -- WWz, --rOy -- wOz) 

is a bounded polynomial from Y = H~;,(R x (0, n), [R 3) c~ L~ x (0, n), l~ 3) 
to X. Therefore, N ~ ca(y, X) and X ~ c Y c X, because of a generalized 
version of Sobolev's imbeddings theorems, which follows again by localiza- 
tion. To define the projection Q we state: 

(A1) There exists a family of  continuous projections Q ~ C~(~, ~(Zo,  Zo)), 
such that Qu = ~ - t O ~ u  = (v, w, O) fulfills the conditions ~yl) § ~z w = O, 
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[v](y) = ~ v(y, z) dz = 0 for  all y ~ E, w[~=o.= = 0 and Q(ayp, 8zp, O) = 0 for  
all (8yp, 8zp, O) ~ L];u(Zo). 

Proof. The 0 variable is independent  of  this projection and it applies 
only to the hydrodynamic  part  coming f rom Nav ie r -S tokes  equation. We 
define this part  of  Q by the solutions u = (v, w) of  the system u + Vp = f ;  
V �9 u = 0 under  the condit ions W]z=0,~ = 0 and [v](y) = 0 for all y ~ R. We 
first eliminate for fixed y the mean value [ f , ] ( y ) =  j ' f l (y ,  z )d z  of the first 
componen t  f ,  of f This can always be done by a z- independent  pressure 
Po(Y). We have P'o(Y)= [f,](Y). This is equivalent to subtract the mean 
value in the Four ier- t ransformed problem of  the term f~. Now, the system 
u + Vp = ~  V" u = 0 with [vl = [~]  = [p] = 0, Wlo,= = 0 has to be solved. To 
define 0 we study the Four ier- t ransformed system, 

v + ikp  = f , w + Szp = ikv  + Szw = O, 

which can be solved by an expansion v = 2 2 = , v m c o s m z ,  w =  
2 2 = ,  Wm sin mz, f2 = Z 2 = ,  (A)m sin mz, J~ = Z 2 = ,  (fl)m cosmz  and p = 
~ 2 = ,  Pm cos mz. Since [v] = [f~ ] = 0 the corresponding terms with m = 0 
drop out. By inserting this expansion we get three-dimensional invariant 
systems Vm + ikpm = f ,m, 
reads 

Wm - -  mpm = f2m, i k V m  "-~ mWm = 0. T h e  s o l u t i o n  

m 2 + k 2 - i m k  k 2 /IkgmJ" 

The matrices A m ( k  ) and its derivatives with respect to k can be estimated 
uniformly in m and in k and hence (~ ~ C2(R, L~(Zo, Zo)). [] 

Therefore, we find 

Q X  = {(v, w, 0) e L~;u((0, re) x ~, N3)lVy + Wz = O, 

= 0, [vl(y)  = 0 Vy 

and 

(QX) 1 = {(v, w, 0) ~ H~u((0, re) x N, N3)lvy + Wz = O, 

wlz=o.~ = 0, [v](y) = 0 Vy e N} n {boundary conditions}. 

(A2) To show that  A is a closed operator  in Q X  with domain  of  definition 
D(A) = (QX) '  it is sufficient to show that  

It(A - s ) - I  H~(x, x1) -< C (19)  
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for some s ~ ~. If we have shown this, one can imbed ( Q X )  ~ in W);;,q(E • 
(0, re), R 3) for 1/2 < fl < 1 and 1/q > (5 - 4/3)/6 and in L~ x (0, n), E3) 
for 3/4 </3 < 1. This follows similar to the proof  of Th.l.6.1 in [He81]. And 
so we have ( Q X )  ~ c Y for/3 > 3/4. 

Before showing the rest of (A2) we look at 

(A3) This assumption & already shown in the introduction. 

For general problems the validity of this assumption can only be shown 
numerically (see also [CH82], chapter 14). 

(A4) + (A2) It remains to show (19) and (A4) (a ) - (c ) .  The assumption 
(A4) (a) is stated in 

Lemma 11. There exists an a ~ R, such that we have for s ~ S ( k ) =  
{s ~ C [ arg(s + a + (C~/2)k 2) ~ ( - 5 n / 4 ,  5n/4)} the estimate 

C 
II(s - a(k))  ' II~(zo Zo, -< 

IClk2 + s + a + 11 " 

Proof. First we examine the operator 3`0 = Q/So. This means we have to 
look at the two separated problems 

Vzz - -  k 2v  - s v  + ikp = f  

Wzz - k2w - sw + 8~p = g (20) 

ikv + Wz = 0 

and 

KOzz - -  t g k 2 0  - -  sO = h 

under the boundary conditions vz]~=0,~ = W]z=0,~ = O]z=O,~ = 0 and [v(k)] = 
0, [f(k)] = 0 for f,  g, h ~ L 2 ( ( 0 ,  To)). We treat only the more complicated first 
problem. Substituting l = s + k 2, applying ~(~, f f , ) r . . ,  dz to the first two 
equations and integration by parts gives 

f (1'~= I= + Iw=l~ + ll'~l= + tlwl=) dz = - f  (~ + g~)dz 

By looking separately at the real and at the imaginary part the estimate 
follows for the operator 3`o = Q/S0. Because of 

(3`  - l )  = (3`0 + ~, ,  - l )  = (3`0  - l ) ( / d  + (3 ,0  - l )  - ' 3 ` , )  

= (Id. + ~1(3`o - l ) - ' ) ( A o  - l) (21) 
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the operator ,~1 = 0s e C~(R, 2 '(Zo, Zo)) is a perturbation of Ao for l 
sufficiently large with help of Neumann  series. Since there remains only a 
compact  set of s and k the assertion follows. [] 

Using Lemma 5 it is sufficient to prove ( s - / ' ~ ) - l ( l q - l k [  2) 
C2(~,  5a(Zo, Zo)), (s - S,)-1(1 + [k]2) ~/2 e C2(~,  ~ ( Z o ,  Z1)) and (s - a ) - 1  
C2(R, 2 ' (Zo,  Z2)) for showing (19). To derive this we have to estimate 

sup I1(' - a ) - ' ( 1  -I- Ikl =) II~(Zo,Zo>, 
k ~ g~,s E S(k) 

k 2~ ~/2 sup I I ( s - a ) - l (  1 + , ~(Zo,Z,) ,  
k ~ N,s e S(k) 

sup It(s ~ - 1  - ) 11~(~o,~2~, 
k �9 ~,s �9 S(k) 

sup F t a ' ( s - A ) - l l [ ~ ( z o , ~ o , ,  
k E N,s �9 S(k) 

sup I l a " ( s  ^ _1 - A) tt~e(Zo,Zo), 
k �9 ~,s �9 S(k) 

where we 
the norm 

(22) 

have written s e S(k) to include also (A4) (b ) - (c ) .  Introducing 

II �9 IIx<~) = Ik1211 �9 Ilzo + Ikl II " Ilzl + [I " IIz2, 

we see that s u p k ~  II~'(k)ll~(x(~),Zo)+ s u p ~  I/a"(k)II~(x(k),Zo)-< C. There- 
fore, (22) follows from 

sup II(s - A(k))-llt~(zo,x(k)) <- C. (23) 
s e S(k) ,k  ~ N 

Using (21) it is suff• to show (23) for Ao instead of A. To make life 
easy we treat only the more complicated part of (20) and use the fact 
that this problem possesses a simple expansion of eigenfunctions 
V = 2m~176 1V m COS mz, w = 2m~176 1W m sin mz, g = E 2 = I  g m  sin mz, f =  
Z 2 = 1  fm COS mz and P = Z2=1  Pm COS mz. With l = k2/2 + s 
{l e C I arg(/) e ( -5rc /4 ,  5rc/4)} we have to solve 

( - - m  2 - -  k2/2 - l)Vm + ikpm =fro, 

i k v m  + m W m  = O. 

The solutions are given by 

Wm (m 2 + k2)(m-~+ k2/2 + l) - i m k  

( - -m 2 - k2/2 - l)Wm -- mpm = g m ,  

- i m k ~ { f m  
k 2  J \ g m f f  

and so the assertion follows. Note the constant C1/2 in the definition of S(k) 
in contrast to C1 in the resolvent estimate (A4) (a). It is used here. 
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We end this paper with a remark about the approximation of the 
pressure. 

Remark 12. It is possible to approximate the pressure p by the pressure 
related to the eigenfunction @(kc)e ikcy. Doing that we get formally 

3 
p = epo o + C(e 2) = ~ e COS z eikcYAl(ey) + c.c. + (9(e2). 

Since p;  in the proof of (A1) depends only on the nonlinearity it is of order 
C(e2). But clearly P0 itself is not integrable and so it makes only sense 
to approximate the pressure gradient in this problem. Inserting u = e@ + 
e3/2R of the proof of Theorem 2 in V p  = Otu - L u  - N ( u )  we see that Vp 
can be approximated by Vpo o up to an error  ~0(e 3/2) in the norm of 
L L ( R  • (o, 
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Abstract 

Modulation equations play an essential role in the understanding of complicated dynamical systems 
near the threshold of instability. Here we look at systems defined over domains with one unbounded 
direction and show that the Ginzburg-Landau equation dominates the dynamics of the full problem, 
locally, at least over a long time-scale. As an application of our approximation theorem we look here at 
B6nard's problem. The method we use involves a careful handling of critical modes in the Fourier-trans- 
formed problem and an estimate of Gronwall's type. 
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