A Uniqueness Condition for the Polyharmonic Equation in Free Space

P. Lesky Jr
Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 10, D 5300 Bonn 1, West Germany

Communicated by P. Werner

Consider the polyharmonic wave equation $\hat{\partial}_{t}^{2} u+(-\Delta)^{m} u=f$ in $\mathbb{R}^{n} \times[0, \infty)$ with time-independent right-hand side. We study the asymptotic behaviour of $u(\mathbf{x}, t)$ as $t \rightarrow \infty$ and show that $u(\mathbf{x}, t)$ either converges or increases with order t^{α} or $\ln t$ as $t \rightarrow \infty$. In the first case we study the limit $u_{0}(\mathbf{x}):=\lim _{t \rightarrow \infty} u(\mathbf{x}, t)$
and give a uniqueness condition that characterizes u_{0} among the solutions of the polyharmonic equation $(-\Delta)^{m} u=f$ in \mathbb{R}^{n}. Furthermore we prove in the case $2 m \geqslant n$ that the polyharmonic equation has a solution satisfying the uniqueness condition if and only if f is orthogonal to certain solutions of the homogeneous polyharmonic equation.

1. Introduction

Consider the problem

$$
\left.\begin{array}{ll}
\partial_{t}^{2} u+(-\Delta)^{m} u=\mathrm{e}^{-\mathrm{i} \omega t} f & \text { in } \mathbb{R}^{n} \times[0, \infty) \tag{1.1}\\
u(\mathbf{x}, 0)=\partial_{\mathrm{t}} u(\mathbf{x}, 0)=0 & \text { in } \mathbb{R}^{n},
\end{array}\right\}
$$

where $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \omega \geqslant 0$ and $\Delta:=\partial_{1}^{2}+\cdots \partial_{n}^{2}$. We are interested in the asymptotic behaviour of $u(\mathbf{x}, t)$ as $t \rightarrow \infty$. In the case $\omega>0$ it has been shown by Eidus [2] that

1. If $m<n$, then the principle of limiting amplitude holds:

$$
\begin{equation*}
u(\mathbf{x}, t)=\mathrm{e}^{-\mathrm{i} \omega t} u_{\omega}(\mathbf{x})+o(1) \quad \text { as } t \rightarrow \infty, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
(-\Delta)^{m} u_{\omega}-\omega^{2} u_{\omega}=f \text { in } \mathbb{R}^{n} ; \tag{1.3}
\end{equation*}
$$

u_{ω} can be uniquely characterized by (1.3) and a suitable radiation condition.
2. If $m=n$, then

$$
\begin{equation*}
u(\mathbf{x}, t)=\mathrm{e}^{-\mathrm{i} \omega t} u_{\omega}(\mathbf{x})+c_{1} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}+o(1) \quad \text { as } t \rightarrow \infty \tag{1.4}
\end{equation*}
$$

with a suitable constant $c_{1} \neq 0$, where u_{ω} is a solution of (1.3).
3. If $m>n$, then

$$
\begin{equation*}
u(\mathbf{x}, t)=t^{1-n / m} c_{2} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}+o\left(t^{1-n / m}\right) \quad \text { as } t \rightarrow \infty \tag{1.5}
\end{equation*}
$$

with $c_{2} \neq 0$.
This shows that $u(\mathbf{x}, t)$ is unbounded as $t \rightarrow \infty$ if $\omega>0$ and $m>n$. As pointed out in [6], similar resonance effects can be observed in the case $\omega=0, m=1, n=1$ or $n=2$. In section 2 we study (1.1) in the case $\omega=0$ for arbitrary $m, n \in \mathbb{N}$. We discuss the asymptotic behaviour of the solution u as $t \rightarrow \infty$ and show:

1. If $2 m<n$, then

$$
\begin{equation*}
u(\mathbf{x}, t)=u_{0}(\mathbf{x})+o(1) \quad \text { as } t \rightarrow \infty \tag{1.6}
\end{equation*}
$$

uniformly in every compact subset of \mathbb{R}^{n}, where u_{0} satisfies the corresponding static equation

$$
\begin{equation*}
(-\Delta)^{m} u_{0}=f \text { in } \mathbb{R}^{n} \tag{1.7}
\end{equation*}
$$

2. If $2 m \geqslant n$, then for odd n

$$
u(\mathbf{x}, t)=\sum_{s=0}^{m-(n+1) / 2} D_{s} t^{2-\frac{n+2 s}{m}} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime}+u_{0}(\mathbf{x})+o(1)
$$

$$
\begin{equation*}
\text { as } t \rightarrow \infty, \tag{1.8}
\end{equation*}
$$

and for even n

$$
\begin{align*}
u(\mathbf{x}, t)= & \sum_{s=0}^{m-1-n / 2} D_{s} t^{2-\frac{a+2 s}{m}} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime} \\
& +D^{*} \ln t \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 m-n} \mathrm{~d} \mathbf{x}^{\prime}+u_{0}^{*}(\mathbf{x})+o(1) \text { as } t \rightarrow \infty \tag{1.9}
\end{align*}
$$

uniformly in every compact subset of \mathbb{R}^{n}, where u_{0} and u_{0}^{*} are solutions of (1.7) and D_{s} and D^{*} are specified in (2.25) below.

Sections 3 and 4 deal with the polyharmonic equation (1.7) and with the solution u_{0} determined by (1.6). Note that (1.6) holds also in the case $2 m \geqslant n$ if f satisfies the condition

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime}=0 \quad \text { for } s=0,1, \ldots,\left[m-\frac{n}{2}\right] \text { and every } \mathbf{x} \in \mathbb{R}^{n} \tag{1.10}
\end{equation*}
$$

($[r]:=\max \left\{n \in \mathbb{N}_{0}: n \leqslant r\right\}$), or, equivalently,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}\right|^{2 j} \mathbf{x}^{\prime \alpha} \mathrm{d} \mathbf{x}^{\prime}=0 \quad \text { for } j \in \mathbb{N}_{0}, \alpha \in \mathbb{N}_{o}^{n} \text { with } j+|\alpha| \leqslant\left[m-\frac{n}{2}\right] \tag{1.11}
\end{equation*}
$$

(compare (4.21), (4.22) in [3]; $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ for every multi-index $\alpha \in \mathbb{N}_{0}^{n}$, $\mathbf{x}^{\prime \alpha}:=\mathbf{x}_{1}^{\prime \alpha_{1}} \ldots x_{n}^{\prime \alpha_{n}}$. We study the question of how u_{0} can be characterized uniquely among the solutions of (1.7) by imposing a suitable asymptotic condition as $|\mathbf{x}| \rightarrow \infty$. The answer is easy in the case $2 m<n$. Then

$$
\begin{equation*}
D^{\alpha} u_{0}(\mathbf{x}):=\partial_{1}^{\alpha_{1}} \ldots \partial_{n}^{\alpha_{n}} u_{0}(\mathbf{x})=O\left(\frac{1}{|\mathbf{x}|^{|\boldsymbol{x}|+1}}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty \tag{1.12}
\end{equation*}
$$

for $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leqslant 2 m-1$, and there exists only one solution of (1.7) with this property. The same statement holds in the case $2 m=n$ if f satisfies (1.11) (compare (2.32) and (4.4) below). If $2 m>n$, then $u_{0}(\mathbf{x})$ may be unbounded as $|\mathbf{x}| \rightarrow \infty$, even if (1.11) is valid, as we shall see in an example at the beginning of Section 3. We shall show that u_{0} is uniquely determined by (1.7) and the property

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=o\left(R^{n-1}\right) \quad \text { as } R \rightarrow \infty \text { for every } \mathbf{x}_{0} \in \mathbb{R}^{n} \tag{1.13}
\end{equation*}
$$

Note that this condition is weaker than (1.12), so that u_{0} satisfies (1.13) also in the case $2 m \leqslant n$.

The verification of (1.13) yields as a further result the following statement on the solvability of (1.7) in the case $2 m \geqslant n$: (1.7) has a solution satisfying (1.13) if and only if (1.11) holds. Condition (1.11) says that f is orthogonal to certain polynomial solutions of $(-\Delta)^{m} v=0$ in \mathbb{R}^{n}.

The analysis in Section 2 is based on the spectral theory for unbounded self-adjoint operators. Most conclusions are analogous to some in [8] and [3]. Here we give only a short description of the main steps. In Section 3 we use Green's formula to derive an expansion of the form

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\sum_{j=0}^{m-1} c_{j} \Delta^{j} v\left(\mathbf{x}_{0}\right) R^{n-1+2 j} \tag{1.14}
\end{equation*}
$$

for every solution $v \in C^{2 m}\left(\mathbb{R}^{n}\right)$ of the homogenous equation $(-\Delta)^{m} v=0$, where $c_{j} \neq 0$ are suitable real constants. This shows that (1.7) has at most one solution with the property (1.13). A Taylor expansion yields that u_{0} satisfies (1.13) if and only if (1.11) holds. This, together with (1.14), implies the above statement on the solvability of (1.7) for $2 m \geqslant n$.

2. The time-dependent problem

We study the problem

$$
\left.\begin{array}{ll}
\partial_{t}^{2} u+(-\Delta)^{m} u=f & \text { in } \mathbb{R}^{n} \times[0, \infty) \tag{2.1}\\
u(\mathbf{x}, 0)=\partial_{t} u(\mathbf{x}, 0)=0 & \text { in } \mathbb{R}^{n}
\end{array}\right\}
$$

with given $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. We require $u \in C^{2 m}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ and

$$
\begin{equation*}
u(., t) \in H_{m}\left(\mathbb{R}^{n}\right) \text { for every } t \geqslant 0 \tag{2.2}
\end{equation*}
$$

where $H_{m}\left(\mathbb{R}^{n}\right)$ denotes the m th Sobolev space. Then u is uniquely determined (compare the discussion in [3] in a related situation). We extend the operator $(-\Delta)^{m}$ to a positive self-adjoint operator in $L_{2}\left(\mathbb{R}^{n}\right)$ by setting

$$
\left.\begin{array}{l}
D(A):=\left\{U \in H_{m}\left(\mathbb{R}^{n}\right): \Delta^{m} U \in L_{2}\left(\mathbb{R}^{n}\right)\right\}, \tag{2.3}\\
A U:=(-\Delta)^{m} U \quad \text { for } U \in D(A) .
\end{array}\right\}
$$

Let $\left\{P_{\lambda}\right\}$ denote the (left continuous) spectral family of A. The functional calculus for unbounded self-adjoint operators and the elliptic regularity theory yield

$$
\begin{equation*}
u(\mathbf{x}, t)=\int_{0}^{\infty} \frac{1}{\lambda}(1-\cos \sqrt{\lambda} t) \mathrm{d}\left(P_{\lambda} f(\mathbf{x})\right) . \tag{2.4}
\end{equation*}
$$

In order to obtain the asymptotic behaviour of $u(\mathbf{x}, t)$ as $t \rightarrow \infty$ we proceed as in [3], to which we refer for a more detailed presentation of the argument.

A modification of (3.11) in [3] yields the following representation of the resolvent $R_{z}=(A-z I)^{-1}$ of A :

$$
\begin{align*}
R_{z} f(\mathbf{x})= & \frac{\mathrm{i} \left\lvert\, z z^{\frac{\sigma}{2} 2^{2}-2}-1\right.}{4 m(2 \pi)^{\sigma}} \sum_{s=0}^{m-1} \mathrm{e}^{\mathrm{i}(\arg z+2 \pi s)\left(\frac{\pi+2}{2 m}-1\right)} \\
& \times \int_{\mathbb{R}^{n}} \frac{f\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{\sigma}} H_{\sigma}^{(1)}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right||z|^{1 / 2 m} \mathrm{e}^{\mathrm{i}(\mathrm{argz} z+2 \pi s) / 2 m}\right) \mathrm{d} \mathbf{x}^{\prime}, \tag{2.5}
\end{align*}
$$

where $\sigma=(n / 2)-1$ and

$$
\begin{equation*}
H_{\sigma}^{(1)}(\zeta)=J_{\sigma}(\zeta)+\mathrm{i} N_{\sigma}(\zeta) \quad(\zeta \in \mathbb{C} \backslash\{0\}) \tag{2.6}
\end{equation*}
$$

denotes Hankel's function. By means of Stone's formula it follows that $P_{\lambda} f$ is continuous with respect to $\lambda \in \mathbb{R}$ and differentiable for $\lambda \neq 0$. In particular, we have

$$
\begin{equation*}
\frac{\mathrm{d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda}=\frac{1}{2 m(2 \pi)^{\sigma+1}} \lambda^{\sigma+2 m^{2}}-1 \int_{\mathbb{R}^{n}} \frac{f\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{\sigma}} J_{\sigma}\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \lambda^{1 / 2 m}\right) \mathrm{d} \mathbf{x}^{\prime} \text { for } \lambda>0 \tag{2.7}
\end{equation*}
$$

Note that $P_{\lambda} f=0$ for $\lambda \leqslant 0$, since A is positive. Using

$$
\begin{equation*}
J_{\sigma}(\zeta)=\sum_{s=0}^{\infty} C_{s} \zeta^{2 s+\sigma} \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{s}=\frac{(-1)^{s}}{2^{\sigma+2 s} s!\Gamma(\sigma+s+1)} \tag{2.9}
\end{equation*}
$$

(compare [4]), we obtain for $\lambda \downarrow 0$

$$
\frac{\mathrm{d} P_{2} f(\mathbf{x})}{\mathrm{d} \lambda}= \begin{cases}O\left(\lambda^{1 / 2 m}\right) & \text { if } 2 m<n, \tag{2.10}\\ \frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{[m-n / 2]} \frac{C_{s}}{\lambda^{1-(n+2 s) / 2 m}} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime}+O\left(\lambda^{1 / 2 m}\right) & \text { if } 2 m \geqslant n,\end{cases}
$$

uniformly in every compact subset of \mathbb{R}^{n}. Note that

$$
\begin{equation*}
u(\mathbf{x}, t)=\int_{0}^{\infty} \frac{1}{\lambda}(1-\cos \sqrt{\lambda} t) \frac{\mathrm{d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda} \mathrm{~d} \lambda \tag{2.11}
\end{equation*}
$$

and set

$$
\begin{align*}
I_{1}(\mathbf{x}, t ; \delta) & :=\int_{0}^{\delta} \frac{1}{\lambda}(1-\cos \sqrt{\lambda} t) \frac{\mathrm{d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda} \mathrm{~d} \lambda, \tag{2.12}\\
I_{2}(\mathbf{x} ; \delta) & :=\int_{\delta}^{\infty} \frac{1}{\lambda} \frac{\mathrm{~d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda} \mathrm{~d} \lambda, \tag{2.13}\\
I_{3}(\mathbf{x}, t ; \delta) & :=-\int_{\delta}^{\infty} \frac{\cos \sqrt{\lambda} t}{\lambda} \frac{\mathrm{~d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda} \mathrm{~d} \lambda \tag{2.14}
\end{align*}
$$

$(\delta>0)$. Let K be an arbitrary compact subset of \mathbb{R}^{n}. At first we study the case $2 m \geqslant n$.

We insert (2.10) into (2.12) and obtain

$$
\begin{equation*}
I_{1}(\mathbf{x}, t ; \delta)=\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{[m-n / 2]} C_{s} I_{\beta_{s}}^{*}(t ; \delta) \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime}+w_{1}(\mathbf{x}, t ; \delta), \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
I_{\beta}^{*}(t ; \delta) & :=\int_{0}^{\delta} \frac{1-\cos \sqrt{\lambda} t}{\lambda^{1+\beta}} \mathrm{d} \lambda \tag{2.16}\\
\beta_{s} & :=1-\frac{n+2 s}{2 m} \tag{2.17}
\end{align*}
$$

and $w_{1}(\mathbf{x}, t ; \delta) \rightarrow 0$ as $\delta \downarrow 0$ uniformly with respect to $(\mathbf{x}, t) \in K \times[0, \infty)$. In order to compute I_{β}^{*}, we substitute $\mu:=\sqrt{\lambda} t$. This yields

$$
\begin{equation*}
I_{\beta}^{*}(t ; \delta)=2 t^{2 \beta} \int_{0}^{\sqrt{\delta} t} \frac{1-\cos \mu}{\mu^{1+2 \beta}} \mathrm{~d} \mu \tag{2.18}
\end{equation*}
$$

If $\beta>0$, it follows that

$$
\begin{align*}
I_{\beta}^{*}(t ; \delta) & =2 t^{2 \beta}\left\{\int_{0}^{\infty} \frac{1-\cos \mu}{\mu^{1+2 \beta}} \mathrm{~d} \mu-\int_{\sqrt{\delta t}}^{\infty} \frac{\mathrm{d} \mu}{\mu^{1+2 \beta}}+\int_{\sqrt{\delta t}}^{\infty} \frac{\cos \mu}{\mu^{1+2 \beta}} \mathrm{~d} \mu\right\} \\
& =t^{2 \beta} \frac{\pi}{2 \beta \Gamma(2 \beta) \sin (\beta \pi)}-\frac{1}{\beta \delta^{\beta}}+W_{1}(t ; \delta ; \beta) \tag{2.19}
\end{align*}
$$

(compare integral 11c, section 1.1.3.4 in [1]) with

$$
\begin{equation*}
\left|W_{1}(t ; \delta ; \beta)\right|=\left|2 t^{2 \beta} \int_{\sqrt{\delta t}}^{\infty} \frac{\cos \mu}{\mu^{1+2 \beta}} \mathrm{~d} \mu\right| \leqslant \frac{4}{\delta^{\beta+1 / 2} t}, \tag{2.20}
\end{equation*}
$$

as an integration by parts shows. If $\beta=0$, we obtain

$$
\begin{align*}
I_{0}^{*}(t ; \delta) & =2 \int_{1}^{\sqrt{\delta t}} \frac{1}{\mu} \mathrm{~d} \mu+2 \int_{0}^{1} \frac{1-\cos \mu}{\mu} \mathrm{d} \mu-2 \int_{1}^{\infty} \frac{\cos \mu}{\mu} \mathrm{d} \mu+W_{1}(t ; \delta ; 0) \\
& =2 \ln t+\ln \delta+2 C_{\mathrm{e}}+W_{1}(t ; \delta ; 0) \tag{2.21}
\end{align*}
$$

(C_{e} denotes the Euler-Mascheroni constant; compare (3.67) in [7]). Setting

$$
\begin{equation*}
p_{s}(\mathbf{x}):=\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime}, \tag{2.22}
\end{equation*}
$$

we obtain from (2.15), (2.19) and (2.21) for odd n

$$
\begin{align*}
I_{1}(\mathbf{x}, t ; \delta)= & \sum_{s=0}^{m-(n+1) / 2} D_{s} t^{2 \beta_{s}} p_{s}(\mathbf{x})-\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{m-(n+1) / 2} \frac{C_{s}}{\beta_{s} \delta^{\beta_{s}}} p_{s}(\mathbf{x}) \\
& +w_{1}(\mathbf{x}, t ; \delta)+W_{2}(\mathbf{x}, t ; \delta) \tag{2.23}
\end{align*}
$$

and for even n

$$
\begin{align*}
I_{1}(\mathbf{x}, t ; \delta)= & \sum_{s=0}^{m-1-n / 2} D_{s} t^{2 \beta_{s}} p_{s}(\mathbf{x})+D^{*}(\ln t) p_{m-n / 2}(\mathbf{x}) \\
& -\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{m-1-n / 2} \frac{C_{s}}{\beta_{s} s^{\beta_{s}}} p_{s}(\mathbf{x}) \\
& +\frac{C_{m-n / 2}}{2 m(2 \pi)^{n / 2}}\left(\ln \delta+2 C_{\mathrm{e}}\right) p_{m-n / 2}(\mathbf{x}) \\
& +w_{1}(\mathbf{x}, t ; \delta)+W_{2}(\mathbf{x}, t ; \delta) \tag{2.24}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
D_{s}:=\frac{C_{s}}{2 m(2 \pi)^{n / 2}} \frac{\pi}{2 \beta_{s} \Gamma\left(2 \beta_{s}\right) \sin \left(\beta_{s} \pi\right)}\left(s=0,1, \ldots,\left[m-\frac{n}{2}\right]\right), \tag{2.25}\\
D^{*}:=\frac{C_{m-n / 2}}{m(2 \pi)^{n / 2}}
\end{array}\right\}
$$

and

$$
\begin{equation*}
W_{2}(\mathbf{x}, t ; \delta):=\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{[m-n / 2]} C_{s} W_{1}\left(t ; \delta ; \beta_{s}\right) p_{s}(\mathbf{x}) . \tag{2.26}
\end{equation*}
$$

Now consider I_{2} defined by (2.13). Note that

$$
\begin{equation*}
I_{2}(\mathbf{x} ; \delta)=\lim _{\tau \downarrow 0}\left\{R_{\mathrm{it}} f(\mathbf{x})-\int_{0}^{\delta} \frac{1}{\lambda-\mathrm{i} \tau} \frac{\mathrm{~d} P_{\lambda} f(\mathbf{x})}{\mathrm{d} \lambda} \mathrm{~d} \lambda\right\} . \tag{2.27}
\end{equation*}
$$

In order to study $R_{\mathrm{i} \tau}$ as $\tau \downarrow 0$ we use (2.5), (2.6), (2.8) and
$N_{\sigma}(\zeta)= \begin{cases}\sum_{s=0}^{\infty} C_{s}^{\prime} \zeta^{2 s-\sigma} & \left(\sigma+\frac{1}{2} \in \mathbb{N}_{0}\right), \\ \frac{2}{\pi} J_{\sigma}(\zeta)\left(C_{\mathrm{e}}+\ln \frac{\zeta}{2}\right)+\sum_{s=0}^{\infty} C_{s}^{\prime \prime} \zeta^{2 s+\sigma}+\sum_{s=0}^{\sigma-1} C_{s}^{\prime \prime \prime} \zeta^{2 s-\sigma} & \left(\sigma \in \mathbb{N}_{0}\right),\end{cases}$
where

$$
\left.\begin{array}{rl}
C_{s}^{\prime} & =\frac{(-1)^{\sigma+s+1 / 2}}{2^{2 s-\sigma} s!\Gamma(s+1-\sigma)} \tag{2.29}\\
C_{s}^{\prime \prime} & =\frac{(-1)^{s+1}}{\pi 2^{\sigma+2 s} s!(\sigma+s)!}\left(\sum_{r=1}^{s} \frac{1}{r}+\sum_{r=1}^{s+\sigma} \frac{1}{r}\right), \\
C_{s}^{\prime \prime \prime} & =-\frac{(\sigma-s-1)!}{2^{2 s-\sigma} \pi s!}
\end{array}\right\}
$$

(compare [4]). This, together with (2.10) and (2.27), implies that for odd n

$$
\begin{equation*}
I_{2}(\mathbf{x}, \delta)=u_{0}(\mathbf{x})+\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{m-(n+1) / 2} \frac{C_{s}}{\beta_{s} \delta^{\beta_{s}}} p_{s}(\mathbf{x})+w_{2}(\mathbf{x} ; \delta) \tag{2.30}
\end{equation*}
$$

and for even n

$$
\begin{align*}
I_{2}(\mathbf{x}, \delta)= & u_{0}^{*}(\mathbf{x})+\frac{1}{2 m(2 \pi)^{n / 2}} \sum_{s=0}^{m-1-n / 2} \frac{C_{s}}{\beta_{s} \delta^{\beta_{s}}} p_{s}(\mathbf{x}) \\
& -\frac{C_{m-n / 2}}{2 m(2 \pi)^{n / 2}}\left(\ln \delta+2 C_{e}\right) p_{m-n / 2}(\mathbf{x})+w_{2}(\mathbf{x} ; \delta) \tag{2.31}
\end{align*}
$$

with $w_{2}(\mathbf{x} ; \delta) \rightarrow 0$ as $\delta \downarrow 0$ uniformly in K, where
$u_{0}(\mathbf{x}):= \begin{cases}-\frac{C_{m-1}^{\prime}}{4(2 \pi)^{n / 2-1}} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 m-n} \mathrm{~d} \mathbf{x}^{\prime} & \text { if } 2 m \geqslant n \text { and } n \text { odd, } \\ -\frac{C_{m-n / 2}}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 m-n} \ln \left|\mathbf{x}-\mathbf{x}^{\prime}\right| \mathrm{d} \mathbf{x}^{\prime} & \text { if } 2 m \geqslant n \text { and } n \text { even }\end{cases}$
and

$$
\begin{equation*}
u_{0}^{*}(\mathbf{x}):=u_{0}(\mathbf{x})-p_{m-n / 2}(\mathbf{x}) \frac{1}{4(2 \pi)^{n / 2-1}}\left\{\frac{2}{\pi}\left(C_{\mathrm{e}} \frac{m-1}{m}-\ln 2\right) C_{m-n / 2}+C_{m-n / 2}^{\prime \prime}\right\} \tag{2.33}
\end{equation*}
$$

Note that u_{0} and u_{0}^{*} are solutions of (1.7). Since

$$
\begin{equation*}
I_{3}(\mathbf{x}, t ; \delta)=o(1) \quad \text { as } t \rightarrow \infty \tag{2.34}
\end{equation*}
$$

uniformly with respect to $\mathbf{x} \in K$, as a slight modification of the proof of Lemma 5.2 in [3] shows, we conclude from (2.23), (2.24), (2.30) and (2.31) that (1.8) and (1.9) hold uniformly in K. By (2.22), we have $u_{0}^{*}=u_{0}$ if f satisfies (1.11). In this case (1.8) and (1.9) reduce to (1.6).

Now we study the case $2 m<n$. Let K be an arbitrary compact subset of \mathbb{R}^{n}. By (2.10) and (2.12) we obtain

$$
\begin{equation*}
I_{1}(\mathbf{x} ; t ; \delta) \rightarrow 0 \quad \text { as } \delta \downarrow 0 \tag{2.35}
\end{equation*}
$$

uniformly with respect to $(\mathbf{x}, t) \in K \times[0, \infty)$. Taking into account that $R_{\mathrm{i} \tau} f(\mathbf{x}) \rightarrow u_{0}(\mathbf{x})$ as $\tau \downarrow 0$ for $2 m<n$ with

$$
\begin{equation*}
u_{0}(\mathbf{x}):=\frac{\Gamma(n / 2-m)}{\pi^{n / 2} 4^{m}(m-1)!} \int_{\mathbb{R}^{n}} \frac{f\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{n-2 m}} \mathbf{d} \mathbf{x}^{\prime} \quad(2 m<n) \tag{2.36}
\end{equation*}
$$

we conclude from (2.27) that

$$
\begin{equation*}
I_{2}(\mathbf{x} ; \delta)=u_{0}(\mathbf{x})+o(1) \quad \text { as } \delta \downarrow 0 \tag{2.37}
\end{equation*}
$$

uniformly in K. Thus it follows by (2.34) that (1.6) holds uniformly in K, where u_{0} is given by (2.36). In particular, u_{0} is a solution of (1.7). Thus we have verified the following Theorem:

Theorem 2.1. Let $u \in C^{2 m}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ be the unique solution of (2.1), (2.2). Then the following statements hold:

1. If $2 m<n$, then (1.6) holds uniformly in every compact subset of \mathbb{R}^{n}, and u_{0} is given by (2.36).
2. If $2 m \geqslant n$, then the asymptotic behaviour of u as $t \rightarrow \infty$ is given by the estimates (1.8) and (1.9), which hold uniformly in every compact subset of \mathbb{R}^{n}. If, in addition, f satisfies (1.11), then (1.6) holds uniformly in every compact subset of \mathbb{R}^{n}; in this case u_{0} is given by (2.32).

3. The polyharmonic equation

3.1. An example

Assume that $2 m \geqslant n$ and that $f \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies (1.11). Consider the solution u_{0} of (1.7) given by (2.32). In order to find a condition that singles out u_{0} among the solutions of (1.7), we study first the special case $m=n=3$. Since

$$
\begin{align*}
\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3} & =|\mathbf{x}|^{3}\left(1+\frac{\left|\mathbf{x}^{\prime}\right|^{2}-2 \mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{2}}\right)^{3 / 2} \\
& =|\mathbf{x}|^{3} \sum_{j=0}^{3}\binom{3 / 2}{j}\left(\frac{\left|\mathbf{x}^{\prime}\right|^{2}-2 \mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{2}}\right)^{j}+O\left(\frac{1}{|\mathbf{x}|}\right) \text { as }|\mathbf{x}| \rightarrow \infty \tag{3.1}
\end{align*}
$$

we obtain by (1.11) and (2.32)

$$
\begin{align*}
u_{0}(\mathbf{x})= & -\frac{C_{2}^{\prime}}{4 \sqrt{2 \pi}} \int_{\mathbb{R}^{3}} f\left(\mathbf{x}^{\prime}\right)\left\{\frac{3}{2|\mathbf{x}|}\left[\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{2}-\mathbf{x} \cdot \mathbf{x}^{\prime}\left|\mathbf{x}^{\prime}\right|^{2}\right]+\frac{\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{3}}{2|\mathbf{x}|^{3}}\right\} \mathrm{d} \mathbf{x}^{\prime} \\
& +O\left(\frac{1}{|\mathbf{x}|}\right) \text { as }|\mathbf{x}| \rightarrow \infty \tag{3.2}
\end{align*}
$$

This formula shows that u_{0} is unbounded as $|\mathbf{x}| \rightarrow \infty$ if for example one of the integrals $\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) x_{i}^{\prime 2} \mathrm{~d} \mathbf{x}^{\prime}(i=1,2,3)$ does not vanish. In particular, we have

$$
\begin{equation*}
u_{0}(\mathbf{x})=O(|\mathbf{x}|) \quad \text { as }|\mathbf{x}| \rightarrow \infty \tag{3.3}
\end{equation*}
$$

This asymptotic condition does not suffice for the unique characterization of u_{0}, since also $u(\mathbf{x})=u_{0}(\mathbf{x})+\mathbf{c} \cdot \mathbf{x}+d$ with $\mathbf{c} \in \mathbb{R}^{3}, d \in \mathbb{R}$ is a further solution of (1.7) with the property (3.3). In order to characterize u_{0} uniquely, note that

$$
\int_{|x|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=O(R) \quad \text { as } R \rightarrow \infty,
$$

since

$$
\int_{\mathbb{R}^{3}} f\left(\mathbf{x}^{\prime}\right)\left\{\int_{|\mathbf{x}|=R}\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{2} \mathrm{~d} S_{\mathbf{x}}\right\} \mathrm{d} \mathbf{x}^{\prime}=\int_{|\mathbf{x}|=R} x_{1}^{2} \mathrm{~d} S_{\mathbf{x}} \int_{\mathbb{R}^{3}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}\right|^{2} \mathrm{~d} \mathbf{x}^{\prime}=0
$$

by (1.11). Moreover, it can be shown in the same way that

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathrm{x}}=O(R) \quad \text { as } R \rightarrow \infty \text { for every } \mathbf{x}_{0} \in \mathbb{R}^{3} . \tag{3.4}
\end{equation*}
$$

Note that $u(\mathbf{x})=u_{0}(\mathbf{x})+\mathbf{c} \cdot \mathbf{x}$ satisfies the asymptotic estimate in (3.4) for $\mathbf{x}_{0}=0$. On the other hand, u_{0} is the only function of the form $u(\mathbf{x})=u_{0}(\mathbf{x})+\mathbf{c} \cdot \mathbf{x}+d$, that satisfies (3.4) for every $\mathbf{x}_{0} \in \mathbb{R}^{3}$. In the following we prove that u_{0} is uniquely characterized by (1.7) and (3.4) in the general case.

3.2. The uniqueness proof

We prove:
Lemma 3.1. If $v \in C^{2 m}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\begin{equation*}
(-\Delta)^{m} v=0 \quad \text { in } \mathbb{R}^{n} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=o\left(R^{n-1}\right) \quad \text { as } R \rightarrow \infty \text { for every } \mathbf{x}_{0} \in \mathbb{R}^{n} \tag{3.6}
\end{equation*}
$$

then $v=0$ in \mathbb{R}^{n}.
Remark. In the case $n=1$ the integral in (3.6) has to be understood in the sense

$$
\begin{equation*}
\int_{\left|x-x_{0}\right|=R} v(x) \mathrm{d} S_{x}:=v\left(x_{0}+R\right)+v\left(x_{0}-R\right) . \tag{3.7}
\end{equation*}
$$

Proof. Let $\mathbf{x}_{0} \in \mathbb{R}^{n}$ be fixed and assume that $R>0$. First we derive a representation of $\int_{\left|x-x_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}$ for $g \in C^{2}\left(\mathbb{R}^{n}\right)$. We set $B_{\varepsilon}:=\left\{\mathbf{x} \in \mathbb{R}^{n}: \varepsilon<\left|\mathbf{x}-\mathbf{x}_{0}\right|<R\right\}$ for $0<\varepsilon<R$. In the case $n \geqslant 3$ we use $\Delta_{\mathbf{x}}\left(1 /\left|\mathbf{x}-\mathbf{x}_{0}\right|^{n-2}\right)=0$ for $\mathbf{x} \neq \mathbf{x}_{0}$ and conclude from Green's formula that

$$
\begin{equation*}
\int_{B_{s}} \frac{\Delta g(\mathbf{x})}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{n-2}} \mathrm{~d} \mathbf{x}=\int_{\partial B_{e}}\left\{\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{n-2}} \frac{\partial g(\mathbf{x})}{\partial \mathbf{n}}-g(\mathbf{x}) \frac{\partial}{\partial \mathbf{n}_{\mathbf{x}}} \frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{n-2}}\right\} \mathrm{d} S_{\mathbf{x}}, \tag{3.8}
\end{equation*}
$$

where \mathbf{n} denotes the normal unit vector on ∂B_{ε} pointing into the exterior of B_{ε}. Letting $\varepsilon \downarrow 0$, we obtain by the theorem of Gauss

$$
\begin{align*}
& \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| \leqslant R} \frac{\Delta g(\mathbf{x})}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{n-2}} \mathrm{~d} \mathbf{x} \\
& =\frac{1}{R^{n-2}} \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} \frac{\partial g(\mathbf{x})}{\partial \mathbf{n}} \mathrm{d} S_{\mathbf{x}}+\frac{n-2}{R^{n-1}} \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}-(n-2) \Gamma_{n} g\left(\mathbf{x}_{0}\right) \\
& =\frac{1}{R^{n-2}} \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| \leqslant R} \Delta g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}+\frac{n-2}{R^{n-1}} \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}-(n-2) \Gamma_{n} g\left(\mathbf{x}_{0}\right) \tag{3.9}
\end{align*}
$$

($\Gamma_{n}:=$ surface measure of the unit sphere in \mathbb{R}^{n}), and hence

$$
\begin{align*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}= & \Gamma_{n} R^{n-1} g\left(\mathbf{x}_{0}\right)-\frac{R}{n-2} \int_{r=0}^{R}\left\{\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=r} \Delta g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}\right\} \mathrm{d} r \\
& +\frac{R^{n-1}}{n-2} \int_{r=0}^{R} \frac{1}{r^{n-2}}\left\{\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=r} \Delta g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}\right\} \mathrm{d} r . \tag{3.10}
\end{align*}
$$

This formula holds also in the case $n=1$ with $\Gamma_{1}:=2$. In fact, integrating by parts twice, we obtain

$$
\begin{align*}
\int_{B_{\varepsilon}} \mid \mathbf{x}- & \mathbf{x}_{0} \mid g^{\prime \prime}(\mathbf{x}) \mathrm{d} x \\
= & R\left\{g^{\prime}\left(x_{0}+R\right)-g^{\prime}\left(x_{0}-R\right)\right\}-\varepsilon\left\{g^{\prime}\left(x_{0}+\varepsilon\right)-g^{\prime}\left(x_{0}-\varepsilon\right)\right\} \\
& \quad-g\left(x_{0}+R\right)-g\left(x_{0}-R\right)+g\left(x_{0}+\varepsilon\right)+g\left(x_{0}-\varepsilon\right) \\
= & R \int_{x_{0}-R}^{x_{0}+R} g^{\prime \prime}(x) \mathrm{d} x-\int_{\left|x-x_{0}\right|=R} g(x) \mathrm{d} S_{x}+2 g\left(x_{0}\right)+o(1) \quad \text { as } \varepsilon \downarrow 0, \tag{3.11}
\end{align*}
$$

and from this and (3.7), (3.10) follows.

In the case $n=2$ we use $\Delta_{\mathbf{x}} \ln \left|\mathbf{x}-\mathbf{x}_{0}\right|=0$ for $\mathbf{x} \neq \mathbf{x}_{0}$. As above Green's formula and the theorem of Gauss yield

$$
\begin{align*}
& \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| \leqslant R} \ln \left|\mathbf{x}-\mathbf{x}_{0}\right| \cdot \Delta g(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& \quad=(\ln R) \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| \leqslant R} \Delta g(\mathbf{x}) \mathrm{d} \mathbf{x}-\frac{1}{R} \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}+\Gamma_{2} g\left(\mathbf{x}_{0}\right), \tag{3.12}
\end{align*}
$$

and therefore

$$
\begin{gather*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\Gamma_{2} R g\left(\mathbf{x}_{0}\right)+R \ln R \int_{r=0}^{R}\left\{\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=r} \Delta g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}\right\} \mathrm{d} r \\
-R \int_{r=0}^{R}(\ln r)\left\{\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=r} \Delta g(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}\right\} \mathrm{d} r . \tag{3.13}
\end{gather*}
$$

Now we set $g:=\Delta^{m-k} v$ and compute $\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} \Delta^{m-k} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}$. Taking into account that v satisfies (3.5), we have for $k=1$ by (3.10) and (3.13), respectively,

$$
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} \Delta^{m-1} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\Gamma_{n} R^{n-1} \Delta^{m-1} v\left(\mathbf{x}_{0}\right)
$$

If $n \neq 2$, then we obtain by (3.10) and induction with respect to k

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} \Delta^{m-k} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\Gamma_{n} R^{n-1} \Delta^{m-k} v\left(\mathbf{x}_{0}\right)+\sum_{j=1}^{k-1} c_{k j}(n) \Delta^{m-k+j} v\left(\mathbf{x}_{0}\right) R^{n-1+2 j} \tag{3.14}
\end{equation*}
$$

with suitable constants $c_{k j}(n) \in \mathbb{R} \backslash\{0\}$. If $n=2$, then (3.13) and induction yield also (3.14), since

$$
(R \ln R) \int_{r=0}^{R} r^{j} \mathrm{~d} r-R \int_{r=0}^{R}(\ln r) r^{j} \mathrm{~d} r=\frac{R^{j+2}}{(j+1)^{2}} \quad(j=0,1, \ldots)
$$

Thus we have in \mathbb{R}^{n} (with arbitrary $n \in \mathbb{N}$)

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} v(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\Gamma_{n} R^{n-1} v\left(\mathbf{x}_{0}\right)+\sum_{j=1}^{m-1} c_{m j}(n) \Delta^{j} v\left(\mathbf{x}_{0}\right) R^{n-1+2 j} \tag{3.15}
\end{equation*}
$$

for every solution $v \in C^{2 m}\left(\mathbb{R}^{n}\right)$ of (3.5). This and (3.6) imply $v\left(\mathbf{x}_{0}\right)=0$, which proves Lemma 3.1.

3.3. The existence of the solution

Lemma 3.1 implies that the problem

$$
\begin{equation*}
\left.\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=o\left(R^{n-1}\right) \quad \text { as } R \rightarrow \infty \text { for every } \mathbf{x}_{0} \in \mathbb{R}^{n}\right\} \tag{3.16}
\end{equation*}
$$

admits at most one solution $u \in C^{2 m}\left(\mathbb{R}^{n}\right)$. If $2 m<n$, then the function u_{0} defined by (2.36) is the solution of (3.16). In fact, under the assumption $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ we have $u_{0} \in C^{2 m}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
u_{0}(\mathbf{x})=O\left(\frac{1}{|\mathbf{x}|}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty \tag{3.17}
\end{equation*}
$$

and $(-\Delta)^{m} u_{0}=f$ in \mathbb{R}^{n}, which follows from

$$
(-\Delta)^{m-1} u_{0}(\mathbf{x})=\frac{\Gamma(n / 2-1)}{4 \pi^{n / 2}} \int_{\mathbb{R}^{n}} \frac{f\left(\mathbf{x}^{\prime}\right)}{\mathbf{x}-\left.\mathbf{x}^{\prime}\right|^{n-2}} \mathrm{~d} \mathbf{x}^{\prime}
$$

In the following we suppose that $2 m \geqslant n$ and that $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ satisfies (1.11) and therefore (1.10). It is our aim to prove that the function u_{0} given by (2.32) is the solution of (3.16). As above we have $u_{0} \in C^{2 m}\left(\mathbb{R}^{n}\right)$ and $(-\Delta)^{m} u_{0}=f$ in \mathbb{R}^{n}. Hence it suffices to verify the infinity condition in (3.16). For the sake of simplicity, we set

$$
D(n, m):= \begin{cases}-\frac{C_{m-1}^{\prime}}{4(2 \pi)^{n / 2-1}} & \text { if } n \text { is odd } \tag{3.18}\\ -\frac{C_{m-n / 2}}{(2 \pi)^{n / 2}} & \text { if } n \text { is even }\end{cases}
$$

First we study the case $n=1$. Let $x_{0} \in \mathbb{R}$ be fixed. We choose an $a>0$ such that $f(x)=0$ for $|x|>a$. For $R>\max \left\{a-x_{0}, a+x_{0}\right\}$ we obtain from (2.32)

$$
u_{0}\left(x_{0} \pm R\right)=D(1, m) \sum_{j=0}^{2 m-1}\binom{2 m-1}{j}(\pm 1)^{j} R^{2 m-1-j} \int_{-a}^{a} f\left(x^{\prime}\right)\left(x_{0}-x^{\prime}\right)^{j} \mathrm{~d} x^{\prime}
$$

and

$$
\begin{align*}
\int_{\left|x-x_{0}\right|=R} u_{0}(x) \mathrm{d} S_{x} & =u_{0}\left(x_{0}+R\right)+u_{0}\left(x_{0}-R\right) \\
& =2 D(1, m) \sum_{j=0}^{m-1}\binom{2 m-1}{2 j} R^{2 m-1-2 j} \int_{-a}^{a} f\left(x^{\prime}\right)\left(x_{0}-x^{\prime}\right)^{2 j} \mathrm{~d} x^{\prime} . \tag{3.19}
\end{align*}
$$

This implies by (1.10)

$$
\begin{equation*}
\int_{\left|x-x_{0}\right|=R} u_{0}(x) \mathrm{d} S_{x}=0 \quad \text { for } R>\max \left\{a-x_{0}, a+x_{0}\right\} . \tag{3.20}
\end{equation*}
$$

Hence u_{0} is the solution of (3.16).
Now we study the case $n \geqslant 3, n$ odd. By (2.32) and (3.18) we have with $\mathbf{z}:=\mathbf{x}-\mathbf{x}_{0}$

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} \mathbf{u}_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=D(n, m) \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left\{\int_{|\mathbf{z}|=R}\left|\mathbf{z}-\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)\right|^{2 m-n} \mathrm{~d} S_{\mathbf{z}}\right\} \mathrm{d} \mathbf{x}^{\prime} \tag{3.21}
\end{equation*}
$$

We use the expansion

$$
\begin{aligned}
\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n} & =|\mathbf{z}|^{2 m-n}\left(1+\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{(2 m-n) / 2} \\
& =|\mathbf{z}|^{2 m-n} \sum_{j=0}^{2 m-n}\binom{m-n / 2}{j}\left(\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{j}+O\left(\frac{1}{|\mathbf{z}|}\right) \\
& =|\mathbf{z}|^{2 m-n} \sum_{j=0}^{2 m-n}\binom{m-n / 2}{j} \sum_{k=0}^{j}\binom{j}{k}\left(\frac{\left|\mathbf{z}^{\prime}\right|}{|\mathbf{z}|}\right)^{j+k}\left(\frac{-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|\left|\mathbf{z}^{\prime}\right|}\right)^{j-k}+O\left(\frac{1}{|\mathbf{z}|}\right)
\end{aligned}
$$

as $|\mathbf{z}| \rightarrow \infty$. Substituting $l:=j+k$ in the inner sum, we obtain

$$
\begin{equation*}
\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n}=\sum_{j=0}^{2 m-n} \sum_{l=j}^{2 j} d_{j l}|\mathbf{z}|^{2 m-n-l}\left|\mathbf{z}^{\prime}\right|^{l}\left(\frac{-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|\left|\mathbf{z}^{\prime}\right|}\right)^{2 j-l}+O\left(\frac{1}{|\mathbf{z}|}\right) \tag{3.22}
\end{equation*}
$$

as $|\mathbf{z}| \rightarrow \infty$ with $d_{j l}=d_{j l}(n, m):=\binom{m-n / 2}{j}\binom{j}{l-j}$. Inserting (3.22) into (3.21), we have

$$
\begin{align*}
& \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}} \\
& =D(n, m) \sum_{j=0}^{2 m-n} \sum_{l=j}^{2 j} d_{j l} R^{2 m-n-l} \int_{\mathbb{R}^{\prime}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|^{l} \\
& \quad \times\left\{\int_{|\mathbf{z}|=R}\left(\frac{-2 \mathbf{z} \cdot\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)}{|\mathbf{z}|\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|}\right)^{2 j-l} \mathrm{~d} S_{\mathbf{z}}\right\} \mathrm{d} \mathbf{x}^{\prime}+O\left(R^{n-2}\right) \tag{3:23}
\end{align*}
$$

as $R \rightarrow \infty$. Note that the inner integral does not depend on \mathbf{x}^{\prime} :

$$
\begin{equation*}
\int_{|x|=R}\left(\frac{-2 \mathbf{z} \cdot\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)}{|\mathbf{z}|\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|}\right)^{2 j-l} \mathrm{~d} S_{\mathbf{z}}=\alpha(j, l, n) R^{n-1} \tag{3.24}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha(j, l, n):=\int_{|z|=1}\left(-2 z_{1}\right)^{2 j-l} \mathrm{~d} S_{z} \tag{3.25}
\end{equation*}
$$

Thus we obtain

$$
\begin{align*}
& \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}} \\
& =D(n, m) \sum_{j=0}^{2 m-n} \sum_{l=j}^{2 j} d_{j l} \alpha(j, l, n) R^{2 m-1-l} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|^{l} \mathrm{~d} \mathbf{x}^{\prime} \\
& \quad+O\left(R^{n-2}\right) \text { as } R \rightarrow \infty . \tag{3.26}
\end{align*}
$$

Note that it suffices to restrict the inner summation in (3.26) to even indices l with $l \leqslant 2 m-n$, since $\alpha(j, l, n)=0$ for odd l by (3.25) and $R^{2 m-1-1}=O\left(R^{n-2}\right)$ as $R \rightarrow \infty$ if $l \geqslant 2 m-n+1$. We substitute $k:=1 / 2$ in (3.26) and change the order of the summations. Taking into account that n is odd, we conclude that

$$
\begin{align*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}= & D(n, m) \sum_{k=0}^{m-(n+1) / 2} \beta_{k}(n, m) R^{2 m-1-2 k} \\
& \times \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|^{2 k} \mathrm{~d} \mathbf{x}^{\prime}+O\left(R^{n-2}\right) \quad \text { as } R \rightarrow \infty, \tag{3.27}
\end{align*}
$$

with

$$
\begin{equation*}
\beta_{k}(n, m):=\sum_{j=k}^{2 k} d_{j .2 k} \alpha(j, 2 k, n)=\sum_{j=k}^{2 k}\binom{m-n / 2}{j}\binom{j}{2 k-j} \alpha(j, 2 k, n) . \tag{3.28}
\end{equation*}
$$

Since we have assumed that f satisfies (1.10) it follows from (3.27) that

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=O\left(R^{n-2}\right) \quad \text { as } R \rightarrow \infty \tag{3.29}
\end{equation*}
$$

This shows that u_{0} is the solution of (3.16) if $n \geqslant 3, n$ odd.

Finally we assume that n is even. By (2.32) and (3.18) we have with $\mathbf{z}:=\mathbf{x}-\mathbf{x}_{0}$

$$
\begin{align*}
& \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}} \\
& =D(n, m) \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left\{\int_{|\mathbf{z}|=R}\left|\mathbf{z}-\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)\right|^{2 m-n} \ln \left|\mathbf{z}-\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right)\right| \mathrm{d} S_{\mathbf{z}}\right\} \mathrm{d} \mathbf{x}^{\prime} \tag{3.30}
\end{align*}
$$

It holds that

$$
\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n} \ln \left|\mathbf{z}-\mathbf{z}^{\prime}\right|=(\ln |\mathbf{z}|)\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n}+\frac{1}{2}\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n} \ln \frac{\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2}}{|\mathbf{z}|^{2}}
$$

and
with

$$
\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n}=|\mathbf{z}|^{2 m-n} \sum_{j=0}^{2 m-n}\binom{m-n / 2}{j}\left(\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{j}
$$

$$
\binom{m-n / 2}{j}:=0 \text { for } j \geqslant m-n / 2+1
$$

A Taylor expansion yields

$$
\begin{aligned}
\mid \mathbf{z} & -\left.\mathbf{z}^{\prime}\right|^{2 m-n} \ln \frac{\left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2}}{|\mathbf{z}|^{2}} \\
& =|\mathbf{z}|^{2 m-n}\left(1+\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{m-n / 2} \ln \left(1+\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right) \\
& =|\mathbf{z}|^{2 m-n} \sum_{j=0}^{2 m-n} c_{j}\left(\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{j}+O\left(\frac{1}{|\mathbf{z}|}\right) \text { as }|\mathbf{z}| \rightarrow \infty
\end{aligned}
$$

with suitable real constants c_{j}. Thus we have

$$
\begin{align*}
\mid \mathbf{z} & -\left.\mathbf{z}^{\prime}\right|^{2 m-n} \ln \left|\mathbf{z}-\mathbf{z}^{\prime}\right| \\
& =|\mathbf{z}|^{2 m-n} \sum_{j=0}^{2 m-n}\left\{\binom{m-n / 2}{j} \ln |\mathbf{z}|+\frac{c_{j}}{2}\right\}\left(\frac{\left|\mathbf{z}^{\prime}\right|^{2}-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|^{2}}\right)^{j}+O\left(\frac{1}{|\mathbf{z}|}\right) \tag{3.31}
\end{align*}
$$

as $|\mathbf{z}| \rightarrow \infty$. By the argument leading to (3.22) it follows that

$$
\begin{align*}
& \left|\mathbf{z}-\mathbf{z}^{\prime}\right|^{2 m-n} \ln \left|\mathbf{z}-\mathbf{z}^{\prime}\right| \\
& \quad=\sum_{j=0}^{2 m-n} \sum_{l=j}^{2 j}\left\{d_{j l} \ln |\mathbf{z}|+d_{j l}^{\prime}\right\}|\mathbf{z}|^{2 m-n-l}\left|\mathbf{z}^{\prime}\right|^{l}\left(\frac{-2 \mathbf{z} \cdot \mathbf{z}^{\prime}}{|\mathbf{z}|\left|\mathbf{z}^{\prime}\right|}\right)^{2 j-l}+O\left(\frac{1}{|\mathbf{z}|}\right) \tag{3.32}
\end{align*}
$$

as $|\mathbf{z}| \rightarrow \infty$, where

$$
d_{j l}^{\prime}:=\frac{c_{j}}{2}\binom{j}{l-j} .
$$

Inserting (3.32) into (3.30), we obtain by (3.24)

$$
\begin{align*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}= & D(n, m) \sum_{j=0}^{2 m-n} \sum_{l=j}^{2 j}\left\{d_{j l} \ln R+d_{j l}^{\prime}\right\} \alpha(j, l, n) R^{2 m-1-l} \\
& \times \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|^{l} \mathrm{~d} \mathbf{x}^{\prime}+O\left(R^{n-2}\right) \quad \text { as } R \rightarrow \infty \tag{3.33}
\end{align*}
$$

As in (3.26) it suffices to restrict the inner summation in (3.33) to even indices l with $l \leqslant 2 m-n$. Setting $k:=l / 2$ and changing the order of the summations we conclude that

$$
\begin{align*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u_{0}(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}= & D(n, m) \sum_{k=0}^{m-n / 2}\left\{\beta_{k}(n, m) \ln R+\beta_{k}^{\prime}(n, m)\right\} R^{2 m-1-2 k} \\
& \times \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}\right|^{2 k} \mathrm{~d} \mathbf{x}^{\prime}+O\left(R^{n-2}\right) \quad \text { as } R \rightarrow \infty \tag{3.34}
\end{align*}
$$

with

$$
\begin{equation*}
\beta_{k}^{\prime}(n, m):=\sum_{j=k}^{2 k} d_{j, 2 k}^{\prime} \alpha(j, 2 k, n) . \tag{3.35}
\end{equation*}
$$

From (3.34) and (1.10) it follows (3.29). Therefore the function u_{0} is the solution of (3.16) in the case of even n. Hence we have proved:

Theorem 3.1 Let $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$. Furthermore assume that $2 m<n$ or that $2 m \geqslant n$ and f satisfies (1.11). Then problem (3.16) has a unique solution $u \in C^{2 m}\left(\mathbb{R}^{n}\right)$, which is given by (2.32).

3.4. An alternative theorem

In the case $2 m<n$, problem (3.16) has a solution for every $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ by Theorem 3.1. In the case $2 m \geqslant n$ we prove the following alternative:

Theorem 3.2. Assume that $2 m \geqslant n$ and that $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$. Then:

1. If f satisfies (1.11), then problem (3.16) has a uniquely determined solution $u \in C^{2 m}\left(\mathbb{R}^{n}\right)$.
2. If (1.11) is not valid, then (3.16) has no solution $u \in C^{2 m}\left(\mathbb{R}^{n}\right)$.

Proof. It suffices to prove part 2 of the theorem, since part 1 is contained in Theorem 3.1. We suppose that $2 m \geqslant n$ and that $u \in C^{2 m}\left(\mathbb{R}^{n}\right)$ is a solution of (3.16). We show that f satisfies (1.11).

We set $v:=u-u_{0}$, where u_{0} is given by (2.32). Let $\mathbf{x}_{0} \in \mathbb{R}^{n}$ be fixed. Note that (3.15) holds, since v is a solution of the homogenous equation (3.5). We combine (3.15) with (3.19) in the case $n=1$, with (3.27) in the case $n \geqslant 3, n$ odd and with (3.34) in the case of even n. Then we obtain for odd n

$$
\begin{align*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u(\mathbf{x}) \mathrm{d} S_{\mathbf{x}} & =\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R}\left\{v(\mathbf{x})+u_{0}(\mathbf{x})\right\} \mathrm{d} S_{\mathbf{x}} \\
& =\sum_{k=0}^{m-1} \gamma_{k} R^{n-1+2 k}+\sum_{k=0}^{m-(n+1) / 2} \gamma_{k}^{\prime} R^{2 m-1-2 k}+O\left(R^{n-2}\right) \tag{3.36}
\end{align*}
$$

and for even n

$$
\begin{equation*}
\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u(\mathbf{x}) \mathrm{d} S_{\mathbf{x}}=\sum_{k=0}^{m-1} \gamma_{k}^{\prime \prime} R^{n-1+2 k}+\sum_{k=0}^{m-n / 2} \gamma_{k}^{\prime}(\ln R) R^{2 m-1-2 k}+O\left(R^{n-2}\right) \tag{3.37}
\end{equation*}
$$

as $R \rightarrow \infty$; here the constants $\gamma_{k} \in \mathbb{R}$ depend on v and $\gamma_{k}^{\prime \prime} \in \mathbb{R}$ depend on v and f, since
the first sum in (3.37) contains a part of the sum in (3.34). Furthermore,

$$
\begin{equation*}
\gamma_{k}^{\prime}=D(n, m) \beta_{k}(n, m) \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 k} \mathrm{~d} \mathbf{x}^{\prime} \quad \text { for } 0 \leqslant k \leqslant\left[m-\frac{n}{2}\right] \tag{3.38}
\end{equation*}
$$

with $\beta_{k}(n, m)$ defined by (3.28) if $n \geqslant 2$ and by

$$
\begin{equation*}
\beta_{k}(1, m):=2\binom{2 m-1}{2 k} \quad(0 \leqslant k \leqslant m-1) \tag{3.39}
\end{equation*}
$$

(compare (3.19)).
Note that in (3.36) the exponents $n-1+2 k$ in the first sum are even and that the exponents $2 m-1-2 k$ in the second sum are odd. Since u is supposed to satisfy the asymptotic condition in (3.16) and since $2 m \geqslant n$, it follows from (3.36) and (3.37), respectively, that $\gamma_{k}=\gamma_{k}^{\prime}=0$ if n is odd and $\gamma_{k}^{\prime \prime}=\gamma_{k}^{\prime}=0$ if n is even. Since $D(n, m) \neq 0$ for every $n, m \in \mathbb{N}$ by (3.18), (2.9) and (2.29), we have to show that $\beta_{k}(n, m) \neq 0$ for $0 \leqslant k \leqslant[m-(n / 2)]$. Then (3.38) and $\gamma_{k}^{\prime}=0$ for $0 \leqslant k \leqslant[m-(n / 2)]$ imply that f satisfies (1.10) and therefore (1.11).

If $n=1$, we have $\beta_{k}(n, m) \neq 0$ by (3.39). In the case $n \geqslant 2$ we consider (3.28). Note that by (3.25)

$$
\begin{equation*}
\alpha(j, 2 k, n)=\int_{|z|=1}\left(-2 z_{1}\right)^{2 j-2 k} \mathrm{~d}_{\mathrm{z}}=2^{2 j-2 k+1} \pi^{(n-1) / 2} \frac{\Gamma\left(j-k+\frac{1}{2}\right)}{\Gamma\left(j-k+\frac{n}{2}\right)} . \tag{3.40}
\end{equation*}
$$

We set

$$
\begin{align*}
& \delta_{j}(k, n, m):=\pi^{(n-1) / 2} 2^{2 j-2 k+1} \frac{\Gamma\left(j-k+\frac{1}{2}\right)}{\Gamma\left(j-k+\frac{n}{2}\right)}\binom{m-n / 2}{j}\binom{j}{2 k-j} \tag{3.41}\\
& \left(\text { with }\binom{m-n / 2}{j}:=0 \text { if } n \text { is even and } j \geqslant m+1-n / 2\right) .
\end{align*}
$$

Then we have by (3.28) and (3.40)

$$
\begin{equation*}
\beta_{k}(n, m)=\sum_{j=k}^{2 k} \delta_{j}(k, n, m) \tag{3.42}
\end{equation*}
$$

It holds that

$$
\delta_{j+1}(k+1, n, m+1)=\frac{m+1-\frac{n}{2}}{k+1}\left\{\delta_{j}(k, n, m)+\frac{m-\frac{n}{2}}{\pi} \delta_{j-1}(k, n+2, m)\right\}
$$

for $k+1 \leqslant j \leqslant 2 k$ and

$$
\begin{aligned}
& \delta_{k+1}(k+1, n, m+1)=\frac{m+1-\frac{n}{2}}{k+1} \delta_{k}(k, n, m), \\
& \delta_{2 k+2}(k+1, n, m+1)=\frac{m+1-\frac{n}{2}}{k+1} \frac{m-\frac{n}{2}}{\pi} \delta_{2 k}(k, n+2, m) .
\end{aligned}
$$

Hence it follows that

$$
\begin{equation*}
\beta_{k+1}(n, m+1)=\frac{m+1-\frac{n}{2}}{k+1}\left\{\beta_{k}(n, m)+\frac{m-\frac{n}{2}}{\pi} \beta_{k}(n+2, m)\right\} . \tag{3.43}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\beta_{0}(n, m)=2 \frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} \tag{3.44}
\end{equation*}
$$

for $n, m \in \mathbb{N}$, we obtain by induction

$$
\begin{equation*}
\beta_{k}(n, m)=2 \frac{\pi^{n / 2}}{\Gamma\left(\frac{n+2 k}{2}\right)} \frac{(m-1)!}{(m-k-1)!}\binom{m-n / 2}{k} \neq 0 \tag{3.45}
\end{equation*}
$$

for $0 \leqslant k \leqslant[m-(n / 2)](n \geqslant 2)$. This concludes the proof of Theorem 3.2.

4. Remarks

1. Assume that $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then the problems (2.1), (2.2) and (3.16) are related: the solution $u(\mathbf{x}, t)$ of (2.1), (2.2) converges to a limit $u_{0}(\mathbf{x})$ as $t \rightarrow \infty$ if and only if (3.16) has a solution. In this case the limit u_{0} is the unique solution of (3.16).
2. The alternative Theorem 3.2 says that (3.16) has a solution if and only if $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ is orthogonal to the polynomial solutions of $(-\Delta)^{m} v=f$ in \mathbb{R}^{n} given by

$$
\begin{equation*}
p_{j \alpha}(\mathbf{x}):=|\mathbf{x}|^{2 j} \mathbf{x}^{\alpha} \text { with } j \in \mathbb{N}_{0}, \alpha \in \mathbb{N}_{0}^{n}, j+|\alpha| \leqslant\left[m-\frac{n}{2}\right] . \tag{4.1}
\end{equation*}
$$

If $2 m<n$, then the set of the polynomials (4.1) is empty in agreement with the fact that problem (3.16) has a unique solution for every $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ in this case. If $m=1$ and $n \leqslant 2$, then $p(\mathbf{x})=1$ is the only polynomial of the form (4.1). Thus the polynomials (4.1) can be considered as a generalization of the standing wave 1 , introduced by Morgenröther and Werner [5] in the special case $m=1$, to equations of arbitrary order $2 m$. The polynomials (4.1) occur in the resonance terms in (1.8) and (1.9), since

$$
\begin{align*}
& \begin{aligned}
\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2 s} \mathrm{~d} \mathbf{x}^{\prime} & =\sum_{j+k+l=s} \frac{s!}{j!k!l!} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right)|\mathbf{x}|^{2 j}\left(-2 \mathbf{x} \cdot \mathbf{x}^{\prime}\right)^{k}\left|\mathbf{x}^{\prime}\right|^{2 l} \mathrm{~d} \mathbf{x}^{\prime} \\
& =\sum_{j+k+l=s} \frac{s!}{j!k!l!} \sum_{|\alpha|=k} c_{\alpha} \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) p_{l a}\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime} p_{j \alpha}(\mathbf{x})
\end{aligned} \\
& \left(s=0,1, \ldots,\left[m-\frac{n}{2}\right], c_{\alpha} \in \mathbb{R}\right) .
\end{align*}
$$

3. From Lemma 3.1 it follows that the problem

$$
\left.\begin{array}{rl}
(-\Delta)^{m} u=f & \text { in } \mathbb{R}^{n}, \tag{4.3}\\
u(\mathbf{x})=o(1) & \text { as }|\mathbf{x}| \rightarrow \infty
\end{array}\right\}
$$

has at most one solution. In the case $m=1$ this result is a well known consequence of the maximum principle. Note that the maximum principle does not hold in the case $m>1$, as the solution $p(\mathbf{x})=-|\mathbf{x}|^{2}$ of $(-\Delta)^{m} p=0$ shows.

If $2 m<n$, then problem (4.3) has a solution, which is given by (2.36). In the case $2 m=n$, (4.3) has a solution if and only if $f \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ satisfies $\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}=0$.

This follows from (2.32), the asymptotic estimate

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) \ln \left|\mathbf{x}-\mathbf{x}^{\prime}\right| \mathrm{d} \mathbf{x}^{\prime}=\ln |\mathbf{x}| \int_{\mathbb{R}^{n}} f\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}+O\left(\frac{1}{|\mathbf{x}|}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty \tag{4.4}
\end{equation*}
$$

and the second part of Theorem 3.2. If $2 m>n$, then (4.3) may have no solution, even if f satisfies (1.11), as the example at the beginning of Section 3 shows.

Acknowledgement

This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 256)

References

1. Bronstein, I. N. and Semendjajew, K. A. , Taschenbuch der Mathematik, Harri Deutsch, Thun, 1984.
2. Eidus, D. M., 'The principle of limit amplitude', Uspekhi Mat. Nauk, 24, (1969). English transl.: Russian Math. Surveys, 24, 97-167 (1969).
3. Lesky, P. Jr., 'Resonance phenomena for a class of partial differential equations of higher order in cylindrical waveguides', Math. Meth. in the Appl. Sci., 11, 697-723 (1989).
4. Magnus, W. and Oberhettinger, F., Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer, Berlin, 1948.
5. Morgenröther, K. and Werner, P., 'Resonances and standing waves', Math. Meth. in the Appl. Sci., 9, 105-126 (1987).
6. Werner, P., 'Ein Resonanzphänomen in der Theorie akustischer und elektromagnetischer Wellen', Math. Meth. in the Appl. Sci., 6, 104-128 (1964).
7. Werner, P., 'Zur Asymptotik der Wellengleichung und der Wärmeleitungsgleichung in zweidimensionalen Außenräumen', Math. Meth. in the Appl. Sci., 7, 170-201 (1985).
8. Werner, P., 'Resonance phenomena in cylindrical waveguides', J. Math. Anal. Appl., 121, 173-214 (1987).
