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DIFFERENTIABLE FIBRATIONS OF THE (2n-1)-SPHERE BY GREAT
(n=1)-SPHERES AND THEIR COORDINATIZATION OVER QUASIFIELDS

Hermann H&hl

1. INTRODUCTION

As a step towards a solution of the Blaschke conjecture, the following theo-
rem has been proved by GLUCK, WARNER and YANG in [7: Theorem ﬁ] {see also
saro [13], [15] ana sato - Mrzuran [14]):

1.1 THEOREM. A locally trivial differentiable fibre bundle with total space
2n-

S ! whose fibres are great (n-1)-spheres is topologically equivalent to one
of the classical Hopf fibrations.
By a great (n-l1)-sphere we mean the intersection of Szn_l, con-

sidered as the unit sphere in R2n' with an n-dimensional linear subspace
of R2n'

We briefly recall the construction of the classical Hopf fibrations.
They owe their existence to the classical coordinate structures, namely the
field R of real numbers, the field € of complex numbers, the skew field
H of quaternions and the alternative field © of Cayley numbers. Let K
be one of these coordinate domains; K 1s a vector space over R of dimen-

2n- 2n
sion n =1, 2, 4 or 8. The unit sphere § mel in KxX = R is fibered

: . 2n-1
by the great (n-1)-spheres which are obtalned as the intersections of § A
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with the subspaces of the form {(x,ax); x€X} for O # acX and with
(0O}xx; this fibration is the classical Hopf fibration over X. (It is

well known that, quite generally, as a consequence of ADAMS' theorem on maps
of Hopf invariant 1, the values n =1, 2, 4, 8 are the only ones for which
fibre bundles of the type considered in theorem 1.1 exist.)

Now, the Hopf construction can be carried out over more general
coordinate domains. If instead of the classical coordinate domains consid-
ered above one uses any {(not necessarily associative or alternative) finite
dimensional real division algebra, a theorem of BUCHANAN [4: Hilfssatz 2 p.
389] states essentially that the resulting fibration is still topologically
equivalent as a fibre bundle to the classical Hopf fibration of the same di-
mension.

The proof of GLUCK, WARNER and YANG for theorem 1.1 [7: Theorem B]
consists in a reduction of the general situation to this particular case. Al-
though not every fibre bundle of the kind considered here can be coordina-
tized over a division algebra, they show that by a suitable differentiation
process any such fibre bundle can be "linearized", without changing its equi-
valence class, in such a way that the resulting fibration comes from a divi-
sion algebra {(of the general sort mentioned above) via the Hopf construction.
Then BUCHANAN's theorem can be applied.

The first purpose of this talk is to describe a variation of this
proof which consists in passing to coordinates right from the beginning, not
only at the end when division algebras come into play. This approach, while
being closely related to the proof by GLUCK, WARNER and YANG, presents some
technical advantages. Besides, it is quite natural to anyone who is familiar
with coordinate methods in the theory of affine planes. The appropriate al-
gebraic structures, generalizing division algebras, are quasifields (see 2.2},
the coordinate domains for translation planes. We shall not make use of the
theory of translation planes in the sequel, but a little more on the connec-
tions to this topic shall be said at the end of this introduction.

Regarding theorem 1.l it is natural to try to prove a strengthened
version of it in which the differentiability assumptions yield a conclusion

which remains within the realm of differentiability, such as in the following
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1.2 CONJECTURE. A locally trivial differentiable fibre bundle with total
2n-1 .
space S n whose fibres are great (n-1)-spheres is differentiably equiva-

lent to one of the classical Hopf fibrations.

Of course, this is trivially true for n =1 and well-known for n = 2.

It is the second objective of this talk to shed some further light
on this conjecture for the higher-dimensional cases by the coordinate methods
mentioned above. Since a fibre bundle n of this kind is topologically
equivalent to the corresponding classical Hopf fibration by theorem 1.1, the
conjecture would follow by well-known general theorems on the uniqueness of
differentiable structures on vector bundles (see e.g. [12: §4 Theorem 3.5 p.
101]) if only one could establish that the base space B(n) is diffeomor-
phic to the base space of the classical Hopf fibration, i.e. s"  with its
usual differentiable structure. Now B{(n) can be described using algebraic
operations in coordinatizing quasifields (see 2.9), and again a reduction to
the special case of division algebras will be possible by linearization (4.5,
4.6). 1In this way it will turn out that B(n) is a twisted sphere of dimen-
sion n (4.7). For n = 2 conjecture 1.2 then follows at once since S2
has essentially only one differentiable structure. For n = 4 we may use
CERF's result [S: Théoréme | p.3] to conclude that B(m) is diffeomorphic to

S4 and thus to get
1.3 THEOREM. Conjecture 1.2 holds true for n = 4.

One might ask whether it is adeguate to use such a deep theorem as CERF's
in order to obtain this result. Anyway, this leaves the case n = 8 open.
In §4, which will furnish the details of what has just been sketched, we
shall present several reformulations of the problems regarding conjecture 1.2
in terms of algebraic operations in quasifields and division algebras; they
may offer the possibility of a more direct attack upon this conjecture.
Finally, let us briefly indicate the connections to the theory of
translation planes by explaining how a given fibration of s2n—1 by great
(n-1)-spheres is related to a translation plane: The n-dimensional subspaces
of R2n spanned by the fibres form a spread, i.e. every nonzero vector lies

in exactly one of these subspaces, and any two of these subspaces span the

2
whole vector space R n. Consequently, the images of these subspaces under



102 Hahl

the vector space translations of R2n constitute the system of lines of an
affine plane with point set Rzn, which obviously admits all translations of
R2n as collineations.

Regarding the relationship to translation planes, it should be
pointed out that a fibre bundle equivalence of two such fibrations of SZn—l
does not tell anything about the question whether the corresponding trans-
lation planes are isomorphic as such, since the fibre bundle equivalence need

not be induced by a linear transformation of RZn (followed by a retraction

of Rzn—{O} onto SZn—l)' In fact, whole forests of non-isomorphic trans-
lation planes with good continuity or even differentiability properties have
been systematically explored for all possible dimensions (see BETTEN [3] and
further references there as well as GLUCK and WARNER [ﬁ] for n = 2, [9] and

8) .

[10] and further references there for n = 4, and [11] for n
Most of the translation planes of this kind correspond to topo-

2n-
s e which are not differentiable. On the other

logical fibrations of
hand, for all known examples these fibrations are topologically fibre bundle
equivalent to the classical Hopf fibrations. Therefore it would be interest-
ing to know if there is a purely topological analogue of theorem 1.1 (without
any differentiability assumptions), and it is reasonable to conjecture that
there is. This amounts to the validity of BUCHANAN's theorem for general
topological quasifields with additive group Rn, not only for division alge-

bras. Up to now, this conjecture has resisted all attempts of proof.

2. THE COORDINATIZATION OF FIBRATIONS BY QUASIFIELDS

2.1 spreads. Consider a fibering w of SZn-l whose fibres are great
(n-1)-spheres. By S we denote the family of n-dimensional linear sub-
spaces of R2n spanned by the great (n-1)-spheres which constitute the fi-
bres of =n. The elements of S cover RZn (since the fibres of T cover

2n-1 5 .
S ) and are pairwise complementary (since two fibres of T are disjoint

and since the dimensions are complementary). Thus S is a spread in RZn.

We may assume (by a suitable change of coordinates, if necessary)

that the subspaces
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Uy = R™x{0), U, = {0}xm

of R2n = RnX}{] belong to S. We arbitrarily fix a "unit" element e €
R'-{0}.

By complementarity, for a fixed subspace U€S different from u, .
and for any xc.Rn there is a unique x'€E Rn such that (x,x') € U. In

; . . n
particular, there is a unique a€eR such that (e,a) € U; and conversely,

U is uniquely determined by a. We therefore denote U by Ua
,a S.
(e;a) € U €

Since U = Ua is a linear subspace, the map xt+—— x' 1is a vector space

endomorphism which will be denoted by

n
Aae End(R ).
Thus

(x.y) € U & vy o= A, )

From (e,0) € UO and (e,a) € Ua we have

(LO) AO is the zero endomorphism

(L1) A (e) = a
a

n
For a,begR with a ¥ b the subspaces Ua' Ub € S are complementary; this

means that

(L2) afb & A,;- A, is regular

2.2 Quasifields. We now introduce a multiplication =< on R by

aeXx = A_(x)
a
The properties (LO) - (L2) listed above can be translated as follows:
(Q0) Oesx = 0 = x+90
(Q1) xee = x

(Q2) For a # be Rn the map X +—— aex - bex is bijective.
The linearity of Aa implies the left distributive law
(Q3) ao(x +y) = aex + aoy
. n 2n .
Finally, the fact that S = {Ua ; aeR u{=}} covers R implies

(Q4) For b # 0, the map
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pb : X F—* xab

is surjective and therefore bijective

{the bijectivity following from (Q2)).

In current terminology, {Q0) - (Q4) can be expressed by saying
that Rn with the vector addition and the multiplication o is a quasifield.
A quasifield constructed in this way from the fibering m will be called a

quasifield associated with .

Let us record explicitly that (Q3) was actually a consequence of

the stronger property

(Q3') For fixed a, the map

n n
Aa it R — R : X r—* aox

is linear.

In the sequel, this will be the relevant property concerning distributivity.
; ; : n
To have a short expression, a quasifield whose additive group is R and

which satisfies (Q3') will be called a quasifield on R.

By (Q0) the map Xo is the zero endomorphism, whereas by (Q4) we
have

A €GL (R) for 0 # a€R".
a n
Therefore the map
n
A :Rn—>End(R):al—>)\a
restricts to a map

y o RO-(0) —— GL_(R) .

This restriction entirely determines the quasifield and will be called its

characteristic map.

Note that a (not necessarily associative or alternative) finite di-
mensional division algebra over R 1is a quasifield of this type with the
extra property that the maps pb of (Q4) are linear as well. In general,
this will not be the case.

Some notation which will be used: For x # 0 we denote by

1 1
y/x := p_"(y) and x\y = A (y)
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the unique elewents of our qussifield satisfying

ty/xjex = y and xolx\y) = y

2.3 The unit element. In a small detail our axiom (Q1) is a little weaker

than customary: we do not ask e O pe also a left unit element. This can be
; . . n
remedied easily, however. <Changing the coordinates of R xmn by (x,y) —

-1
(x,xe {y)) one can additionally assuwe that
o = ((x,x): x€R") pelongs to §.

The quasifield associated with n via these new coordinates satisfles X =
e

id since then (e,ele O = Ue , So that in addition to (Ql] we have
(Q1'] eeo°ox = x

In algebraic expression this amounts to replacing the original aultiplication
-1 L b, §
o by (a,x) — ao xe (x), a well-known process which is called a prinicipal

1sotopism, [2: Theoreo | p. SlO] .

2.4 The constructions of 2.1 and 2.2 can be reversed: 1f we have any
. n . . :
quasifield on R as defined in 2.2, we may construct & fipering n of

2n- 1 .
s by great (n-1)-spheres, whose fibres are the intersections of the sub-

spaces Ua = |Ix,a0x): xe_Rn) for aer" and v, ® o) xm™  with szn-l

Wwe now state how differentiability properties of » ctranslare into

differentiability properties of associated quasifields and vice versa:

2.5 PROPOSITION. The [ollowing are equivalent:
BB The [ibering =~ is a locally trivial differentiable [ibre bundle.

[1i1) For every associated quasifield, the map

v+ (R"-{opyx r" End(R™) : (x.y) — )

y/x
is dillerentiable.
(111) There Js an associated quassfield in which the map y above and

the map
Y r"M om0 — end(R™) 0 xLy) —

are diflerentiable.

This is then true in fact for every associated guasifield.
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2.6 DEFINITION. A quasifield on Rn is called a differentiable guasifield
if the map Yy described in 2.5 4is differentiable. 1t is called differen-

tiable at infinity if the map y is Qifferentiable.

2.7 Proof of proposition 2.5 (i) —> (ii).

A local trivialization of the locally trivial fibre bundle 1 1is a diffeo-
morphism

o : uxs"! — wg 27!

(where U 1is an open subset of the base manifold of the fibre bundle m and

2n-1

W an open subset of S & which is a union of fibres) such that for zeW
and

-1 =

¢ (z) = (u,p) € uxsh !
the map

n~1 2n-1
¢u : S —> S : g > ¢(u,q)

is a diffeomorphism onto the fibre FZ of 2. Using this trivialization, we

prove the following

2n .
Assertion. The subspace of R spanned by the fibre FZ has a basis

bl(z), ....,bn(z) depending differentiably on 2z€ W.
Indeed, FZ 1s a great (n-1)-sphere, so for any fixed point 5 € Sn_1 the
subspace in question is also spanned by the tangent space ’I‘q> Ey F of
z
F, in ¢ (F) together with o (§) itself. Now e
= -1
T, o F =1 _ o (""" = a.e (r.s"h
¢u(p) z ¢u(p) u Ppu p
(with the derivative d-¢ of ¢ in p). Therefore, if v, , ...., V
p u u n-1 1 n-1
is any basis of the tangent space TpS , then
b, (z) = d_¢ (v.) (i=1,...,n-1)
i pu 1
and
= ¢ (P
bn(Z) u(p)

constitute a basis of the span of FZ depending differentiably on u and

therefore on =z.

n
Let now T be coordinatized by a quasifield on R as in 2.1 -
2.2. For (Xx,y) € (Rn-(O])xnﬁxg R2n consider a local trivialization of 1

around the fibre containing
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- xy)
e, )|

as above. Using the characteristic map X of the given quasifield the sub-

space spanned by FZ can be expressed as

n
<FZ> = Uy/x = [(c,ky/x(c)). CER }

We denote by

c (z), ..., c_(2)
1 n
and
d . (z), ...., d (z)
1 n
the projections of the basis bl(z), ey bn(z) of <FZ> (constructed ac-
cording to the assertion above) onto the first and second factor of Rnxms
so that
b.{z) = (c, 6 (z2),d. (z))
i i i
Since bi(z) € <Fz> = Uy/x , we have
*) A (c.(z)) = 4d. l(z)
y/x i i
Furthermore Uy/x is complementary to u, = (O)an and projects isomor-
phically onto the first factor of Rnxmn, so that the projection image
c,(z), ..., ¢ (z) of the basis b ,[(z), ..., b (2z) of U is a basis
1 n n 1 n y/x
of R . Thus, the endomorphism Ay/x is uniquely determined by (*) and
depends differentiably on =z and therefore on (x,y) , since the basis
elements bl(Z)' - bn(z) depend differentiably on z according to

their construction.

2.8 Proof of proposition 2.5 (ii) ==)(iii).

Starting from a given quasifield associated with 1n we can construct another

2n
quasifield by reversing the roles of the first and second factor in R =

Rnxn{1' i.e. of UO and Um . The map Yy for the new gquasifield is then
precisely the map Y for the original quasifield.

2.9 Proof of proposition 2.5 (iii) =)(i).

This can be proved using a construction of YANG E6: Theorem 2 p. 58@ . (He

considers only the particular case that the underlying quasifield is a di-
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vision algebra, but this restriction is not essential to the argument.)
According to this construction, local trivializations for 1n are

obtained in the following way. As base space one takes the one-point com-

pactification Rnu{w] endowed with the differentiable structure which makes

the inclusion of Rn an embedding and the homeomorphism

Vo (JRn-(O})u(m} — R v vi\e for ve Rn-(O}
o — Q
a diffeomorphism. Then one constructs the following two local trivializa-

tions for n

n n-1 2n-1 (w,vew)
: _— - . -
9o * R xS = Y by w) = Jitw, vou)|
. n_ - n-1 2n-1 _ . (v\u,u)
g, * ((R {ohule=})xs — S Up & (via) r——,l|(v\u,u)| for v # =

(e,u) > (0,u)

(In comparing these formulas to YANG's, note that unfortunately our notations
are in partjial disagreement with his : YANG uses the notation Au for the
map which in our notation is v — w\u ; furthermore, in 520~! ¢ R7xgr"
the first and second coordinate are interchanged due to different conventions
concerning the coordinatization of 7 by a quasifield.)

The inverses of these maps can be obtained by straightforward cal-

culation:
gal B T u, — R ™! (x,y) — (y/x,ﬁl)
g;l : gL, U — @®"-(0hul=)) s (xy) — (y/x,ﬁ) for x # O
0,y) — (= ,y) ,
Now it is easy to see that these maps are homeomorphisms which in-
deed constitute a complete system of local trivializations for © . In order

to see that they are even diffeomorphisms one has to take a closer look: for
the proof of the differentiability of g1 and g;l one still has to trans-
form the elements of (R'-{0})u{®} by the chart ¢ given above which deter-

mines the differentiable structure of the base space, i1.e. to study the maps

gf(w_lxid) and (wxid)og;1 . They can be calculated directly:
glo(w"lxid) ¢ BN, g - U,
((e/v)\u,u)
s I £ 0
veu) it ce/vINu, wf or v #

(0,u) p—— (O,u)
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(wxid)ogII . g2nl U, — RMxg" !
(x,y) H——»((w/m\mﬁm) for x £ 0
(0,y) > (0,y)

The crucial expressions appearing in all these formulas are

y/x = Ay/x(e)
(y/xN\e = y/;l(e)
(e/v\u = Ae/;l(u) ;

thus by our differentiability conditions 2.5(iii) all these maps are indeed

differentiable, and 2.5(i) follows.

Remark. These local trivializations suggest themselves by a geometrical con-
struction in the translation plane corresponding to the given fibration m;
by this construction one would be lead directly to the maps gal and
(wxid)ogzl. One considers the "line" passing through the point (x,y) and

the origin. For x # O, this is the line U of "slope" y/x, and the

v/
slope can be determined geometrically, the intersection point of Uy/x with
the "vertical unit line" {e}xR" being just (e,y/x). Similarly, for y # O
the intersection point of Uy/x with the "horizontal unit line” R x{e} is
0, Herer = (/e e).

/
2.10 REMARK. In [i6], loc. cit. the maps glo(w_lxid) and (wxid)ogzl

were not studied explicitly, so the fact that the differentiability condition
at infinity in 2.5(iii) is really necessary went unnoticed, and it was con-
cluded that for an arbitrary real division algebra the corresponding fibra-
tion of SZn—l is always differentiable. Now in fact this is only true for

the classical division algebras R, €, H and O, as will be shown in [8].

2.1} ADDENDUM: The characteristic map of w . According to the local trivi-

alizations given in 2.9 the base space of the fibre bundle w is homeomor-
phic to Sn, so that 1 is determined up to fibre bundle equivalence by the

2!
homotopy class of its characteristic map, which can be read off the maps g0
and g}l . We consider the characteristic map to be defined on the whole
intersection Rn—{O) of the two pieces of the base space over which the two

local trivializations and g, are given; it maps a fixed element a €

g9
0
n . . n-1 . X
- th Xy - X e = a,
R -{0} to the transformation X, € Diff (S ) wi Xa(HxW Tyl if y/x = a



110 Hahl

i.e Ao (z)
x lz) = aoZ = a
a laez |Aa(z)

The homotopy class of che characteriscic map of n is cherefore complecely

decerwined by cthe homocopy class of cthe map

v RT-10) — GL(R) : oa— 2,
n a

l.e. che characceriscic map of the coordinacizing quasifield.

2.12 REMARK. The incroduccion of a two-sided unit element as explained
in 2.3 does noc affecc che copological propercies of a differenciable
quasifield on Rn. One chen gects an K-space structure on cthe sphere § ESn_l
in R" chrough e wich center (O (by radially projeccting produccs in che
quasifield back to cthe sphere). Therefore according to AOAMS' cheorewm [l].

such quasifields can exisc only for n =1, 2, 4 and 6.

3. INFINITESIMAL OIVISION ALGEBRAS OFf DIFFERENTIABLE QUASIFIELDS

In chis secction it will be shown thac every differenciable quasifield on Rn
can be cransforwed into a division algebra wichout changing che homocopy
class of che characteriscic map.

. . n .
For a given differentiable quasifield on R ., we consider the map
v RT — gnd (R e

Appropriate division algebras will be obtained by differentiating 3. thus
linearizing the mvltiplicaction in the first argument, too. This lineariza-
tion procedvre is equivalent on the coordinate level to the lineariration
procedure for (ibrations described in [7: Section b p.lOS?] ("{rom fibra-
tions to algebras”). The following lemma ensures that this process will not
produce zero divisors. 1t corresponds to lemmas 4.5 and 4.8 in [7: p. )05!

f[.] . but is easier.

n ) . ; )
3.1 LEMMA. Ffor Cc€ R , consider the derivative of 1 in ¢

dcx R — End(mn)
Then n
dcl(u) is non-singular for O ¥ ug R .
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this case, however, the introduction of a unit element by the method of 2.3
does not affect the homotopy class of the characteristic map:
Consider the map

6 =d0>\(e) R — R x> eux

The new multiplication
-1
uxv :=u=0 (v)

defines a division algebra again, which now admits e as two-sided unit ele-
ment. The characteristic map of this division algebra is u +—— dok(u)ﬂe—1
It is homotopic to doxlm“—(o} in GL (R) since by the homotopy J.3(*)

9 = doX(e) can be differentiably deformed in GLn(EU into Xe , which is
the identity as we have assumed that the original quasifield has a two-sided

unit element.

This is summarized by

3.5 For a differentiable quasifield on R" with characteristic map AMR"-[0}
admitting a two-sided unit element e there is a real division algebra whose
characteristic map is homotopic in GL (R) to X|mn—(0} and which admits

e as two-sided unit element, too.

As a direct corollary to BUCHANAN's theorem [4: Hilfssatz 2 p. 389] on the

characteristic map of real division algebras we now obtain:

3.6 PROPOSITION. The characteristic map of a differentiable quasifield on

n : ; ; : ; .
R with two-sided unit element 1is homotopic to the characteristic map of one
of the classical division algebras R, €, H, © or the opposite algebras

1P, 0%,

Proof: By ADAMS' theorem the only dimensions to be considered are n =1, 2,
4, 8 (see 2.12). By 1.5 the general case of an arbitrary differentiable
quasifield is reduced to the particular case of a real (not necessarily
classical) division algebra. 1In this case, for n = 4 or 8, the claim of
the proposition is nothing else than BUCHANAN's theorem. In dimension |
resp. 2 there is nothing left to prove, since in these dimensions the only
division algebras with unit (without associativity preassumed!) are R and

€, as is well-known.
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[For n =1, this is obvious. For a division algebra of dimension
2 with two-sided unit e, one can argue as follows: Let x be an element
which is not a real multiple of e, then the whole algebra is spanned by e
and x. An elementary calculation shows that there is a linear combination

z = €c*e + &+*x with €.£eR; § # 0 such that 2? = a*e for suitable a€R.

Then a < 0, since otherwise (z -va'e)(z +vase) = 0 and 2z = +/ase which
. . . 1 :
would contradict § # 0. Putting i = 7o 'z one has i?* = —e.]

The following technical lemma will be useful in the sequel:

. . o n . P .
3.7 LEMMA. For a differentiable quasifield on R with multiplication ©°
and characteristic map M and its infinitesimal division algebra at 0 with

multiplication « consider the element

y/x with (y/x)ox =y
and analogously the element

Y/ x with (y/*X)ex =Y
Then the following formulas hold:
(1) y//x = . (ty)/x

dt t=0

(i) SR = 52 oy s eso
proof: By the chain rule one has
A do“i (ey)/x ] o) = EdE Yeyy/xle=o

in particular, by the definition of &« (see 3.2)

d

g a4 _a

L en/xlg % = & A(ty)/x<x)|c=o 2 (eya/xex| g
_ 4 _
T at cy\r.:o Y

This shows (i), and (ii) follows by (1).
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4. THE TOPOLOGICAL AND DIFFERENTIABLE EQUIVALENCE CLASS OF FIBRATIONS
QVER DIFFERENTIABLE QUASIFIELDS

In cthis section we shall prove theorems 1.1 and 1.3 ard discuss conjeccture
1.2,
Let a1 be a locally ctrivial differenctiable fibre bundle with toctal

SZn—)

space whose fibres are great (n-l)-spheres. <Consider a quasifield

associated with x (see 2.2), and let
n
At R -(0) — GL (R)

be its characteristic map; by 2.3 we may assume thact the quasifield has a
two-sided unit e . According to 2.5, cthe quasifield is differenciable and

differentiable at infinicy.

4.1 Proof of theorem 1.1. The topological equivalence class of the fibre

bundle » depends only on the homotopy class of the characteristic map

X|Rn-(O] (see 2.11). Now by 3.6, the characteristic map is homotopic to
the characteriscic map of one of the classical division alyebras R, €, H
op

or EOP, 0 or © Therefore, w 1is fibre bundle equivalent to the

corresponding Ropf fibracion.

[Noce that the fibrations corresponding to H and mop are eqgui-
valent, a fibze bundle equivalence being given by the map
2n-1 2n-1 - =
s — s COy) = (x,Y) (x, ye R'= ),
and similarly for 0 and 0°F.]
2n-1

4.2 w is differenciably equivalent to the classical Hopf fibration of §
if and only if the base space B(w) of 1 is diffeomorphic to the base

n
space of the classical Hopf fibration (namely S with the usual differen-

tiable structure).

Proof: m can be considered as the sphere bundle of a vector bundle; by
2.11, cthe characteristic map of this vector bundle is just X (which indeed
maps into the appropriate structure ygroup GLn(EU ). The topological fibre
bundle equivalence established in the pxoof of theorem |.)1 carries over to
the corresponding vector bundles, since the homotopy between characteriscic
maps (3.6) takes place in GLn(m) . Now it is well known that two vector

bundles over cthe same differentiable manifold are differentiably equivalent
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1f ocly rney are LopOl0QiCally eQuivalent. IThis 15 oblained by different,-
aple oDDro~’malion of @ nOwWOLODy Detveen the classifying waps. see [lZ: §a

Ineortm ). 5 p. \D\].)

We nOw recoll tne descripL,oo of Bisy from 2.9,

i p . . n n
a.) Binl iy 00tgined Oy QJuing <OQetner <=0 COpies o/ R glong R -10)
vid (Né “inversion [unccion Of (ne 43)0cidied quasiflicela

n n 2
v i R L0 — R (0] : 8 —— H\e = lo‘|e)

NOLE LhatL v 1S o diffeomorpnisem. the inverse DEing Lhe oap

— e/ =2 (e) .
° e/b 6B
0.0 (ONJECTURT. ¥ 15 130(0pIC (O (he jnversi0n mdp Of (Ne COrresponging
class5iCol division glqQedra. i.€. (Ne mdap

K-(0) — ®-1D] : » 11— n'

wnere K IS R, €. WM. 0 i/ a =1, 2. ¢, B. respeccive)y.

. n
whefever Lhis |5 Lhe case. BIn) 15 diffeomorpniCc LO Lhe base space § of
the Cclossical Hopf frbrat,;on Oovesr K tas can pe desvced easily (y0m Lhe i50-
LoDy extens;on Lheorem Dy using for instance [12: §8 Tneorem 1.9 p.182]). and

Lhen conjecture 1.2 nolos Lrve Dy 4.2,

Again. 95 for tne CharoclLerisLic @ap. Lhe Proviem posed by conjec-

Lure 9.9 moy be reduCed Lo Lhe nfinilesimal division slgepra:

95 Yne nversion map ¢ Of a differventiocl)e Quasilield 1§ iSOCOPIC (O (ne

INVersion map Y of the jnfinicesimal divisi0n alqQedra at D,

2,00/ : Since the CcharaclLerisLic map of the snir,nitesimal division a1gedra ot

0 s dol. JLS 10version map is
o n -1
v - R -lp! — R -0} . g t—s do‘le) 1e)

Now for L€ [0.1) . ine waps

cl~
>~
-
m
(o]
=
-
»
o

v E I e Lo

ldo)la)-l‘e) for v =0

]
dre dilfeoworpnisms. ~iln iNn.erges o — 1-|Len/n for L x 0 ond
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b —> e/b for t =0 in the notation of lemma 3.7, which shows that more-
over the map (b,t) —— w;l(b) is differentiable in both variables also
at t = 0; for the map (a,t) wt(a) this is obvious. Thus the wt
constitute an isotopy between wo = § and wl =y

Introducing a unit element as in 3.4 will alter the inversion map
only by a linear map from the connected component of the identity; thus we

obtain from 4.5:

4.6 The inversion map  of a differentiable quasifield with two-sided unit

is 1sotopic to the inversion map of a division algebra with two-sided unit.

Since € 1is the only 2-dimensional division algebra with unit,
this shows that conjecture 4.4 and therefore conjecture 1.2 are true forn=2.
Of course this is already well-known and follows directly from fundamental
results of differential topology in dimension 2, but the present argument may

offer a pleasant alternative. See also [6: Remark 9.8 p. 131].

4.7 PROPOSITION. B(n) 1is diffeomorphic to the twisted sphere obtained by
gluing together two coplies of the unit ball D" along their boundaries via

the diffeomorphism

Sn-l N Sn—I: 2 g(z)
¥ (2)|

as gluing map (V being the Inversion map of the Infinitesimal division al-

gebra at 0 of a gquasifield associated with 1 ).

n
Proof: For a€ R -{0}), one has by definition asx{(a) = e, where =« is
the multiplication of the infinitesimal division algebra. Since this multi-

plication is linear in both arguments, it follows that for t € R-{0)
1
y(ta) = E-‘I’(a)-

Therefore § maps every ray of Rn diffeomorphically onto a ray of Rn, and
it is easy to deform ¢ 1isotopically into a diffeomorphism of Rn-(O} which
maps Sn_1 onto itself. Explicitly, the diffeomorphisms

¥ (a)

(1-t) + t'“Wn%u)H

L R-{0) —R"-{0) : a >

with inverses
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P

bl
-1, b
T . e
a-v el @l
constitute an isotopy between ¢0 = ¢ and
wl :Rn-(O] —’-Rn-[o] : a|—>“M+”
¥ ()
fall

Combining this with 4.5, we see that ¢1 is isotopic to the inversion map ¢
of the original quasifield. Therefore B(w), obtained by gluing together
two copies of R along R'-{0} wvia ¢ (4.3), is diffecmorphic to the
space which is obtained by using wl as gluing map instead of ¢ (again by
the isotopy extension theorem). Since wl(Sn—l) = Sn_l, the latter space

can also be described as stated in the proposition.

4.8 Proof of theorem 1.3. We now show for n = 4 that B(r) is always

diffeomorphic to st (theorem 1.3 will then follow by 4.2).

In view of 4.7, this is an immediate consequence of CERF's result
[5: Théoréme 1 p. 3] according to which every diffeomorphism of 53 is iso-
topic to the identity or to a reflection: By 4.7 and [12: §8 Theorem 2.3 p.
185] it follows that B(n) is diffeomorphic to the space obtained by gluing
together two copies of D4 along their boundaries via the identity or a re-
flection; in both cases the result is 54 with its usual differentiable

structure.

4.9 REMARK. 1In general it might well be that the reduction to an infinite-
simal division algebra achieved in 4.5 results in a loss of information since
the infinitesimal division algebra at 0 of a quasifield associfated with ¥
need not be differentiable at infinity any more. 1In fact, according to [8],
this is only true if the infinitesimal division algebra is isomorphic to the
classical algebra of the corresponding dimension (after the introduction of

a two-sided unit elewent, if necessary); but in this case our problem is
solved anyhow by 4.5. One can construct examples of fibrations for which
none of the infinitesimal division algebras of associated quasifields is
classical in this sense; on the other hand, for all examples kxnown to the

author conjecture 4.4 can be verified individually.
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