Bulletin of the Seismological Society of America, Vol. 80, No. 1, pp. 170-186, February 1980

PATTERN RECOGNITION FOR EARTHQUAKE DETECTION
By MANFRED JOSWIG

ABSTRACT

The detector algorithms in use at date rely on negative decision logic: based
on a model of the ambient noise process they detect all deviations, but many of
them are false alarms. The principal alternative to this approach is pattern
recognition, which tests on positive correlation with some known signal patterns.

The Sonogram-detector realizes this scheme for single selsmogram traces.
Sonograms display spectral energy versus time. Suitably scaled, these images
display only information which is significant to the detection process. Patterns of
known earthquakes and noise signals are defined by means of these images.
Event detection is performed by recognizing one of the pattems in the actual
sonogram. The overall processing scheme is similar to the visual inspection of
seismograms by the human observer.

An off-line test installation for detecting local earthquakes proves the expected

low false alarm rate, high timing accuracy and good detection probability of the
Sonogram-detector.

INTRODUCTION

For more than 25 years automatic detection of earthquakes in environmental
noise has been the goal of research efforts. Originally motivated by the large amount
of on-line data provided by seismic arrays and regional networks, standard detectors
like STA/LTA (Short Term Average to Long Term Average) are now well known
in all fields of geophysical data acquisition.

In seismology none of the standard detectors reliably rejects false alarms produced
by noise fluctuations. Detections shorter than a given time window, however, can
be associated with noise pulses and then be ignored. Allen (1978, 1982) for the first
time treated this logic as a separate post-detection process and introduced new
criteria that are more complex. He also suggested the term phase picker for those
specialized detectors, whose inherent timing inaccuracy is very low at the cost of
the signal averaging length.

The STA/LTA-based detectors approximate the Neyman-Pearson filter and use
signal averaging in the STA to archive an optimum S/N ratio (see Fig. 1). Another
principal approach was introduced by Stewart (1977). He tunes signal processing
for optimum postdetection criteria by introducing an arbitrary characteristic func-
tion (CF). But calculating statistics and decision on the CF is like applying to the
seismogram any other filter but the optimum Neyman-Pearson one and will perform
worse (Blandford, 1982). So CF-baged detectors have their better detection to false
alarm ratio only due to the significant power in their postdetection logic.

Both STA/LTA- and CF-based detectors model the ambient seismic noise level
by some kind of mean and deviation. This noise model must be determined for
every new installation and limits the detection threshold (see Fig. 1). Each pulse
with energy above the threshold will trigger a (preliminary) detection, so these
detectors inherently follow negative decision logic: The defined state (by mean and
deviation) is noise or nondetection. Every change must be detected, since it might
be induced by an earthquake. The preliminary detection may be evaluated by some
postdetection logic. This test on positive agreement with a few simple rules can
reduce the false alarm rate significantly.
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Signal Processing in Traditional Single-Trace Detectors

Fic. 1. History of detector development starts by the theoretical npg)ronch of Freiberger, introducing
both the Neyman-Pearson filter and the signal averaging for better S/N ratio, STA/LTA is the first
implementation for practical use. The Z-detector is a refinement, Its detection threshold better adapts
to the diurnal and seasonal changes in seismic noise level. The Walsh-detector pexforms the some way
in sequency domain, so it is STA/LTA-based too. The CF-based detectors (Allen, SRO) optimize signal
processing for the postdetection criteria. For more details and other detectors, see Joswig (1987).

PATTERN RECOGNITION DETECTORS

A completely different approach for detection is realized by knowledge-based
reasoning. The pattern recognition (PR) implements a decision logic of positive
kind: defined states are patterns of earthquakes and temporary noise signals, only
a sufficient similarity with one of these patterns will trigger a detection,

Note here that the detection threshold or pattern fit is not dependent on the
seismic noise level and that at this stage earthquakes and noise bursts are treated
the same way. Detector installation, however, requires the definition of an appro-
priate pattern set.

According to the principles of artificial intelligence (Al), the signals are identified
by inference rules acting on a set of knowledge patterns. So PR-detectors form a
completely new class of detectors not related to the Freiberger-based characteriza-
tion of traditional detectors in Figure 1.

One commonly agreed principle of Al is that choosing a specific knowledge
representation determines the whole problem-solving approach. The most fre-
quently used representations by frames, rules, or scripts (see, e.g.,, Winston, 1984)
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are all propositional ones. When Kosslyn (1980) initiated the imagery debate in
cognitive science, analog representations, (e.g., images) became the principal alter-
native. They are of first choice for all knowledge acquisition and application tasks,
while propositional forms are suited best for knowledge reasoning (Haugeland,
1985).

Problem solving by mental images is simple, since mental patterns are as real o
the mental images of sensing (i.e., the recognized seismogram) as visual patterns in
a picture search. So the methods for pattern recognition are the same, chosen from
the developed toolkit of computer vision techniques (see, e.g., Gonzales and Wintz,
1987).

The early PR-detectors in seismology apply some ideas of syntactic sentence
analysis. Liu and Fu (1983) perform a cluster analysis on equidistant intervals in
some given seismograms. The analysis is based on a few parameters like number of
zero-crossings and maximum amplitude. The identification of each of these clusters
with a letter transforms a seismogram into a sequence of letters. Defining a
knowledge base of known sequences and an inference procedure like the nearest
neighborhood role results in a complete detector, if a threshold for sufficient
neighborhood is also implemented.

Other contributions to the idea of syntactic PR and its extension to a complete
grammar of seismograms were supplied by Anderson (1981, 1982a, b), Gaby and
Anderson (1984), Faure et al. (1984), and Chen (1984). All of these approaches tend
to propositional knowledge representation, none of them uses the pictorial repre-
sentation of seismograms. Of course, simply choosing selected seismogram plots as
knowledge patterns will equal the design of matched filters; this approach must fail
due to the unpredictable variety of individual seismograms. But human observers
are able to detect and distinguish typical and simple forms of earthquakes even in
very noisy environment. So their “processing scheme” needs some seismograms and
intermediate, mental forms of pictorial knowledge representation.

Processing Steps of Pattern Recognition Detectors

The principal idea of PR on mental images developed so far yields to the following
processing scheme: The detector transforms the measured seismograms into mental
images; recognition as identification is performed by standard Computer Vision
methods. So in detail the PR-detector consists at least of:

e The transformation of seismograms into mental images by nonlinear parame-
trization. This is like drawing a pen sketch. (Each task like detection, P- or S-
onset picking will require another best suited mental image, derived from the
same seismogram.)

o The knowledge base of typical earthquakes and noise bursts. This is a set of

mental images. For a nonlearning algorithm they must be derived by the
seismologist.

e The pattern recognition process. It acts on mental images and implements a
detection threshold and a decision logic selecting the most similar pattern.

But why should noise bursts be characterized in the knowledge base, if one doesn’t
want them to be detected. The reason is inherent in testing on positive agreement
done by all PR-detectors: An actual earthquake will never fit perfectly with one of
the predefined patterns, so the detection threshold is always set below maximum.
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A knowledge base without noise patterns requires a reasonably high threshold to
avoid false alarms. With noise patterns, however, the threshold can be lowered
significantly. Even if a noise burst triggers earthquake patterns now, the decision
logic chooses the most similar one—most probably a noise pattern. This false alarm
can be suppressed by the pattern identification, while the detection of earthquake
patterns is unaffected. Overall the additional noise patterns give a better detection
probability without an increased false alarm rate.

THE SONOGRAM-DETECTOR

The principal approach of PR on mental images was first realized for the detection
of local earthquakes in the Bochum University Germany network (Joswig and
Harjes, 1986; Joswig, 1987). The mental images are based on sonograms, i.e., pictures
of spectral energy versus time, They are nonlinearly scaled, however, and differ
significantly from spectral density plots published so far (Fleck and Fleck, 1964;
Kennett, 1975; Sheppard, 1978; Evans and Allen, 1983).

Definition of the Transformation

The mental images of the Sonogram-detector are two-dimensional gray-scale
pictures, where blackness is a measure of spectral energy.

To transform seismograms to mental images the power spectral density is calcu-
lated first. Data in the BUG-network are sampled at 100 Hz and divided in 2.56-
sec intervals with 50 per cent coverage. Each interval is weighted by a cos-window
and then Fourier-transformed. For parameter reduction the frequency axis is scaled
logarithmically by averaging the power spectrum a(f) in half-octave-wide passbands.
Calculation for all time intervals gives the power spectral density matrix A by

:=0.4,0.6,0.8,1.1,1.6,2.1,2.9,4, 5.5, 8, 11, 16, 21 Hz
A:= {aij"’a(firt))i tj=t0+jAt, At=1-253 }o (1)

The mental images, however, are based on matrix B, which has been prewhitened
by the vector {n;} containing the stationary noise power spectrum as

= {b,, = %} 2)

The second step for transforming seismograms into mental images is done by
scaling B relative to a set of gray-scale thresholds g,. The resulting picture matrix

C is defined by
C={y=klgrSby<g k=0,1,2,...,9. (3)

The contrast in C is sensitive to the distribution of scaling thresholds g, over
the dynamic range of PSD matrix B; some choices are shown in Figure 2, while
Figure 3 gives the corresponding mental images. For logarithmic absolute scaling,
the whole dynamic range 2%%:1 is divided into equidistant steps by the thresholds

=0, g =2%W0O, (4)
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F16. 2. The mental images are composed by 3 * 3 elements of increaging blackness, Different scalings
can be defined to map the dynamic range of matrix B in equation (2) to the 10 gray-scale levels. The

effect of the first four scalings is shown in Figure 3. The log incremental scaling is used for the pattern
recognition process in Figure 8.

The mental image has little contrast. This remains true for scaling logarithmic
relative to signal maximum by .« by thresholds g,’.

’ b ax
8n =gk='92";—q- (6)

For scaling linear relative to signal maximum by

k
= —_— 6
8n bIj.mnx 10 ( )

only the intensity maximum is visible. Scaling linear relative to the noise maximum
N;mox gives the best result. It is used for the rest of this work. The mental image
here corresponds quite well to the seismologist’s impression of detectable signal
energy in the seismogram. Scaling is done by

k9
Er = Nimax E -n—— , 8w = 2%, (7

lovel

The gray level of noise maximum 7; .., has been set by convenience to niever = 4, 80
all signal intensity above gg = 2 * n; max Will get black shading.
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TiG6. 3. One local event (M; = 2.0, A = 35 km) is shown in mental images of dxfferent scalmg (see
Fig. 1). The two logarithmic scalings base on matrix A in equation (1) instead of B in equation (2). The
best contrast results from the highly nonlinear scaling linear relative to noise.

One important task of the mental image defined so far is to perform an effec-
tive parameter extraction. A high resolution plot like the seismogram trace in
Figure 3 has

2000 time samples = 2° amplitude steps = 1 * 10° bit



176 MANFRED JOSWIG

information in the time versus amplitude plane. The equivalent mental image,

containing the same information for the detection process, has less than 1 per cent,
namely

48 time samples * 13 frequency samples * 10 gray steps = 6 + 10° bit.

Definition of the Knowledge Base

The knowledge base consists of a set of signal patterns. Each pattern represents
an average sonogram, either from earthquake regions or from known noise burst
types like sonic boom, traffic or industry noise from cars, trains, saw-mills etc.
Figures 4 and 5 present sonograms of local earthquakes from two distinct epicentral
distances; they average to one pattern each. Figure 6 gives several kinds of noise
signals; they differ significantly from the earthquake patterns shown before.

An event pattern in the knowledge base is formally defined by matrix M and
attached scaling factor N through

M = {m,,-[m;, € (-1, 0, +1)} 8)

N =33 | myl.
O

To give an example the simple pattern set in Figure 7 consists of four local
earthquake types and one teleseismic onset. For best match with an actual seismo-
gram the striped areas with my; = +1 require signal energies above a suitable
threshold, while the crossed areas marked by m; = —1 must have no energy. The
remaining pattern with my = 0 will be ignored in the PR-process. The edge
conversion by m; = —1 greatly enhances the S/N ratio of pattern fit (12), if pattern
M (9) approximately fulfils the balance condition.

2Xmy=0 (9)
{7

Definition of the Pattern Recognition Process

The PR-process for mental images is shown in Figure 8. Correlation between
pattern M and the sonogram is much simplified when replacing its gray scale matrix
C by a set of black and white pictures D,. As with C in (3), they are derived from
PSD matrix B now by a set of increasing thresholds h, as

o _ +1 for bu > h,

Thresholds h, are scaled logarithmic incremental (see Fig. 2) from half of the noise
maximum to signal maximum as

Rs = Nimax 2°, =-1,01,..., int(logg é"'ﬂ) (11)

N max
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F1G. 4. All three examples are events of an area with 36 km epicontral distance. They differ
significantly in their signal/noise ratio, and magnitude, but the principal structure of the relntecfy mental
images stay stable. This invariance is a prerequisite for a recognition by a finite sct of event patterns.

Dealing with black and white pictures reduces the pixel values to one bit, while the
different scalings map all events of one type within a wider range of magnitude to
one pattern.

The step of PR is then performed by crosscorrelation: For each threshold h, the
pattern fit between pattern M and picture matrix D, at time lag 7 is calculated by



178 MANFRED JOSWIG

wwmww«wwm%/\tmw it

t—10sec—

®em am e sasas Pht 6 066 0W CANMm S YN ssMm suw il ae s L]

e e -n-‘----}-&r-k‘.-“’k‘b’--.. . n--L--u-on-. .-,
800 s0mME L Imw, s mm dmes s a9 seRe . s »

Bem s e 08 mamw WS e, dr e S @A IES e SmE AN BEw

LEX 2 LT w & vealen. e pwm sl Ll w00 sl w e o

. n-l-.r_““:-’-'-.--'n CL':.—.. X oo w ofe

e d
¢ " em e 0 aa p ol SN0l L X Tl

Iog f . o -, o -‘I.' - -:-..B. &&‘-:—ﬁ!.g s ’- * " = . »

.
LX) s » . - e o k¢ E"‘M—-n-lt - on . L .
- .- . . . .-.&!Q -—---------.| .- - - - amw
P E oMo em st wmme o, a osesan ‘e S e o

'.n.llllll..l.lll.h.ll-l.ill.llltlllllh!..l.oo.o

T O M 890551 A0ABPPPINPFEIRALAADNEEEDNEQIISRARBNIROEEEDBLOITPRTOSES

b it

—10sec -~

- ame § sm e asswe
e an ® 630 0m b PP PRt iImd e G 4 ¢ NN O S TNMEN AL IWNN S
asassssa —-u-----—-l-‘-nn. 40a esvemoedamea owmo

S S iET e mmmenn R
oem o= okl :-.-..--: c-:-l:-'-.'m:-- com o .o..oE-:-'_i-:ln.
- em - em ame o s - 'l-.u---u-v.-o-no Sammer o0
e s = - ¢ aes wame 't L . Y . wae
logh § . . i Taem e emliablemeas 2 eed

*WM%W%MWWWWWWW

+=—10sec —

::::.--:--;':'—:' - » s=las 00 @ amlm,
. .:':'Z'::"':':"&.::::."E". Tl it e
Tt IR e T LT

"] o -- 'ﬁ-:g somimie o == 8 s m - .
ogt § 1% - R L I

t

F1G. 5. Here the same situation as in Figure 4 is shown, but for epicentral distances of about 10 km
and a much poorer signal/noise ratio. Remarkable is not the resulting detection, which will be performed
by every detector with appropriate pre-whitening filter, but the clear contour of the mental images.

fit ) = 5 5 5 my dnr (12)

Note here that the multiplication can be replaced by fast look-up due to the discrete
values of (-1, 0, +1) for my and d;;. The factor 1/N from (8) normalizes fit, to the
interval [~1, +1]. A resulting fit, = +1 demands energy above h, for my = +1 and
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F1G. 6. Three noise bursts and the related mental images illustrate, how pattern recognition detectors
can avoid noise detections independent of amplitude. All images show significant differences to the local
events in Figure 5, although the seismograms of noise bursts will in general be most closely related to
those of near local earthquakes.

no energy at m; = —1, while fit, = —1 would mean inverse energy distribution. In
case of noise and if balance condition (9) holds, all pictures with a random black
and white distribution will yield fit, = 0. So a common threshold for signal detection
will be fit, Z 0.5.
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One last step has to follow PR and it is performed by a selection process: If an

event occurs, raw detections are usually triggered within a wider range of time, for
some thresholds A, in (10) and for all similar patterns. So searching for the one
maximum fit, ensures, that only one detection message per event is generated. This
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F1G. 8. The pattern recognition of earthquakes by mental images is like detection of visible objects
on an assembly line. The mental image of the actual seismogram is shifted in time and compared to all
predefined patterns. To trigger a detection, the fit between image and pattern must surpass a certain
level, The final detection message is composed by a subsequent decision logic based on the maximum fit,

message includes detection time, pattern type, maximum pattern fit and threshold,
so0 it supplies a subsequent coincidence detector or expert system with valuable
information about amplitude and identification quality of the detected event.

Definition of the Similarity Measure

The similarity measure «,, quantifies the correlation between two patterns X and
Y. Except for the different normalization it represents the same relation between
two matrices as the pattern fit in (12) and is defined by

1
= max x5y . 13
a'xy ,..._Nx_N_..y ; ( - Jz ij I'JH) ( )

Calculation of the similarity measure can be used to avoid redundant pattern
definitions. Table 1 shows a,, for the pattern set of Figure 7. Values of 0.7 and more
would indicate pattern proximity that slows down processing speed without raising
the detection probability by additional information.

The similarity measure is also useful in a seismic network, when one event will
not necessarily trigger the same type of pattern in all the neighboring stations. For
a subsequent voting detector either all legal pattern combinations must be specified
or calculating a,, can check on reasonable similarity of the detected onsets.
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TABLE 1
SIMILARITY a,, OF BUG-PATTERNS
Typo 9km 12km 18 km 35 km teleseis

9 km 1.00 0.30 0.26 0.16 0.05
12 km 0.30 1.00 0.58 0.39 0.10
18 km 0.26 0.58 1.00 0.53 0.13
35 km 0.16 0.39 0.63 1.00 0.21
teleseis 0.06 0.10 0.13 0.21 1.00

missed
events
missed
events false
clarms
rejected
false alarms noise bursts
WAL SH -Detector SONOGRAM - Detector

F16. 9. The Walsh-detector had in 26 days on-line processing 125 false alarms, 118 detected earth-
quakes, and 44 missed events (half of them by network downtime). The Sonogram-detector improved

timing accuracy for the earthquakes but rejected four very small ones. In addition it suppressed all of
the noise bursts but six.

Test Installation

The first tests were performed off-line with 25 days of data from the BUG-
network. The Sonogram-detector had to identify local seismicity in two minute
time windows selected by the Walsh-detector. Number of missed events, false alarm
rate and timing inaccuracies of the Walsh-algorithm for the 25 days are shown in
Figure 9 and conform with other installations in high cultural noise. The resulting
data set of 243 is representative for seismicity and noise bursts in the BUG-network
except for some very small earthquakes that are missing.

The Sonogram-detector by means of the simple pattern set in Figure 7 identified
all seismic events but four, rejected all noise bursts but six, and enhanced timing
accuracy (Fig. 9). The PR approach is so sensitive that all earthquakes in
Figures 4 and § are correctly identified and that the maximum amplitude of the
four missed events is less than 6 dB above noise.

Although quite precise in timing, the Sonogram-detector is not a phase picker.
Like all methods in frequency domain, it has an inherent uncertainty of half the
window length. Instead it can be called a true event detector, since it utilizes the
information of the whole seismogram to adjust exactly one detection time per event
onto the P onset.

In contrast to the traditional Freiberger-based detector principles, PR-detectors



TABLE 2
BUG-PATTERNS VERSUS EPICENTRAL DISTANCE

pattern
distance
0-10 km 1
11-14 km 2
15-25 km 2
26-50 km
>1000 km 13
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F1G. 10, Three examples of teleseismic P-wave onsets show the monochromatic spectrum for short
period seismometer registrations. The advantage of PR in this application is tho detection of noise as in
the third image. A high frequent noise burst just appeared in the gap between P and pP of a Fiji
earthquake (A = 153°, h = 64 km, m; = 6.7).
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can be improved by updating the knowledge base rather than by changing the
algorithms for computation or conclusion: so

¢ Definition of additional noise patterns allows a lower detection threshold
without false alarm increase (only the most similar pattern is picked),

¢ Refinement of the event patterns gives better identification for weak events.
An analysis of the detected events by identified pattern type versus determined
epicentral distance still shows significant uncertainty (Table 2). The inaccura-
cies in onset time (see Fig. 9) and distance association are due to the azimuthal
distribution of earthquakes which was neglected in the initial set of purely
distance-dependent patterns in Figure 7.

Thus with PR, the detector performance depends crucially on the definition of an
appropriate knowledge base. Starting with a rough estimate during installation, a

successful detector refinement promises performance that equals the results of a
skilled human observer.

Detection of Teleseisms

Like the detection of local events, detection of teleseismic earthquakes in general
can be accomplished by defining patterns on the whole event. This will scale the
FFT window to the frequency range of broadband seismometers.

On short-period seismogram traces, however, the power of PR is quite useless,
since shifting of spectral energy cannot be observed. The P onset appears as a
monochromatic sweep, while S- and surface-waves are outside the frequency range
(Fig. 10). To detect teleseismic events in this situation, the lowest pattern of
Figure 7 essentially copies a STA/LTA-based detector: It demands energy above
the threshold within a constant frequency range (i.e., bandpass-filtering) and for a
certain duration (i.e., postdetection by time window). The effect of edge conver-
sion—no simultaneous high frequency energy—is that of a second STA/LTA acting
on high frequencies with a negative trigger weight (Evans and Allen, 1983).

CONCLUSIONS

PR-detectors form a new class of processing schemes based on positive decision
logic and are not related to the traditional Freiberger-based detectors.

The Sonogram-detector uses images of spectral energy versus time to recognize
known patterns of earthquakes, It has high detection probability and timing
accuracy and, most notably, the ability to reject known noise bursts.

The principal restriction for all PR-methods is that only those signals known a
priori can be detected. So PR-detectors will not supersede the traditional detectors
with their negative decision logic under all circumstances. The advantage of the
latter is their use “off the shelf,” the reliable detection of all temporary changes
without any additional knowledge. These properties make them ideal for every
short-term field application.

The consequence of the trade-offs mentioned above is to combine the power of
both approaches in a universal detector scheme. This can be done in a pre/
postdetector design as for the test installation, where sonograms are calculated on
the preselected time windows. Also possible is a combination in parallel, where the
sonograms are updated continuously. Since the PR-detector acts as a matched filter,

it should have a slightly higher sensitivity for known signals than the traditional
detectors.



PATTERN RECOGNITION FOR EARTHQUAKE DETECTION 186

The PR-detection on mental images is a general concept not at all limited to
sonograms. For example vespagrams are powerful analytical tools for seismic arrays
displaying energy in time versus slowness for fixed azimuths (Davies et al., 1971).
They are well suited for PR, and Capon and Davies (1971) even proposed thxs idea
for detection purposes. They did not apply image processing techniques, however,
and the approach was forgotten. Today, a Vespagram-detector can be based on

processing steps of the Sonogram-detector and is another promising application of
PR on mental images.
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