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A systematic study of spiral waves in a realistic reaction-diffusion model describing the 
isothermal CO oxidation on Pt ( 1 IO) is carried out. Spirals exist under oscillatory, excitable, and 
bistable (doubly metastable) conditions. In the excitable region, two separate meandering 
transitions occur, both when the time scales become strongly different and when they become 
comparable. By the assumption of surface defects of the order of 10 pm, to which the spirals can 
be pinned, the continuous distribution of wavelengths observed experimentally can be explained. 
An external periodic perturbation generally causes a meandering motion of a free spiral, while 
a straight drift results, if the period of the perturbation divided by the rotation period is a natural 
number. 

I. INTRODUCTION 

The formation of spiral waves under nonequilibrium 
conditions has been observed in many chemical and bio- 
logical systems. ‘-4 Fundamental investigations of their be- 
havior have been carried out extensively with the 
Belousov-Zhabotinsky (BZ) reaction.5-8 Recently, the de- 
velopment of photoemission electron microscopy (PEEM) 
has also made possible the detailed observation of spatial 
structures on catalyst surfaces. PEEM reaches a lateral 
resolution of -0.2 ,um in real time, which is necessary 
because the patterns in question are much finer than, e.g., 
in the BZ system. 

Spirals were found in the CO oxidation on Pt ( 110) 9 as 
well as in the reactions of NO/NH, and NO/CO on 
Pt( loo).‘O~” More quantitative investigations were carried 
out only with the former system.‘* A couple of interesting 
phenomena like multiplicity of the spiral period under 
identical external conditions and resonance phenomena 
under periodic modulation of a control parameter have 
been discovered therein. The aim of this paper is the ap- 
plication of a realistic reaction-diffusion model to these 
effects. The required model was originally derived to ex- 
plain the temporal (e.g., oscillatory) behavior of the CO 
oxidation on Pt ( 110) .I3 Inclusion of spatial coupling via 
surface diffusion has been used in the study of reaction 
fronts, solitary waves, and periodic wave trains.‘“16 A va- 
riety of unexpected interactions on collision of these waves 
was successfully modeled by the assumption of local sur- 
face defects of mesoscopic size (5-10 ,um).17 In addition, 
we have shown in earlier work that our model can be 
simplified for the sake of analytical estimates and efficient 
numerical simulation of two-dimensional wave properties 
of the medium.‘* Here we extend this work by giving a 
systematic discussion of the relation between the physical 
parameters (the partial pressures and surface temperature) 
and the parameters of the simplified model. In Sec. III we 
treat the existence of spirals under excitable, bistable 
(more precisely doubly metastable), and oscillatory condi- 
tions, and estimate the surface defect sizes from the spec- 
trum of observed rotation periods. In Sec. IV the influence 

of periodic modulation of a control parameter on the 
movement of a spiral is described. 

II. THE MODEL 

The CO oxidation on Pt ( 110) proceeds via the classi- 
cal Langmuir-Hinshelwood mechanism, l9 whereby the 
CO-driven structural change of the Pt ( 110) surface needs 
to be taken into account: 

cog+ *-cc&, 

o,+ * + 2q& 

oad + C&d --) 2* + co,, 

toad 
1x2* 1x1. 

(Here * denotes an empty adsorption site, suffices g and ad 
distinguish gaseous and adsorbed species. ) The CO adsorp- 
tion follows precursor kinetics.*’ Moreover, the model 
should include the asymmetric inhibition, i.e., oxygen ad- 
sorption is forbidden on CO covered sites, but not vice 
versa. 

The sticking coefficient of oxygen depends on the sur- 
face structure. Thus three variables-the CO and 0 cov- 
erages u and U, and the fraction of the surface area existing 
as a 1 X 1 phase w-remain, leading to the kinetic equa- 
tions13 

ti = k2gco [ 1 - ( U/U,) 3] - k2u - k3uu + DV*u, (14 

~=kupc&,++s,2( 1 -w) I[ l- (I&> - (u/v,) I* 
- k3uv, (lb) 

ti=k,[ f(u)--w]. (lc) 

The external control parameters here are the partial pres- 
sures of CO and oxygen, pco and po,, and the crystal 
temperature T, which enters into the rates k,, k,, and k, 
through a Arrhenius relation. 

Spatial coupling is introduced through CO diffusion, 
compared to which 0 diffusion is very s~ow.*~,** Diffusion 
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FIG. 1. Phase diagram revealing regions of different dynamical behavior 
in Eqs. (1) at p. = 1.33 X 10M4 mbar: (A) and (C) have,excitable 
kinetics (i.e., puls& propagate in the k ,-+O limit), (B) represents oscil- 
latory kinetics and ( Di) bistability with one (D,) or two (D,) metastable 
states (states unstable against front propagation). Bifurcation of the re- 
action part are also displayed: Hopf (solid line) and saddle node (dashed 
line). 

on the Pt( 110) surface is anisotropic, i.e., D is composed of 
the diffusion constants different in the [ 1701 and [OOl] crys- 
tallographic orientations: 

For a detailed discussion of Eqs. (la&( Id) the reader is 
referred to earlier work.13*17 

A simplified bifurcation diagram of the reaction part of 
this model is reproduced in Fig. 1, corresponding nullclines 
are shown in Fig. 2. There are an oscillatory (B), two 
excitable (A and C), and a bistable region (D). In the 
latter regime it is appropriate to distinguish subregions of 
qualitatively different behavior. Near the saddle-node and 
Hopf bifurcations there are areas where only one front 
solution is possible (labeled D, ), while further inside two 
different fronts coexist ( D2). We refer to this behavior as 
“double metastability,” since both (stable) fixed points are 
unstable with respect to a supercritical nucleus. 

As long as the two fronts exhibit significantly different 
velocities, they annihilate when the faster overruns the 
slower one [Fig. 3 (a)]. For comparable velocities, however 
(i.e., around the middle of region D,), they form a bound 
state [reaction-diffusion pulse, Fig. 3(b)]. This behavior is 
analogous to results in the excitable domain, where pulses 
exist only above a certain minimal velocity especially at 
(not too) high excitation thresholds.16 Here the pulse ve- 
locity is always determined by the slower one of the two 
front solutions, consequently the parameter value with 
equal front velocities is the most favorable for pulse for- 
mation. For the po, and T values used in Fig. 3 pulses 
existed between CO pressures of 2.62X lo-’ and 2.95 
X 10d5 mbar (the front velocities were equal at 2.75 
X 10m5 mbar). 

As shown in previous work15v’6 II and u are always 
strictly anticorrelated so that one adsorbate variable suf- 
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FIG. 2. Nullclines of Eqs. (1) at po, = 1.33 X 10m4 mbar. The dotted 
lines represent dw/dt=O and is independent on external parameters. Full 
lines stand for du/dt=O. (a) T=540 K. CO pressures from the curve 
(left to right) are 4.19X10m5 (excitable, 0 covered, A), 4.32X10m5 
(oscillatory, B), and 4.45X 1O-5 mbar (excitable, CO covered, C). (b) 
T=520 K; all cases lie in the bistable region; CO pressures from left to 
right are 2.26X lo-’ (stable 0 covered, metastable CO covered, D,), 
2.66~ lo-’ (double metastability, D2), and 3.06~ lo-’ mbar (stable CO 
covered, metastable 0 covered state, D, ). Capita1 letters refer to regions 
in Fig. 1. A metastable state is unstable against fronts of the inverse 
covered state. 

fices. Hence u is eliminated adiabatically by setting O= 0, 
solving the resulting algebraic equation for v= v( u,w) and 
inserting it into Eq. ( la). This leads to a complicated equa- 
tion for the local change of t(,l* which for w values in the 
bistable part of the nullcline can, however, be well approx- 
imated with a cubic polynomial (see Fig. 4) : 

ap= -kolu-u,(w)1 [u--II*(w)1 [u--3(KJ)l 

+ DV*u, (24 

aP=kS[f(u) -WI. (2b) 
The new constant k. depends mainly on the tempera- 

ture and determines the propagation velocity c of fronts 
and pulses (c - JDk,,k,) k,), whereas the rate of struc- 
tural change k, governs quantities like pulse width or 
wavelength and period of wave trains in the excitable me- 
dium. For further simplification we rescale space and time 
in order to get dimensionless quantities: 

. 
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FIG. 3. Interaction of fronts at T= 520 K,po, .= 1.33 X lo-‘mbar under 
conditions of double metastability. (a) Anmhilation of fronts (pco=2.61 
x lo-’ mbar); (b) formation of a stable CO pulse (po=2.63X 10M5 
mbar). The I axis shows the CO coverage u. 

+-)“‘x, y^=($)“;, t=k,t. 

Note that the anisotropy is scaled out now. For efficient 
numerical integration the S-shaped nullcline u = u (w) can 
be substituted to a good approximation by a z-shaped one 
setting (see Ref. 18) 

w+b 
%(w)=w*, uz(w)=a, u3(w)=u3. 

Now new variables u^ and d are introduced: 

u3---I( 
u^=- 

Ilj--ul ’ 
@=1-w. 

I T = 5LO K 
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FIG. 4. Plot of the change of the CO coverage du/dt against the coverage 
value u for the 1 x 1 surface (w= 1) andpoz = 1.33 X lo-’ mbar (solid 
lines). (a) T=540 K; pco from top to bottom: 4.58~ 10e5, 4.52x 10e5, 
and 4.46x lop5 mbar. Fit factors k. for cubic polynomial (dashed lines) 
were 99.6, 98.4, and 96.5 ML-* s-‘, respectively. (b) T=450 K, pco 
from top to bottom: 1.26x 10V5, 1.00x 10W5, and 0.74X 10e5 mbar. Fit 
factors kc for cubic polynomials (dashed line) were 30.5, 29.2, and 28.1 
MLe2 s-‘, respectively. 

This choice sets the CO-covered stationary state of Eqs. 
(2) to (&ti) = (O,O), while the oxygen-covered state is rep- 
resented by u^ = 1. The variable ZZ gives the degree of 1 X 2 
reconstruction. 

The values 11, and u3 can be obtained from the 
nullclines. The coverage of the reactive state u1 used here is 
typically 0.2 monolayers (ML). In the bistable regime (T 
< 530 K) the surface concentration u3 of CO turns out to 

be 0.95 ML. As the temperature is increased, CO desorp- 
tion sets in and the medium becomes excitable, which is 
connected with a substantial drop of the u3 value for 
T > 530 K [cf. u3=0.65 ML in Fig. 2(a)]. 

One ends up with the following equations: 

a,ii=-$a-*) + PC, 

a&Lj$+a, 

where the abbreviation 

(3b) 
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ks 
E=ko(U3-U1)Z 

is used. Equations (3a) and (3b) are similar to a model 
proposed by Barkley23 in order to increase computational 
efficiency. Here, we applied the same algorithm for the 
integration of the partial differential equations. 

The form of f(c) in Eq. (3b) is simply given by the 
function f(u) in the new u coordinates and is therefore 
dependent on the absolute values of u1 and u3. For excit- 
able conditions u, =0.2 ML and t13 =0.65 ML have been 
chosen for all simulations presented here. This leads to 

i 

0 u^< l/3 
j(c)= l-6.75u^(ti-l)2 1/3<u^<l. (3d) 

1 $21 

This choice of p( ~2) (“delayed inhibitor production” 24) 
stems from fitting the experimental observed25 nullcline 
zZ( z?), and constitutes the crucial difference as compared to 
standard models.23’26 

The physical parameter set (pco ,po, , T) has been 
mapped into the model parameters (a,b,e). As examples 
we show the T dependence of k0 as well as the dependence 
of b on AT and Apco (defined as the distance from the 
oscillatory instability) in Figs. 5 (a) and 5 (b), respectively. 
The temperature dependence of k,, shows an Arrhenius- 
type form with an activation energy of 6.6 kcal mol-‘. 
Experimental determination of the effective activation en- 
ergy of front velocities give 20 kcal mol- ‘.12 Assuming 
that the diffusion constant has an activation energy of 10 
kcal mol-1,22 it was concluded that k,, should also exhibit 
a value of 10 kcal mol-‘. However, recent measurements 
of the CO diffusion constant under the reaction condition 
yielded 14 kcal mol- ’ (Ref. 27) for the activation energy, 
implying an activation energy of 6 kcal mol- ’ for ko, 
which comes close to the value derived from the model. At 
this point of the discussion it is important to note that the 
activation energy of the rate k, of the surface phase tran- 
sition has an activation energy of 7 kcal mol-‘. Therefore 
the parameter E should vary only weakly with temperature. 

Another quantitative test of the model has been carried 
out as follows: It is possible to define a center valuepco of 
the unstable region for constant po, and T by taking the 
value of pco that yields equal velocities for CO and 0 
fronts. For constant po, ,pco exhibits an Arrhenius-type T 
dependence with an activation energy of 6.6 kcal mol-’ in 
the model and about 5 kcal mol-’ in experiment (cf. Ref. 
12, &-, is determined as the lowest CO pressure, where 
spiral waves occu?‘) . The ratio &,/po, in the model (e.g., 
0.08 at 450 K) compares well with the experimental data 
(0.09 at 450 K) . 

A discrepancy between model and experiments is given 
by the fact that the absolute values of the pressures for 
excitable and oscillatory behavior are considerably higher 
in experiment. It must, however, be pointed out that in the 
earlier experimental determination of the rate constants,13 
the pressures were underestimated by about a factor of 3 
(using an ionization gauge) compared to the newer PEEM 
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FIG. 5. (a) Dependence of the effective Langmuir-Hinshelwood rate kc 
on the temperature T forpo, = 1.33 X lo-’ mbar. The fits were carried 
out near the saddle-node bifurcation at high pco (cf. Fig. 1) . The dashed 
line represent an Arrhenius fit with a activation energy of 6.6 kcal mol-‘. 
(b) Variation of the parameter b of model 3 with the distance from the 
onset of oscillations at po=4.42 x 10e5 mbar, po, = 1.33 X lo-’ mbar, 
and T=540 K given in A.T at constant pco (stars) and in Apco at 
constant T (circles). 

experiments, where the pressures were measured with a 
baratron.12 While this does not influence the ratios of pres- 
sures, one has to correct k. when quantitative comparison 
of absolute values (e.g., periods) between model and ex- 
periment are made. Another problem is that the tempera- 
ture dependence and especially the preexponential factor of 
k, are difficult to estimate from experiment.25’28’29 More- 
over, these measurements provide some evidence that the 
phase transition may proceed differently depending on 
temperature (displacement of individual Pt atoms at low, 
whole parts of rows at high T). As suggested recently,17 
the preexponential factor of k5 should be chosen about one 
order of magnitude larger than in the original publication 
of the model.13 Still the rate of the phase transition (which 
is quite likely also sensitively coverage-dependent) remains 
to some extent adjustable. 

The bifurcations of the reaction part of Eqs. (3) can be 
constructed from analysis of the corresponding nullclines. 
Assuming w-=f(O) =0 and w+=f( 1) = 1 results in the 
diagram shown in Fig. 6, very similar to the one of Fig. 1. 
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-b 

FIG. 6. Phase diagram of the simplified equations (3) corresponding to 
Fig. 1. The abbreviations and legends are identical to Fig. 1. The bound- 
ary of the excitable and the double metastable region (open circles) are 
calculated in the e--r0 limit. 

The dispersion relation of plane-wave trains for Eqs. 
(3) can in good approximation be solved for analytically 
(cf. Ref. 18). [From now on we drop the- for the quan- 
tities of Eqs. (3) .] The front velocity for fixed zuo is given 
by 

c(qJ = $( Vwo+b) ;1- a 1 . (4) 

Triggering a front from a state w = w. will lead to a 
wave-back at w = a - 2b - w. in the regions where pulses 
exist. The excitation time r,,, and refractory time rrefr are 

n--26--q, dw 
7 exe = s wo 

G=ln 
( 

w+-wo ), 
w,-a+2b+wo 

W O  dw a-2b-wo-w- 
I-refr = I 

-=ln 
a-2&--w0 w---w ( ) wo--we 4 

Taking the finite interface widths 1 of the pulses into 
account results in a correction time r,,,: 

21 16~ 
~cco*(wo) =-= C(wo) l-2(wo+b)/a * 

The period rper( wo) is now given by 

Tper(Wo) =~ex,(wo) f~EfAW0) +~,,rr(Wo)t 
(5) 

1 

(w+ -wo)(a-2b-wo-we) 
TFr(Wo)=ln (wo-w-)(w+--a+2b+wo) 1 

16.5 
+l-2(wo+b)/a 

which together with Rq. (4) results in the dispersion rela- 
tion. These values only describe the branch of stable wave 
train solutions. Note that T& wo) diverges for wo=O, 
which means that the system needs an infinity time to relax 
to the steady state, as well as for wo=a/2- b, where the 
correction term ~~~~ goes to infinity. Between these ex- 

-a 

FIG. 7. Existence region of waves in Eqs. (3) for l =O.O25. Solid, thick 
lines, and open circles as in Figs. 1 and 6. Triangles show boundaries of 
pulse propagation (cf. Fig. 3). Within the hatched region marked by full 
circles, spiral waves exist. 

treme values the function rper( w,) has a minimum value at 
wo=w&, which is in the limit of very small E given by 

1 l/2 

L ’ , 
(6) 

where w- resp. w+ are set to 0 resp. 1. This minimum 
value of rper( wo) is often identified with the minimum pe- 
riod of a stable wave train in an excitable medium.30 The 
characteristic square root dependence on E of this mini- 
mum period was also obtained by calculating the intersec- 
tion between the stable and unstable branches of wave train 
solutions3* in a piecewise linearized model. 

III. AUTONOMOUS SPIRAL WAVES 

A. General properties 

We now describe the existence regions and properties 
of spirals in the parameter space (u,b,e). In the simulations 
spirals were obtained using cross-gradient initial conditions 
in u and w,32 e.g., linear profiles between 0 and 1 along the 
x axis for u and between 0 and a - 2b for w along they axis 
were given at the start of the simulation. In reality spirals 
are created by the break of a plane wave. Then the open 
ends of the wave usually start to curl and end up in a 
rotating spiral. The cross-gradients were chosen such that 
the spiral center was roughly in the middle of the box. The 
box size was 50 space units realized with 128 gridpoints. 
For the integration we used the semi-implicit method pro- 
posed by Barkley.23 Tests with finer grid sizes and time 
stepping were carried out giving essentially the same re- 
sults, though a minor shift for the existence region and the 
properties of spirals was observed. 

Figure 7 shows the existence regions of plane waves 
and spirals (shaded area). While spirals can be obtained 
everywhere in the oscillatory regime, their existence region 
under excitable conditions is narrower than that of plane 
waves-an effect which is even more pronounced in the 
region of double metastability. Here spirals exist only up to 
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FIG. 8. Rotation periods of spirals in model (3) at e=O.O25 for different 
values of u [from left to right: a=0.84 (circles), a= 1.2 (stars); a= 1.5 
(diamonds) and a= 1.8 (squares)]. 

a maximum value of a, which depends on E, i.e., for smaller 
E the angle between the boundary lines becomes smaller 
and the regions continue to larger a. A criterion for the 
existence of spiral waves, which was derived recently in the 
limit of small e,33 can easily be applied to model 3 and 
reads 

1’2 
a2/3 < - 1 2 ( - 0.535 1 2E . 

For the specific values used in Fig. 7 the limiting value 
should be a=2.09, which is in reasonable agreement with 
the numerical results (a=2.00). Note that all lines in Fig. 
7 run smoothly from one region to another; also no differ- 
ences in the behavior of the pulses or spirals in the excit- 
able and bistable regime were obtained. The dependence of 
the periods of spiral rotation r. on b for several values of u 
is reproduced in Fig. 8. 

Generally r. diverges at the boundaries of the existence 
region. With increasing (I, the curves not only become nar- 
rower, but are also considerably shifted to higher periods, 
before diverging off to infinity for the critical value of a, 
above which spirals cease to form. 

For fixed a, spirals have been studied in dependence on 
b and E (Fig. 9). For small 6, a scaling of the rotation 
period with P was obtained (a =0.4=!=0.05) over the en- 
tire range, whereas for large b such a scaling was only valid 
for sufficiently small E. (A scaling law for 7. has been 
predicted theoretically34 with an exponent a= l/3.) Going 
back to physical parameters the scaling becomes 

a-l --a 
T0akS k. , 

i.e., the rotation period scales with the velocity of the phase 
transition k5 and the effective LH rate ko. The Arrhenius 
form of both rate constants leads to a significant decrease 
of the rotation period for higher temperature. It should be 
noted here that the range of_this scaling property depends 
on the particular choice of f(C). In the standard case of 
f(i+U”,23*26 scaling is observed only for E < 0.01 (here 
E < 0.06). 

30 
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5 
r” 
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0.01 0.0 2 0.04 0.07 

E  

FIG. 9. Scaling behavior of spiral periods against E for different b at 
a=0.84. The scaling exponent OL (rc- E”) is found to be 0.40*0.02. The 
b values are 0.035, 0.07, 0.105, 0.14, 0.175, and 0.19 from bottom to top. 

For large b again the period diverged with increasing E, 
whereas for small b a transition to meandering spirals oc- 
curred, as shown in the phase diagram in Fig. 10. Note that 
the present system contains two regions of meandering: 
Apart from the standard one towards small e,26 there is 
another at high E. (F in Fig. 10 denotes an area of flat, 
slowly shrinking wave segments.) 

Upon further increase of E at not too high b, rigidly 
rotating (S) or meandering spirals (M) became unstable 
giving rise to turbulent wave patterns in the region denoted 
T in Fig. 10. This transition is closely linked to the unusual 
scaling behavior of the spiral period r. (cf. Fig. 9) which 
leads to an intersection of the spiral period r. and the faster 
growing minimum period rmin for wave trains [see Eq. 

0.00 ’ I , I 
0.00 0.025 0.050 0.075 

E  

FIG. 10. Phase diagram of different wave types at a=0.84 in model (3). 
S: rigidly rotating spirals; M: meandering spirals; F: flat, shrinking waves; 
7’: turbulence, breakup of spirals; N: no. 
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(6)]. The detailed mechanism leading to turbulence has 
been described elsewhere.24 

It should be pointed out that the behavior of Fig. 10 
with a second meandering and a turbulent region was only 
obtained for not too high b values in the excitable region C 
and the oscillatory region B of Fig. 6, but not in the excit- 
able region A nor for conditions of double metastability. 

B. Comparison to experiment 

In a recent paper, l2 Nettesheim et al. gave a systematic 
account of spiral waves observed in the CO oxidation on 
Pt ( 110). In particular, double metastability has been 
shown to support not only coexisting fronts, but also spiral 
waves. For higher temperature, no evidence for coexisting 
fronts was obtained anymore, the observed spirals at high 
T are therefore attributed to excitability. 

For fixed control parameters ( T =450 K, pco= 4.3 
x 10m5 mbar, po, = 4.0 X 10m4 mbar) Nettesheim et al. 
reported a large number of spirals with different rotation 
periods,12 quite unusual for excitable or bistable media. It 
is, however, well known that spirals can be pinned to arti- 
ficial nonexcitable cores (e.g., Refs. 35 and 36), which 
would for the present system correspond to surface defects 
larger than the core size of free spirals () 1 pm, dependent 
on T). 

According to Fig. 5 (a) and the required pressure cor- 
rection (Sec. II) the experimental parameters ( T=450 K) 
correspond to ko=90 MLm2 s-‘. We study a representa- 
tive case in the excitable as well as the bistable regime, 
setting a to 0.84 or 1.8, respectively. When computing E 
according to Eq. (3c), it is necessary to take into account 
that uI-a3 changes from about 0.45 (excitable) to 0.75 
(bistable) . b is taken near the center of the existence region 
of spirals for fixed u and E in the bistable and the CO- 
covered excitable regime, i.e., close to the minimum of 7. 
(see Figs. 7 and 8). The saturation of the experimental 
dispersion curve occurs at a wave velocity c of about 1.6 
pm s-’ . This corresponds to the velocity of a solitary pulse 
in the model, from which the diffusion constant D can be 
calibrated to about 7X 10m9 cm2 s-l. 

The rate k, of the surface phase transition remains an 
adjustable parameter, which is used to fit the rotation pe- 
riod of a free spiral. In experiment, most observed periods 
were around 7 s (considered to correspond to a free spi- 
ral). This results in values for k, of 0.45 s-l in the excit- 
able and 1.27 s-l in the bistable region. 

The dispersion relations resulting with these parame- 
ters are shown in Fig. 11, together with the experimental 
data points. Note that there is a larger dispersion-free pla- 
teau in the bistable than in the excitable case so that no 
significant dispersion of spirals was observed under bistable 
conditions. Since spirals of different wavelengths and peri- 
ods coexist, they compete in such a way that faster spirals 
will eventually annihilate the slower ones. Figure 12 shows 
a free spiral (core radius 0.5 pm) and a spiral pinned to a 
nonexcitable defect of 5 pm diameter. The free spiral 
“wins,” while the defect remains as a perturbation in the 
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FIG. 11. Dispersion relations, resealed to physical quantities for (a) 
excitable parameters (a=0.84, b=0.105, e=O.O25) and (b) bistable pa- 
rameters (a= 1.8, b=0.54, and e=O.O25). The full lines are obtained by 
numerical integration of a pulse on a ring in Eqs. ( 3). Dashed lines show 
analytical approximation due to Fq. (5), and stars represent experimen- 
tally observed spirals. 

outer part of the spiral arm. The same behavior has been 
observed experimentally. l2 

This result directly supports the assumption that the 
coexistence of different spirals is caused by surface defects. 
If different free spirals coexisted (due to a multivalued 
dispersion relation), the core of the extinguished spiral 
would slowly drift away, as has been confirmed experimen- 
tally in the BZ reaction.37 

The rotation period rrot depends almost linearly on the 
defect radius R D, as shown in Fig. 13, where the numerical 
results are compared to the Keener-Tyson formula3* (a) 
and a plane wave propagating along the defect border (b) . 
The largest experimentally observed period (35 s) corre- 
sponds to a defect size of about 15 pm while most defects 
lie below 10 pm (cf. Figs. 13 and 14). This is in line with 
defect sizes estimated from nucleation in the bistable re- 
gion and the interaction of solitary waves.1s~17 

IV. PERIODICALLY PERTURBED SPIRALS 

Using the kinematic theory of spiral waves” it has 
been predicted that spirals under the influence of an exter- 
nal periodic perturbation generally exhibit a meandering 
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FIG. 12. Competition between a free spiral and a spiral pinned to a defect of 5 pm diameter. Picture size is 120 pm. Time difference between to slides 
5.2 s. Model parameters used are a=0.84, b=0.105, e=O.O25. 

motion, but in the case of resonance (i.e., the perturbation 
and rotation periods are equal) a linear drift of the core 
center was predicted and verified experimentally.40 A nat- 
ural way to achieve this resonance condition is the use of a 
spatial gradient of excitability in the medium. Recent ex- 
periments with the ruthenium-catalyzed light-sensitive BZ 
reaction4”42 corroborate these predictions. In this section 
we first give some general qualitative considerations about 
spiral resonances, then present simulations using model 
(3) and compare them to experiments by Nettesheim 
et al. I2 

A. Qualitative theory of perturbed spirals 

ro. Under the influence of a sinusoidal modulation of a 
control parameter p =po + Ap cos wt with w = 277/r and Ap 
small, the radius R. will vary periodically (for simplicity of 
the qualitative argument we drop the variation of r. for the 
moment). Consequently the tip trajectory cannot close af- 
ter TV, and the center of rotation is shifted, whereby the 
shift direction depends on the initial phase relationship 
Acpo between spiral rotation and perturbation. In the ge- 
neric case, the latter is different after every period of the 
modulation 

The tip of a rigidly rotating unperturbed spiral per- 
forms a circular motion of radius R, with constant period 
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FIG. 13. Rotation penod 7r,,t of pinned spirals in dependence on radius 
RD of the pinning defect. Excitable (circles) and b&able parameters 
(stars) as in Fig. 11. Dashed lines give analytical estimates due to Keener 
and Tyson (Ref. 37) (b) and 7mt= 2vRJco (a), which is the Keener- 
Tyson formula in the limit of large RD (co is the plane wave velocity; 1.6 
pm s-l). 

A straight drift results, if and only if ~/7-~=n, HEN, 
i.e., the perturbation period 7 is an integer multiple of the 
spiral rotation period 70. 

For noninteger ratios 

$+S; PZEN, -0.5<6<0.5, 

the rotation center moves along a circle of radius: 

R=w,.Ar= ro hr. 
ln70-71 

Here the winding number w, denotes the number of 
perturbation periods per cycle, Ar is the shift of the rota- 
tion center per 7 (see below). For rational w, (i.e., 7/70 
=n/m; n, m  EIN, mfl ) a closed trajectory consisting of 
m  petals is obtained. The sign of 6 determines whether the 
rotation proper of the spiral and the motion of the rotation 
center have opposite (6 < 0) or equal (S > 0) orientation. 
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FIG. 14. Curvature of spiral core (K= l/R,,) against excitation thresh- 
old b in dimensionless units for a=0.84. e=O.O25 in Eqs. (3). 

For finite Ap the variation of 7. cannot be neglected. 
Nevertheless, the above arguments still hold, assuming 
that 7. is shifted to a value rr= r,( Ap) and defining r/r, 
=n+& 

In order to estimate the drift velocity we set 

Arxcv) =rx(,,) (t+~) -rxcu) Cd, 

Ar= (A<+ A<)“‘. 

The position of the tip at time t* is given by 

r,(P) =Ro- 
s 

F 
w&(t)sin(wot>dt, 

0 

r,(t*) = s 
r, 

co& ( t) cos ( mot> dt. 
0 

This ansatz is easily obtained from the integration of 
the following ordinary differential equation (ODE) : 

tx = -w&? (I) sin cp, 

~y=woR((t)cos qJ, 

cp=oo 

with the initial conditions r,(O) = Ro, r,,(O) =0, and 
~(0) =O. For the autonomous spiral [R(t) =Ro] these 
equations are a subsystem of the five ODE normal form 
proposed by Barkley43 for the generic behavior of spiral 
waves. These equations correspond to the case of a steadily 
rotating spiral. The results sketched here may be general- 
ized to the forcing of meandering spirals by using the full 
system of five equations. This situation is not relevant for 
the CO oxidation treated here, but of interest in the study 
of forced spirals in the BZ reaction.44 

Under the assumption that the curvature K= l/R of 
the tip trajectory varies proportionally to the parameter 
change, i.e., 

1 m  
R(t) =Ro 1-ycoswt 

=Ro c y n COS”Wt (7) 
n=O 

we obtain for ti=nwo (after fixing the phase): 

Ar,=O and Ar,,=2rrnRo 5 
0 

” 
Ctip 

( y is the relative amplitude of the curvature in percent). 
Here, the phase difference between the modulations of pa- 
rameter and core radius is neglected. Thus a drift occurs 
only in the y direction. The drift velocity cd,.$t is given by 

Ary Y n 
,,,=T= 0 z Ctip (8) 

with the normal velocity ctip=WORO at the tip of the un- 
perturbed spiral. 

For a nonharmonic variation of the curvature instead 
of the nth power of y the nth Fourier coefficient a, occurs 
in Eq. (8) which is given by 

R(t)=&+ 2 a, cos(nwt). 
n=O 
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The higher resonances (n > 1) actually stem from the 
fact that a sinusoidal perturbation of a parameter causes a 
variation of the core radius which is not purely sinusoidal, 
but contains also higher Fourier components. Similar re- 
sults for drifting spirals as presented here were derived in 
the framework of the kinematic theory for the cases n= 1 
and n = 2.414’ 

6. Simulations of perturbed spirals 

Drift experiments in the CO oxidation on Pt( 110) 
were carried out on spirals with large core (low excitabil- 
ity) and a period of about 66 s by modulating the temper- 
ature by f 1 K.” (Almost) linear drift resulted with a 

perturbation period of 127 s. The drift velocity (about 0.35 
pm s-‘) was roughly one-third of the plane wave velocity 
(0.9 pm s-l). 

For the simulations we chose the parameters given for 
the excitable case (Sec. III A) with a higher value of b 
(0.19) to take the lower excitability into account. It should 
be noted here that although E was not changed the absolute 
values of the rates k, and k. are considerably smaller (by a 
factor of 4) than in Sec. III B, resulting in longer periods 
due to the resealing into physical quantities (see Sec. II). 
This parameter set results in a plane wave velocity of 0.9 
pm s-’ in physical units (D=7.OX low9 cm2 s-l). A vari- 
ation of the crystal temperature affects all parameters 
(a&), but its main effect is a change of the excitability 

FIG. 15. Dynamics of drifting spiral for (a=0.84, b=0.19, 6=0.025). Box size 125X 125 pm, time difference 22 s. Spiral period is 70 s, modulation 
period 155 s. The modulation amplitude is 5% in b. 
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FIG. 16. Comparison of tip trajectories for 1:l and 1:2 linear drift. The 
axis shows dimensionless space units (su) ( 1 su= 2.5 pm). Total time in 
both cases is 330 s. Two points are separated by 5.4 s. For parameters see 
Fig. 15. 

threshold b. Under the influence of a 5% modulation of b, 
the dynamics of the spiral become as shown in Fig. 15. 
Numerical computation of the tip curvature K vs b re- 
vealed a linear relationship to a very good approximation 
for not too large Ab, justifying the assumption made in Eq. 
(7) of Sec. IV A for this particular system. 

The spiral tip in the numerical simulations has been 
defined as the intersection of the u= l/2 contour with the 
w=a/2- b level. The tip trajectories resulting for the dif- 
ferent resonances differ characteristically from one an- 
other, since n loops are performed before a significant lat- 
eral motion along a line of small curvature results (see Fig. 
16 for the 1: 1 and 1:2 resonance). 

The drift velocity was found to increase linearly and 
quadratically with the perturbation amplitude Ab for small 
Ab in the 1:l and 1:2 resonant cases (Fig. 17), respectively. 
For larger amplitudes the curves flattened. Note that the 
experimental drift away velocity is reproduced with a large 
amplitude of 15%. 

In Sec. III A the interaction of spirals with surface 
defects was described. A pinned spiral can also be forced to 
“take off’ and drift with a sufficiently large perturbation. 

;j;,J f 
0.0 5.0 10.0 

-! 
15.0 

Ablb [%I 

FIG. 17. Drift velocity in dimensionless unit (vu) (1 vu=O.33 pm s-‘) 
dependence on the relative modulation amplitude of b in percent. Param- 
eters as in Fig. 15. 
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FIG. 18. (a) Pinning of linearly drifting spirals at a small ( 1 pm radius, 
dotted line) and large defect (12 pm radius); modulation amplitude 3%. 
Tip trajectories are shown. (b) Scattering of linearly drifting spiral (solid 
line) at defects of different radii [l pm (dashed); 1.7 pm (dot dashed); 
3.1 pm (dotted); 8.7 pm (long dashed)]. Spatial axis as in Fig. 16, 
parameters as in Fig. 15; modulation amplitude 5%. 

On the other hand, a drifting spiral may get pinned when 
running into a large enough defect [Fig. 18(a)]. If the 
defect is smaller the tip spends some time in its vicinity, but 
gets “depinned” by the modulation [Fig. 18 (b)]. This leads 
to a sharp change of the drift direction (depending on the 
defect size and the initial conditions, i.e., the phase of the 
spiral). Generally, the transition from pinning to scattering 
behavior of drifting spirals happens at a critical forcing 
amplitude for a given defect size (e.g., 5.3% for a defect 
radius of 6.2 pm). Similar results were obtained in the 
study of the interaction between drifting spirals and defects 
in spatially inhomogeneous media with a gradient of excit- 
ability.46 

V. DISCUSSION 

The reconstruction model of CO oxidation on Pt ( 110) 
has been simplified to a modified FitzHugh-Nagumo-type 
system. The crucial difference in standard models of excit- 
able mediaz6 is the delayed inhibitor production (cf. Fig. 
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2), giving rise to two additional (unstable) fixed points. 
This does not only lead to significant quantitative differ- 
ences but also to qualitatively new behavior, namely a sec- 
ond meandering region and turbulence due to spiral 
breakup. 24 The delay in t h inhibitor production comes e 
into play because the structural phase transition of the 
Pt( 110) surface does not set in until the CO coverage 
reaches a threshold value of 0.2 ML. In equilibrium, the 
1 X 1 vs CO coverage [i.e., the nullcline ti=O from Eqs. 
( lc) and (3b), respectively] has actually been determined 
directly in experiment, both with low-energy electron dif- 
fraction (LEED) and scanning tunnel microscopy 
(STM).25*28 Thus no arbitrary assumption enters the 
model in this respect. 

It was shown that the behavior in the excitable regions 
stretches continuously into the bistable one (cf. Fig. 6). 
The latter was subdivided depending on the types of wave 
solutions, which are in complete qualitative agreement 
with experiment.” The CO oxidation on Pt( 110) is to our 
knowledge the first system in which double metastability 
(i.e., coexisting fronts, pulses, and spirals under bistable 
conditions) has been obtained both experimentally and in a 
realistic model. 

Achievement of quantitative agreement between exper- 
iment and theory causes some problems. The kinetics of 
the phase transition is certainly too complicated to be de- 
scribed by a simple Arrhenius term, but not known in 
sufficient detail from experiment. There is evidence that the 
microscopic mechanism of the phase transition may 
change with temperature. In addition, for not too high 
temperature, further structural changes (facetting) also in- 
fluencing oxygen adsorption come into play.47*48 Satisfying 
quantitative results have been obtained by treating the rate 
It, of the phase transition as an adjustable parameter 
(within certain bounds), the other parameters being 
known fairly accurately from experiment.13 

It was demonstrated that the coexistence of many spi- 
ral rotation periods for identical external parameters is al- 
most certainly due to pinning of the spiral to artificial 
cores, i.e., surface defects. Such defects are unavoidable in 
practice. They presumably consist of small patches which 
are rough on an atomic scale (e.g., because of an enhanced 
density of dislocations or steps) or a local accumulation of 
impurities, leading to kinetic parameters (e.g., sticking co- 
efficients) which differ from the values for a perfect Pt 
surface. Adjusting k, such as to match the experimental 
data, the size distribution of these defects could be esti- 
mated (roughly l-10 ,um, very few larger). One expects 
that even smaller defects are more likely to occur (as can 
be verified in STM studies, e.g., Ref. 49). However, defects 
smaller than the diffusion length (roughly 1 pm in the 
present system) do not have a significant impact on the 
pattern formation through reaction and diffusion, conse- 
quently they do not enter the considerations here. 

Under the influence of an external periodic perturba- 
tion, rigidly rotating spirals started to meander, both under 
excitable and doubly metastable conditions. A linear drift 
(modulated traveling wave43) resulted if and only if the 
perturbation period was an integer multiple of the spiral 

rotation period. The mentioned defects caused scattering 
or pinning of the drifting spirals, depending on their size. 

VI. CONCLUSIONS 

The CO oxidation on Pt ( 110) can be described by a 
simple two-variable model with delayed inhibitor produc- 
tion. The calculations of wave phenomena, in particular 
autonomous and periodically perturbed spirals, are in good 
qualitative and even quantitative agreement with experi- 
ment, both under conditions of excitability as well as dou- 
ble metastability. Surface defects play an important role for 
the spatiotemporal self-organization. 
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