FIBRATIONS OF SPHERES BY GREAT SPHERES OVER DIVISION ALGEBRAS AND THEIR DIFFERENTIABILITY

THEO GRUNDHÖFER \& HERMANN HÄHL

0. Introduction

Fibrations of $\mathrm{S}^{2 n-1}$ by great ($n-1$)-spheres arise in the theory of Blaschke manifolds; see Gluck-Warner-Yang [4], in particular §2, p. 1043. Their Theorem B, p. 1041, states that every differentiable fibration of this kind is topologically equivalent to the fibration of $\mathrm{S}^{2 n-1}$ determined by a division algebra. (This division algebra is obtained by a certain linearization process; see Yang [15], Gluck-Warner-Yang [4, §6, p. 1056] and [9, §3, 3.2]. Let us call it the "infinitesimal division algebra". It should be noted that in general it is neither associative nor alternative.)

Here we answer the natural question: When is the fibration of $\$^{2 n-1}$ by great ($n-1$)-spheres determined by a division algebra differentiable (as a locally trivial fiber bundle)? This turns out to be the case only for the classical Hopf fibrations, which are determined by the classical division algebras R, C, H or \mathbf{O} (see Theorem 1.3 below). This result contradicts Theorem 2 of Yang [15]; his proof contains a fallacy (see [9, 2.10]).

It is possible to construct examples of differentiable fibrations of $\mathbf{S}^{2 n-1}$ by great ($n-1$)-spheres for which the infinitesimal division algebras are not classical; this shows that the approach of Gluck-Warner-Yang [4] is really only topological (as they point out in Remark 1, p. 1075, without further explanation), and it invalidates Theorem 4 of Yang [15].

However, we still conjecture that every differentiable fibration of $\mathbf{S}^{2 n-1}$ by great ($n-1$)-spheres is differentiably equivalent to the classical Hopf fibration of the same dimension. For $n=1,2$ this is more or less trivially true; for $n=4$, it has been proved in [9]. For the remaining case $n=8$, the problem seems to be open.

[^0]The topic of this paper is connected with the theory of topological projective planes; see $\S 2$ below and $[9, \S \S 1,2]$.

1. Fibrations determined by division algebras

1.1. Division algebras. A (real) division algebra D of finite dimension n is a real vector space $D=\mathbf{R}^{n}$ equipped with a bilinear multiplication $(x, y) \mapsto x \cdot y: D^{2} \rightarrow D$ which satisfies
(i) every left multiplication map

$$
\lambda_{a}: D \rightarrow D: x \mapsto a \cdot x
$$

with $0 \neq a \in D$ is invertible, i.e., $\lambda_{a} \in \mathrm{GL}_{n} \mathbf{R}$.
(ii) there is a "unit element" $1 \in D$ with $1 \cdot x=x=x \cdot 1$ for every $x \in D$.

Note that the multiplication is not required to be associative or alternative.

As a consequence of (i), every nonzero right multiplication map

$$
\rho_{a}: D \rightarrow D: x \mapsto x \cdot a
$$

is invertible as well. We denote the inverse operations by

$$
a \backslash b=\lambda_{a}^{-1}(b) \text { and } b / a=\rho_{a}^{-1}(b)
$$

for $a, b \in D$ with $a \neq 0$; in other words, $a \backslash b$ (resp. b / a) is the unique solution x of the equation $a \cdot x=b$ (resp. $x \cdot a=b$).

The classical examples are, of course, $\mathbf{R}, \mathbf{C}, \mathbf{H}$ (the quaternions) and \mathbb{O} (the octonions). But besides these there is a plethora of other real division algebras. For just a few families of examples, cf. Yang [15], [6], [8, 2.6, §3], [7, §4, p. 214]; the latter examples are also found in Benkart-Osborn [1]. See also the references in [5, 7.2].
1.2. Fibrations determined by division algebras. Let D be a real division algebra of dimension n. Define n-dimensional subspaces of $D \oplus D=\mathbf{R}^{2 n}$ as follows:

$$
U_{a}=\{(x, a \cdot x) \mid x \in D\} \quad \text { for } a \in D, \quad U_{\infty}=\{0\} \times D .
$$

Then the intersections $U_{a} \cap \mathbf{S}^{2 n-1}$ for $a \in D \cup\{\infty\}$ are the fibers of a fibration π of the unit sphere $\mathbf{S}^{2 n-1}$ of $\mathbf{R}^{2 n}$ into great ($n-1$)-spheres (we deviate slightly from Yang [15, Theorem 2, p. 580] by interchanging the first and second coordinates). The classical division algebras $\mathbf{R}, \mathbf{C}, \mathbf{H}$ and O lead to the Hopf fibrations.

The fibration π obtained in this way from any division algebra D is always a topological locally trivial fiber bundle (see the proof of Proposition 2.5 in [9]). Here we are concerned with the question: When is π a differentiable fiber bundle? Theorem 2 of Yang [15] asserts that this is always the case. This assertion is drastically refuted by Theorem 1.3 below (for the fallacy in Yang's proof see [9, 2.10]), which means that from the multitude of finite-dimensional real division algebras, a differentiable fiber bundle is obtained only in the classical cases:
1.3. Theorem. The fibration π determined by a real division algebra D of finite dimension is a differentiable locally trivial fiber bundle if and only if D is isomorphic to $\mathbf{R}, \mathrm{C}, \mathrm{H}$ or \mathbf{O}.

Proof. The Hopf fibrations are known to be differentiable locally trivial fiber bundles. Conversely, assume π to be differentiable. We use the differentiability criterion given in [9,2.5] for arbitrary fibrations of $\mathbf{S}^{2 n-1}$ by great ($n-1$)-spheres (not necessarily determined by division algebras). It states that the map

$$
\gamma: D \times(D \backslash\{0\}) \rightarrow \operatorname{End}_{\mathbf{R}}(D):(x, y) \mapsto \begin{cases}\lambda_{y / x}^{-1} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

must be differentiable (even at $x=0$). In particular, for every fixed vector $v \neq 0$ the map

$$
\gamma_{v}: D \rightarrow \operatorname{End}_{\mathbf{R}}(D): x \mapsto \begin{cases}\lambda_{v / x}^{-1} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

is differentiable, with differential $d_{0} \bar{\gamma}_{v}$ at $x=0$. For $t \in \mathbf{R} \backslash\{0\}$ and $v, x \in D$ with $x \neq 0$, bilinearity of the multiplication implies $v /(t x)=t^{-1}(v / x)$, hence $\lambda_{v /(t x)}=t^{-1} \lambda_{v / x}$ and $\lambda_{v /(t x)}^{-1}=t \lambda_{v / x}^{-1}$. This yields

$$
\begin{aligned}
d_{0} \bar{\gamma}_{v}(x) & =\left.\frac{d}{d t} \bar{\gamma}_{v}(t x)\right|_{t=0}=\left.\frac{d}{d t} \lambda_{v /(t x)}^{-1}\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(t \lambda_{v / x}^{-1}\right)\right|_{t=0}=\lambda_{v / x}^{-1}=\bar{\gamma}_{v}(x)
\end{aligned}
$$

Thus $\bar{\gamma}_{v}$ is linear, by the linearity of a differential, and

$$
x \mapsto \bar{\gamma}_{v}(x)(z)= \begin{cases}(v / x) \backslash z & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

is a linear endomorphism of $D=\mathbf{R}^{n}$ for every $z \in D$. In other words we have obtained the identity

$$
\left(v /\left(x+x^{\prime}\right)\right) \backslash z=(v / x) \backslash z+\left(v / x^{\prime}\right) \backslash z,
$$

which holds for $v, x, x^{\prime}, z \in D$ with $v, x, x^{\prime}, x+x^{\prime}$ all distinct from zero. Now the proof is completed by the following lemma, which requires only the special case $x^{\prime}=1, v=x+1=(1+1 / x) \cdot x$ (and hence $\left.v / x=1+1 / x\right)$ of the identity above.
1.4. Lemma. Let D be a real finite-dimensional division algebra which satisfies the identity

$$
z=(1+1 / x) \backslash z+(x+1) \backslash z
$$

for $x, z \in D, x \neq 0,-1$. Then D is isomorphic to $\mathbf{R}, \mathbb{C}, \mathbf{H}$ or 0 .
Proof. Replacing z by $(x+1) \cdot z$ gives

$$
x \cdot z+z=(x+1) \cdot z=(1+1 / x) \backslash(x \cdot z+z)+z,
$$

hence $x \cdot z=(1+1 / x) \backslash(x \cdot z+z)$, which is equivalent to $(1+1 / x) \cdot(x \cdot z)=$ $x \cdot z+z$. This yields $(1 / x) \cdot(x \cdot z)=z$, i.e., D has the left inverse property (cf. Hughes-Piper [10, p. 135] or Pickert [12, p. 106]; note that the special case $x \cdot z=1$ shows $1 / x=x \backslash 1$). By a result of Skornyakov-San Soucie (see Hughes-Piper [10, Theorem 6.16, p. 140] or Pickert [12, 6.16, p. 182]), D is an alternative division algebra, hence isomorphic to $\mathrm{R}, \mathrm{C}, \mathrm{H}$, or O by well-known theorems of Frobenius (cf. Palais [11] or Ebbinghaus et al. [3, p. 161]) and Zorn [16] (cf. also Ebbinghaus et al. [3, p. 178] or Pickert [12, p. 177]).

2. Differentiable projective planes over division algebras

2.1. A differentiable projective plane is a projective plane whose point set P and line set \mathscr{L} are endowed with the structure of a differentiable manifold of positive dimension such that the points on a fixed line and dually the pencil of lines through a fixed point form submanifolds and such that the operations \vee and \wedge of joining distinct points and intersecting distinct lines are differentiable; cf. Breitsprecher [2]. We shall consider lines as subsets of the point set (by identification with the set of incident points).

It is a conjecture of Betten that the four classical planes over $\mathbf{R}, \mathrm{C}, \mathrm{H}, \mathrm{O}$ are the only differentiable projective planes; here we establish a special case of this conjecture.
2.2. Theorem. The only differentiable projective planes which are translation planes as well as dual translation planes are the classical projective planes over $\mathbf{R}, \mathbb{C}, \mathbf{H}$ and \mathbf{O}.
2.3. Explanations. A projective plane is called a translation plane if there is a line L such that the group of all translations with axis L acts
transitively on the points not on L; the line L is then called a "translation line". The dual condition, i.e., the existence of a "translation point", characterizes the dual translation planes. The projective planes which are translation planes as well as dual translation planes are known as the planes of Lenz-type (at least) V (cf. Pickert [12, 3.14, p. 70]); these are precisely the planes which can be coordinatized by (nonassociative) division rings; see below.

Proof of Theorem 2.2. Let L be a translation line. If some point not on L is a translation point, then every point is a translation point; cf. Hughes-Piper [10, Theorem 4.20, p. 101]. Hence we may assume that we have a translation point v on L. We pick points o, u, e such that o, u, v, e form a nondegenerate quadrangle with $L=u \vee v$, and we put

$$
w=(o \vee e) \wedge L
$$

Coordinatization of the plane with respect to o, u, v, e amounts to the following: On $D:=(o \vee e) \backslash\{w\}$ we define an addition and a multiplication by

$$
\left.\begin{array}{rl}
x+y & :=((x u \wedge o v) w \wedge y v) u \wedge o e, \\
x \cdot y & :=((x u \wedge e v) o \wedge y v) u
\end{array}\right) o o,
$$

for $x, y \in D$; here we have used the abbreviation $x u=x \vee u$ for the line joining x and u. Then ($D,+$,) is a (nonassociative) division ring, or, in other terminology, a semifield; see Hughes-Piper [10, Theorem 6.9, p. 134] or Pickert [12, 3.3.8 and 3.3.9, p. 101] or Stevenson [14, 13.2.1, p. 372]. In particular, $(D,+)$ is an abelian group, and for $a \in D \backslash\{0\}$ the left and right multiplication maps $\lambda_{a}=(x \mapsto a \cdot x)$ and $\rho_{a}=(x \mapsto x \cdot a)$ are automorphisms of ($D,+$) (this expresses the distributivity and divisibility properties of the multiplication).

Differentiability of join and intersection implies that the algebraic operations of D and their inverses are differentiable. In particular, $(D,+)$ is an abelian Lie group, and $(D,+) \cong\left(\mathbf{R}^{n},+\right)$ for some natural number n (cf. also Salzmann [13, 7.23]) since the left multiplications λ_{a} with $0 \neq a \in D$ form a transitive set of automorphisms. By continuity, the automorphisms λ_{a} and ρ_{a} are \mathbf{R}-linear, and the multiplication is \mathbf{R}-bilinear. Hence D is a real division algebra as defined in 1.1.

The point set A of the affine plane with L as the line at infinity is identified with $D \oplus D=\mathbf{R}^{2 n}$ by mapping a point p not on L onto the pair ($p v \wedge o e, p u \wedge o e$). The lines of the affine plane are then just the subspaces $U_{a}, a \in D \cup\{\infty\}$, as in 1.2 together with their cosets in $D \oplus D=\mathbf{R}^{2 n}$.

From this point on we indicate two ways to prove Theorem 2.2. The first one involves the fibration determined by D. The map

$$
\pi: A \backslash\{o\} \rightarrow L: p \mapsto p o \wedge L
$$

is the projection map of a differentiable fiber bundle whose fibers are the subsets $U_{a} \backslash\{0\} \cong D \backslash\{0\} \cong \mathbf{R}^{n} \backslash\{0\}$ for $a \in D \cup\{\infty\}$; local trivializations are given by

$$
\begin{aligned}
A \backslash U_{0} & \rightarrow(L \backslash\{u\}) \times(D \backslash\{0\}) \\
p & \mapsto(p o \wedge L, p u \wedge o e)
\end{aligned}
$$

and

$$
\begin{aligned}
A \backslash U_{\infty} & \rightarrow(L \backslash\{v\}) \times(D \backslash\{0\}) \\
p & \mapsto(p o \wedge L, p v \wedge o e) .
\end{aligned}
$$

In our coordinates, with A identified with $D \oplus D$, these trivializations are just the maps $(x, y) \mapsto(\pi(x, y), y)$ and $(x, y) \mapsto(\pi(x, y), x)$.

We now consider the restriction of π to the unit sphere $\mathbf{S}^{2 n-1}$ of $A=\mathbf{R}^{2 n}$, i.e., the map

$$
\pi: \mathbf{S}^{2 n-1} \rightarrow L: p \mapsto p o \wedge L .
$$

The fibers of this restriction are the subsets $U_{a} \cap S^{2 n-1} \cong S^{n-1}$; thus we get precisely the fibration of $\mathbf{S}^{2 n-1}$ determined by the division algebra D according to 1.2. Local trivializations for this restriction are obtained by appending the radial projection of $D \backslash\{0\} \cong \mathbf{R}^{n} \backslash\{0\}$ onto \mathbf{S}^{n-1} to the local trivializations above, so we still have a differentiable fiber bundle. Therefore the assertion of Theorem 2.2 follows from Theorem 1.3.
(We remark that the trivializations in Yang [15, Theorem 2] can be obtained as an algebraic transcription of these simple geometric ideas; see [9, 2.9].)

The second (more direct) approach is based on the following geometric calculation using our identification of the affine plane with $D \oplus D$: for $x, y, z \in D$ with $y \neq 0$ we have

$$
((x, y) \vee(0,0)) \wedge((0, z) \vee u)=U_{y / x} \wedge(D \times\{z\})=\left(\lambda_{y / x}^{-1}(z), z\right)
$$

if $x \neq 0$, and

$$
((0, y) \vee(0,0)) \wedge((0, z) \vee u)=U_{\infty} \wedge(D \times\{z\})=(0, z) .
$$

Hence differentiability of join and intersection implies that the map $\bar{\gamma}$ in the proof of Theorem 1.3 is differentiable, and we can proceed as in that proof.

References

[1] G. M. Benkart \& J. M. Osborn, An investigation of real division algebras using derivations, Pacific J. Math. 96 (1981) 265-300.
[2] S. Breitsprecher, Projektive Ebenen, die Mannigfaltigkeiten sind, Math. Z. 121 (1971) 157-174.
[3] H.-D. Ebbinghaus et al., Zahlen, Springer, Berlin, 1983.
[4] H. Gluck, F. W. Warner \& C. T. Yang, Division algebras, fibrations of spheres by great spheres and the topological determination of space by the gross behavior of its geodesics, Duke Math. J. 50 (1983) 1041-1076.
[5] T. Grundhöfer \& H. Salzmann, Locally compact double loops and ternary fields, Quasigroups and Loops-Theory and Applications, Chapter XI (O. Chein, H. Pflugfelder and J. H. D. Smith, eds.), Heldermann, Berlin, to appear.
[6] H. Hähl, Geometrisch homogene vierdimensionale reelle Divisionsalgebren, Geometriae Dedicata 4 (1975) 333-361.
[7] __, Automorphismengruppen achtdimensionaler lokalkompakter Quasikörper, Math. Z. 149 (1976) 203-225.
[8] __, Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17-dimensionaler Kollineationsgruppe, Geometriae Dedicata 21 (1986) 299-340.
[9]__, Differentiable fibrations of the $(2 n-1)$-sphere by great $(n-1)$-spheres and their coordinatization over quasifields, Resultate Math. 12 (1987) 99-118.
[10] D. R. Hughes \& F. C. Piper, Projective planes, Graduate Texts in Math., No. 6, Springer, Berlin, 1973.
[11] R. S. Palais, The classification of real division algebras, Amer. Math. Monthly 75 (1968) 366-368.
[12] G. Pickert, Projektive Ebenen, 2nd ed., Grundlehren Band 80, Springer, Berlin, 1975.
[13] H. Salzmann, Topological planes, Advances in Math. 2 (1967) 1-60.
[14] F. W. Stevenson, Projective planes, Freeman, San Francisco, 1972.
[15] C. T. Yang, Division algebras and fibrations of spheres by great spheres, J. Differential Geometry 16 (1981) 577-593.
[16] M. Zorn, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. Hamburg 9 (1933) 395-402.

University of Tübingen
University of Kiel

[^0]: Received April 25, 1988.

