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FIBRATIONS OF SPHERES BY GREAT SPHERES 
OVER DIVISION ALGEBRAS 

AND THEIR DIFFERENTIABILITY 

THEO GRUNDHOFER & HERMANN HAHL 

o. Introduction 

Fibrations of s2n-1 by great (n -1 )-spheres arise in the theory of Blaschke 
manifolds; see Gluck-Warner-Yang [4], in particular §2, p. 1043. Their 
Theorem B, p. 1041, states that every differentiable fibration of this kind 
is topologically equivalent to the fibration of s2n-1 determined by a divi
sion algebra. (This division algebra is obtained by a certain Iinearization 
process; see Yang [15], Gluck-Warner-Yang [4, §6, p. 1056] and [9, §3, 
3.2]. Let us call it the "infinitesimal division algebra". It should be noted 
that in general it is neither associative nor alternative.) 

Here we answer the natural question: When is the fibration of s2n-1 

by great (n - 1 )-spheres determined by a division algebra differentiable (as 
a locally trivial fiber bundle)? This turns out to be the case only for the 
classical Hopf fibrations, which are determined by the classical division 
algebras R, C, H or 0 (see Theorem 1.3 below). This result contradicts 
Theorem 2 of Yang [15]; his proof contains a fallacy (see [9, 2.10]). 

It is possible to construct examples of differentiable fibrations of s2n-1 

by great (n - 1 )-spheres for which the infinitesimal division algebras are 
not classical; this shows that the approach of Gluck-Warner-Yang [4] is 
really only topological (as they point out in Remark 1, p. 1075, without 
further explanation), and it invalidates Theorem 4 of Yang [15]. 

However, we still conjecture that every differentiable fibration of s2n-1 

by great (n - 1 )-spheres is differentiably equivalent to the classical Hopf 
fibration of the same dimension. For n = 1,2 this is more or less trivially 
true; for n = 4, it has been proved in [9]. For the remaining case n = 8, 
the problem seems to be open. 
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The topic of this paper is connected with the theory of topological pro
jective planes; see §2 below and [9, §§1, 2]. 

1. Fibrations determined by division algebras 

1.1. Division algebras. A (real) division algebra D of finite dimension 
n is a real vector space D = R/I equipped with a bilinear multiplication 
(x,y) t-+ X· y: Dl -+ D which satisfies 

(i) every left mUltiplication map 

A.a: D -+ D: x t-+ a· x 

with 0 ::/; a E D is invertible, i.e., Aa E GL/I R. 
(ii) there is a "unit element" 1 E D with 1 . x = x = x . 1 for every 

xED. 
Note that the mUltiplication is not required to be associative or alterna

tive. 
As a consequence of (i), every nonzero right multiplication map 

Pa: D -+ D: x t-+ x . a 

is invertible as well. We denote the inverse operations by 

a\b = A;I(b) and bja = p;l(b) 

for a,b E D with a ::/; 0; in other words, a\b (resp. bja) is the unique 
solution x of the equation a· x = b (resp. X· a = b). 

The classical examples are, of course, R, C, H (the quaternions) and 0 
(the octonions). But besides these there is a plethora of other real division 
algebras. For just a few families of examples, cf. Yang [15], [6], [8, 2.6, 
§3), [7, §4, p. 214]; the latter examples are also found in Benkart-Osborn 
[1]. See also the references in [5, 7.2]. 

1.2. Fibrations determined by division algebras. Let D be a real division 
algebra of dimension n. Define n-dimensional subspaces of D EB D = R2n 

as follows: 

Ua = {(x, a· x) I x E D} for a E D, Uoo = {O} x D. 

Then the intersections Ua n 52/1-1 for a E D U {oo} are the fibers of a 
fibration Tt of the unit sphere 52/1-1 of R2/1 into great (n - I )-spheres (we 
deviate slightly from Yang [15, Theorem 2, p. 580] by interchanging the 
first and second coordinates). The classical division algebras R, C, Hand 
o lead to the Hopf fibrations. 
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The fibration 1C obtained in this way from any division algebra D is 
always a topological locally trivial fiber bundle (see the proof of Propo
sition 2.5 in [9]). Here we are concerned with the question: When is 1C 

a differentiable fib er bundle? Theorem 2 of Yang [15] asserts that this is 
always the case. This assertion is drastically refuted by Theorem 1.3 below 
(for the fallacy in Yang's proof see [9, 2.10]), which means that from the 
multitude of finite-dimensional real division algebras, a differentiable fiber 
bundle is obtained only in the classical cases: 

1.3. Theorem. The fibration 1C determined by a real division algebra D 
of finite dimension is a differentiable locally trivial fiber bundle if and only 
if D is isomorphic to R, C, H or o. 

Proof The Hopf fibrations are known to be differentiable locally triv
ial fiber bundles. Conversely, assume 1C to be differentiable. We use the 
differentiability criterion given in [9, 2.5] for arbitrary fibrations of s2n-1 

by great (n - I)-spheres (not necessarily determined by division algebras). 
It states that the map 

{ 
r I for x f:. 0, 

y: D x (D\{O}) -+ EndR(D): (x,y) 1-+ Ylx 
o for x = 0 

must be differentiable (even at x = 0). In particular, for every fixed vector 
v f:. 0 the map 

{ A~I for x f:. 0, 
yv: D -+ EndR(D): x 1-+ t Ix 

o for x = 0 

is differentiable, with differential doYv at x = O. For t E R\ {O} and v, x E D 
with x f:. 0, bilinearity of the multiplication implies v/(tx) = t-I(V/X), 
hence At/I(tx) = t- I Avlx and A~>\IX) = tA;;k This yields 

dId -I I doYv(x) = dtYv(tx) 1=0 = d/v/(/X) 1=0 

= : (tA;;/~)1 = A;;/~ = Ytl(X). 
t 1=0 

Thus Ytl is linear, by the linearity of a differential, and 

{ 
(v/x)\z for x f:. 0, 

X 1-+ Yv(x)(z) = o for x = 0 

is a linear endomorphism of D = Rn for every zED. In other words we 
have obtained the identity 

(v/(x + x'))\z = (v/x)\z + (v/x')\z, 
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which holds for v,x,x' , zED with v,x,x',x + x' all distinct from zero. 
Now the proof is completed by the following lemma, which requires only 
the special case x' = 1, v = x+ 1 = (1 + l/x)·x (and hence v/x = 1 + l/x) 
of the identity above. 

1.4. Lemma. Let D be a real finite-dimensional division algebra which 
satisfies the identity 

Z = (1 + l/x)\z + (x + 1)\z 

for x, ZED. x :f:. O. -1. Then D is isomorphic to R. C. H or O. 
Proof. Replacing Z by (x + 1) . Z gives 

X· Z + Z = (x + 1) . Z = (1 + l/x)\(x· Z + z) + z, 

hence X· Z = (1 + l/x)\(x· Z+ z), which is equivalent to (1 + l/x)' (x· z) = 
x· z + z. This yields (l/x)· (x· z) = z, i.e., D has the left inverse property 
(cf. Hughes-Piper [10, p. 135] or Pickert [12, p. 106]; note that the special 
case x . z = 1 shows l/x = x\I). Bya result of Skornyakov-San Soucie 
(see Hughes-Piper [10, Theorem 6.16, p. 140] or Pickert [12,6.16, p. 182]), 
D is an alternative division algebra, hence isomorphic to R, C, H, or 0 by 
well-known theorems of Frobenius (cf. Palais [11] or Ebbinghaus et al. [3, 
p. 161]) and Zorn [16] (cf. also Ebbinghaus et al. [3, p. 178] or Pickert 
[12, p. 177]). 

2. Differentiable projective planes over division algebras 

2.1. A differentiable projective plane is a projective plane whose point 
set P and line set .!if' are endowed with the structure of a differentiable 
manifold of positive dimension such that the points on a fixed line and 
dually the pencil oflines through a fixed point form submanifolds and such 
that the operations V and 1\ of joining distinct points and intersecting 
distinct lines are differentiable; cf. Breitsprecher [2]. We shall consider 
lines as subsets of the point set (by identification with the set of incident 
points). 

It is a conjecture of Betten that the four classical planes over R, C, H, 0 
are the only differentiable projective planes; here we establish a special 
case of this conjecture. 

2.2. Theorem. The only differentiable projective planes which are trans
lation planes as well as dual translation planes are the classical projective 
planes over R, C, Hand O. 

2.3. Explanations. A projective plane is called a translation plane if 
there is a line L such that the group of all translations with axis L acts 
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transitively on the points not on L; the line L is then called a "transla
tion line". The dual condition, i.e., the existence of a "translation point", 
characterizes the dual translation planes. The projective planes which are 
translation planes as well as dual translation planes are known as the planes 
of Lenz-type (at least) V (cf. Pickert [12,3.14, p. 70]); these are precisely 
the planes which can be coordinatized by (nonassociative) division rings; 
see below. 

Proof of Theorem 2.2. Let L be a translation line. If some point not 
on L is a translation point, then every point is a translation point; cf. 
Hughes-Piper [10, Theorem 4.20, p. 101]. Hence we may assume that we 
have a translation point v on L. We pick points 0, U, e such that 0, U, v, e 
form a nondegenerate quadrangle with L = U V v, and we put 

w=(ove)A.L. 

Coordinatization of the plane with respect to 0, U, v, e amounts to the fol
lowing: On D := (0 V e)\{w} we define an addition and a multiplication 
by 

x + Y := ((xu A. ov)w A. yv)u A. oe, 

x· y := ((xu A. ev)o A.yv)u A. oe, 

for X,Y E D; here we have used the abbreviation xu = x V u for the line 
joining x and u. Then (D, +,.) is a (nonassociative) division ring, or, in 
other terminology, a semifield; see Hughes-Piper [10, Theorem 6.9, p. 134] 
or Pickert [12,3.3.8 and 3.3.9, p. 101] or Stevenson [14, 13.2.1, p. 372]. 
In particular, (D, +) is an abelian group, and for a E D\ {O} the left and 
right multiplication maps Aa = (x 1-+ a . x) and Pa = (x 1-+ X . a) are 
automorphisms of (D, +) (this expresses the distributivity and divisibility 
properties of the multiplication). 

Differentiability of join and intersection implies that the algebraic op
erations of D and their inverses are differentiable. In particular, (D, +) is 
an abelian Lie group, and (D, +) == (Rn, +) for some natural number n (cf. 
also Salzmann [13, 7.23]) since the left multiplications A.a with 0 f: a E D 
form a transitive set of automorphisms. By continuity, the automorphisms 
Aa and Pa are R-linear, and the multiplication is R-bilinear. Hence D is a 
real division algebra as defined in 1.1. 

The point set A of the affine plane with L as the line at infinity is 
identified with D \17 D = R2n by mapping a point p not on L onto the pair 
(pv A. oe, p U A. oe). The lines of the affine plane are then just the subspaees 
Va, a E Du {oo}, as in 1.2 together with their eosets in D ffi D = R2n. 
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From this point on we indicate two ways to prove Theorem 2.2. The 
first one involves the fibration determined by D. The map 

1C: A\{o} ~ L: p f-+ po A L 

is the projection map of a differentiable fiber bundle whose fibers are the 
subsets Ua\{O} ~ D\{O} 2: Rn\{O} for a E Du fool; local trivializations 
are given by 

and 

A\Uo -+ (L\{u}) x (D\{O}) 

p f-+ (po A L,pu A oe) 

A\Uoo ~ (L\{v}) x (D\{O}) 

p f-+ (po A L,pv A oe). 

In our coordinates, with A identified with D Efl D, these trivializations are 
just the maps (x,y) f-+ (1C(X,Y),Y) and (x,y) f-+ (1C(X,y),x). 

We now consider the restriction of 1t to the unit sphere s2n-1 of A = R2n, 
i.e., the map 

1t: s2n-l --+ L: p f-+ po A L. 

The fibers of this restriction are the subsets Ua n s2n-l 2: sn-l; thus we 
get precisely the fibration of s2n-l determined by the division algebra D 
according to 1.2. Local trivializations for this restriction are obtained 
by appending the radial projection of D\{O} 2: Rn\{o} onto sn-l to the 
local trivializations above, so we still have a differentiable fiber bundle. 
Therefore the assertion of Theorem 2.2 follows from Theorem l.3. 

(We remark that the trivializations in Yang [15, Theorem 2] can be 
obtained as an algebraic transcription of these simple geometric ideas; see 
(9, 2.9].) 

The second (more direct) approach is based on the following geometric 
calculation using our identification of the affine plane with D Efl D: for 
x,y, zED with V -# ° we have 

«x,y) v (0,0)) A «0, z) V u) = Uy/x A (D x {z}) = (A;/~(Z), z) 

if x -# 0, and 

«O,y) v (0,0)) A «0, z) V u) = Uoo A (D x {z}) = (0, z). 

Hence differentiability of join and intersection implies that the map ji in 
the proof of Theorem 1.3 is differentiable, and we can proceed as in that 
proof. 
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