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Abstract 

Thin films of tantalum pentoxide (Ta,O,) were prepared on Si/SiOz 
substrates by thermal oxidation of tantalum. In systematic oxidation studies 
we followed the growth of the Ta205/Si02 interface. The oxide layers and 
their interfaces were characterized by SIMS, SAM, XPS, by comparative C-V 
measurements and by pH-(ISFET) sensitivities. 

Depending on the oxidation procedure, we find non-ideal stoichiom- 
etries of the Taz05/Si02 interface, whose widths vary as a function of the 
oxidation time of the previously evaporated metallic tantalum. 

Specific annealing procedures lead to unexpectedly high leakage 
currents, which correlate with the formation of voids in the oxide layers. 
Even in the absence of voids, non-ideal interfaces provide high concentra- 
tions of electrically-active states in gate oxides of ISFETs, which in turn 
determine the results of C-V measurements and ISFET characteristics. For 
ideal stoichiometric and atomically abrupt interfaces, we observe long-term 
stability and ideal Nernstian behaviour in the pH-(ISFET) sensitivities. 

Introduction 

The growth mechanism of Ta oxides on SiOz in the submonolayer and 
monolayer range gives evidence for the formation of a reactive ,TaO,/SiO, 
(y < 2.5, x < 2) interface when a thermal oxidation process of metallic 
tantalum is chosen in the production of gate-oxide structures. Several oxida- 
tion states of Ta on SiOa have been observed during annealing between 600 
and 1200 IS in UHV [l]. In this paper we study the influence of the Ta 
oxidation procedure on the spectroscopic and electrical properties of Ta 
oxide/SiOz/Si structures. The layer thickness of the oxides was comparable 
to that used in ion-sensitive field-effect transistors (ISFETs). 
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Experimental 

Tantalum was electron-beam evaporated with a thickness of 53 nm 
onto p-doped silicon wafers Si(OO1) with a 46 nm thick SiOZ layer prepared 
by thermal oxidation. Depending on different oxidation times at ~(0,) = 
1000 mbar and temperatures between 800 and 850 K, we obtained samples 
with incompletely (t, = 10 min) and completely (t, = 20 min) oxidized 
tantalum layers. 

For comparative C-V measurements and for the pH-sensitivity measure- 
ments, separate test chips made by the same fabrication process with an 
additional gold or aluminium layer evaporated at the backside were used. To 
form ohmic contacts [ 2, 31, we annealed the chips for one hour at temper- 
atures between 700 and 800 K in an N2 atmosphere. 

X-ray photoelectron spectroscopy (XPS) was performed with a double 
anode set-up with Al Ka (1486.6 eV) and Mg Ka (1253.6 eV) radiation and 
a hemispherical energy analyser (Vacuum Science Workshop HA 150). 
Scanning electron microscopy (SEM), scanning Auger microscopy (SAM ), 
and Auger electron spectroscopy (AES) were performed in a Perkin-Elmer 
PHI-600 system. For secondary-ion mass spectrometry (SIMS) of the layer 
structures, we used an Atomika Telefocus ion gun and a Balzers QMG 420 
quadrupole mass spectrometer. Spectra were usually taken with 02+ or Ar+ 
primary ions at 10 keV and 45 degrees incidence. For details of the exper- 
imental set-up, see ref. 4. 

C-V measurements were performed with variable frequencies in a 
computer-controlled set-up, consisting of a highly stable voltage ramp, 
Keithley 619 and 610 B electrometers, and an EG&G 5208 two-phase lock- 
in amplifier. For our studies we chose a frequency of 510 Hz. We used Ag/ 
AgCl as a reference electrode and a standard buffer (pH = 4.01) as an 
electrolyte. 

Results and discussion 

As typical examples, Figs. l(a) and (b) show two SIMS depth profiles 
of our Ta205/Si02/Si structures, which were prepared by incomplete (Fig. 
l(a)) and complete (Fig. l(b)) oxidation of the samples. Characteristic dif- 
ferences are the presence of the non-stoichiometric region Ta*O, with y < 5 
in the case of partial oxidation (Fig. l(a)) and of different widths of the 
tantalum oxide/silicon oxide interfaces, which are not ideal in the sense that 
there are no atomically-abrupt phase boundaries between stoichiometric 
Taz05 and SiO*. 

From the shape of the Ta+ and the Tao+ curves in Fig. l(a), we can dis- 
tinguish between the Ta20, and the non-stoichiometric Ta*O, region. The 
surface stoichiometry of the top oxide layer (Taz05) was determined in XPS 
by the binding energies of the Ta 4f core levels and the intensity ratio 
between the Ta 4f and 0 Is core levels. As shown in Fig. l(a), an increase is 
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Fig. 1. SIMS depth profile (10 keV, Oz+, 30 nA) of (a) an incompletely oxidized TazOS/ 
SiOz/Si sample, (b) a completely oxidized TazO5/SiOl/Si sample. 

observed for the masses 30 (Si’), 44 (SiO+), 181 (Ta’) and 197 (Tao+) 
between the non-stoichiometric region and the tantalum oxide/silicon oxide 
interface due to a sharp increase in oxygen concentration, and hence a higher 
ionization probability of the sputtered particles [5, 61. The following sharp 
decrease of all intensities results from a superposition of a charging effect 
and the real oxygen deficiency in this region [ 11. 

Even in the case of complete oxidation of the samples (Fig. l(b)), we 
find a broadened tantalum oxide/silicon oxide interface region, which is, 
however, smaller than that in Fig. l(a). The composition of this region 
results from a reaction between Ta and SiOZ during the preparation of the 
Ta/Si02/Si structures, which leads to a time- and temperature-dependent 
interdiffusion profile. 

These interface structures determine sensitively the experimental results 
of C-V measurements and ISFET characteristics in ‘aqueous solutions. 
Similar correlations were found earlier in phenomenological studies of the 
electrical properties of differently prepared tantalum oxide films on silicon 
or silicon-oxide [7 - lo]. The C-V plot in Fig. 2, curve a, indicates a 
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Fig. 2. C-V plot of an incompletely oxidized Taz05/SiOz/Si sample (curve a) and of a 
completely oxidized sample (curve b). 

distorted curve, which was found to be typical for partly oxidized layers. In 
this particular example, contributions from a lateral current flow in the 
conducting intermediate layers explain the distortions. The C-V in Fig. 
2, curve for a nearly ideal shape. 
The corresponding pH-sensitive 

[ 111, i.e., the slope in a plot of bias voltage 
uersus pH value is 59.3 mV/pH at 300 K. Typical results are given in Fig. 3. 
Non-ideal interfaces lead to non-Nemstian behaviour and drift effects. 

SEM pictures of some test chips show voids in the oxide layer with 
typical diameters of about lo4 nm (Fig. 4(a)). In SAM elemental maps of Ta 
(Fig. 4(b)) and Si (Fig. 4(c)), and in AES spectra taken inside the voids, we 
find that the oxide is removed completely here, and we observe the bare 
silicon substrate. These samples always show an extremely high leakage 
current in our C-V measurements. 

-‘9 2 3 4 5 6 7 n 
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Fig. 3. pH-Sensitivity of an ideally processed Ta205 system measured using the constant 
capacitance method. 
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Fig. 4. (a) SEM picture (f= 1650X) of a Ta205/Si02/Si’structure showing two voids (dark 
areas). (b) SAM elemental map of Ta (same sample region as in Fig. 4(a)); bright areas 
represent high Ta concentrations. (c) SAM elemental map of Si (same sample region as in 
Fig. 4(a)). 

In order to characterize the experimental conditions leading to the for- 
mation of voids, we annealed a Ta/SiOz/Si( 111) structure under UHV condi- 
tions. Voids with diameters of up to more than 3 X lo4 nm and with a higher 
density are found after heating for longer times (2 h) at higher temperatures 
(up to 1200 K) (Fig. 5). 

For SiOJSi structures, a void generation process that is initiated by the 
reaction 

SiOz + Si - 2 SiO,, 

and starts at defects located at the Si02/Si interface has been suggested [ 12 - 

161. Thermodynamic estimations for the gas transport of volatile silicon 
compounds, formed by the reaction 



Fig. 5. SEM picture (f = 112X) of a Ta/SiOz/Si structure after annealing. Several voids of 
identical diameter can be seen as dark areas. 

SiOz __f SiO + 102 
2 

indicate that sufficient mass transport of gaseous SiO is possible at elevated 
temperatures of about 1100 K or more [14,17]. The above-mentioned reac- 
tion is the only possible one that may occur under thermodynamically con- 
trolled conditions in the system Ta205/Si02/Si at high temperatures and low 
O2 partial pressures and that takes into account all stable compounds of 
tantalum, silicon and oxygen. 

Summary 

Tantalum oxide gates of pH-sensitive devices may be prepared by 
thermal oxidation of evaporated Ta. If oxidation of the tantalum oxide layer 
is complete and if long annealing processes at 2’ > 1100 K are omitted, we 
obtain ideal C-VIISFET behaviour. 
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