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Abstract. A detailed model structure of dodecagonal quasicrystals is proposed 
which applies to both dodecagonal Ni-Cr and V-Ni or V-Si-Ni . This model struc­
ture can be represented as the restriction of a 5d periodic structure to a 3d sub­
space, which is identified with physical space. The point group and the space 
group of the 5d periodic structure are determined. The latter is non-symmorphic, 
containing a set of glide "planes" and a screw axis . These space group elements 
lead to characteristic extinctions in the Fourier spectrum, which should be exper­
imentally observable. A numeric calculation, which includes multiple scattering 
effects for electron diffraction, confirms the presence of the extinctions predicted 
by the space group analysis. The model structure proposed here serves as a very 
instructive example how crystallographic concepts, such as Bravais type, point 
group, or space group, can be applied to quasicrystals. 

1. INTRODUCTION 

The detailed atomic structure of quasicrystals is to a large extent still an unsolved 
problem. Here we present such a model structure with detailed atomic positions 
for the case of dodecagonal quasicrystalsl - 3). Dodecagonal quasicrystals have 
first been observed by Ishimasa, Nissen and Fukanol ,2) in small particles of Ni-Cr 
produced by the so-called gas evaporation technique. Under electron diffraction, 
this new phase produces a crystallographically forbidden twelvefold symmetric 
diffraction pattern. The dodecagonal phase always coexists with the crystallo­
graphic u-phase, to which it must be closely related. This can be deduced from the 
fact that the corresponding high resolution electron micrographs (HREMs) look 
very similar. This will enable us to derive a model structure for the dodecagonal 
phase directly from the structure of the u-phase. More recently, the same phase 
had also been observed in V-Ni and V-Si-Ni alloys by Chen et aI.3

). Their spec­
imens are prepared by the conventional piston-and-anvil technique. This allows 

·present address 
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in particular to observe also diffraction patterns with incoming beam perpendic­
ular to the twelvefold axis. These diffraction patterns show that the dodecagonal 
phase is periodic along the z-axis . In the case of the small particles of Ni-er it 
was not possible to take such pictures because of the multi-phase character of the 
particles . 

The close resemblance of the HREMs of the dodecagonal and the IT-phase will 
be the starting point in the derivation of a model structure of the dodecagonal 
phase. These HREMsl - 3) show bright spots which form the vertices of a tiling. 
In the case of the IT-phase, the tiling is the (periodic) semi-regular tesselation 
with Schliifli symbol (32 ·4·3 . 4), consisting of equilateral triangles and squares 
only. In the dodecagonal case however, the tiling consists of the same triangles 
and squares, together with some additional 30°-rhombuses. Moreover, the local 
con1igurations in the dodecagonal tiling look very similar to those of the IT-phase 
tiling. Therefore, it is very tempting to identify the triangles and squares in the 
dodecagonal tiling with the corresponding building blocks of the IT-phase, which 
are triangular and square prisms respectively. Since the 30° -rhombus is rather 
thin, its decoration is then also fixed whenever it is isolated, which is practically 
always the case. Following the tiling, with these three building blocks we can 
then construct a layer which we stack periodically to obtain a model structure for 
dodecagonal q uasicrys tals. 

In a first step, with the help of the projection method we construct quasiperi­
odic tilings with dodecagonal symmetry. This is achieved by projecting from the 
4d dodecagonal lattice~) with a suitably constructed acceptance domain. This 
projection method provides us with an analytical description of one layer of the 
model structure. We will be concerned mainly with one of these tilings, which 
resembles as closely as possible the experimentally observed HREMs. More de­
tails about other tilings which might be relevant for dodecagonal quasicrystals 
will be published elsewhere5 ). In a next step, we construct a 5d periodic structure 
such that the restriction of this periodic structure to a suitably embedded 3d sub­
space (physical space) yields the desired model structure. The Fourier spectrum 
of the model structure is then the projection to 3d physical reciprocal space of 
the Fourier spectrum of the 5d periodic structure. 

The construction of the 5d periodic structure makes manifest that it is invariant 
under a certain non-symmorphic space group, which is one of the 132 space groups 
for quasicrystals6 ) which can be obtained from 5d periodic structures. In fact, this 
space group contains a screw axis and a set of glide "planes". These symmetry 
elements lead to characteristic extinctions in the Fourier spectrum, which should 
be experimentally observable. Finally, we calculate electron diffraction patterns 
of the model structure for various directions of the incoming beam, and compare 
them to the experimentally observed ones, as far as they are available. It turns 
out that it is not sufficient to just calcula: '! the Fourier transform of the model 
structure, which would lead to a very poor fit. Rather, since electrons are scattered 
very strongly by the coulomb potential, we have to include multiple scattering 
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effects. Including these effects, we obtain a very nice fit with the experimental 
results. Moreover, we can verify that the characteristic extinctions derived in the 
space group analysis are actually present in the calculated diffraction patterns. 
Unfortunately, the corresponding experimental pictures are still missing. 

2. DODECAGONAL TILINGS 

In this section we derive quasi periodic dodecagonal tilings suitable for decoration 
with the basic building blocks of the O'-phase. Quasiperiodic tilings with a given 
symmetry are usually obtained by projection from a higher dimensional lattice 
with this symmetry. Here we therefore have to construct a suitable lattice L with 
twelvefold symmetry. For the sake of simplicity, we are interested only in lattices 
of minimal dimension. A further requirement is that the twelvefold symmetry 
operation A leaving L invariant has a 2d invariant subspace E O on which it acts 
with the usual 2d representation 

- sin( 11"/6)) 
cos( 11"/6) . (1) 

In a first step, we determine the representation (and its dimension) with which 
A acts on L. As is well known, a 2d lattice cannot have twelvefold symmetry. 
H such a lattice would exist, we could express the representation matrices of its 
point group with respect to a lattice basis. In such a basis, these representation 
matrices would then have only integer entries, and in particular integer traces. 
The traces however are the same in every basis, and since tr(ru(A)) = 2 COS (11"/6) 
is not an integer, such a lattice cannot exist. Above reasoning suggests however a 
way to solve this problem: we simply have to add more irreducible representation 
of C12 to ro such that the total trace becomes an integer. As it turns out, it 
is sufficient to add one more irreducible representation: there is a unique (up to 
equivalence) 2d irreducible representation r 1. acting on an invariant subspace El. , 
whose trace combines with the trace of r. to an integer, namely 

- sin( 511"/6)) 
cos(511"/6) . (2) 

Therefore, r = r , ED r 1. is a good candidate for the representation with which A 
acts on L. Let el be a vector in a basis of L . Clearly, el must have components 
in both EU and El.. H we act repeatedly with r(A) on el, we obtain a star of 
twelve vectors {el'"'' e12}, whose projections on El and El. can be expressed 
in a suitable orthonormal basis as 

e1 = a l (cos((i -1)1I"/6),sin((i - 1)11"/6)) 

er = al.(cos(5(i -1)1I"/6),sin(5(i -1)11"/6)). 
(3) 

Note that only four of these twelve vectors are rationally independent. The point 
is that the vectors in any orbit of a subgroup of C12 add up to zero. For instance, 
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the subgroup of order two has six different orbits and generates the relations 
eH& = -ei· The subgroup of order three has four orbits and generates therefore 
four relations, two of which are rationally independent, namely es = es - el and 
eft = e. - e2. These relations allow us to express all twelve vectors as integer 
linear combinations of {el, ... , e.}. Therefore, the Z-span of these four vectors, 
which we will use as a basis in the following, is indeed a four dimensional lattice 
invariant under the representation r of C12 • 

IT we compare these lattices parametrized by a. and al. to the complete classifi­
cation of crystallographic groups in four dimensions·), we see that these lattices 
form the so called dodecagonal Bravais class in four dimensions. The point group 
of these lattices is D24 , the dihedral group of order 24, generated by 

(4) 

where we have expressed the twelvefold rotation A and the mirror B with respect 
to the lattice basis {ell .. . , e.}. Note that there are no other four dimensional 
dodecagonal lattices. However, for special ratios of the parameters au and al. 
we obtain lattices with even larger symmetry. Since the additional symmetry 
elements do not leave the spaces E O and El. seperately invariant however, these 
symmetries are not interesting for quasicrystals. 

The vertices of quasiperiodic tilings are usually obtained by projecting the lattice 
points of L onto En which are contained in a strip S = C xE, where the acceptance 
domain C is some subset of El. , and E is a plane parallel to E R. The size and shape 
of C determines the local configurations of the tiling. Recall that we are interested 
in constructing tilings consisting of eqilateral triangles, squares and a few isolated 
30 0 -rhombuses, all of edge length a l . The lattice parameter al. is arbitrary. If 
a certain local configuration should (not) occur in the tiling, we have to take 
care that the projections of the corresponding lattice points onto El. do (not) fit 
simultaneously into C. If we want to avoid adjacent rhombuses, we have to choose 
C so small that Xl., Xl. +et, Xl. +et and Xl. +et (or a symmetry equivalent set) 
do not fit simultaneously into C for any choice of Xl.. The largest such acceptance 
region Co. which is connected is shown in Fig. 1. This acceptance region is non­
convex, with a small diameter of 2al., and a large diameter of 4cos(1r/12)al./J3. 
A tiling constructed with this acceptance region is shown in Fig. 2. It consists 
indeed of the desired tiling units and looks remarkably similar to the HREMsl

-
3

) . 

An even better coincidence can be obtained by rearranging locally some of the 
tiles. This is known as Hendricks-Teller disorder7,8), which is very common in 
quasicrystals. If we wanted to eliminate all rhombuses, we had to choose an even 
smaller acceptance region Cb (Fig. 1), which leads to the tiling shown in Fig. 3. 
In this tiling, the 30 0 -rhombuses have been replaced by a new tiling unit, an 
asymmetric hexagon. If we choose as acceptance region the convex hull Cc of Co. 
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(Fig. 1) we obtain a tiling first constructed by Stampfli9
) by means of a grid10) . 

This tiling is shown in Fig. 4. It should be noted that these tilings have been 
discussed also by Niizeki and Mitanill). Henceforth, we will concentrate on the 
tiling of Fig. 2, without Hendricks-Teller disorder. 

----ca 
._._._._.- Cl) 

-----cc 

Fig. 1: Various acceptance regions Fig. 2: Tiling with acceptance region Co. 

Fig. 3: Tiling with acceptance region Cb Fig. 4: Tiling with acceptance region Cc 

3. THE ATOMIC STRUCTURE 

Next we decorate the squares and triangles of the dodecagonal tiling with the 
structural units of the <T-phase. These units are shown in Fig. 5, where dotted 
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circles represent atoms* at z = 1/4 and z = 3/ 4, open circles a toms at z = 0 
and full circles atoms at z = 1/ 2 (in units of the periodicity in z-direction). From 
Fig. 5 one can also see that the decoration of the (isolated) rhombuses is forced 
by that of the squares and triangles. This decoration has already been proposed 
in Ref. 1. From Fig. 5 we see that the layers a t z = 1/ 4, z = 3/ 4 contain 
atoms at the vertices of the dodecagonal tiling, whereas the layers a t z = 0 and 
z = 1/2 consist of atoms placed on the midpoints of some bonds, along wit h 
possibly some atoms in the interior of the squares and triangles, depending on t he 
orientation of these figures (see Fig. 5) . In the z = 0 layer, only bonds parallel to 
e~ with i even are occupied, whereas in the z = 1/ 2 layer those wit h i odd are 
occupied, 50 that the decoration of the latter two layers breaks the dodecagonal 
symmetry of the underlying tiling to a hexagonal one. Therefore, if we denote 
the z = 1/4 (or z = 3/ 4) layer by A, the z = 0 layer by B and t he z = 1/ 2 layer 
by C, the structure is given by a st acking ... ABAC . .. , where the layers A have 
dodecagonal symmetry, and the layers Band C have hexagonal symmetry. 

Fig 5: Typical configurations L.'l the <T-phase (left) and the quasicrystal (right) . For 
description see text . 

A similar structure for dodecagonal quasicrystals has been proposed by Yang and 
Wei12). Their structure can be understood as an alternating stacking of a layer D 
and its mirror image b (where the mirror plane is perpendicular to the z-axis) . 
The layer D is essentially a decoration of the vertices of the tiling of Fig. 3 by 
slightly distorted hexagonal anti prisms containing an additional atom at their 
center. Because of the great similarity of this structure to ours, the diffraction 
pattern is expected to be very similar too. Nevertheless we consider our decoration 
as preferable, for the following reason. As we have argued above, the bright spots 
in the HREMsl-3) can be identified with those columns of atoms containig the 
atoms of the layers A. These columns are doubly occupied as compared to those 
containing the atoms of the layers B or C. Now in these HREMs most of t he 
asymmetric hexagons, as they occur in Fig. 3, contain an additional bright spot 
in their interior, which suggests a disection of these hexagons into a square, two 
equilateral triangles and a thin rhomb. Therefore, our decoration, which breaks 

*we do not know which kind of atom occupies what kind of position 
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the threefold symmetry of these hexagons, seems more appropriate than that of 
Yang and Wei. 

4. THE 5D PERIODIC STRUCTURE 

Despite of the presence of the hexagonal layers Band C the structure has point 
group 12/mmm and therefore twelvefold symmetric Fourier spectrum. Since the 
main axis of the hexagonal layers are turned with respect to each other by 300

, 

the stacking sequence suggests a 126 -screw axis. Moreover, the mirror B (4) maps 
the main axis of the layer B onto those of the layer C, and vice versa, 50 that we 
can expect as well that the mirror B is actually a glide mirror, translating the 
structure by half a period length into z-direction. 

To make these intuitive arguments about the space group more rigorous, we con­
struct a 5d periodic structure with this space group such that the quasi periodic 
structure described above is the restriction of this periodic structure to a suitably 
embedded 3d subs pace. 

In a first step, we have to reformulate the projection method. Instead of pro­
jecting all vertices in the strip L n (C x E) onto EO and then decorating them 
with the scattering density p(xu) of an atom or cluster of atoms, we can as well 
decorate each vertex of L with a density p(xu) . Xc(X.L) (where C is the set C 
inverted at the origin, and Xc(X.L) the characteristic function of C) and then 
take the intersection of the so obtained periodic density with E, which yields the 
same result. This latter formulation, first used by J anssenlS ) and Bak14), is much 
more flexible than the original projection method. In particular, it is easy to 
add more atoms of various types at different positions in the unit cell of L, each 
with its own characteristic acceptance region. In this way also very complicated 
quasicrystals (including atomic decoration) can be viewed as the restriction of a 
higherdimensional periodic structure to physical space. Since the Fourier spec­
trum of such an restriction is just the projection of the Fourier spectrum of the 
higherdimensional periodic structure to physical space, classical crystallography 
can be applied to the periodic structure to determine the Bravais class, point sym­
metry and space group associated with a quasicrystal. The quasi crystal inherits 
in this way the point symmetry and the characteristic extinctions associated with 
the higherdimensional space group. Therefore, we can speak of the space group 
of a quasicrystal, which we define to be that of the associated higherdimensional 
periodic structure. 

Next we construct the 5d periodic structure. There is only one dodecagonal lattice 
in five dimensions15), L5 = L x azZ, where az is the periodicity in z-direction. 
This lattice is contained in a 5d space Ell Ea E.L Ea E z • It is interesting to note that 
L5 cannot have any centerings, i.e. all layers z = const. are the same. Suppose for 
the moment that this is not 50. Then, any lattice vector x with smallest possible 
non-zero component z z in z-direction is not parallel to the z-axis. Let us now act 
with the subgroups C2 and Cs of C12 on x. If we add up the vectors in the orbits 
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of these subgroups, we obtain vectors of length 2zz and 3zz which are parallel to 
the z-axis. Since their difference has length Zz and is also parallel to the z-axis, 
we arrive at a contradiction, which proves our hypothesis to be false. Therefore, 
we have to consider only the lattice L5. In the following, we will always use the 
lattice basis {ell"" e4, e z }' where e z is a basis vector in z-direction. Sometimes, 
it is conveniant to use the compound notation (x, z), where the first item denotes 
the first four coordinates in EU EB El... We construct the periodic structure in such 
a way that it becomes manifestly invariant under the space group generated by 
(A,a), (B,b), (-1,0) and the set of lattice translations. Here, A and B are the 
generators (4), (X,z) denotes the Euclidean transformation y -+ Xy + z, and 
a = b = (0,0,0,0, ~). 

o o o 
Fig. 6: Acceptance regions for atoms on a vertex, on a bond, in a triangle and in a 

square (from left to right). 

First we place an atom with acceptance region Co. (see Fig. 6) at (v, l), where v is a 
lattice site of L. Then we act with all the desired symmetry elements on this motif. 
The lattice translations put an atom at all sites in L 5 + (0, i). Moreover, for each 
atom at (v, z) the screw axis puts another copy at (v, z+ ~). Since the acceptance 
region has dodecagonal symmetry, it is not changed under this screw operation. 
The other symmetry elements leave the structure obtained so far invariant. Note 
that the acceptance region is invariant also under the mirror B. Next we insert 
the atoms on the bonds of the tiling. We put an atom on the midpoint of a 
bond of L which is parallel to e2, at z = 0. The acceptance region is chosen in 
such a way that it intersects physical space E x Ez if and only if the acceptance 
regions of the two atoms at the vertices at the ends of this bond intersect E x Ez 
too. This results in an asymmetric acceptance region shown in Fig 6. Then we 
add all translation equivalent atoms. Appling the screw operation puts atoms 
on all the other bonds, those on bonds parallel to ei with i even at z = 0, the 
remaining ones at z = ~. Due to the rotational part of the screw operation, the 
acceptance regions of all these atoms will have their proper orientation. Again, 
the glide mirror (B,b) leaves the structure obtained so far invariant . Analogously, 
we put an atom in the middle of a triangle in the lattice L which projects to a 
triangle of the tiling, at z = ° or z = ~ (depending on the orientation of this 
triangle), and with acceptance region shown in Fig. 6. This acceptance region 
intersects physical space if and only if those at tl:~e corners of the triangle do this 
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too. Acting then with the space group on this atom puts copies to the interiors 
of all triangles at the correct z coordinate, depending on the orientation of these 
triangles. Finally, we put an atom into the interior of a square in the lattice L. 
This time, we have to use an acceptance region which is not centra-symmetric 
(Fig 6), i?ecause the four corners of the square, whose acceptance regions have 
to cut physical space too, are at different distances. Acting then with the space 
group on this atom completes the structure. Note that the space group takes 
care that all atoms have their correct z-value, and that their acceptance regions 
have the proper orientation. Therefore, the 5d periodic structure is manifestly 
invariant under a non-symmorphic spate group, and the quasi crystal structure is 
the restriction of this periodic structure to physical space E x E z • 

5. THE RECIPROCAL LATTICE AND EXTINCTION RULES 

First, we calculate the reciprocal lattice t 5 of L5. Since L5 is a periodic stacking 
of L, t 5 is given by t ID (27r/az )Z, so that is sufficient to calculate the reciprocal 
lattice t of L. It is conveniant to choose aJ.. = an, but any other choice of aJ.. 
would give the same result. The metric tensor of L, defined by 9ij = ei . ej, is 
given by 

(

2 0 
2 0 2 

9 = a u 1 0 

o 1 

1 0) o 1 
2 0 . 

o 2 

(5) 

Let {hi} be the basis reciprocal to {ei}, i. e. hi' ej = 27rbij. Then, if the itA row 
of the matrix b contains the components of hi with respect to the basis {ei}, we 
have that 

(bg)ij = L bi",e", • ej = hi . ej = 27rbij, 

'" 
i. e. b is equal to 27r times the matrix inverse of g, which is given by 

( 

2 
-1 1 0 

9 =-
3a~ ~1 

o -1 
2 0 
o 2 

-1 0 

~1) o . 
2 

(6) 

(7) 

Comparison with (3) shows that t is again a dodecagonal lattice, but this time 
with lattice parameters 

(8) 

Therefore, the peak positions in the quasiperiodic plane are generated by a twelve­
fold symmetric star of vectors h~ which have length an = 27r / a g.J3. 
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Let us now turn to the extinctions in the Fourier spectrum caused by the space 
group. Suppose a periodic structure p{ r) is invariant under a Euclidean transfor­
mation (X,z), i.e. p(r) = p{Xr + z). Then, the Fourier transform of p satisfies 
p(k) = eik·"p(X-Ik) . Now, iffor a given k 

(9) 

then p(k) must necessarily vanish. When (9) holds it is even always possible to 
find a k such that X-I k = k and eik ." I- 1. 

In the present case this means that due to the screw symmetry of dodecagonal 
quasicrystals we can expect that all peaks (k, kz) are extinct whenever kz is odd. 
Similarly, the glide mirror symmetry causes all peaks k contained in a glide plane 
and with kz odd to be absent . These extinctions can be understood also intuitively. 
The point is that at least in kinematical theory scattering with a scattering vector 
q is sensitive only to the projection of the structure onto this scattering vector. 
But since the projection of the layers Band C onto the z-axis give the same 
density, a scattering vector parallel to the z-axis sees a structure with half the 
period length, and therefore every second peak is absent. Similarly one can argue 
for the glide mirror plane, though the situation is slightly more complicated there. 

One should note however that multiple diffraction, which occurs always with elec­
tron diffraction, might distroy this effect. Nevertheless, such extinctions are very 
typical for quasicrystals periodic in one direction., They have been observed al­
ready for decagonall6) and octagonal17) quasicrystals. Our numeric calculations 
(see next chapter), which include multiple scattering, show that these extinctions 
have to be expected also in the dodecagonal case. 

6. CALCULATION OF THE DIFFRACTION PATTERN 

Since we have described our quasicrystal structure by means of a 5d periodic 
structure, it is now easy to compute its Fourier spectrum. We simply have to 
calculate the Fourier transform of the periodic structure and then project it onto 
physical reciprocal space. The Fourier transform of a periodic structure is ob­
tained by first calculating the Fourier transform of the contents of a unit cell and 
then convoluting it with the reciprocal lattice, just as one does it with 3d crystals. 
The z = 0 layer of the Fourier transform of the q uasicrystal is shown in Fig. 7. 
The radius of the circles is proportional to the amplitude (not intensity) of a peak. 
We see that Fig. 7 consists essentially of a single ring of very strong spots, the 
next weaker ones being more than ten times weaker (in intensity). This is very 
different from what one sees in electron diffractionl -

3
), and also different from 

what one obtaines if one puts just atoms at the vertices of the tilingll), which 
would actually give a very good fit with experiment. The additional hexagonal 
layers lead to destructive interferences, so that only a few very prominent peak 
survive. 
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Fig. 7: The Fourier transform Fig. 8: Dodecagonal diffraction pattern 

We have to recall however that electrons are very strongly scattered by the 
coulomb potential, so that we have to take into account multiple scattering effects. 
This can be done by Darwin's methodl8 ) . In electron diffraction, the incoming 
k-vector is much larger than the relevant scattering vectors, so that all q-vectors 
which contribute to elastic scattering are contained essentially in tangent plane 
of Ewald's sphere, i.e. only scattering vectors contribute which are contained in 
a plane through the origin and perpendicular to the incoming k-vector. All scat­
tered beams can be indexed by the reciprocal vectors in this plane. Let 4>q denote 
the amplitude of such a scattered beam, and i q the amplitude of the Fourier trans­
form. While the beams pass through the quasicrystal, their amplitudes develop 
according tolS ) 

d1zk = )..i L 4>k-q/q, (10) 
q 

where z measures the depth in the quasicrystal in the incoming beam direction, 
and)" is a constant depending on the density and type of atoms in the material. 
The sum extends over all reciprocal vectors in the plane perpendicular to the 
incoming beam, and the factor i in front of the sum ensures that the total intensity 
remains constant. In fact, it is easy to show that 

(11) 

Starting with 4>0 = 1, 4>q = 0 (q -f 0) equation (10) can easily be integrated numer­
ically. We have chosen the integration domain such that we obtain best possible 
coincidence with the experimentally observed patterns. The step width in the 
numerical integration was determined such that about 40 iterations were neces­
sary. In the dodecagonal plane, 3721 scattering vectors were included, whereas 
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in the planes containing the z-axis 729 vectors were sufficient. The results are 
shown in Fig. 8 (dodecagonal plane) and Figs. 9 and 10 (mirror plane* and glide 
mirror plane respectively). Again, the radii of the circles are proportional to the 
amplitudes. 

0 0 0 0 0 0 0 ·0· 

0 0 0 ··0 .. 0 0 0 

00 o· "0" ·0 00 .. .. ·0· .. .. 
0 0 0 ··0 ·· 0 0 0 

00 o· .. 0 .. ·0 00 .. .. ·0· .. .. 
0 0 0 ··0·· 0 0 0 

00 O· .. 0 .. · 0 00 .. .. ·0··· .. 

0 0 0 "0" 0 0 0 

0 0 0 0 0 0 0 ·0· 

Fig. 9: Diffraction pattern in mirror plane Fig. 10: Diffraction pattern in glide plane 

All these calculated diffraction patterns compare very well to the observed ones, 
as far as available1- S}. If we compare Figs. 7 and 8 we see that due to multiple 
scattering many additional peaks have appeared, in particular two additional 
rings very close to the cent er. This is very similar to what happens in the (7-

phase of Fe-Cr. The u-phase has peaks very close these peaks of the dodecagonal 
phase. Calculations of T. Ishimasa (private communication) show that for very 
thin samples of the u-phase, the peaks corresponding to the two inner rings are 
very weak, those near the positions of the very strong peaks of Fig. 7 are very 
strong. When the thickness of the sample increases, the weak peaks become much 
stronger however, whereas the strong peaks get weaker, until the three classes of 
peaks are of about the same intensity. The dependence of these intensities on 
sample thickness suggests that that this effect is due to multiple scattering. This 
analogy with the u-phase supports our hypothesis that multiple scattering is very 
important also in the dodecagonal case. 

In Fig. 10 we see that the predicted extinctions are indeed present (i.e. the 
corresponding peaks are absent). Only in Fig. 9 the forbidden odd peaks on 
the z-axis are not extinct due to multiple scattering effects. This effect can be 
observed also in decagonal and octagonal quasicrystals16 ,17}. Interesting to note 
is also that the layers in Fig. 10 which are still present are very weak. The reason 

*the planes between two neighboring glide planes are true mirror planes 
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is that in the corresponding plane there is none of the very strong peaks of Fig. 7, 
and the intensity remains essentially on the z-axis. May be it will be difficult to 
observe such a diffraction pattern, and this might be the reason why in Ref. 3 no 
such pattern is published, although it would of course be very interesting because 
of the extinctions. 

1. CONCLUSIONS 

In conclusion, we have presented a detailed model structure for dodecagonal qua­
sicrystals, whose calculated diffraction patterns are in good agreement with the 
experimentally observed ones. As we have seen, it is absolutely essential to take 
multiple diffraction effects into account, without which the experimental diffrac­
tion patterns cannot be explained. The proposed model structure is the restric­
tion of a 5d periodic structure to 3d physical space. This 5d structure has a 
non-symmorphic space group, which has direct consequences for the quasicrystal. 
This model structure therefore naturally illustrates how crystallographic concepts 
can be applied to quasicrystals: qua.!icMJ.!tallography is simply the crystallography 
of the associated higherdimensional periodic structures. 
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