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Summary.  Modulation equations play an essential rote in the understanding of com- 
plicated systems near the threshold of instability. For scalar parabolic equations for 
which instability occurs at nonzero wavelength, we show that the associated Ginzburg- 
Landau equation dominates the dynamics of the nonlinear problem locally, at least 
over a long timescale. We develop a method which is simpler than previous ones 
and allows initial conditions of lower regularity. It involves a careful handling of the 
critical modes in the Fourier-transformed problem and an estimate of Gronwall's type. 
As an example, we treat the Kuramoto-Shivashinsky equation. Moreover, the method 
enables us to handle vector-valued problems [see G. Schneider (1992)]. 
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1. Introduction 

We consider scalar evolutionary problems on the real line. In the parabolic case one is 
interested in the behavior of systems close to the threshold of instability. If a spatially 
homogeneous solution becomes unstable, a whole band of wave numbers turns un- 
stable. In this situation the bifurcating solutions can be approximately described by a 
so-called modulation equation. As an example we study the Kuramoto-Shivashinsky 
equation 

Otu = - ( 1  + 32)2u + olu + uaxu.  (1) 

The trivial solution u = 0 is unstable for o~ > 0 and, linearizing at u -- 0, we find 
solutions of the form u(x ,  t) = e t z t + i k x ,  where /z(k, ce) = - (1  - k2) 2 + a is pos- 
itive for k close to +-1. Note that center-manifold theory is no longer available for 
describing bifurcating solutions due to the continuous spectrum. One expects that for 
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small a > 0 there are solutions which are small modulations in time and space of the 
critical modes e +-ix. Using the scalings ~ = e 2, T = ezt, and X = ex we introduce 
the formal approximation 

O(x, t, E) = E(A(X, T)e ix + f t (x ,  T)e-iX). (2) 

By a formal calculation we find that the amplitude A has to satisfy the Ginzburg- 
Landau equation 

OTA = A + 402A - (I/9)AIA] z. (3) 

One expects that ~O describes the dynamics of solutions which are near the attractor 
of the system (see [Eck91], [vH92]). This kind of approximation was introduced 
by Newell and Whitehead (see [NW69]) in 1969 for B6nard's problem. In other 
hydrodynamic problems, such as the Taylor-Couette problem or Poiseuille flow, such 
an approximation is also possible, due to the form of the spectrum. 

Taking a solution A of (3), the question arises as to how well qJ approximates 
a solution u(x, t, e) of the original problem. Of course we have to show that on an 
(~(1)-timescale of (3), ~0 is a good approximation. The above question was first treated 
in [CE90] for the Swift-Hohenberg equation. A simple proof was given in [KSM92] 
for cases in which the nonlinearity begins with a cubic term. The case of quadratic 
nonlinearities is more difficult, and until now the question was answered only when 
the initial data of the Ginzburg-Landau equation (3) was analytic in a strip in the 
complex plane [vH91]. For the case of the Kuramoto--Shivashinsky equation (1) our 
theorem specializes to 

Theorem 1. Let A = A(X, T) ~ C([0, To], C4(R, C)) be a solution of the Ginzburg- 
Landau equation (3). Then there exist Eo, C > O, such that for all e <-- eo there are 
solutions u(x, t, e) of (1) with 

sup [lu(x, t, e) - ( cA(X,  r ) e  g" + c.c.)[[c,(R,R) < CE ~. 
O<. t<. ro /  e 2 

The ideas of the following proof are such that the result can be extended to reaction- 
diffusion equations and, under some restrictions on the initial conditions, to the B~nard 
problem or the Taylor-Couette problem (see [Sch92]). This will be described in a 
forthcoming paper. 

In this paper we use the abbreviation C n = C"(R, C) for the space of functions 
with n bounded and continuous derivatives. Constants are denoted throughout by C. 

2. The General Situation 

The situation of the introduction can appear in more general problems. We consider 
scalar semilinear problems 

Otu = 3`(Ox, ~ ) u  + f(Ox, u) (4) 

on the real line which are translation invariant with respect to x. The differential 
operator 3, is of degree 2d with N3`(ik, e 2) --> -oo for k ---> +__c~ a n d f  is a nonlinear 
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smooth mapping in a neighborhood of zero from C 2d to C t . Therefore, h(., c a) is a 
polynomial with constant coefficients. I f /x(k,  6 2) = A(ik,  c 2) has the same nature as 
/z in the above example then it has an expansion around the critical value k~ ~ 0 of 
the form 

tz(kc + oK ,  e 2) = io)o + E i v l K  + c2(Ao + ivo) + eZKZ(h2 + ivz)  + (~(e 3) 

with )to > 0 and A2 < 0. The imaginary coefficients w0 and vt give rise to fast 
dynamics. We get rid of vl by the transformation x ~ x - vl t. The coefficient ~o0 
is taken into account in the following ansatz. The dynamics of the linearly unstable 
modes e +-ik~x are also determined by nonlinear interactions with the linearly damped 
modes e ±i'nk~x (m E Z).  Therefore, these modes are also included in the formal but 
consistent infinite ansatz 

o ~  

u(x  - v l t ,  t) = Z 2 c~(m)+"(A~m(eX' ~2t)eim~b°t eimk'x) 
m ~ Z  n =0  

(5) 

with or(m) = 1 + tl - I m l l ,  coo - v, kc = :~3o, and A~n(X ) = An_m(X). To compute 
the equations which the A~ have to fulfill, we insert (5) into (4). Then we compute 
the coefficients in front of e imkcx. Using Ot = c20r and Ox = E0x, we expand these 
coefficients in powers of e, and so obtain an infinite system of equations for the A~m 
(see [vH91]). The Ginzburg-Landau equation for (4) then has the form 

cTrZ ° = (;to + i po)A ° - (h2 + i v2)82A ° + yA~[Z°[ 2, (6) 

where T ~ C is determined by the above computations. Given the above situation, 
we can state the following theorem. 

Theorem 2. Let A ° = A°(X,  T) E C([0, To], C 2d) be a solution o f  the formally de- 
rived Ginzburg-Landau equation (6) to problem (4). Then there exist co, C > 0 such 
that for  all e < eo there are solutions u = u(x ,  t, e) o f (4 )  with 

sup I[u(x--  vlt ,  t , c ) - ~ ( x , t , E ) l l c z ~  ~ Cc  2, 
o<- t<- To/~ ~ 

where ~ (x ,  t, e) = (cA°(cx ,  e2t)eikcx e i~°t + c.c.) .  

3. General Ideas for the Proof 

We start by explaining why quadratic terms are the main difficulty in proving Theo- 
rem 2. To explain this problem and the ideas for solving it, we write (4) in the form 

O~u = ;tu + N2(u, u) + N3(u, u, u) + " ,  (7) 

where Nj  contains the terms of power j and therefore can be written as a symmetric 

j-linear form. If  there is an approximation q5 = c ~  of order G(c), the error should be 
of order ~(c 2) on a sufficiently long time interval. Inserting a solution u = c~  + cZR 
in (7), we get 
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OtR = AR + 2eN2(~, R) + 3e2N3(qS, ~, R) + eZN2(R, R) + " "  + lzRes(e ~) (8) 

as the differential equation for the error R with initial datum R[¢ =0 = 0. The approx- 
imation q~ is chosen such that tow E-orders vanish identically, hence the residuum 
Res(qS) = -3tq~ + h~b + f ( $ )  is small. Taking sufficiently many terms of (5) we 
can construct an approximation q~, (3(e2)-ctose to the original approximation $ of the 
theorem, such that Res(~) will be of order ~(e n) for arbitrary n -> 1. 

The approximation e~b is a good approximation of a solution u if a solution R 
of (8) is ~(1)-bounded on a sufficiently large time interval. In our case h is the gener- 
ator of a slowly increasing semigroup, whose norm can be estimated by C exp(Ce m t) 
with m = 2. Moreover, suppose that all Nj vanish identically for j ----- n; this means 
that e n is the lowest e-order on the right-hand side of (8). Using the transformation 
T = 6:min(m'n)t and Gronwall's inequality, one can show that R is ~(1)-bounded on a 
time interval of length ~(1/ernin(rn'n)) .  AS stated, the Ginzburg-Landau approximation 
has to be a good approximation on a time interval of length O(1/ez). That means 
n = 2 and the quadratic terms N2(u, u) should disappear. This approach was used in 
[KSM92]. 

If quadratic terms are present, the estimation of the error over time intervals of 
length 0 (1 /e  2) is more difficult. The main tool for attaining the required estimate on 
this long time interval is Fourier transform. The approximation E~ that we take will be 
of order G(e) for linearly unstable (critical) Fourier modes and of order ~(e z) for the 
linearly damped Fourier modes. Therefore, we suppose that the error e2R is of order 
~(e z) for linearly unstable Fourier modes and of order 13(e 3) for the linearly damped 
Fourier modes. To make this formal, let P be a h-invariant operator which extracts 
Fourier modes corresponding to an G(1)-neighborhood of wave numbers around the 
critical wave numbers +-'kc. We set ~b~ = P~ ,  eqSs = (1 -P)~p, Rc = PR, and 
eRs = (1 - P)R. Inserting a solution 

u = E~bc + ez4ts + E2R~ + e3Rs 

in (7) and applying the operator P,  we obtain 

c~tRc = ARc + 2ePN2(Ro ~c) + ~(e2), 
(9) 

3,Rs = ARs + 2(t - P)Nz(Rc, dpc) + (~(e) 

as equations for Rc and Rs. The restriction hz = hlrange (l-P) is the generator of an 
exponentially damped semigroup. Hence Rs will be of order ~(1) over any timescale. 
The norm of the semigroup, generated by At = h[range p, increases as Ce ce2t. As 
outlined above, the error Rc can be shown to be of order (~(1) over the (3(1/e 2) 
timescale if the quadratic term 

PN2(Rc, qSc) = 0 (10) 

disappears. But this is true if a suitable P is chosen! The wave numbers of the 
critical Fourier modes are contained in the set [ - 5 k c / 4 ,  - 3 k  J 4 ]  U [3k~/4, 5kc/4].  
Therefore, the wave numbers of the convolution of such modes are contained in 
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[ - 5 k ~ / 2 ,  - 3k~ / 2 ]  U [ - k c / 2 ,  kc/2] U [3k~/2, 5kc/2]. Since the intersection of these 
two sets is empty, the application of the operator P on this quadratic interaction yields 
zero. Therefore, (10) is fulfilled and the proof of the theorem will be possible. 

Up to now, all arguments have been formal, tn the next section we will provide 
a mathematically rigorous framework. We choose the space of n-times differentiable 
functions C ~ because it contains many interesting solutions; for example, fronts, 
quasi-periodic, or space-periodic functions. Therefore, we have to translate the above 
ideas from Fourier space into the physical space C ". This will be done in the next 
section, where we define the mode-filters, which extract the critical modes. In the 
fifth section we estimate the approximation error u - ~. 

4. The Mode-Filters 

Before we start we have to say a few words about the functional analytic devices. The 
main tool here is Fourier transform. It is well known that the space of n-times differ- 
entiable functions with bounded derivatives C n is a subset of the space of tempered 
distributions 5?' (see [W182]). Therefore, it is possible to define the Fourier transform 

of functions u ~ C ~, and thus we can define operators by their action in Fourier 
space. As stated, we want to separate linearly unstable from linearly damped modes 
in Fourier space. 

We define the mode-filter for the critical modes 

Ecu := f G~(x - ~)u(~)d(,  

where Gc is defined by G~(x) = (1/27r) I eikXXc(k)dk and Xc is a positive even 
Cg-function with 

1 for k E Ic = [ -9kc /8 ,  -7kc /8]  U [7kc/8, 9kc/8], 

x~(k) = 0 for k ~ N\Utc/8(Ic), 

where Ur(M) = {k I l k  - s[ < r for an s ~ M}. Moreover, we define the oper- 
ator Es = 1 - Ec for the uncritical modes. The Fourier transform of Ecu is a 
distribution with support [ - 5 k c / 4 , - 3 k c / 4 ]  U [3k~/4, 5kc/4]. This set contains 
the wave numbers of the critical modes. In the same way, we define an opera- 
tor E0 with the same properties as E~ but with the set l0 = [ - k~ /8 ,  k~/8]. For 
the complement we define E~ = 1 - E 0 .  Since Ec and Es are not projections 
we define additional operators E~ h and Es h with h h EcEc = E~ and E sEs = Es. 
The Ca-function X~ h defining Ec h vanishes outside U~/4(I¢), and Xs h defining 
Es h vanishes in [ - 1 7 k c / 1 6 , - 1 5 k c / 1 6 ]  U [15kc/16, 17kJ16] .  For example, the 
Fourier transform of (Eou(x))e ijx is a distribution with support [ j  - (kc/4), j +  
(kc/4)]. 

The kernels Go, Go lie in S ~, which is the space of rapidly decaying C = functions. 
This means that the function as well as all derivatives decay faster than 1 / Ix l  ~ for 
Ix[--+ ~ and all n E N (see [W182]). 
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In the following we give three properties of the mode-fitters. They are basic for 
the estimates of the next section. First we show that mode-filters corresponding to 
bounded intervals of wave numbers have smoothing properties. 

L e m m a  3. The operators Ec and Eo are linear and continuous mappings from C o to 
C m. For every m >- 0 there exists Cm > 0 with Ileoullc, + lle~ullc. <- c~llullco. 

Proof. The differentiability follows from Gc ~ C ~. The norm can be estimated by 

IIe~.tlc° <- ~'~sup O;G~(x -~)u(~)d~l <- 0~Gotl~, ullco. 
r =  0 x 

Since G~ ~ S ° the result follows. [] 

The application of Eo on a scaled A,~ = A~(ex) smoothes A,~. The scaling X = ex 
concentrates the Fourier modes (~(e)-close to the wave number zero in Fourier space. 
Therefore the application of E0 on a scaled function cannot change the scaled function 
A~ very much; that is, EoA~(ex) - A~(ex) is small. 

L e m m a  4. For n E N there is a C,  > 0 such that [t(ErA(E'))llC. = l[(EoA(a')) - 
A(,')lJco --- c ~ : j l A l l c o .  

Proof. We use the well-known relation f Go(x)x"dx = (-i)"X(o")(0) which yields 1 
for n = 0 and 0 for n - 1 to obtain with 0 E [rain(x, ~), max(x, ~)] 

IIEgA(Ex)IIc~ = sup IO~[A(ex) - f Go(x - ~ ) A ( e ~ ) d ~ ] [  
r ~O,...n;x 

sup ]e r f Go(x - ~ ) [ O ~ c A ( e x )  - O~cA(e~)]d~l 
r = 0 ,  . . . r t  ;X 

n - !  

sup ]e r f Go(x - ~)[( Z OJx A(ex)e j -r (x  - ~ ) j - r / ( j  _ r)!) 
r = 0 ,  , . .n;x j ~ r+  1 

+ 3}A(O)(x - ~ ) n - r ~ n - r / ( n  - r)!ld~l 

c:Ile~AIIL= sup f ]G(x) I Ixlrdx ~ &nllAllcn. 
r = 0 ~ , . . , n  [] 

The third property is equivalent to (10) and makes rigorous what has already been 
stated in an informal way. The application of Ec to quadratic terms, whose factors are 
filtered by Ec, vanishes. 

L e m m a  5. For ul, u2 E C n and rl, r2 E N it is true that 

E~(O~ E~ul • Orx2Ecu2) = O. 



A New Estimate for the Ginzburg-Landau Approximation on the Real Axis 29 

Proof. The Fourier transforms ~(Or~ Ecul) and ~(Ox2E~uz ) are tempered distributions 
with support [-5k~/  4, -3kc/4] U [3kc/4, 5kc/4]. The convolution of distributions 
with compact support is well defined (see [W182]). The convolution ~(Orx~Ecul)* 
~(3rx~E~u2) has support [-5k~/2,  -3kc/2] U [-k~/2,  k¢/2] U [3k~/2, 5k~/2] and 
so the application of Ec on the convolution yields zero. [] 

5. Proof of Theorem 2 

First we seek a good approximation q~ near ~ for which the residuum Res(qS) will be 
(~(e ") with n sufficiently large. Next we estimate the error R, as explained in the third 
section. 

5.1, The Approximation and the Residuum 

Because of notational complexity we restrict this part to the case of the Kuramoto- 
Shivashinsky equation, But the ideas for the general case will be clear. We write (1) 
in the form 

C~tU : A(C)x, ~'2)U "~ p(o3x)U 2 (11) 

with A = - (1  + O~) 2 + 62 and p = Ox/2. When we insert the ansatz (5) in (11) we 
get in lowest order the modulation equations 

2 0 , 0 0 9TA ° = (1 + 40x)A l + zA_aA 2, 

. 0 0  0 = -9A ° + t A I A  1, 

0 = -A~. 

(12) 

Upon elimination of A°z we arrive at the Ginzburg-Landau equation (3). Formally, 
in the coefficient in front of e ix  all terms of order 0(e3), and for 1 and e 2 i x  all terms 
of order (~(e2), have vanished. 

We take a finite sum of (5) and modify this formal approximation by applying 
appropriate mode-filters and so let 

4) = e(EoA°(ex, ezt))e ix + e(EoA°l(ex, e2t))e -ix 

+ e2(EoA°(ex, E2t))e 2ix + eZ(Eoa°z(eX, e2t))e -2ix. 

The approximation ~0 used in the theorem and the above approximation ~b are close. 
Using Lemma 4 we have 

s u p  - 411c,  -< 
t~[O, To/~ z] 

Moreover, q~ is in C a because of  Lemma 3. Next we have to compute the residuum 

Res(~b) = -O, q5 + h~b + pt~ 2. 
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If  we had not applied E0 in the definition of  4~, Res(~b) would be only in C °, since 
the initial conditions of  the Ginzburg-Landau equation are assumed to be in C a only. 
But to solve the equations for the error, Res(~b) should be at least in C 1 . We denote 
by Bj the term in front of  e i jx  , that is, Res(qS) 4 = ~ j = _ a ~ j e  i]x.  By using the 
formulas 

h(C)x, O ) B ( e x ) e  inx = - einX[(1 - n2)2B + 4Ein(1 - n2)dxB 

+ E2(2 - 6nZ)O~B + e34 inO3B + E404B], 

2 p ( O . ) B ( e x ) e  i"~ = einX[inB + ecTxB] 

and the fact that the A ° are solutions of  the modulation equations (12) we get 

So = e3Ox((EoA°)(EoA°--1)) + eSc)x((EoA°)(EoA°-2)), 

~1 ( - E 4 4 i 0 3  5 4 0 = -- E Ok)EoA~ + e40x( (EoA°) (EoA°I ) )  + E3OTE~A ° 

3 2 c 0 (e 3 + 4e O})EoA t e3 i ( (EoA° ) (E~A° I )  c o o _ _ + (EoA2)(EoA_ 1) 

c O  c O  + (EoA2) (EoA-  1)), 

$2 = - e4arEoA  ° - e z ( - 1 2 i e O x  - 2 2 e 2 ~  + 8ie303x + e404)EoA° + ~4EoA° 

c O  c O  + }e3Ox((EoA°)(EoA°))  + 9e2E~A ° - e2 i (2(EoA°) (E~A °) + (EoA1)(EoA~)),  

$3 = E3( 3i + eOx)((EoA°)(EoA°)) ,  

$4 = ½~4( 4i + eax)( (EoA°)(EoA°)) ,  

~ - .  = an. 

Since we have a semilinear problem and we can use smoothing properties of  the 
semigroup generated by A, we have to estimate ~j only in C 1. The solution A ° of  the 
Ginzburg-Landau equation is bounded in C 4 on the considered time interval. And 

since Eo commutes with h and p we easily get II~01tc, = ~(~3), ll~311c, = ~(~3), and 
tlN4llc, = ¢(~4) uniformly on [0, To/ea].  

To estimate 11~211cl we note that all terms without time derivatives are of  order 
I~(E 3) due to Lemma  4 and A ° E C 4. Since E0 also commutes with Or, and 3 r A  ° can 
be expressed with the help of  (12), we get 

0 3  0 IlorA°llc, <- CIIOTAOIIc'IIAOfIC' <-- C(IIA°tIC3 + llalllc,)llA~llc, 

and so sup,~t0,r0/,21 II~=tlc, = ~(~3). In the same way we obtain supt~to,ro/,:l tlSltlc I = 
(~(E4). 

The 6j always have compact support [ - 1 / 2 ,  1 /2]  in Fourier space since ~b is 

chosen such that this is true. Therefore, we obtain E c ( r j e  i jx)  = 0 for IJl ~ 1. it is 
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clear that the above calculations are also valid for the more general case, and so we 
can state the following lemma. 

Lemma 6. Let A ° ~ C([0, To], C 2z) be a solution of  the Ginzburg-Landau equation 
(6) and let ~ be as in Theorem 2. Then there exists an approximation q5 of the form 

49 = e(EoAO)eik~Xei'~o t + E(EoA°l)e-ikcX e -i~°t + 6.249s 

with 

sup I16 - 011c2~ = ~(~2) ,  sup 1149sllc2~ = ~ (1 ) ,  
t~[0, To/~ 2] tE[0, T0/e 2] 

sup [IEs(Res(49))[Ic, = ~(~3), sup [IEdees(49))[[c, = @(if4). 
t E[O,To/ e 2] te[O, To/ e 2] 

5.2. The Estimates for the Error 

We already know that the quadratic terms generate the main difficulties. Since higher- 
order terms are not problematic, we suppose, for notational reasons, that only quadratic 
terms appear, and hence (4) is of the form 

3tu = hu + B(u, u), (13) 

where B(u, v) s '2d-I  i j = ~-i.j=0 aij(3xU)(3xV) with aij = aji .  Moreover, we suppose that 
the transformation x ~ x - vl t was already done. We now make an approximation 
~b with the properties of Lemma 6. As explained, we suppose the error to be the sum 

R(x, t, 6) = eZRc(x, t) + e3Rs(x, t) (14) 

with Re = e-2EcR E C ~a and Rs = •-3EsR ~ C 2a. By later calculations we show 
that such an ansatz is possible. We abbreviate 

4c :=  (EoA~(ex, e2t))eikcX e i~°t + C.C. 

and insert 

u = 49 + R = e49c + eE49s + eZRc + e3Rs (15) 

into equation (13). After dividing by e 2 and after selecting linear and nonlinear terms, 
and terms for which the application of the operator Ec vanishes, we get the equation 

OtRc + eOtRs =ARc + eARs + 6Z2(Rc) + e2LI(R) 

1 (16) 
+ e2N2(gc) + 63NI(R) + ~--~Res(49), 

where the abbreviations stand for 

L2(R~) = 2B(R~, 49c), LI(R) = 2B(R~, 49s) + 2B(Rs, 49c), 

N2(R,) = B(R~, Rc), ~'1(R) = B(R,,  2R~ + 2qSs + eR,).  
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If all R~, Rc, ¢~, and Cs are of order G(1) ~ C 2d, then L1, L2,/V1, and hr2 are 
also of order ~(1) ~ C za. To get equations for Rc and Rs we apply the mode- 
filters E~ and Es. By Lemma 5 we have E~L2(Rc) = EcN2(R~) = 0. We now 
separate (16) into two parts and define Rc and Rs to be the solutions of the sys- 
tem 

c~tR~ = ARc + e2Lc(R) + e3Nc(R) + e2Sc, 

3tRs = ARs + Ls(Rc) + eNd(R) + 6~ 
(17) 

with the abbreviations 

~5c = (lla4)Ec(Res(¢)), 

Lc(R) = Ec(L~(R)), 

Nc(R) = Ec(NI(R)), 

6s = (1/e3)Es(Res(qb)), 

Ls(Rc) = Es(L2(Rc)), 

Ns(R) = E~(LI(R) + N2(Rc) + eArI(R)), 

and the initial data (RI(O), R2(0)) = (0, 0). Adding the two equations (17) we get 
(16). We remark that the equation for Rc has only nonvanishing Fourier modes for 
wave numbers k E Ukds(Ic), and the Fourier modes in the equation for R~ vanish 
for k E lc. We solve this system in the space 

~n = C([0, To~e2], cn) 2 

with the norm 

2 

][(R~,Rz)J]~. = ~'~---i'x= o-<,-<ro/,~sup llR~(',t)ttc. 

for n = 2d. We have to show that the solution is of order {3(1) in ~zd.  We do that 
by inverting the linear part of (17) and by applying a contraction principle. 

Because of Lemma 6 the inhomogeneity 6 = (6c, 6s) is obviously in ~ t  and of 
order ~(t) .  The nonlinearity N = (Nc(R), Ns(R)) is a sum of linear and bilinear terms, 
and, since C n is an algebra, N is a local Lipschitz-continuous mapping from ~2d to 
~ t ,  which maps bounded sets of ~zd in bounded sets in 9~i. What remains is the 
estimation of the solutions of the system 

3tRc = ARc + EZLc(R) + ~2fc 
(18) 

dfRs = ARs + Ls(Rc) + fs  

for fc  = Ecgc and f~ = Esgs with g = (gc, g~) ~ ~1. Since L = (Lc(R), L~(R~)) 
is a bounded linear mapping from ~zd into ~ l ,  the local existence in time of solutions 
of this system is clear. More interesting is the question of the (~(1)-boundedness of 
these solutions on the time interval [0, Toil2]. To show this, we remark that the 
operator/k is the generator of a semigroup e at. Its action on a function u(x) can be 
expressed by 

eXtu(x) = I H(x - ~, t)u(~)d~ 
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where H is defined by H(x ,  t) = (1/27r)~ eik*eX(ik"2)tdk. We have 

IleXtEh[t~e(c~'c2e) <-- C r=0...2d-lmax f l f eA(ik"~)*~(k)emUdkldl <-- Ce'~' 

due to the compact support of Xhc. Moreover, 

at h Ce-~,  t-(2d-l)/(Zd)) lie E s ][~e(c~,cz~) <-- max(I, 

with an e-independent constant o- > 0 due to the fact that only damped modes appear. 
h Remember that EhE~ = Ec and E, Es = Es. For the second equation in (18) we 

obtain 

Rs(t) = f o f  H(x  - - ~ , t - ~ ' ) [ [ ( L s ( R c ) +  fs)](~, "c)]d~d~'. 

With the abbreviations Sg(s) :=  supt_< s llR~(t)llc:~, (i = s, c), we find 

S~(t) <- C max(I,  z-(2d-1)/(2a))e-~'d~ " (CSc(t) + Ilflla,) 

<- cs (t) + ctlf[[ ,. 

Similarly, we can estimate the first equation 

t 
Sc(t) ~- ~2j/" 0 ceC~Z(t-r)(Sc(T) + Ss('i" ) q -Nf l l~)dr  

to' <- + cIIfll ,. 

With the help of GronwaU's inequality we see that 

Sc(t) <--- c l l f t I ~ e  cr° = (~(1) and Ss(t) <- c l t f t l~  ~ = ~(1). (19) 

Now we define the inverse J of the linear part by R = J f  if R is a solution of (t8). 
Therefore, J ~ 2g(~l, ~2d) is a linear operator, bounded independently of e. When 
we apply J on (17) we obtain 

R = EJN(R) + J6 =: F(R).  (20) 

For e --< c0 the function F : ~zd -+ ~2a is a contraction on a ball with center J~  in 
~azd, because of the Lipschitz-continuity of N and the E in front of N. Therefore, 
there exists a unique fixed point of  (20) which is a solution of order (~(t) of (17). 
By (14) and (15) we have constructed a solution of the original problem (13). The 
estimate of Theorem 2 follows since 
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