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ABSTRACT

A procedure for the computation of transonic steady and unsteady flow around helicopter rotors
is presented.
The algorithm is based on the Euler equations and allous the computation of anisotropic
rotational flow and thus an implicitly accurate calculation of shocks. In addition the capturing
of the rotor wake and the tip vortex is provided for arbitrary tip shapes.
The code for the computation of steady, fully 3-D rotor flow is derived from the EUFLEX
procedure originated by A. Eberle, that has successfully been applied to a lot of fixed wing
configurations up to now. A finite-volume scheme based on the method of characteristic flux
averaging solves the Euler equations formulated in the conservation form.
The discretization of the flow field is carried out in two different manners concerning the grid
topology and the size of the physical domain. Calculations are presented for a non-lifting case
and for a helicopter rotor in hover. The comparisons of the method in its present stage show good
agreement with experimental data.

1. INTRODUCTION

For some years Euler methods have proved their efficiency in innumerable applications mostly to
fixed wings or even to complete aircraft configurations.
Recently, several scientists are now engaged in applying the Euler equations to the complex case
of rotational flow as it appears for instance in helicopter flight.
Before that, a lot of solution algorithms based on lifting surface, small pertubation [1-5) or full
potential theory [6-16) have widely been used and still are, since they are much faster and require
less storage than Euler methods.
Nowadays as the computational capacities, both in storage and speed, have reached a higher
level, the demands have increased, too.
The Euler equations, although more expensive, provide the advantages of being able to treat
anisotropic and rotational flov and admit vortical solutions. This is essential for a correct
prediction of transonic shocks and trailing vorticity, which are implicit parts of Euler
solutions. Thus, unlike potential flow equations, Euler equations on principle allow the transport
of vorticity, rollup of the wake follouing the blade, convection of the tip vortex past the blade
and herewith consideration of blade vortex interactions, all of them being main cheracteristics of
a helicopter rotor flowfield.

However, the applications of different Euler codes to this problem show, that there are several
limitations associated for example with the capturing of the tip vortex at smooth blade tips [20],
the geometry of the rotor wake or the convection of the tip vortex [17-23]). For this reason, more
or less accurate wake models based on low order theory have to be coupled with the Euler codes in
order to provide uake geometry, tip vortex location and induced velocities to be introduced into
the solution process via effective angle of attack reduction [20,22,23]), velocity splitting [17,19]
and so on.

Reasons for these limitations are found within the numerical formulation of the Euler solvers.
Especially the false diffusion of the tip vortex is due to artificial viscosity involved in some
algorithms on one hand and to truncation errors on the other hand.

At least the first problem is alleviated by the use of the finite-volume EUFLEX code of A. Eberle
[24], which works without artificiel viscosity terms and applies higher order differencing. The
problem of truncation errors will become less severe, if some substantial grid refinements were made
in those regions, where the vortex path is presumed. This should be possible in view of the capacity
of today’s supercomputers.

The present paper describes the initial stage of investigations, whether and to which degree of
accuracy it is possible to predict all effects refering to the rotor wake without uging any wake
model.

* Presented at the 13th European Rotorcraft Forum, Arles, France, 8-~11 September 1987
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Two parallel ways are persued, differing in the use of the body conforming grid around the blade.
The first kind of discretization covers the whole rotor flow field, completely enclosing the rotor
disk and the weke, which is contained until 1t leaves through the lower boundary in axial
direction. The topology 1s of type 0-0, which provides extremely good resolutions at trailing and
leading edges as well as at the blade tip, compared with the total of cells needed. The main
dravback is that the further the tip vortex convects past the blade, the greater the grid cells
become, which is very disadvantageous since it causes vortex diffusion.

The second type of grid, having an H-topology, only covers the outer region of the rotor blade.
This has the advantage that the grid fineness at the location where the tip vortex is captured, is
similar to that one at the downstream boundary. The requirement of a lot of grid cells also at
places vhere it is unefficient, can be compensated by covering only the most important part of the
flow field region.

Calculations are presented for two two-bladed rotors under non-lifting as well as under hover
conditions. One is full size with a realistic aspect ratio of 15 and the other one is a model rotor
with an aspect ratio of 6. The collective pitch angles and tip Mach numbers are varied. The results
of the second rotor are compared with the experimental data of Caradonna and Tung [26].

2. GOVERNING EQUATIONS

Due to the character of rotating flow, a blade-attached cylindrical coordinate system, rotating
with the constant angular velocity @ is chosen (Fig. 1).
Within this reference frame, the flow field of a hovering rotor can be treated as steady, but due
to the rotation of the reference frame additional forces, the centrifugal and the Coriolis’
forces, have to be tsken into account.
Thus the Euler equations can be written in differential conservation form:
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and H = 5§2 1s the total enthalpy per unit mass.

Since a blade~fixed reference frame is used the usual transformation into curvilinar coordinates
has to be done, which is described in detail in [19,21,25].
It vas attempted to use the absolute instead of the relative velocities. Then the first momentum
equation of Eq. (1) has to be replaced by:
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It was found that it doesn’t make any significant difference, whether one uses the absolute or
the relative velocities in the differential formulation of the Euler equations.

However, it is of decisive importance that all quantities used for extrapolation or interpolation
within the numerical procedure do not contain any dependency on the freestream velocity ug, = Or.
This fact concerns the velocity as well as the total energy. Details are described in section 4.

3. GRID STRUCTURES

The body-fitted grids used in the present paper are determined by an iterative solution of
Poisson’s equation, in which the source terms on the right-hand-side are evaluated by solving
Laplace’s equations [25]. Thus we have three uncoupled fourth order equations for the three spa-
tial directions:

Xgg + Xqn * Xgg = P
Yeg * Yan 3 Yoo = 0@
Zgg * Inn Zgg = R
Pgg + Ppp * Peg = O
Qg + Onn * Qr = O
Reg + Rpp Reg = 0

In addition to this system, which provides to a high degree a very homogeneous distribution of
grid lines, several mechanisms are envolved, used to manipulate this distribution in an advanta-
geous wvay.

For example, it 1s possible to attract an arbitrary number of grid lines to the body's surface in
order to have a finer resolution there, or to make the gridlines leave the surface under a specific
angle.

According to the two various methods that are applied to discretizise the physical domain around
the rotor blade(s), the grid topologies used are different.
In the first case the physical domain discretizised has the shape of a cylinder, containing the
complete rotor disk as well as the helical wake (Type I). Due to symmetry effects, the use of
only one cylinder half is sufficient when considering a two-bladed rotor in hover. This requires a
periodical boundary condition for the flow values at the plane of symmetry (Fig. 2). The grid
genersted has an 0-0 topology, which provides a good resolution at the leading and trailing edge
as well as at the tip region. Due to this advantages it 15 possible to have a relatively low total
number of grid cells in spite of the large physical region to be covered and therefore, some
‘reserve” for grid refinement or grid embedding is left.
The results presented wvere obtained on a grid with a total of only 59 x 34 x 17 cells (59 cells
around the profile, 34 on the blade surface in spanwise direction and 17 cells normal to the
blade). The overall grid size for the full scale rotor is 20 chords in radial direction and the
same from top to bottom, whereas an extension of 12°® 16 chords is chosen for the model rotor.
This rather coarse grid was originally planned to be used only for preliminary investigations to
get principle informations how the Euler code works, but soon proved to provide relatively good
global results as can be seen in section 5.
Nevertheless, in future work, the number of grid cells especially around and normal to the profile
will be increassed and some kind of grid refinement will be implemented in order to improve
accuracy, in particular concerning the convection of the tip vortex.

In the second case, intending to reduce the computational expense, not the complete rotor blade,

but only its tip region is enclosed by the grid, starting at about S0-80 percent of the radius,
depending on the blade’s aspect ratio (Fig. 3a, Type Ila).
In order to have the ability to account for the influence of the tip vortex on the following
blade, the boundaries up~ and downstream of the blade are coplanar. For this reason an H-type
topology has been chosen, which in addition has nearly the same spatial resolution along the
expected tip vortex path, which is very advantageous as will be shoun in this paper. The
disadvantage of the H-grid is that it requires a greater total number of grid cells to achieve the
same resolution in the blade’s vicinity as an 0-grid.

Fig. 3b shous another variation of the H-grid used, having a cuboidal instead of a bended shape
(Type 11b).
In this case, the used cartesian coordinate system is not rotating but moves translatorically. The
freestream velocity distribution is simulated by a shear flow and no additional forces appear.
Beside this, the Euler code employed is nearly the same as that used for fixed wing applications.
This proceeding is also used for instance by H. Stahl {27].
The total of grid cells for the H-grids is 64 cells in streamwise, 25 cells in spanwise and 30
cells in normal direction. The overall size 18 6 chords (respectively 7 for the model rotor) in
radial, 9 chords in flow and 8 chords in normal direction.

It 1is remarkable that for the global results of nearly the same quality, the total number of
cells as a result of the H-structure 1s higher than for the 0-0-grid, although the covered
physical domain is considerably smaller.
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4. NUMERICAL PROCEDURE

The Euler code used for the results presented is based on the EUFLEX code of A. Eberle of MBB.
Details of this program are not specified in this paper, since they are described in an extensive
manner in [24].

For a general overvieuv only some basic features shall briefly be mentioned: The solution algo-
rithmn is a finite-volume method with the flow quantities refering to the cells’ center. The time
integration is performed as a one-step scheme, since for the present time only steady solutfons
are of interest, vhile the spatial differences are third or even higher order accurate. In order
to have a hyperbolic system everywhere throughout the floufield, the unsteady formulations of the
Euler equations iz chosen, even if only the steady solution is to be obtained. The code is yet
fully explicit providing a good degree of vectorization. Local time stepping as vell as dimensional
flux splitting 1s used. In order to avoid the disadvantages of other widely used Euler solvers,
that need artificial viscosity terms to make the scheme stable and to prevent oscillations, the
present code makes use of a method of asymmetric flux averaging onto the cell faces, that is based
on the method of characteristics and depends on the sign of the local eigenvalues.

To sdjust this code to the requirements of the rotational flow of a hovering rotor, a lot of
work had to be done in detail. However, only one major feature shall be mentioned, since it has
proved to be very essential: Due to the methods of characteristic flux averaging, the flux quanti-
ties on the cell faces are calculated by using interpolation or extrapolation schemes. These opera-
tions may only be done with quantities that are independent of the freestream velocity uve = Qr.
This concerns the circular component of the relative velocity 3 as well as the total energy e, vhich
contains q2.

Thus, two additional quantities have to be introduced:

u-ar (circular component of the absolute velocity)

-]
"

e - p/2 Qr (24 + Qr) (roenergy) ,

which are used instead of u and e to carry out the characteristic flux averaging.

After doing this, the local value of Qr at the exact physical location of the considered cell face
15 added to obtain the desired flux quantities. All the same the formulation of the Euler
equations in terms of the relative flow values is retained, since this is more suitable for the
solution algorithm derived from the method of characteristics.

In contrast to the original Euler code, in the present pethod the geometric mapping determinant
has to be calculated, smince the right-hand-side 1s not equal to zero. This 1is fulfilled by
dividing the considered cell into five tetrahedra, whose volumes are determined by the method

described in [22].

5. RESULTS

The results that are presented in this paper were obtained for a full size rotor with an aspect
ratio of 1S and for the model rotor of Caradonna and Tung [26], that is commonly used by many
authors to compare their results with reliable experimental data. The blades are always untapered
and untwisted and a NACA 0012 airfoil is used.

Fig. 4 shous the results of the full size rotor st 8 ti
mental data ere available, only a qualitative discussion o
The first row of Fig. 4 shows the isomachs and the pressure
at a collective pitch angle of 5°. The pressure coefficient CB. 15 related to the dynamic pressure
at sonic speed. Beneath them the corresponding solutions for 8 = 0° are plotted. N
Both calculations were performed on the grid I (0-0 type, 59 x 34 x 17 cells), so that, by :e;ns
of the periodical boundary condition, the blade vortex interaction could be taken into m:countl or
the hovering case. Details of the tip vortex propagation are described in the next section.

The two lower pairs of figures show the results of the calculations of the non-lifting case
using the smallerp grid II (Hg-type, 64 x 25 x 30 cells). Only the outer 20 percent of the r;tor
blade are embedded and a first order boundary conditien is applied at the inner !:touhdt;r)’:t vde::
the flow variables are extrapolated linearly, except the spanvise velocity component vr," ns ;n of
vhich q? is taken. It can be seen that the usage of the cuboidel grid (IIb)d ;'it ri.d s(;;:)
freestream velocity profile provides nearly the same results as the bended g .

A comparison with the solution obtained with the 0-0 grid also shovs good agreeler;t. f}.‘?:::r:h::
due to the different parts of the rotor blade covered by the meshes, different scale
spanvise direction are used for the plots.

In addition to the blade area itself, the character of the &
displayed in the lower figures, where the region of hig
displacement can be seen to expand beyond the blade tip.

The subsequent calculations were done on the model rotor. Unlike the pr
comparison with experimental data at different radial sections is now poss
For the first example, a tip Mach number of 0.815 and a collective pitch an

The upper row of Fig. Sa shows the distribution of the pressure coefficient ¢p

p Hach number of 0.85. Since no experi-

f the results is possible.
distribution for the hovering rotor

somachs in the gurrounding sphere is
h velocity due to the effect of

evious case, 8 quant itative
ible (Fig. Se *+ b).

gle of 5° 18 chosen.
vhich novw, in
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contrast to Cpas is refered to the dynamic pressure of the undisturbed flow at the respective
local radial station. Teking into account that no boundary layer effects, which are of great
influence especially in the nose and the shock region, can be considered by an inviscid method,
the results shov a very good agreement with the measurements, although no wake model at all is
added. The influence of the blade vortex interaction was introduced only via the periodical boun-
dary condition and is an implicit part of the Euler solution. Grid I was used for the calculations.

The great importance of the capability to involve the blade vortex interaction can be realized
by draving a compare to the curves in the lower row. In this case, an isolated rotor blade was
investigated. The considerable deviations, i.e. the overprediction of the low-pressure distribution
at the upper side and the underprediction on the lower side and herewith the over—prediction of
the local lift coefficient, could be assumed this way, since it is known, that the trailing wake
of the advancing rotor blade decreases the effective angle of attack. The computations were done
with the grid IIb as well as with grid I by replacing the periodical boundary condition, but only
the results of grid IIb are shown since they are quite similar.

Tuwo further combinations of tip Mach numbers and collective pitch angles are displayed in Fig.
Sb, both being calculated with grid I.
The upper row contains the results of Myyp = 0.439 and 6; = 8°, uhile the lower rov was obtained
for Myyp = 0.520 and 8, = 0°.
Elpectugly the first case vas calculated by several authors, too (e.g. [17,28]). An interesting
investigation was done by Roberts and Murman in [17], who inquired the variation of the results
when employing more or less simplified stages of their wake model. A comparison shows that the
quality of their results obtained with their full wake model i1z at least reached by the implicit
method presented in this paper.

In the meantime, also a version of grid IIa has been generated for the application of periodical
boundary conditions at the up— and downstream boundary. Its angle of aperture is 90°, corresponding
to a four-bladed rotor. The first results are expected in the near future.

One systematic deviation can be observed in the results obtained by grid I: In the nose region
the value of the suction peak as well as the rate of pressure decrease are not predicted correctly.
Both effects however can be diminished by increasing the number of mesh points in this region.

In the same manner as done in Fig. 4, the results of the model rotor at Myyp = 0.815 and 6, = 5°

are qualitatively represented in Fig. 6. The span~ and chordwise variation of Cpa 18 shown. Again,
the scale of the curves achieved with grid II 1s extended along the spanwise direction because the
innermost spanuise station is located at about 48 percent of the blade radius. The boundary
condition at this plane is the same linear extrapolation mentioned above.
The influence of the blade vortex interaction, already dealt with in Fig. Sa, can be seen more
globally comparing the four top figures. The suction peak reaches a higher level and the low
pressure regions shov a greater extension in spanwise direction, whereas in chord direction the
extensions do not differ.

Very good agreement is achieved between the calculations of the isolated rotor blade using grid
1 and grid IIb. The only differences are found in the shock region, vhere grid IIb provides a smal-
ler shock. Reasons for this are not yet clear. In connection to that the typical overshooting behind
the shock wave, often observed at inviscid procedures, does not appear in the results of grid I.

6. TIP VORTEX CONVECTION

One important question is, whether an Euler code is able to correctly predict effects depending
on the trailing wake of the advancing rotor blade without any additional model.
Two main reasons are known to cause severe difficulties, the additional artificial viscosity terms
involved in some solution algorithms on one hand and the truncation errors due to coarse grid
regions on the other hand. Since the EUFLEX code makes no use of artificial viscosity terams, the
first main problem is alleviated.
The alteration of the tip vortex structure when convecting along its path through partly very
coarse grid regions is demonstrated in Fig. 7. When viewing the figures, it must be considered,
that for reasons of perceptibility the chosen scope as well as the scale factor for the velocity
vectors had to be incressed at a certain distance awvay from the blade. 45° and all the more 90°
behind the blade, the vortex has diffused and has lost its intensity to a great amount, due to the
fact, that the cell sizes increase rapidly.
However, when approaching the blade, the vortex regains its finer structure, and even the helical
descendence of the core can be observed.
Up to which degree the geometry of this vortex, when striking the blade, represents the physical
reality i1s subject to further investigations.

The disadvantage of vortex diffusion due to grid coarseness is diminished when using the H-grid
(Fig. 8).
Although the number of meshpoints within the frames reduces a little, the vortex diameter as well
as the circular velocity components do not change significantly. Note that this time the framesize
and the scale factor could be kept constant.

Fig. 9 shous the creation of the obviously weak inner vortex, that can only be captured, if an
all enclosing grid is chosen.



284 E. KRAMER et al.

7. COMCLUSIONS

The adjustment of a finite-volume Euler code, well proved for fixed wing applications, to
helicopter flow fields has been presented. The Euler equations are formulated in terms of the
relative flow variables with respect to a rotating blade-attached coordinate system.

The fundamental extension is the exclusive use of freestream independent flow variables within
the numerical procedures when the characteristic flux averaging is performed.

For the way of discretizising the physical domain, two generally different philosophies have been
applied, enclosing either the whole rotor disk or only a segment of it around the blade tip region.
Results have been presented, providing very good agreements to experimental data. This fact shows
the capability of the Euler solver to treat wake effects without needing any additional wake model.
However, a lot of improvements have to be done concerning grid refinements in regions of high flow
gradients as well as along the assumed vortex path, the extension of the grid beneath the rotor
disk to capture more cycles of the helical wake and the introduction of characteristic boundary
conditions, based on the Riemann invariants for one-dimensional flow normal to the boundary.
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Fig.1l: Blade-fitted coordinate system Fig.2: Grid type I: 0-0 topology, 59 x 34 x 17 cells
(Figure of the full size rotor with AR = 15)

Fig.3a: Grid type Ila: H-topology, bended Fig.3b: Grid type IIb: H-topology, cuboidal
shape, 64 x 25 x 30 cells shape, 64 x 25 x 30 cells
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Subsonic and transonic rotor flow
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Fig.6: Qualtitative representation of the surface pressure distribution and the

{sobars for the test case of Fig.5a (Mgip = 0.815, 6 = 59).

Comparison of the results obtained with ind without blade vortex interaction.
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Subsonic and transonic rotor flow
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