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Comment on 'Geomagnetic Depth Sounding by Induction Arrow 
Representation: A Review' by G. P. Gregori and L. J. Lanzerotti 

DETLEF WOLF 

Department of Physics. University of Toronto. Toronto. Ontario. Canada M5S lA7 

In a recent review of the concept of induction vectors as 
an indicator of lateral variations of subsurface conductivity 
structure, Gregori and Lanzerotti [1980] attempted to work 
out a unifying concept which the authors interpreted as 
demonstrating the equivalence of the various induction 
vectors in use, thereby making differences between them 
merely formal and without physical significance. This ap
proach certainly cannot be approved in general, because due 
consideration of the precise meaning of the different induc
tion vectors, according to the original publications, will 
show that each of them is a physically well-distinguished 
quantity, their equivalence being limited to rather restrictive 
assumptions. 

In order to demonstrate these differences between the 
Parkinson vector vp , the Wiese vector vw , and the 
Schmucker vector v., transfer functions will be introduced: 
Let 

B(t) = [H(t), D(t), Z(t)] 

designate the total magnetic variation field, as observed at a 
particular point of the earth's surface at a particular time t, 
H, D, and Z being its components along magnetic north, 
along magnetic east, and vertically downward, respectively. 
For the purpose of showing physical differences between the 
three induction vectors we will mostly consider harmonic 
events, that is, disturbances of the particular form 

F(t) = Fo cos (wt + cPF) 

which is a real function in the time domain and refers to an 
arbitrary field component. In the frequency domain we 
introduce the complex function F(w) = Foei 4>F and thus have 
the conversions 

Re [F(w)eio>,] = F(t) 

where w = 2'1T1T. 

1m [F(w)eio>'] = - F(t + T14) 

Schmucker [1964, 1970] considered normal and anomalous 
variations and elaborated on the physical significance of 
both. According to him an arbitrary field component F may 
be decomposed into a normal part Fn and an anomalous part 
Fa. Henceforth it will be assumed that Zn <: Za, which is 
usually closely met in mid-latitudes and is equivalent to a 
quasi-homogeneous normal field. From the linearity of Max
well's equations it then follows that we may connect the 
components 

H(t) = Ho cos (wt + cPH) 

D(t) = Do cos (wt + cPD) 

Z(t) = Zo cos (wt + c/Jz) 
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in the frequency domain by 

ta = h fin + d Dn (I) 

where hand d are complex transfer functions. Techniques 
for determining them for various (not necessarily harmonic) 
events have been discussed in detail by Schmucker [1970]. 

For the following discussion it will be appropriate to 
assume that the subsurface conductivity structure is well 
represented by a two-dimensional distribution. If the posi
tive direction tangential to its strike is oriented at an angle 8 
::5 1T toward south from magnetic east, then the positive 
direction perpendicular to strike is oriented at the same angle 
8 toward east from magnetic north. This corresponds to a 
clockwise rotation of the original geomagnetic system by the 
angle 8, and we may write for H' perpendicular and D' 
tangential to strike, 

fI' = fI cos 8 + D sin 8 

D' = - fI sin 8 + D cos 8 

Equation (I) may then be replaced by 

ta = h' fin' + d' Dn' 

(2) 

(3) 

(4) 

with rotated transfer functions h' and d'. But d' = 0, as we 
have E polarization [Untiedt, 1964; Jones and Price, 1970]. 
Thus (4) reduces to 

(5) 

This equation suggests to refer all phases to the phase of fin'. 
We therefore set cPH' = 0 and transform (I), (2), and (5) into 
the time domain: In;erting 

Hna' = Hn(O) cos 8 + Dn(O) sin 8 

into 

ZiO) = Re h' Hna' 

and comparing with 

Za(O) = Re h Hn(O) + Re d Dn(O) 

+ 1m h Hn(TI4) + 1m d Dn(TI4) 

we realize that (8) reduces to 

where 

Za(O) = Re h Hn(O) + Re d Dn(O) 

Re h = Re h' cos 8 

Re d = Re h' sin 8 

(6) 

(7) 

(8) 

(9) 

(10) 

(II) 

The transformation properties of Re hand Re d suggest that 
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these quantities be identified as the components of a vector 
quantity, which may be defined as 

v. = -(Re h, Re d) (12) 

This is the in-phase induction vector, or Schmucker vector, 
as used by Schmucker [1964, 1970]. It is obviously directed 
perpendicular to the strike of the conductivity distribution 
and points toward regions of enhanced conductivity. Two 
significant differences between the definitions of v. after 
Schmucker [1970] and Gregori and Lanzerotti [1980] must be 
emphasized: 

1. Schmucker expresses anomalous vertical fields in 
terms of normal horizontal fields, whereas Gregori and 
Lanzerotti consider only total field components. 

2. Schmucker considers components of vertical fields in 
phase with horizontal fields, whereas Gregori and Lanzerotti 
do not take possible phase lags into account. 

In (9), normal fields in Schmucker's sense are assumed to 
be known for any location considered. This may be related 
to some difficulties in practice and at least requires simulta
neous observations at different locations. Banks [1973] stat
ed idealizing assumptions which allow this problem to be 
overcome: As Zn -< Za has been assumed before, his 
requirements simply reduce to Ha -< Hn and Da -< Dn in the 
present context. Hence instead of (9) we just have 

Z(O) = Re h H(O) + Re d D(O) (13) 

But (12) is still valid; if we invert the sign, we may also write 

v ... * = -v. = (Re h, Re d) (14) 

Equation (13) obviously suggests another method of deter
mining the components of the induction vector vw*: If 
different harmonic events of the same frequency are consid
ered at exactly the time of an extremum of H' , then Re hand 
Re d can be determined. However, (13) is obviously not 
suitable for evaluating actual events, since it requires the 
knowledge of the component H' perpendicular to the initially 
unknown strike direction. Consequently, Wiese [1962, 1965] 
referred alI phases to the observable field component Z. 
Setting tf>z = 0 and considering instantaneous field compo
nents at t = 0, that is at the time of an extremum of Z, he 
obtained 

Re h Re d 
Zo = -- H(O) + -- D(O) (15) 

cos 4>H' cos 4>H' 

( 
Re h Re d ) v. 

v ... = cos 4>/1" cos 4>H' = - cos 4>H' 
(16) 

where v ... is the Wiese vector proper. This was also shown by 
Untiedt [1970] and Schmucker [1980], Of course, other 
phases of Z may also be selected, A complete discussion of 
the dependence of the magnitude of the resulting Wiese 
vectors on the choice of the phase of Z at which field 
components are compared has been given by Siebert [1969]. 
This distinction may have some practical importance when 
considering Wiese vectors obtained during different surveys. 
But no physical significance is inherent in it, as different 
relations corresponding to (15) define corresponding Wiese 
planes, which invariantly extend tangential to the strike of 
the conductivity distribution and differ only by their inclina
tion toward the horizontal plane. A corolIary of this is, of 
course. that the respective Wiese vectors invariantly point 

into a direction perpendicular to strike, differing only by 
their magnitude. 

In practice, the requirements Ha -< Hn and Da ~ D., 
which are only valid for rather weak conductivity contrasts, 
cannot be met in general. But as Wiese [1962] showed, the 
useful properties of the Wiese planes and Wiese vectors 
already apply for any two-dimensional conductivity distribu
tion, as long as the normal field is horizontal. However, 
instead of (15) and (16) we can now only state that 

Zo = a H(O) + b D(O) 

v ... = (a, b) = -m v. 

(17) 

(18) 

where m is not known in general. In fact, Beamish (1977) 
calculated v ... and v. for a set of stations in Kenya and could 
show that v ... and v. were not even antiparallel, which should 
be expected because of the three-dimensional conductivity 
distribution prevailing in that area. 

Referring to the definition of the Wiese vector according 
to Gregori and Lanzerotti [1980], we thus realize the follow
ing difference: 

3. Wiese considered arbitrary two-dimensional conduc
tivity distributions, with all the consequences for the relation 
between v ... and v. outlined above, whereas the relation Vo' = 

-v. suggested by Gregori and Lanzerotti will only apply for 
weak conductivity contrasts close to the inductive limit. 

For Wiese's original data, however, phase lags turned out 
to be small, which justified his disregard of them. Also, 
Untiedt [1970] pointed out that the case of pure self-induc
tion seemed to apply sometimes. Ifit holds exactly, (17) may 
be written as 

Z(to) = a H(to) + b D(to) (19) 

This clearly demonstrates that only in this restrictive situa
tion the same linear relation holds for any time to and 
independent of the frequency of the oscillation. We may also 
say that only in the case of the inductive limit is the Wiese 
plane identical with the variation plane of an arbitrary (not 
necessarily harmonic) disturbance. This variation plane may 
be identified with the Parkinson plane, or preferred plane, as 
introduced by Parkinson [1959, 1962]. The Parkinson vector 
vp is defined as the horizontal projection of the downward 
unit vector perpendicular to that plane, and Gregori and 
Lanzerotti [1980] demonstrated that in this case we have 

(20) 

where both vectors are oriented anti parallel. 
However, phase shifts may not be disregarded in every 

instance, and in fact Parkinson did not restrict his analysis to 
two-dimensional conditions close to the inductive limit but 
only stated that a relationship such as (19) was closely 
satisfied in many situations. 

Untiedt [1964] could demonstrate that a three-dimensional 
conductivity distribution would already be sufficient to give 
rise to stationary variation planes, as long as the inductive 
limit was closely approached. On the other hand, he cau· 
tioned that a purely harmonic field variation would always 
occur in a plane (compare also Siebert [1969]): For a two
dimensional conductivity distribution the rotated system 
may be chosen as before. If we write 
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Z(t) = j R'(t) + k D'(t) (21) 

for the harmonic disturbance, the coefficients are given by 

. Zo sin (cPz - cPD') 

J = Ro' sin (cPu' - cPD') 

Zo sin (cPz - cPu') 
k = ---=-......:..;..=----:..:-=-=-

Do' sin (cPD' - cPu') 

(22) 

(23) 

lfalso cPz = cPu', we havej = ZIR' and k = O. Thereforej = 
h' and k = d' as expected. If, however, cPz 'f cPu', which 
implies finite conductivities, then for a two-dimensional 
distribution, Z of course remains independent of D' physical
ly. But k 'f 0 in (23) andj and k incorporate the modulus and 
phase of D' tangential to strike for a given H' perpendicular 
to strike. Consequently, the vertical plane normal to strike 
will accommodate elliptically polarized fields, and the varia
tion plane will not strike parallel to the conductivity struc
ture any more (even though this does not imply that the 
inductive response of the ground has no influence on the 
orientation of that plane at all). The Parkinson vector vp is 
therefore not oriented perpendicular to strike, and Vw (which 
does remain perpendicular to strike if determined as suggest
ed by Wiese) and vp are no longer antiparallel. If the 
polarization characteristics of the horizontal field change 
from event to event, which will usually be the case in mid
latitudes, no stationary variation planes are compatible with 
this situation at all [Untiedt, 1964, 1970; Porath, 1970], and 
only a best plane in some sense may be defined. As Meyer 
(1980) pointed out, only for a sufficiently random distribution 
of polarizations and two-dimensional structure would this 
best plane be approximately tangential to strike. This seems 
to be the situation originally considered by Parkinson. But 
the following point must be noted: 

4. Gregori and Lanzerotti clearly identified the Parkin
son plane with the variation plane, which has all the conse
quences indicated before, that is, (20) will not be valid in 
general. 

In conclusion we may safely state that Gregori and 
Lanzerotti [1980] oversimplified their comparison of real 
induction vectors considerably and completely disregarded 
the four points summarized here. However, careful consid
eration of these differences is not merely a matter of academ
ic interest but is also indispensable When interpreting actual 
field data. 
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