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Summary. The flexure of an incompressible, thick elastic plate floating on an 
inviscid substratum and subject to  an external gravity field is re-analysed. The 
solution is derived from momentum equations which account for the advec- 
tion of hydrostatic pre-stress. This is contrasted with a recently published 
thick-plate solution derived from momentum equations without a pre-stress 
term. It is demonstrated that neglecting pre-stress advection renders the solu- 
tion singular when the model degenerates into an inviscid half-space. If 
pre-stress advection is included, the solution remains correct in this limit. A 
numerical comparison of both types of thick-plate solution with results based 
on conventional thin-plate theory further shows that, for geophysically rele- 
vant models, the difference in the momentum balance entails discrepancies 
between the thick-plate solutions which are comparable to  the errors intro- 
duced by the thin-plate approximation. 

1 Introduction 

Regional deformations of the Earth’s lithosphere under superimposed loads have almost 
exclusively been analysed in terms of thin-plate models. For elastic and viscoelastic materials 
the theory is well-known and may, for example, be found in Nadai (1963). Until recently, 
however, this approach has been more motivated by the simplicity of thin-plate theory -than 
it has been based on  rigorous theoretical justification. Preliminary comparisons in the wave- 
number domain between the response characteristics of thin or thick elastic plates floating 
on inviscid substrata in fact demonstrated that large differences existed up to  wavelengths as 
large as five times the plate thickness (McKenzie & Bowin 1976). But the significance of this 
result for specific topographic loads resting on  the Earth’s lithosphere has not been made 
clear. Whereas most authors have assumed that the errors introduced by thin-plate theory are 
generally minor compared to  the inaccuracies associated with the observations (e.g. Banks, 
Parker & Huestis 1977), others (e.g. Turcotte 1979) have pointed out that thin-plate theory 
may only be marginally valid for the Earth’s lithosphere. 

The problem of thin-plate versus thick-plate flexure has recently been addressed quanti- 
tatively by Comer (1983). Considering realistic axisymmetric loads resting on elastic plates 
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Figure 1 .  Thick elastic plate floating on inviscid substratum. u = A / [  2(h  + f i ) ]  denotes Poisson’s ratio. 

characterized by geophysically relevant parameters, he convincingly demonstrated that 
solutions based on thin-plate theory were usually good approximations. The present note is 
not so much an attempt to  modify this result, which is certainly correct. It is rather intended 
to  discuss some inconsistencies in Comer’s thick-plate analysis, which lead to physically un- 
reasonable singularities in the solution in a certain important asymptotic limit. 

A cursory inspection of Comer’s momentum equations shows that the advection of 
hydrostatic pre-stress has not been included. In the presence of a gravity field this neglect is, 
however, inconsistent with the usual elastic boundary conditions. In the plate-flexure prob- 
lem they require that the normal component of the elastic traction compensates the weight 
of the superimposed load or the buoyancy of the underlying fluid. This formulation, how- 
ever, implies that pre-stress advection counterbalances the weight of the matcrial of the 
elastic plate which is associated with the deflection of the plate from its equilibrium level 
(e.g. Cathles 1975, pp. 16-23). 

The importance of pre-stress advection was first discussed by Love (1 91 1 ,  pp. 89-93) in 
his study of static deformations of the Earth. Love also incorporated the advection term into 
the momentum equations governing the Earth’s free oscillations. Peltier (1  974) extended 
this analysis and included the effect of pre-stress when stating momentum conservatioii for a 
quasi-static Maxwell body. Recently Wu & Peltier (1982) reviewed the relaxation of such 
continua in detail and noted that the pre-stress term was required in order that the correct 
solution be obtained in the inviscid limit. 

In the following, the solution describing the flexure of an incompressible, thick elastic 
plate will be derived from momentum equations which include the advection of pre-stress. 
This will permit us to  demonstrate explicitly the signficance of the pre-stress term when 
considering the inviscid limit of the model. Following that, several numerical examples will 
be presented and compared with results based on Comer’s (1983) thick-plate solution and 
conventional thin-plate theory. 

2 Theoretical analysis 

The problem to  be solved is the static deformation of an elastic layer or thick plate (charac- 
terized by its thickness h,  Lam6 parameters A and p, and density p l )  floating on an inviscid 
substratum (characterized by its density pz) and subject to a normal surface traction - q ( x )  
acting at z = 0. Mere all parameters are assumed to be spatially constant. A cross-section of 
the general configuration in the (x, 2)-plane is shown in Fig. 1 .  

Within the range of validity of flat earth models it is reasonable to  neglect perturbations 
of the geopotential by the load or by internal mass redistributions. The gravity field is there- 
fore taken to be externally applied. He will further assume that it is constant and acts 
parallel to  the direction of the z-axis. If the analysis is restricted to  an incompressible plate, 
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its density will remain unperturbed, and the momentum balance reduces to 

Here ~ $ 2  etc. denote the Cartesian components of the elastic stress tensor u$). The term in 
brackets on  the right sides of (2.1) and(2.2)accounts for stress advection in a hydrostatically 
pre-stressed elastic continuum of initial pressure po. In the elastic plate 

whereg denotes gravity, and (2.1) and (2.2) become 

a a 
- ( u g  -t- p 1 g W )  + - u g  = 0, 
ax az 

a a 
- (0:;) + &gW) +- u g  = 0. 
az ax (2.5) 

Since the elastic plate is incompressible, its constitutive equations are 

ul" = ( u g  + u 3 / 2 .  (2.9) 

Here u and w denote displacement components in the x- and z-directions, respectively. p @ )  is 
the elastic perturbation pressure. For an incompressible elastic solid it is defined by 

p ( e )  = lim (ha) ,  
A + -  

A - 0  

(2.10) 

where A = au/ax + aw/az is the dilatation (Love 1927, pp. 255-257). If the total pertur- 
bation stress 

Gj = u p  + p,gWsi j  (2.1 1) 

is introduced, the momentum balance becomes 

a a 
ax az 

uxx + - ox, = 0, - (2.12) 
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a a 
ax az 

axz +- azz = 0. - 

Similarly, the constitutive equations reduce to  

au 
ax 

ax, = - p  + 2p-, 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

ayy = (axx + azz)/2, (2.17) 

where p denotes the total perturbation pressure. Since a two-dimensional model has been 
adopted, the cornpatability equations reduce to one condition, viz. 

V2(0,, + a,) = 0. (2.18) 

Following Malvern (1969, pp. 552-554), we may introduce a displacement potential x, such 
that 

a2 X 

ax2 
2pw =- , 

Substituting for the displacements in (2.14)-(2.16) yields 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

It may be shown by direct substitution that (2.12) is identically satisfied by (2.22) and 
(2.24). Substituting for a,, and azt in (2.18), under consideration of (2.13), yields the 
biharmonic equation 

Vx(x, z) = 0. (2.25) 

Using the transform pair 

~ ( k )  =I f ( x )  exp ( - ikx)dx, 
-en 
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with k the wavenumber, the Fourier transform of (2.25) is 

($ - k’r i ( k ,  z) = 0 

with the general solution 

x(k, z) = ( A  + Bz) cosh (kz) + (C + Dz) sinh (kz). 

Fourier transformation of (2.19), (2.20), (2.22)-(2.24) and substitution for 2 yields 

2@(k, z) = -ik[sinh(kz)kA + [kz sinh(kz) + cosh(kz)]B 

+ cosh(kz)kC+ [kz cosh(kz) + sinh(kz)]DII, 

(2.26) 

(2.27) 

(2.28) 

2pk(k, z) = -k[cosh(kz)kA + kz cosh(kz)B + sinh(kz)kC+ kz sinh(kz)D], (2.29) 

6,(k, z) = k2 I[sinh(kz)kA + [kz sinh(kz) + 2 cosh(kz)] B 
+ cosh(kz)kC + [kz cosh(kz) + 2 sinh (kz)] 01, (2.30) 

bZ2(k, z) = -kZ[sinh(kz)kA + kz sinh(kz)B + cosh(kz)kC+ kz cosh(kz)D], 

6&, z) = -ik’tcosh(kz) kA + [kz cosh(kz) + sinh(kz)] B 

(2.31) 

+ sinh(kz)kC + [kz sinh(kz) + cosh(kz)] DJ, (2.32) 

( - l ) I n .  In the transform domain the solution must satisfy the boundary conditions 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

where i 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

Equations (2.37) and (2.39) simp.] state that the total perturbation pressure balances the 
external load or buoyancy force and the weight of the material of the elastic plate displaced 
from its undisturbed level surface. 

The four integration constants A ,  B, C and D are determined to satisfy the four boundary 
conditions in the usual way. After some algebraic manipulation we obtain 

k2A = -kD, (2.41) 
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k2B = 
- uzz ( k ,  0) sinh (kh) [2$ sinh(kh) + (pl - pz) g cosh (kh)] 

2pk(kh)’ - (p l  - pz)g(kh) - sinh(kh) [2pk sinh(kh) + ( p l  - pz)g cosh(kh)] 

kZC= - U,,(k, 0), 

eZz(k, 0) 1[2pk(kh) + sinh(kh) [ ( p 1 - p 2 )  g sinh(kh) + 2pk cosh(kh)]J 
2pk(kh)’ - ( p l  - pz) g(kh)  - sinh(kh) [2pk sinh(kh) + ( p l  - p2) g cosh (kh)]’ 

k2D = 

Equation (2.29) together with (2.41) yields 

2piv(k, 0) = kD. 

Using (2.37) and (2.44) this may be transformed to 

Wk, 0 )  = ci(k)/[p,g + 2PkP(k)l? 

where 

P(k)  = 
2pk(kh)2-(pl-pz)g(kh)- sinh(kh) [(pl-pz)gcosh(kh) + 2pk sinh(kh)] 

2pk(kh) + sinh(kh) [ (p l  - pz) g sinh(kh) + 2pk cosh(kh)] 

(2.42) 

(2 43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

Only for p 1  = 0, i.e. for an elastic plate without mass, is (2.46), with Pgiven by (2.47), iden- 
tical to Comer’s (1983) result. One might argue that Comer effectively disregarded gravity in 
his analysis, since its effect can be shown to be small in most situations. If g = 0 in (2.46) 
and (2.47), a purely elastic solution is obtained, however, i.e. the buoyancy effects of the 
inviscid substratum are also neglected. More illuminating is a discussion of the limit pk+O 
for p 1  = pz. Then the model degenerates into an inviscid half-space. We find P=  0 and 

N k ,  0)  = ci(k)/(Plg). (2.48) 

This is the correct solution. At pk = 0 Comer’s solution has a singularity, however, which is a 
consequence of his neglect of pre-stress in (2.1) and (2.2). 

If axisymmetric loads are modelled, all previous equations in the Fourier transform 
domain can be interpreted as equations in the Hankel transform domain. Then the horizontal 
directions x and y must be taken as being radial and azimuthal directions r and 4, respec- 
tively. Furthermore, the Fourier transforms of x, w ,  uxx, u,,,, and uzz must be interpreted as 
zeroth-order Hankel transforms, whereas those of i u and iuxz  as first-order Hankel trans- 
forms of the corresponding field quantities in cylindrical coordinates, 

3 Numerical examples 

For a demonstration of the numerical differences between the improved thick-plate theory 
outlined in the last section and the solution previously obtained by Comer (1983), it will be 
sufficient to restrict the discussion to vertical surface displacements. 

Fig. 2 compares results obtained in the wavenumber domain for plate thicknesses of 125 
and 250 km. The values of the model parameters are given in the caption. The quantity 
plotted is the response function @(A), which normalize ;(A, 0) with respect to the 
static response of the underlying inviscid half-space alone (Walcott 1976). The response 
according to our improved theory exceeds Comer’s response curves significantly for X = 
2n/k > 2000 km and h > 200 km. 

At this point it is instructive to compare Comer’s figs 3(a) and 3(c). Although the ratios 
between wavelength of deformation and thickness of lithosphere are similar for both models, 
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Figure 2. Response function 0 for elastic-plate thicknesses h of 125 km (a) and 250km (b) versus 
wavelength h of the deformation. Improved (solid) and simplified (dotted) thick-plate solutions for 
p = 0.4X 10" N m-*, v -- 0.5, p ,  = p 3  = 3000kg m.'.  

the discrepancies between thin-plate and simplified thick-plate solutions are not. For the 
200 km thick (Martian) lithosphere they exceed the differences obtained for the 25 km thick 
(oceanic) lithosphere by almost a factor of 3 .  Since similarity should hold closely, this result 
is unexpected. Here we suggest that the difference is related to  Comer's neglect of pre-stress 
advection in the momentum balance. This hypothesis will be tested by calculating the defor- 
mation caused by strip loads of different widths according to thin-plate theory. Comer's 
simplified thick-plate theory and our improved thick-plate theory. 

The Fourier transform of a unit strip or box-car load q ( x )  = [ H ( x  + Z) - H ( x  - Z)]/(2 I) is 
d(k)  = sin(kZ)/(kZ), where I is the half-width of the strip and H denotes the Heaviside step 
function. Substituting for Q(k) in (2 .37)  and numerical inverse Fourier transformation then 
yields w(x,  0). 

Fig. 3 presents results obtained for a 250 km thick elastic plate. This is very close to the 
thickness chosen by Comer in his model of the Martian lithosphere. Similar values have 
recently been suggested for the continental lithosphere from the interpretation of deglacia- 
tion-induced relative sea-level rise along the east coast of North America and from polar- 
wander information (Peltier 1984). For a line load (a) the thin-plate approximation results in 
an underestimation of the central displacement by almost 40 per cent. Compared to this the 
differences between the two thick-plate solutions remain insignificant. Line loads acting on 
thin plates have been considered by several authors, although for thinner lithospheres ( e g  
Walcott 1970). For a 250 km wide load (d), however, one-third of the 15 per cent discrepancy 
between the thin- and thick-plate solutions, as implied from Comer's simplified thick-plate 
theory, is spurious. For a width of 500km (e), the actual difference between thin- and thick- 
plate solutions is overestimated by 50 per cent and the simplified thick-plate solution is no 
longer superior to  conventional thin-plate theory. 

4 Conclusions 

This study has attempted to illuminate the physical significance of the pre-stress term in the 
momentum equations appropriate to  static deformations of incompressible elastic continua 
in an external gravity fields, by demonstrating that its neglect results in physically unreason- 
able singularities in the solution. The theoretical analysis of the correctly posed problem 
involves no additional complications and leads to solutions in terms of total perturbation 
stresses instead of elastic perturbation stresses. In view of this, we feel that simplifications 
of the kind introduced by Comer (1983) are unnecessary. If the continuum is compressible, 
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Figure 3. Normalized vertical surface displacements w for strip-load widths 21 of Okm (a), 50km (b), 
150 km (c), 250 km (d) and 500 km (e) versus horizontal distance x from load axis. Improved (solid) and 
simplified (dotted) thick-plate solutions, together with associated thin-plate solutions (dashed). Normal- 
ization with respect to central displacement according to improved thick-plate theory. Parameters as for 
Fig. 2. 
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the modifications introduced by pre-stress advection are much more substantial. This is 
because a formulation in terms of the total perturbation stress no longer simplifies the 
analysis. The compressible problem is at present being followed up in a separate 
investigation. 
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