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Summary. Boussinesq’s problem is solved for a uniform and incompressible 
Maxwell half-space subject to an external gravity field. The solution is based 
on momentum equations which account for stress advection in the hydro- 
statically pre-stressed continuum during its deformation. The analysis shows 
that disregarding the pre-stress term renders the theoretical stress distribution 
incorrect and the deformation singular in the inviscid limit of the Maxwell 
continuum. Our solution is contrasted with a recently published alternative 
solution of the same problem, where regularity in the inviscid limit was 
forced by modified boundary conditions. 

1 Introduction 

In the previous note, the load-induced flexure of an incompressible, thick elastic plate 
subject to  an external gravity field was analysed (Wolf 1985). It was shown that the validity 
of the solution in the inviscid limit is contingent upon the inclusion of the pre-stress term in 
the momentum balance. In the present note this result is extended to viscoelastic models, 
and Boussinesq’s problem for an externally gravitating Maxwell continuum is solved. 

The related non-gravitating problem was discussed by Peltier (1974), who also pointed 
out the errors incurred by neglecting gravitational restoring forces. Hence Peltier included 
pre-stress advection in his general analysis of the relaxation of self-gravitating Maxwell 
spheres [see his equation (44) on p. 6561. Recently, Wu & Peltier (1982) have again called 
attention to  stress advection in a hydrostatically pre-stressed Maxwell continuum by noting 
that the appropriate term is required in the momentum balance in order that the correct 
solution be obtained at large times after the onset of loading, i.e. in the inviscid limit. Their 
claim is, however, at variance with Nakiboglu & Lambeck’s (1982) treatment of the same 
problem. These authors do not include the advective term in their momentum balance but 
modify the boundary conditions by adding a ‘buoyancy term’. 

Although both methods yield the correct surface deflection in the inviscid limit, their 
equivalence is not clear. Here we will attempt to  illuminate this problem and derive the 
formal solution for the deformation of the uniform, incompressible and gravitationally pre- 
stressed Maxwell half-space. This will allow us to discuss the stress distribution in the 
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continuum during its relaxation. As will be shown, the role of pre-stress is crucial, since it 
ensures that the imposed boundary conditions be satisfied at any time. 

2 Theory 

In the previous note I derived the solution for the deformation, under a two-dimensional 
load, of an incompressible thick elastic plate overlying an inviscid half-space and subject t o  
an external gravity field (Wolf 1985). For veiy large plate thicknesses the solution reduces to 
that appropriate to a uniform elastic half-space. Imposing the condition that all field quan- 
tities remain regular as z-> 00, we then obtain, from Wolfs equations (2.28) and (2.29), for 
the horizontal and vertical displacement components, respectively, 

2pti(k,z)=ik[kA -(1-kz)B] exp(-kz), (2.1) 

2pw(k, z) = -kZ(A + Bz) exp(- kz). (2.2) 

Parameter p denotes Lame’s second constant and A and B are new integration constants 
appropriate to the half-space model. A carat denotes the Fourier transformation of the 
pertinent quantity with respect to  the horizontal coordinate x, k is the associated transform 
variable (wavenumber) and z the vertical coordinate in the direction of the gravity field. 
Similarly, we obtain for the stress components from Wolfs (1985) equations (2.30)-(2.32) 

eXx(k, 2) = -kZ [kA -(2-kz)B] exp(-kz), 

o,(k, z) = k3(A + Bz) exp(- kz), 

Gxz(k, z )  = -ik2 [kA -( 1 - kz)B] exp(-kz), 

6ij with the Fourier transform of the total perturbation stress defined by 

uii = u$) + pgwtiii. (2.6) 

Here u$) denotes the elastic perturbation stress, and pgwSii is the pre-stress term from the 
momentum balance (see Wolf 1985 for a more complete discussion); p is the density and 
g the acceleration due to  gravity. 

The integration constants are determined from the boundary conditions 

G$)(k, 0) = -i(k),  

0 )  = 0. 

Substituting for the field quantities in (2.7) and (2.8) from (2.2), (2.4) and under considera- 
tion of ( 2 3 ,  (2.6), we obtain 

kzA = kB = -2pG(k)/(2pk + pg). (2.9) 

In the Fourier transform domain the solution of Boussinesq’s problem is therefore 

(2.10) 

(2.1 1) 
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The correspondence principle allows us to  interpret (2.10) and (2.11) as Laplace transforms 

of an associated linear viscoelastic problem. This method is well-known and has been 
discussed in a geophysical context by Peltier (1974) and others. We therefore only recall that 
(2.10) and (2.1 1) constitute the Laplace-transformed solution for a Maxwell half-space 
subject to  an impulsive load i (k)6( t ) ,  provided that p + p / ( s  + 7-l). Here s is the Laplace 
transform variable associated with the time r and T = q/p the Maxwell time; 7) denotes the 
dynamic viscosity. Then (2.10) and (2.1 1) take the form 

(2.12) 

(2.13) 

where the tilde denotes Laplace transformation. s(l) will later be interpreted as inverse 
relaxation time and is given by 

s(l) = pg~-' /(2pk + pg). 

If we introduce viscoelastic transfer functions by 

(2.14) 

(2.15) 

(2.16) 

the impulse reponse is obtained by taking the inverse Laplace transforms of (2.15) and 
(2.16). We obtain 

(2.17) 

(2.18) 

For our purposes it is necessary to know the response due to a Heaviside load i(k)H(t) .  
From (2.17) and (2.18), by convolution and for f > 0, 

(2.19) 

(2.20) 

In (2.19) and (2.20) the first term in the square brackets is the instantaneous elastic response 
t o  the load, whereas the second term describes the time-dependent viscous part of the 
response. 
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3 Discussion 

Except for spatially harmonic load distributions, the inverse Fourier transformation of our 
solution can, in general, be implemented only numerically. Here it is sufficient, however, to 
analyse the behaviour in the wavenumber domain. We will show in particular that the boun- 
dary conditions are satisfied at any time and discuss the role of pre-stress in this context. 

At z = 0 we obtain from (2.12) and (2.13) 

where T(ve) and S(Ve) are given by (2.19) and (2.20), respectively. At the surface the 
tangential displacement component therefore vanishes. The total perturbation stress is non- 
deviatoric, such that (2.8) is satisfied. If we denote the viscoelastic portion of the 
perturbation stress by u$y), we have, in correspondence to (2.6), 

ug) = ozz - pgw. (3.3) 

Substituting for Ozz and 6 from (3.1), we obtain after a short calculation 

U?)(k, 0) = - i ( k ) .  (3.4) 

The advected portion of the perturbation stress is thus given by 

which, in the inviscid limit, reduces to  

Pgw(k, 0 )  = i@). (3.6) 

Equation (3.4) simply states that the viscoelastic portion of the perturbation stress balances 
the applied load i ( k ) H ( t )  for t > 0. The advected portion, on the other hand, increases in 
magnitude and finally becomes equal and opposite to  the viscoelastic portion, such that both 
cancel each other in the inviscid limit. This, however, expresses the familiar result that, 
in a perfect fluid, the initial state of hydrostatic pressure cannot be perturbed. 

As mentioned previously, Nakiboglu & Lambeck (1982) did not introduce pre-stress into 
their analysis of the Maxwell continuum. According to (2.6), this is equivalent to equating the 
total perturbation stress with the elastic perturbation stress. In order to ensure regular 
surface displacements 6 = i (  pg)-' for Heaviside loads in the inviscid limit, they were, 
however, forced to  modify boundary condition (2.7) and introduced 

Ug)(k, 0) = pg6(k,  0) -4(k) .  (3.7) 

Nakiboglu & Lambeck (1982) regarded (3.7) as the appropriate modification of the usual 
elastic boundary condition in order that the associated viscoelastic problem be solved. They 
justified their reasoning by the erroneous assumption that the correspondence principle 
does not apply at large times. This is certainly not true, and singularities in the inviscid limit 
are in fact a consequence of neglecting pre-stress in the momentum balance. 
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Although (3.7) leads to  correct solutions for the displacement field, it is nevertheless 

an incorrect boundary condition and consequently renders the theoretical stress distribution 
incorrect also. Obviously, a formal substitution of 6:) by ir,, in (3 .7)  remedies this situa- 
tion. This replacement can, however, only be understood if the concept of pre-stress has 
been introduced before. 
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