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SUMMARY 
We consider a chemically and entropically stratified, compressible, rotating fluid 
planet and study gravitational-viscoelastic perturbations of a hydrostatic initial 
state. Using the Lagrangian formulation, we first derive the incremental field 
equations and continuity conditions governing the perturbations. Following this, we 
deduce the asymptotes to the equations for short and long times after the onset of 
the perturbations. The short-time asymptotic equations are referred to as the 
incremental field equations and continuity conditions of generalized elastodynamics. 
They include the equations of conventional elastodynamics as zeroth-order ap- 
proximations. The long-time asymptotic equations agree with the incremental field 
equations and continuity conditions of Newtonian-viscous fluid dynamics. In 
particular, the incremental thermodynamic pressure appearing in the long-time 
asymptote to the incremental constitutive equation satisfies the appropriate in- 
cremental state equation. Finally, we introduce the generalized incremental incom- 
pressibility condition. Based on it, we derive approximate incremental field 
equations for gravitational-viscoelastic perturbations of isochemical, isentropic and 
compressible regions. 

Key words: bulk relaxation, compressibility, equation of state, initial stress, ther- 
modynamic pressure, viscoelastodynamics. 

1 INTRODUCTION 

Studies of the response of a planet to perturbing forces of short duration have been conventionally based on the assumption of 
elastic constitutive behaviour. However, complications arise due to the presence of initial stress in the interior of the planet. 
Rayleigh (1906) discussed this problem and proposed that it be solved if the total stress is decomposed into a hydrostatic initial 
stress and a superimposed incremental stress. He further defined the displacement of a particle with respect to its initial 
position and suggested to relate the incremental stress to the displacement using equations which formally agree with the 
ordinary field equations of elastodynamics valid in the absence of initial stress. 

Love (1911) elaborated Rayleigh’s concepts. In particular, he found it profitable to formulate the incremental field 
equations in terms of the material incremental stress ‘experienced’ by a displaced particle and conventionally appearing in the 
incremental constitutive equation of elasticity. Owing to the initial stress gradient in planetary interiors, the material 
incremental stress however differs from the local incremental stress observed at a fixed location and conventionally appearing 
in the incremental momentum equation. Love accounted for that difference by introducing the aduectiue incremental stress into 
the incremental momentum equation. 

A corollary of Love’s concept of material incremental stress is that the initial stress associated with a particle at its current 
position is the hydrostatic stress at its initial position. This has sometimes been described as the particle ‘carrying’ its 
hydrostatic initial stress with it while being displaced. In several recent studies, Love’s theory has been modified to the extent 
that a derivation of the incremental field equations of elastodynamics in the Lagrangian formulation has been given preference 
over his derivation in the Eulerian formulation (e.g. Dahlen 1974; Grafarend 1982). 

The response of a planet to perturbing forces of long duration has usually been studied assuming fluid constitutive 
behaviour. In contrast to elastodynamics, no ‘advective term’ is now required in the incremental momentum equation. This is 
in consequence of formulating the incremental field equations of fluid dynamics in terms of the local incremental stress 
appearing in the incremental constitutive equation of fluids. The differences in the formulation of the incremental momentum 
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equation in elastodynamics and in fluid dynamics have been discussed by several authors (e.g. Dahlen 1974; Cathles 1975; 
Grafarend 1982). 

Particular attention has been devoted to Newtonian-viscous perturbations of an initially hydrostatic planet. Studies of this 
kind were initiated by Darwin’s (1879) investigation into bodily tides and continued by several other investigators (e.g. Haskell 
1935; Parsons 1972). However, most of these studies have been based on the supposition of incompressibility. Notable 
exceptions include the stability analysis by Jarvis & Mackenzie (1980), which allowed for pressure-induced density 
perturbations in terms of a set of approximate incremental field equations, and the study by Li & Yuen (1987), in which effects 
due to a pressure-induced initial density gradient were considered. 

Various types of viscoelastic constitutive behaviour have been suggested over the years to study the response of a planet to 
perturbing forces spanning a wide period range. Comparatively recent is the formal development of the theory of 
viscoelastodynamics for continua in a state of initial stress. Pioneering investigations into this problem have been published by 
Biot in a series of papers and are summarized in his monograph (Biot 1965). 

Relevant to our study is Biot’s analysis of load-induced viscoelastic perturbations of an initially hydrostatic half-space (Biot 
1959). Similar to Love, Biot found it necessary to distinguish between local and material incremental stresses. However, in 
contrast to Love, Biot proceeded by formulating the incremental field equations in terms of the local incremental stress. On the 
assumption of incompressible perturbations, this allowed their formal reduction to the ordinary field equations valid in the 
absence of initial stress, whose solutions are well studied. 

This ‘reduction method’ was also found useful by Wolf (1984, 1985a,b) in his investigations into incompressible viscoelastic 
perturbations of initially hydrostatic, two-layer half-spaces and spheres. Assuming Maxwellian viscoelasticity, he could in 
particular show that the solution approaches that for a hydrostatic fluid at times long after the onset of the loading (Wolf 
1985b). Since Wolf was not aware of Biot’s publications at that time, no reference to them could be made. More recently, 
Wolfs studies have been extended to include generalized Maxwellian viscoelasticity (Muller 1986; Kornig & Muller 1989). 

The theory describing compressible gravitational-viscoelastic perturbations of an initially hydrostatic planet has been 
largely developed by Peltier and is presented in several papers (e.g. Peltier 1974; Wu & Peltier 1982). Peltier’s view is to 
account for elastic compressibility but to ignore bulk relaxation in the incremental constitutive equation of viscoelasticity. The 
shear relaxation is assumed to be Maxwellian viscoelastic. A model with such constitutive behaviour, which however admits a 
closed-form solution, was also studied by Wolf (1985~). The simplifying feature of his model is that the incremental 
gravitational force associated with the perturbations of the density and of the gravitational potential is ignored. This restricts 
the applicability of the solution to perturbations of sufficiently short wavelength. 

Whereas Wolfs simplified model is plane and homogeneous, Peltier’s models are spherical and stratified. The stratification 
in particular allows the initial density distribution to be a prescribed function of the radial distance. Although not stated 
explicitly, it is evident from the field equations used by Peltier that the initial density gradient is assumed to be due to chemical 
or entropic stratification. Since this view neglects the pressure-induced increase of the initial density with depth in planetary 
interiors, it effectively takes the ‘initial planet’ as incompressible while treating its perturbations as compressible. 

Peltier’s model of an initially incompressible planet was criticized by Fjeldskaar & Cathles (1984), who argued that 
viscoelastic perturbations are significantly modified by effects due to a pressure-induced initial density gradient. However, no 
attempt was made by them to generalize Peltier’s theory of viscoelastodynamics in order that this feature be included. In fact, 
Fjeldskaar & Cathles claimed that Peltier’s equations were internally inconsistent and could therefore not be adapted to 
account for initial compressibility. They supported their view by referring to the existence of an incremental state equation in 
fluid dynamics and to the above-mentioned difference between the incremental momentum equation in elastodynamics and this 
equation in fluid dynamics; two features which, in their opinion, were not covered by Peltier’s theory. With regard to the 
second criticism, we incidentally note that, since no assumptions on the constitutive behaviour of the continuum enter into the 
derivation of the incremental momentum equation (e.g. Dahlen 1974), the differences referred to by Fjeldskaar & Cathles can 
only be formal. Attempts to design a special incremental momentum equation of viscoelastodynamics to provide for a smooth 
transition between the corresponding equations in elastodynamics and in fluid dynamics (Svensson 1980) are therefore 
physically unfounded. 

A far-reaching criticism has recently been raised by Geller (1988a), who claimed that the accepted form of the incremen- 
tal momentum equation describing gravitational-elastic perturbations of an arbitrary static initial state (Dahlen 1972, 1973) is 
incorrect. Geller deduced the incremental momentum equation from a variational principle. Further, he maintained that this 
approach is necessary, because the correct form of the equation cannot be obtained by derivation from the continuum form of 
Newton’s second law (Geller 1988b). Geller proposed modifications to the conventional incremental momentum equation only 
for a non-hydrostatic initial state. The accepted form of the equation for a hydrostatic initial state (e.g. Love 1911; Dahlen 
1974) was confirmed but, since originally derived from the continuum form of Newton’s second law, qualified as merely 
‘fortuitously’ correct in Geller’s study. 

The present study has the following three objectives. 
(i) We wish to demonstrate that the accepted form of the incremental momentum equation for an initially hydrostatic 

planet is not merely fortuitously correct but a logical consequence of Newton’s second law. This conclusion should indeed result 
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from a careful study of Dahlen's criticized papers. However, Dahlen deduced the incremental field equations for a hydrostatic 
initial state (Dahlen 1974) from the far more complicated incremental field equations for a non-hydrostatic initial state (Dahlen 
1972, 1973). Further, in his Lagrangian formulation for the total fields, the momentum equation contains an error and the 
gravitational-potential equation is not stated. Since these restrictions impede the verification of Dahlen's results, we will 
deduce the incremental field equations for a hydrostatic initial state directly from the differential forms of the fundamental 
principles of continuum mechanics (Section 3). In deriving the equations, we will follow Dahlen and use the Lagrangian 
formulation, i.e. regard the region initially occupied by the continuum as the reference region (Section 2). Of the multitude of 
kinematic formulations that are equivalent in infinitesimal perturbation theory (e.g. Geller 1988a), the Lagrangian formulation 
is profitably employed if (a) individual particles can be identified and (b) the region initially occupied by the continuum is 
prescribed but the region currently occupied not known a priori. The resulting equations describe gravitational-viscoelastic 
perturbations of a chemically and entropically stratified, rotating fluid planet initially in hydrostatic equilibrium. They apply to 
any type of viscoelastic constitutive behaviour characterized by both bulk and shear relaxation and, in particular, account also 
for initial compressibility. 

(ii) The equations derived will be used to probe the justification of the criticism raised by Svensson (1980) and by 
Fjeldskaar & Cathles (1984) regarding the internal consistency of the incremental field equations of viscoelastodynamin. For 
that purpose, we will consider aperiodic perturbations whose short- and long-time limits exist. Based on this supposition, we 
will deduce two systems of incremental field equations which are asymptotically correct for short and long times after the onset 
of the viscoelastic perturbations (Section 4). The short-time asymptotic equations are generalizations of the incremental field 
equations of elastodynamics. The long-time asymptotic equations agree with the incremental field equations of Newtonian- 
viscous fluid dynamics, with the incremental thermodynamic pressure satisfying the appropriate incremental state equation of 
the fluid. 

(iii) As an example of how initial compressibility can be included into the incremental field equations, we will derive a set 
of approximate incremental field equations describing gravitational-viscoelastic perturbations of isochemical, isentropic and 
compressible regions (Section 5). 

2 KINEMATIC FORMULATION 

In this preparatory section, we develop the kinematic formulation used in this study. In particular, we introduce the 
Lagrangian and Eulerian formulations of field quantities and define their material, local and advective increments. We restrict 
our study to Cartesian tensor fields and employ for the fields the indicia1 notation with the usual summation convention: the 
index subscripts i, j ,  . . . range over 1, 2, 3 and repeated subscripts imply summation. 

Let V(T) denote the region occupied by a continuum at some reference time, T, and V(t) the region occupied by this 
continuum at the current time, t. For all Xi  E V(T) and t E (-a, Q)), we then assume the existence of the following unique 
mapping: 

ri (X,  t )  = X i  + ui(X,  t ) ,  (1) 

where Xi is the reference particle position, ri(X, t )  the Lagrangian formulation of the current particle position and ui(X,  t )  the 
Lagrangian formulation of the displacement. Supposing also the existence of the inverse mapping of (l), we have, for all 
ri E V(t) and t E (-a, m), 

Xi(rr t )  = ri - Vi(r, t ) ,  (2) 

where ri is the current particle position, Xi(r,  t )  the Eulerian formulation of the reference particle position and Q(r, t )  the 
Eulerian formulation of the displacement. An obvious consequence of (1) and (2) is 

ui(X,  t )  = Ui(r, I ) .  (3) 

Since ui(X, T) = Q(r, T) = 0, we also have 

ri(X, T) = X i ,  Xi(r, T )  = ri. (4) 

More generally, we may consider an arbitrary field describing some aspect of the state of the continuum. Then, 

fj ... (X, t )  = Ej ... (r, I ) ,  (5 )  

where x,,,,(X, t )  and &j,,,(r, t) are the Lagrangian and Eulerian formulations of the field. As in (1)-(5), we will henceforth 
distinguish the Lagrangian and Eulerian formulations of fields by lower-case and upper-case function names. Particle positions 
appearing explicitly as function arguments will be shown in symbolic notation. 

Let the current state of the continuum be also describable as a perturbation of an initial state assumed by the continuum at 
some initial time, I(') 5 T. For all X i  E V(T), ri E V(t) and t E [t('), a), we then consider the following decompositions: 

f j  ...(X, t )  = fj ... (X, I(')) + W i j  ...(X, t ) ,  

6, ... (r, t )  = Kj. . . (r ,  t('9 + AKj ... (r, 11, 
(6) 

(7) 
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where fj..,(X, t )  and ej...(r, t )  are the Lagrangian and Eulerian formulations of the total field, &.(X, I(')) and Kj..,(r, t(')) the 
Lagrangian and Eulerian formulations of the initial field, S&.(X, t )  is the Lagrangian formulation of the material incremental 
field and AKj,..(r, t )  the Eulerian formulation of the local incremental field. Equations (6)  and (7) suggest several notational 
simplifications, which will be adhered to throughout this study: (i) the arguments X i  and ri of the Lagrangian and Eulerian 
formulations are suppressed; (ii) the argument t is suppressed; (iii) the arguments t(') and T are indicated by the label 
superscripts 0 and T appended to the function names; (iv) the material and local increments are indicated by the label 
superscripts S and A appended to the function names. 

Observing these conventions, (6) and (7) can be abbreviated as 

which are to be distinguished from the abbreviated forms of (1) and (2): 

ri = X i  + ui, (12) 

Xi = ri - Ui. (13) 

To obtain simple expressions for r$*) and Xl"'. we from now on let the initial and reference times coincide: t(') = T. Then, it 
follows from (4) that 

r y )  =xi, x:') = ri. (14) 

= ui, xi") = -ui, (15) 

Equating (10) to (12) and (11) to (13) gives 

hence we have 

ri = r y )  + ui, 
Xi = p - u,. 

The gradient of the Lagrangian field fj,, ,  with respect to Xi is indicated by means of the notation 

afj ... . 
f j . . . . k  - 

Iffj,., = ri, it follows with (12) that 

(19) r. . = 6. .  + u .  
r.1 11 1.1' 

where 6, is the Kronecker symbol. The gradient of the Eulerian field ei,,.. with respect to ri is denoted by 

Note that no ambiguity exists between (18) and (20). This is because a subscript preceded by a comma is understood to indicate 
the gradient with respect to the spatial argument of the function considered, i.e. with respect to Xi for&.. and with respect to ri 
for Ej ,,.. To express F;i ,.., in terms offj __,, k ,  we differentiate ( 5 )  with respect to ri, giving 

ej.. , .k  = fj. .. , P xP,k*  

Differentiating (3) with respect to ri provides 

( l i . j  = ui,k xk.j .  

In view of (13), we have however 

x. . = 6. .  - u. . 
hence, on the assumption of infinitesimal perturbations, it follows from (22) and (23) that 

1.1 'I J.1' 
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Finally, we give the Lagrangian formulation of ( 9 ) .  Observing that Fg! ,  = f$'l(X + U), equation (9) can be rewritten as 

Lj ... =fgI.CX+ U) +f$?!. (25) 
Using (3)  and assuming infinitesimal perturbations, (25) reduces to 

hj ... =f$?!. + f r ! . , k U k  + f & A ! .  

Equating ( 8 )  to (26) gives 

fg .!  = f r ! + f g ! . . k U k *  (27) 
We refer to fg) . ,kuk as the advective incremental field. If the initial field is homogeneous, then f g ! . , , = O  and, therefore, 
f g.) = f g), i.e. the distinction between material and local incremental fields is not necessary. 

The essential results of this section will be required in Sections 3 and 4 when deriving the incremental field equations and 
continuity conditions of viscoelastodynamics and their asymptotic approximations. 

3 FIELD EQUATIONS A N D  CONTINUITY CONDITIONS 

In this section, we deduce the incremental field equations and continuity conditions describing infinitesimal gravitational-visco- 
elastic perturbations of a chemically and entropically stratified, compressible, rotating fluid planet initially in hydrostatic 
equilibrium. In deducing the equations, we suppose the perturbations are isochemical and isentropic. Our assumption is 
justified if the characteristic times associated with chemical and thermal diffusion are long compared with those associated with 
viscoelastic relaxation. This condition is met by a wide range of processes in planetary interiors. 

The derivation is given in the Lagrangian formulation, i.e. the reference particle position, X i  E f l T ) ,  is used as the spatial 
argument. We assume without loss of generality that t(') = 0, i.e. we have t E [0, m) for the temporal argument. All field 
quantities are taken as continuously differentiable with respect to t as many times as desired. 

In Sections 3.1 and 3.2,  we collect the field equations and continuity conditions for the total and initial fields, from which, 
in Section 3.3,  those for the incremental fields are obtained. In Section 3.4,  we derive several field equations involving the 
incremental density and the incremental thermodynamic pressure. These field quantities are less frequently used in 
combination with the Lagrangian formulation but will be required in Sections 4.3 and 5 .  

3.1 Equations for the total fields 

We begin by recalling the relation between the Piola stress, tij, (also referred to as the non-symmetric Piola-Kirchhoff stress) 
and the Cauchy stress, tlj: 

qjNj d A  = tjjnj da, (28) 
where N, is the unit vector normal to an arbitrarily oriented reference surface element, dA,  at X i  and ni is the unit vector 
normal to the associated current surface element, da, at ri. Note that, in view of $')=Xi, we also have nIo)=Ni and 
do(') = dA. With the transformation formula (e.g. Malvern 1969, pp. 169-170) 

jNi dA = rj,inj da, (29) 

j = det (aj), (30) 

r,,ktjk = itij. (31) 

where j is the Jacobian determinant given by 

it then follows that 

Consider now a self-gravitating, rotating continuous planet undergoing perturbations of an initial state. On the assumption 
that the angular velocity, Q,, of the planet can be regarded as prescribed, the momentum equation relative to a corotating 
reference frame is (e.g. Malvern 1969, pp. 220-224) 

rij,j + p'"[($ + q).jxj,i +h + 2EijkPk = p'') anri, (32) 
where h is the force per unit mass, Ei,k the permutation symbol, p(') the initial mass density (assumed to be non-negative), qj 

the gravitational potential and the centrifugal potential. In view of (21) ,  the term ($ + v ) , ~ X ~ , ,  is the Lagrangian formuiatim 
of the gravity force per unit mass; the term 26ijkQk a,rj is the Coriolis force per unit mass. Note that, by (18) and (20), we have 
X(i ) , ( j ) r ( j ) , ( i )  = 1 (no summation). The gravitational-potential equation can be written as 

j ($ , i ,x i ,kxj ,k  + $ , i x i , j j )  = -4xGp''', (33) 
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where G is Newton's gravitational constant. Using (21), equation (33) is readily interpreted as the Lagrangian formulation of 
Poisson's equation. The equation for t/~ is 

2t# = QiQirj5 - QiQiriri, 

ti, = f?) + m i j k f  [ r m , k ( t  - t')rm.e(t - t ' )  - 6 k f ] j  

(34) 

which implies an origin of the coordinate system on the spin axis. The constitutive equation is assumed to be of the form 

(35) 

where the constitutive functional, mi,&.& (assumed to be linear for simplicity) transforms the strain history given by the term in 
brackets into the incremental stress and where t' 5 t must hold as a consequence of the causality principle. With fi, / M i j L P ,  tf) ,  
p(O) and Qi prescribed, (30)-(35) constitute the system of total field equations for j ,  ri, tij, ti,, + and I/J. 

To write down the continuity conditions for the total fields in the direction of Ni normal to d A ,  we introduce the 
abbreviation 

I&.. .I = S-0 lim K j .  _ _  (X + EN) - f i j . .  . (X - EN)]. (36) 

With J., m , , k e ,  n y ) t g )  and p(O) continuously differentiable with respect to Xi E f l T )  as many times as desired (jump 
discontinuities of m i j k f  and p ( O )  are permitted, cf. below), the following continuity conditions apply: 

[ri]? = 0, 

[+IT = 0, 

[ n i + , / X j , i l T  = 0, 

[njtij]: = 0. 

We note that the continuity of r, expressed by (37) excludes cavitation and slip in the fluid. 

3.2 Equations for the initial fields 

We now assume that (i) the continuum is afluid and (ii) the initial state is a static equilibrium state. Since a fluid at rest cannot 
maintain shear stresses, the initial state must even be a hydrostatic equilibrium state and, with the mechanical pressure defined 
byp  = -t,,/3, we must have 

(41) (0) - - CO,& tij - P 11' 

Since, by (14), ri:) = a,, equations (30) and (31) reduce to 

(42) 

(43) 

j ( 0 )  = 1 

(0)- - ( O ) &  
t i j  - P 11' 

Using (41)-(43) and observing Xi:) = 6,, which follows from (14). and (d,ri)(') = (3,,ri)(') = 0, which holds by assumption, 
(32)-(35) become 

- p y  + p'o'(+';) + y'p' +fy') = 0, (44) 

+$) = -4nCp'O', (45) 

Equation (47) is the form of the state equation assumed in this study, with A(') a field quantity representing the initial chemical 
composition and do) the initial entropy density. An immediate consequence of (44) is 

€i jkP,  ' o ' ( + y  j + y y  +fp) + p y € i j k f g  = 0. (4) 
If the state function, y, is known and fy), A('), do) and Qi are prescribed, (44)-(47) constitute the system of initial field 
equations for p ( O ) ,  p ( O ) ,  + ( O )  and y(O). 

With (44) representing three scalar equations, this system is however overdetermined and solutions are severely restricted. 
If fi(0) = 0, it follows from (44) and (48) that the level surfaces of p(O), p(O) and (+(') + q(')) coincide, where solutions can be 
shown to exist for these surfaces being oblate spheroids with respect to the spin axis. If fy) # 0 but eijkfi:; = 0, the force field 
ffo) is conservative. Then, we may put fy) = and it follows from (44) and (48) that the level surfaces of pcO), p ( O )  and 
($I(') + y(O) + x ( O ) )  coincide. 
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The continuity conditions (37)-(40) reduce to 

We note that solutions to (44)-(47) admit jump discontinuities of p(O) normal its level surfaces. With X i  E A(=), where 
A(=) c V'=' is any of the discontinuity surfaces of p('), we then have for Ni normal to 

[p'"']' # 0. (53) 

3.3 Equations for the incremental fields 

Using (8). (16) and (17), we decompose the total fields A, j ,  ri, t j j ,  Xi ,  tij, @ and q in (30)-(35) into initial and incremental 
parts. Observing (19). (23), (41)-(43) and (47), we get 

(1 + f 6 ) )  = det (6, + u ~ , ~ ) ,  (54) 

We note that no restriction on the magnitude of the perturbations has been imposed so far, i.e. (54)-(59) are valid even for 
finite perturbations. 

To make further progress, we from now on assume that the perturbations are infinitesimal. This supposition allows us to 
neglect products of incremental quantities and, in particular, to use (24) and (27). It thus follows from (54) that 

j ( 4  = (60) 4 , i P  

by which (55) can be reduced to 

(61) t j j  (6) - - fij (6) + p  (0) ( U j , ,  - uk,k6jj). 

An equivalent system of field equations results if we use (27) to express f i6)  and @(') in terms of the associated local 
increments: 

- 

Upon substitution of (67) and use of (454, equation (63) reduces to 



tij - [ml(t - t ’ )  - $m,(t - t ’ ) ]  2r,[uk,k(t’)]b,, dt‘ + m,(t - t ‘ )  ar*[ui , j ( t f )  + ~ , , ~ ( t ’ ) ]  dt’. -lb lb 

m,(t - t ’ )  2 0,  

a,-,m,(t - t ’ )  5 0. 

(72) 

(73) 

(71) 

To obtain an additional constraint on m,(t - t ’ ) ,  we recall that, by assumption, the continuum is a fluid. A necessary condition 
of fluid constitutive behaviour is that deviatoric stresses cannot be maintained indefinitely (e.g. Christensen 1982, pp. 9-14; 
Golden & Graham, 1988, pp. 14-17). In view of (71), this can be formally expressed by means of the fluidity condition: 

lim m,(t - t ’ )  = 0. 
r-t ‘ -m 

(74) 

With fy), rn, and Ri prescribed and p(’), p(”), @(’) and V ( O )  given as a solution to (44)-(47), equations (69)-(71) 
constitute the system of incremental field equations of viscoelastodynamics for ti:), ui and @(A). 

Finally, we derive the incremental continuity conditions (e.g. Dahlen 1974; Grafarend 1982). For that purpose, we use (8), 
(16), (17), (19) and (23) to decompose the total fields in (37)-(40) into initial and incremental parts. It follows directly from 
(37) that 

which, by (49), reduces to 

U [Ui]’ = 0. 

Decomposition of (38) and use of (67) gives 

[+‘O’ + @(A) + +:p)uiJ’ = 0. 

In view of (50), (51), (76) and the continuity of ny), this is equivalent to 

To obtain the incremental continuity condition for ny’@‘p), we decompose (39). Using n, = n!’) + n!’), substituting (67) and 
neglecting products of incremental quantities, we obtain 

[nl(o)(+(p) + +ff’ + +yu,) + @ y n y ] :  = 0. 

[ny(@!f’ + @!;)u,)]’ = 0. 

(79) 

In view of (51) and the continuity of n y )  and n!”’, this reduces to 

(80) 
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Observing the constraints imposed by (51) on the continuity of the components of ny)@(g), equation (80) can be shown to be 
equivalent to 

[np)(@(:) + +(&)IT = 0. (81) 

Substituting for 4:;) from (45), this takes the form 

[n,'0)(@!:) - 4nGp'o'u,)]? = 0. (82) 

If, in particular, X ,  E and N, normal to A(T), then [p(")]T # 0 according to (53) whence n~")##f' is discontinuous in this 
case. The incremental continuity condition for nyf:;' can be obtamed by decomposing (40). Putting again nr = n:"' + n:"' and 
neglecting products of incremental quantities, we obtain 

[n?)(p(O)d, + ty))  +p(o)n,(6)]f = 0. (83) 

With (52) and the continuity of n? and n,('), it follows that 

3.4 Continuity and state equations 

So far, the incremental density and the incremental thermodynamic pressure have not appeared explicitly in the equations. 
This is in accordance with the adoption of the Lagrangian formulation, where the displacement, ui, is preferentially used. 
However, the incremental density and the incremental thermodynamic pressure will be required to interpret the long-time 
asymptotes to the incremental field equations and continuity conditions of viscoelastodynamics in Section 4.3 and to study the 
special case of generalized incompressibility in Section 5. Here, we collect the equations governing these field quantities. 

The density, p ,  is related to p ( O )  by the continuity equation (e.g. Malvern 1969, pp. 208-210): 

where j is given by (30). For a fluid not necessarily in hydrostatic equilibrium, the thermodynamic pressure, n, is introduced 
with the aid of a state equation whose functional relation is identical to that governing the mechanical pressure, p = -tii/3, in 
the case of hydrostatic equilibrium (e.g. Malvern 1969, p. 296). Hence, 

where the state functions y in (47) and (86) are identical. Note that, with this definition, n is in general different from p. 
However, at t = 0 equation (86) reduces to 

(87) n(o) = y(p'o', A@), &J'). 

Equating (47) to (87) gives 

n(o) - (0) -P . 

A direct consequence of (87) and (88) is 

where (ay/3p)'o) = [ay/+],,,,ol etc. and the partial derivatives are functions of Xi E f l T ) .  

and (60), equation (85) becomes 
Next, we use (8) to decompose the total field equations (85) and (86) into initial and incremental parts. Using also (42) 

(1 + u,,,)(p'"' + p'6') = p(0).  (90) 
Since, by assumption, the perturbations are isochemical and isentropic, we have A(') = d6) = 0 and the decomposition of (86) 
takes the form 
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Considering (87) and retaining only terms that are linear in the incremental quantities, (90) and (91) reduce to 
p(a) = - (0) P ' i , i J  

Due to (27) and (88), we have however 

p ( S )  = p(A) + pyu, ,  

A(6) = n ( A )  +p(P)u,, 

which allow us to replace (92) and (93) by 
p ( A ) =  - (0) (P  ui),ij 

(94) 

(95) 

(96) 

(97) 

Equations (92) and (96) are different forms of the incremental continuity equation; similarly, (93) and (97) are alternative 
forms of the incremental state equation. Equation (97) takes a more familiar form upon substituting for pyp) from (89): 

In Sections 4.3 and 5, suitable expressions for the partial derivatives appearing in (98) will be provided. 

4 ASYMPTOTIC BEHAVIOUR 

In this section, we derive the asymptotes, for small and large times, to the incremental field equations and continuity conditions 
of viscoelastodynamics. Central to our derivation is to find suitable asymptotic approximations to the Laplace transform of the 
incremental constitutive equation of viscoelasticity, (71). 

The Laplace transform, L[f(t)], of a scalar function f ( t )  (e.g. LePage 1961, pp. 285-328) is defined by 

where the transform variable, s, will be restricted to real values. For the convergence of the integral in (99) for s larger than 
some value so it is sufficient that f(t)  be piecewise continuous for all t E [0, 0)) and of exponential order as t - m .  Here, we 
are concerned with the more restrictive case that f(t) is continuously differentiable for all t E [0, m), where lim,,f(t) and 
lim,,f(t) are supposed to exist, thereby ensuring also the existence of asymptotic approximations tof(t) for small and large t. 
This assumption is of sufficient generality to apply to the temporal dependences of the relaxation functions and of the 
incremental fields associated with aperiodic perturbations. Introducing f(s) = L[f(t)] for brevity, the following formulae can be 
established: 

L f ( t ' )d t '  =-, [6 1 ?:) 

Further consequences are the generalized initial- and final-value theorems. According to the first theorem, an asymptotic 
approximation p ( t )  to f ( t )  for small t corresponds to an asymptotic approximation P ( s )  to f(s) for large s. Similarly, the second 
theorem states that an asymptotic approximation q ( t )  to f ( t )  for large t corresponds to an asymptotic approximation 4 ( s )  to 
f(s) for small s. 

Using (101), (102) and u?) = 0, the Laplace transform of (71) is found to be 

8;) = ( f i ,  - $fiit)SIZ*,*Sij + fi2s(IZi,j + I Z j , l ) .  (104) 

As in ( l a ) ,  we will in the following suppress the argument s of the Laplace-transformed incremental fields and relaxation 
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functions. To make further progress with (104), it is necessary to specify fiv for v = 1, 2. This is achieved by expressing 
mv(r - t ’ )  in terms of its relaxation spectrum, fi,(a). Laplace transformation then supplies a formula for Av, from which 
asymptotic approximations to sfit,, for large and small s can be derived (Section 4.1). Substituting these approximations into 
(104) and applying the generalized initial- and fmal-value theorems, finally gives the asymptotes to the incremental constitutive 
equation of viscoelasticity, (71), for small and large t (Sections 4.2 and 4.3). 

4.1 ~ P t O t i C  I ’ e h X d O n  b & O M  

For v = 1, 2, suppose that mv(t - t’) can be expressed in terms of its relaxation spectrum, fiv(a), (e.g. Christensen 1982, pp. 
28-32; Golden & Graham 1988, pp. 31-32): 

where a is the inverse constitutive relaxation time. Equation (105) implies 

m$f)= lim mv(t - r ‘ ) ,  

hence, by (74), it follows that 

m y )  = 0. 

We further define 
,(c) = 

so that we get 

[dv(a) d a  = m y )  - mlf) .  

t-r’-+m 

v mv(O), 

It follows from (73), (106), (108) and (109) that ~ ~ f i v ( a ) d a > O .  Here, we impose the more stringent condition that 
Av(a) z 0 for a 2 0; we further require that fit,(&) vanishes sufficiently fast as a- 0 and a+ that, for 0 < a‘ < m, the 
integrals I;’ fi,(a)/ada and I”,. afiv(a) d a  converge. These assumptions are of sufficient generality to include conventional 
mechanical and molecular models of viscoelasticity. 

Next, we apply (103) and obtain the s-multiplied Laplace transform of (105) with respect to t - t ’ :  

Being interested in asymptotic approximations to s f i v  for large and small s, we decompose the integral in (110) in the following 
way: 

Note that, on the right-hand side, a / s  < 1 in the first integrand whereas s / a  < 1 in the second. 

I,”+’ a A,( a) da,  we get the asymptotic approximation 
For sufficiently large s, the second integral on the right side of (111) may be neglected and, due to the convergence of 

Qs=da= Q fiv(a) ( 1-- 3 da. 

Since &,(a) z 0 for a z 0, we can apply the mean-value theorem of integral calculus to obtain the following estimate: 

[&,,(a) d a  = a$) Av(a) da, L- 
where a$)?O. In view of (lW), (112) and (113), equation (110) takes the form 

which is correct to the first order in a f ) / s .  
For sufficiently small s, the first integral on the right side of (111) may be neglected and, due to the convergence of 
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fi-' fiv( (u)/(uda, we arrive at the asymptotic approximation 

S 

Applying the mean-value theorem of integral calculus again, we now have 

where (u ( , f ) rO.  In view of (109), (115) and (116), equation (110) becomes 

(117) 
S 

sf iv  = mlf + (mv)  - v)) - 
mv (u(f)' 

V 

which is correct to the first order in s/(uv). 

2, we put 
In Sections 4.2 and 4.3, it will be helpful to have available compact forms of (114) and (117). To simplify (114) for v = 1, 

K = m(e) 1 J  (118) 

K t  = (mi') - m ,  (f))&) 1 J (119) 

p = my) ,  (120) 

S f i ,  z K - - , 

S f i 2 = =  p - - , 

which are asymptotically correct for large s. Similarly, we simplify (117) for v = 1, 2 using 

k = mif) ,  
- m ( f )  

k ' =  ,V) ' 

q = rnif), 

Since g = 0 by (107), we now obtain 

s f i ,  = k + k's, 

sm, --. q ' s ,  

which are asymptotically correct for small s. Note that, from the properties of mv(t - t ' )  specified in Section 3.3, it follows that 
k, k', g', K, K', p and p' are continuously differentiable, non-negative functions of Xi E V(T)  with possible jump 
discontinuities on A(T). 

4.2 Short-time asymptotic incremental field equations and continuity conditions 

If s is sufficiently large, s f i ,  and s f i 2  may be approximated by (122) and (123). Substitution of these equations into (104) 
provides its asymptote for large s: 

'. . + c. 
(130) ~ ~ i s ' = ( K - - p ) a k , k s i j + p ( ~ .  .+'. . ) - ( K ' - $ p r ) - s i j - p ' - ' ,  'k k 

S S 
Is1 ] , I  
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which, by the generalized initial-value theorem, is the asymptote to (71) for small t. Together, (69), (70) and (131) constitute 
the short-time asymptotes to the incremental field equations of viscoelastodynamics for tg), ui and $(A). These equations are 
complemented by the incremental continuity conditions (76), (78), (82) and (84) for ny)t!:), ui, $(A’ and ny)$‘”. We refer to 
these asymptotic equations as the incremental field equations and continuity conditions of generalized elastodynamics. 

If the integrals in (131) are neglected, it reduces to the incremental constitutive equation of elasticity with K the elastic 
bulk modulus and p the shear modulus. In this case, the short-time asymptotes to the incremental field equations and 
continuity conditions of viscoelastodynamics agree with the incremental field equations and continuity conditions of 
conventional elastodynamics (e.g. Love 1911, pp. 89-93; Dahlen 1974; Grafarend 1982). 

4.3 Long-time asymptotic incremental field eqoations and cootinoity conditions 

If s is sufficiently small, sfil and s f i 2  may be approximated by (128) and (129). Upon substitution of these equations into (104), 
its asymptote for small s results: 

8;’ = kn,k6i j  + (k’ - fq ’ ) sPk ,k6 j j  + q’s(fii,j + n j , i ) .  

Considering (101) and u y )  = 0, inverse Laplace transformation of (132) provides 

which, by the generalized final-value theorem, is the asymptote to (71) for large t. We can rewrite (133) by introducing da) 
explicitly into the equation. For that purpose, we recall that, in a fluid not necessarily in hydrostatic equilibrium, d*) is related 
to the other state variables by the same function that relates p ( @  = -t!,9/3 to these variables in the case of hydrostatic 
equilibrium (e.g. Malvern 1969, p. 296). In view of this, (133) takes the form 

t f )  = -n(”6, + (k‘ - 2 3 q ’ )  druk,k6ij + q’ dr(u i . j  + uj,i)? (13) 
where 

= -kui,i. (135) 

Together, (69), (70), (134) and (135) constitute the long-time asymptotes to the incremental field equations of viscoelasto- 
dynamics for rr), ui, d6) and $(A). 

are 
expressed by the associated local increments and pCA) is introduced explicitly into the equations. Using therefore (95), (96) and 

Equations (69), (70) and (134) will be identified with the incremental field equations of fluid dynamics if tr) and 

= &A) - (0 )  
I] I] P . k  uk6ijp 

which is a consequence of (27) and (41), the following equations result: 

Equations (137)-( 140) have the desired forms; in particular, (140) agrees with the incremental constitutive equation of 
Newtonian viscosity with k’ the bulk viscosity modulus and q’ the shear viscosity modulus. 

To replace (135) by the associated incremental state equation in terms of dA), we need expressions for the partial 
derivatives in (98). By comparison between (92), (93) and (135), we find 



414 D. Wolf 

whence k is referred to as the fluid bulk modulus. For the remaining partial derivatives, we put 

where e and c are the chemical and entropic moduli corresponding to k. Upon substitution of (141)-(143), equation (98) 
becomes 

Equation (144) can be written in a more ‘symmetric’ form. To achieve that, we recall the supposition of isochemical and 
isentropic perturbations: A(6)  = a(6) = 0 or, by (27), 

(145) 

(146) 

A(&) = -A‘o’u. 
. I  1 )  

a(A)=  - u,i (0) ui. 

Upon substitution of (145) and (146) into (144), it takes the form 

This is the general form of the incremental state equation of a fluid whose total state equation is of the form of (86). 

follows from (84) and (136): 
The incremental continuity conditions for ui, $(A)  and ny)@:F)  are given by (76), (78) and (82). The condition for n y ) t p )  

[ny)(t;A) - p y U k s i j ) ] +  = 0. (148) 

Using (44), we may express [p:p)]? in terms of [p‘”)]?. In view of (53), it is then obvious that n y ) t p )  is discontinuous normal 
to A(T),  The term [ny)p:;)uj]? has sometimes been referred to as the ‘buoyancy term.’ Note that its appearance in (148) is 
solely a consequence of formulating the long-time asymptotic field equations in terms of the local incremental stress, ti:). In 
the short-time asymptotic field equations, where the material incremental stress, ty),  is conventionally used, no buoyancy term 
therefore arises and the continuity condition is given by (84). Conversely, the short-time asymptotic momentum equation (69) 
contains the ‘advective term’ ( p ! ; ) ~ ~ ) , ~ ,  which is absent from the long-time asymptotic momentum equation (137). 

Equations (137)-(140) and (144) are the incremental field equations for a Newtonian-viscous fluid in terms of tp), ui, 
dA), and $(A); equations (76), (78), (82) and (148) are the associated incremental continuity conditions for ny’tp),  ui, 
$(A) and ny)@‘”, (e.g. Backus 1967; Cathles 1975, pp. 15-20; Jarvis & Mackenzie 1980). For a chemically and entropically 
stratified, compressible fluid, the long-time asymptotes to the incremental field equations and continuity conditions of 
viscoelastodynamics therefore agree with the incremental field equations and continuity conditions of Newtonian-viscous fluid 
dynamics. 

5 GENERALIZED INCOMPRESSIBILITY 

In this section, we show how a pressure-induced initial density gradient can be practically accounted for in the incremental field 
equations of viscoelastodynamics. For that purpose, we introduce several simplifying assumptions. 

Consider a fluid planet that is non-rotating and initially without volume forces: 

Q, = y!p’ =p = 0. 

A(?) = .‘p’ = 0. 

(149) 

Suppose, in addition, that the planet consists of isochemical and isentropic regions: 

(150) 

On these assumptions, the initial field equations (44)-(47) reduce to 
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Solutions to (151)-(153) can be shown to exist for the level surfaces of p('), p(O) and +(O) being concentric spheres. To 
eliminate p('), consider the gradient of (153): 

where (dy' /dp)( ' )  must be constant on the level surfaces. Comparing (151) with (154) yields 

which is the Williamson-Adams equation (Williamson & Adams 1923; Bullen 1975, pp. 67-68). With (dy' /dp)( ' )  prescribed, 
(152) and (155) are to be solved for p(O) and +('). 

The incremental field equations (69)-(71) simplify if the perturbations are quasi-static: 

a,ui = 0, (156) 

and the bulk relaxation can be neglected: 

m,(t - t') = k, 

where k is time independent. Using (149), (156) and (157) and introducing 

n(') = -ku. 
1 . 1 )  

equations (69) and (71) reduce to 
t y j  + ( p p j ) , i  - 4, i  (0) ( p  (0)  uj),j + p(o) (+y )  +fi'A') = 0,  

(157) 

(159) 

- t ' )  3,.[u,,,(t')]bij dr' + - t ' )  a , . [ ~ , , ~ ( t ' )  + uj,Jt ' ) ]  dt'. (160) 

By means of (95) and (136), equations (159) and (160) can be rewritten in terms of ?$A) and dA). Listing (70) again for easier 
reference, we thus have 

t$?) - +y)(p(o)uj) , j  + p 'o ' (+ 'p '+ fp )  = 0, 

4::) = 4nC(p( ' )~ , ) ,~ ,  (162) 

(161) 

To find the incremental state equation in terms of dA), we combine (92) and (93). Since d y ' l d p  = a y / d p ,  we obtain 

Equating (158) to (164) provides 

From (99,  (154), (164) and (165) it then follows that 

k 
(166) = - - p(o) (p(O)Ui ) , i .  

Recalling that p(A) = -f$:)/3 by definition, it follows from (163) that 

(167) n ( A ) -  (A). -P 
This identity will be implied in the remainder of this section. 

simultaneous conditions 
An interesting approximation to the incremental field equations (161)-(163) and (166) results if (166) is replaced by the 
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The significance of (169) becomes obvious if we note that, by (94) and (96), the condition ( ~ ( O ) U ~ ) , ~  = 0 is equivalent to the 
conditions p(') = p!%, and p(A) = 0. Equation (169) thus states that the compressibility of a displaced particle is restricted to 
the extent that the material incremental density 'follows' the prescribed initial density gradient such that the local incremental 
density vanishes. Equation (169) is referred to as the generulized incremental incompressibility condition. 

With (155), (165) and (169), the incremental field equations for isochemical and isentropic regions can now be written as 

Equations (171)-(174) are to be solved for p(A), tg), ui and @(A), where p ( O )  and +(') must satisfy (152) and (155) subject to 
(165). 

We note that k remains finite in (173) and (174). This is because k enters into these equations in consequence of 
substituting (165) into the initial field equation (155), for which the approximation (168) does not apply. If the initial state is 
also taken as incompressible, then k + m  also in (173) and (174). In this case, p(O) must be homogeneous and (171)-(174) 
reduce to the well-known incremental field equations describing incompressible gravitational-viscoelastic perturbations of 
homogeneous regions. 

If, on the other hand, @ ( O )  is prescribed and the term p(')@::) in (171) neglected, the mechanical and gravitational effects 
decouple. Then, solutions for the initial state are readily found and the resulting equations for the incremental state become 
similar to those recently used by Li & Yuen (1987). In contrast to here, Li & Yuen however restricted their attention to viscous 
perturbations; further, they did not discuss the approximations involved in the equations used in their study. As shown here, 
their theory can be extended to include any type of viscoelastic constitutive behaviour. 

6 CONCLUSIONS 

We summarize the results of our study in the following five statements. 

(i) Postulating only the fundamental principles of continuum mechanics in differential form, we have given a concise 
derivation, in the Lagrangian formulation, of the incremental field equations and continuity conditions describing 
gravitational-viscoelastic perturbations of a chemically and entropically stratified, compressible, rotating fluid planet initially in 
hydrostatic equilibrium. In obtaining the equations, minor deficiencies of previous such derivations for gravitational-elastic 
perturbations (e.g. Dahlen 1974) have been corrected. 

(ii) The incremental momentum equation deduced agrees with the incremental momentum equation given by Love (1911, 
pp. 89-93) or that given by Dahlen (1974). In view of the rigour of our deduction, Geller's (1988a) qualification of this equa- 
tion as 'fortuitously' correct cannot be supported. Therefore, no restrictions on the derivation of the incremental momentum 
equation from the continuum form of Newton's second law exist for the case of a hydrostatic initial state considered. Similarly, 
no such restrictions can be reasonably conceived for the more general case of a non-hydrostatic initial state. 

(iii) We have obtained, as the short-time asymptotes to the incremental field equations and continuity conditions of 
viscoelastodynamics, a set of equations referred to as the incremental field equations and continuity conditions of generalized 
elastodynamics. These equations can be reduced to the equations of conventional elastodynamics. The long-time asymptotes 
agree with the incremental field equations and continuity conditions of Newtonian-viscous fluid dynamics. The asymptotic 
behaviour of the equations of viscoelastodynamics is an additional manifestation of their internal consistency and the 
modifications to the equations suggested by Svensson (1980) are therefore not justified. 

(iv) We have further shown that the incremental thermodynamic pressure appearing in the long-time asymptote to the 
incremental constitutive equation of viscoelasticity satisfies the correct incremental state equation. This confirms that this 
asymptote indeed represents the incremental constitutive equation of Newtonian viscosity. At the same time, it disproves 
claims by Svensson (1980) and Fjeldskaar & Cathles (1984), who argued that the formulation of the incremental field theory of 
viscoelastodynamics developed by Peltier (1974) and others cannot be adapted to describe perturbations of a compressible planet, 
because it does not provide for an incremental state equation. 

(v) Finally, we have introduced the generalized incremental incompressibility condition. Based on it, we have derived 
approximate incremental field equations describing gravitational-viscoelastic perturbations of isochemical, isentropic and 
compressible regions. Solutions to these equations are currently studied and will be compared with corresponding solutions for 
chemically and entropically stratified, incompressible regions. 
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