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ABSTRACT 

We consider an isochemical, isentropic, incompressible fluid half- 
space and study quasistatic viscoelastic perturbations, induced by 
two-dimensional (2D) surface loads, of a hydrostatic initial state. In 
view of the regional or local scale required for deformations of planets 
to be amenable to the half-space approximation, the model is assumed 
to be externally gravitating. We derive analytic solutions for the 
displacement and incremental stress components and study several 
approximations to the expressions. Particular emphasis is placed on 
discriminating between the material and local incremental stresses. 
Based on this distinction, deeper insight is gained into the physical 
significance of the solution. 
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1 INTRODUCTION 

Detailed investigations into the elasto- 
static deformation of a plane half-space 
subject to either displacement or trac- 
tion boundary conditions were carried 
out by Boussinesq over a century ago 
and are summarized in his 1885 mono- 
graph. Today, the basic problem is usu- 
ally referred to as Boussinesq’s prob- 
lem, although in part of his work Bous- 
sinesq was preceded by Lame & 
Clapeyron (1831) and Cerruti (1882). 
Since the publication of Boussinesq‘s 
monogaph, numerous authors have 
written on particular aspects of Bous- 
sinesq’s problem (e.g. Lamb, 1902; 
Terazawa, 1916; Love, 1929; Harding 
and Sneddon, 1945; Sneddon, 1946; 
Farrell, 1972). 

A common feature of most work on 
Boussinesq‘s problem is that the unper- 
turbed half-space is regarded as un- 
stressed. As far as the model is applied 
to study the regional or local deforma- 
tion of planets, this assumption clearly 
cannot be satisfied. Effects due to a 
planet’s initial stress are, however, small 
for elastic perturbations whose lateral 
wavelength is in sufficiently short for 
the application of the half-space approx- 
imation (Cathles, 1975, pp. 35-39). 

More significant is the influence of 
the initial stress for viscoelastic perturba- 

tions. Such problems were extensively 
studied by Biot and are reviewed in a 
monograph (Biot, 1965). Closely related 
to the present study is Biot’s analysis of 
the quasistatic viscoelastic deformation 
of an initially hydrostatic half-space 
(Biot, 1959), in which effects due to the 
initial stress are accounted for by a sep- 
arate term included in the incremental 
equilibrium equation. In general, Biot 
preferred a formal treatment of the 
problem, in which the physical signifi- 
cance of the modifications associated 
with the initial stress was not fully 
discussed. 

Unfortunately, Biot‘s work has not re- 
ceived much attention from geophysical 
researchers. This disregard is evident in 
several subsequent studies of the visco- 
elastic Boussinesq’s problem, in which 
the initial stress is neglected (e.g. Pel- 
tier, 1974; Cathles, 1975, pp. 57-59). 

Research on the viscoelastic Bous- 
sinesq’s problem was resumed by 
Nakiboglu and Lambeck (1982) and 
Wolf (1985a, 1985b, 1985c), whostudied 
the response due to surface loading. 
Whereas Nakiboglu and Lambeck (1982) 
accounted for the influence of the initial 
stress by an ad hocmodification of the in- 
cremental boundary condition, Wolf in- 
cluded such effects in the incremental 
equilibrium equation. The distinction 
between ’viscoelastic’ and ‘total’ pertur- 

bation stresses then allowed Wolf to re- 
duce the incremental field equations 
formally to those valid in the absence of 
initial stress, which could be solved 
using elementary methods. 

In retrospect, Wolf‘s (1985a) method 
of accounting for the initial stress is seen 
to be very similar to that used by Biot 
(1959), although Wolf was not aware of 
Biot’s publication at that time. As in 
Biot‘s study, the significance of the 
modifications associated with the initial 
stress was not fully recognized by Wolf 
(1985a,b). This, in particular, applies to 
the physical meaning of the two kinds 
of incremental stress employed in 
Wolf‘s analysis, which was not 
adequately discussed. 

Recently, the theory of oiscoelasto- 
dynaniics for fluids in a state of h y d w  
static initial stress has been reviewed 
(Wolf, 1991). In particular, rigorous 
deductions were given for the incre- 
mental field equations and continuity 
conditions and of the asymptotic 
approximations of the equations for 
short and long times after the onset of 
the perturbations. Special emphasis 
was placed on the distinctions between 
the Lagrangian and Ettlerian kinematic 
formulations of the equations and be- 
tween the material and local increments 
of the field quantities. Based on this, it 
was possible to interpret the short- and 
long-time asymptotic equations as the 
incremental field equations and con- 
tinuity conditions of rhstodynaniics and 
of puid dynamics, respectively. 

In view of the progress achieved in 
our understanding of the theory of vis- 
coelastodynamics for fluids in a state of 
hydrostatic initial stress, a re-examina- 
tion of the viscoelastic Boussinesq‘s 
problem within this improved theoreti- 
cal framework appears to be justified. 
In the first place, such a re-examination 
is intended to clarify the physical inter- 
pretation of previous solutions to the 
problem. However, it should also serve 
as a guide for the physically correct treat- 
ment of more complicated problems. 
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In agreement with the heuristic 
character of the present study,the 
model to be analyzed is kept as  simple 
as possible. We therefore consider the 
viscoelastic Boussinesq's problem using 
an isorhmrical, isentropic, inrornpressible 
half-space deformed by a 2 0 ,  harmonic 
surface load. Since effects due to the 
perturbation of the gravity field are 
small for local or regional deformations 
of planets (Cathles, 1975, pp. 72-83), 
the halt-space is assumed to be exter- 
nally grazdat ing .  In section 2, the relev- 
ant incremental field equations and 
boundary conditions and their Laplace 
transforms are collected. The equations 
are solved in section 3 by means of 
Love's strain function and inverse Lap- 
lace transformation. Section 4 gives a 
discussion of the solution. Special care 
will be taken to discriminate between 
material and local incremental stresses. 
This distinction will prove necessary for 
a physically correct interpretation of the 
solution and its approximations. 

2 FIELD EQUATIONS AND 
BOUNDARY CONDITIONS 

The present study is concerned with 
Cartesian tensor fields. For brevity, we 
use for the fields the indical notation 
and summation convention stipulating 
that the index subscripts i ,  j, k range over 
1, 2, 3 and repeated indices imply sum- 
mation. Note that the summation con- 
vention will later be suspended for the 
lubel subscripts x, y, z. We also employ 
the differentiation convention, i.e. 
index nnd label subscripts preceded by a 
comma denote partial differentiation 
with respect to the coordinate direction 
indicated by the subscript. 

We assume now that the current state 
of a fluid at the time t E [O,.o) represents 
a small increment with respect to a 
hydrostatic initial state at the time t = 0. 
Further, we take as the spatial argument 
the initial particle position, X EV"', with 
I:'(") the (open) region initially occupied 
by the fluid. This is commonly referred 
to as the Lngrangiari kinematic formula- 
tion. The perturbation of an arbitrary 
initial field, f::!,(X), can then be altern- 
atively described in terms of the material 
incremental field, f'6)(X,t), observed 
at the particle initially at X, or in terms of 
the local incremental field, f\A) (X , t ) ,  
observed at the initial position, X. The 
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material and local incremental fields are 
related by 

flj6)rX,f) = fij3'oc,t)+flJ 'o,'r(x)w, t), 

(1) 

where u,(X,t) is the particle displace- 
ment and fiy) k(X)uI;(X,t) the advectiur 
incremental field (for further details cf. 
Dahlen, 1974; Grafarend, 1982; Wolf, 
1991). 

For the present study, we assume 
that the fluid is isochemical, isentropic, 
non-rotating, externally gravitating and 
subject only to gravitational volume 
forces. On these assumptions, the equa- 
tions governing the initial state (e.g. 
Wolf, 1991) reduce to 

where g, is the gravitational force per 
unit mass, k the (isentropic) fluid bulk 
modulus, p") the initial mechanical 
pressure, p'"' the initial mass density 
and the argument X has been suppres- 
sed. Equations (2) and (3) are referred to 
as the initial equilibrium equation and 
the initial state equation. With gI and k 
prescribed fields, (2) and (3) constitute 
the system of initial field equations to be 
satisfied by p(O) and p(") for all X E VcO). 
x E w. 

Assuming now that the fluid under- 
goes quasistatic viscoelastic perturba- 
tions, the following equations apply 
(e.g. Wolf, 1991): 

ti/@= [m ( t  - t ') --mz( 2 f - t')]d,, u k,k( t y , ,  d t  ' 1 3 

m2( t - f ')a,.[ u,,,( t ') + I I  ,.,( t ')] dt  ' , 

(5)  

where m,(t-t') and mz(t-t ' )  are the 
bulk and shear relaxation functions, tf' 
is the material incremental Cauchy 
stress, a,, the Kronecker symbol, a,, the 
partial derivative operator with respect 
to t '  and the arguments X and t have 
been suppressed. Equations (4) and (5) 
are referred to as the incremental equa- 
tion of motion and the incremental con- 
stitutive equation of viscoelasticity. 
With m,(t-t ' )  and m2(t-t ') prescribed 
fields and p'"' and p(') obtained by solving 

(2) and (3), equations (4) and (5) constitute 
the system of incremental field equations 
of quasistatic viscoelastodynamics to be 
satisfied by t p' and ui for all X E ' V ( O '  and 
t E 10, q. 

To simplify the problem further, we 
assume that the fluid is incompressible. In 
the initial state, we thus have 

k +  m, (6) 

p'p' + 0 (7) 

With (6) and (7), the initial field equa- 
tions, (2) and (3), reduce to a single 
equation 

-p!p'+pgi = 0, (8) 

where p 5 0 is now a parameter. 
On the boundary do' of the region VCo) 
initially occupied by the fluid, p ( O )  must 
satisfy conditions to be prescribed. We 
assume here that the boundary of the 
fluid is initially a free surface and there- 
fore normal to gi. With 11, the unit vector 
in the direction of gi and the notation 

(9) 

the initial boundary condition takes the 
form (e.g. Wolf, 1991) 

[fir. 17t = Ifmf:, ,,(X+En), 

[p'"'I+ = 0, (10) 

where X E &("I. Note that, by (8) and 
(lo), the conditions p ( O )  = 0 and pg, 0 
are equivalent for all X E 'VC0). The fluid 
we are concerned with is therefore un- 
stressed in the initial state only if it is 
non-gravi ta ting. 

On the assumption of incompressibil- 
ity, it follows for the incremental state 
that 

m,(t- t ' )  + m, (11) 

u, , ,  + 0. (12) 
We also assume that m 2  is spatially 
homogeneous. Introducing m = m2 for 
brevity, we thus require 

(13) m,l ( t - t ' )  = 0. 

In view of (7), (11) and (12), the incre- 
mental field equations, (4) and (5), are 
replaced by 

(14) (6) (0) tI,,,+(P., u,),, = 0, 

u,,, = 0, (15) 
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where we have introduced 

p(@ = - lim rnl(t-t’)dt8u,,,(t’) dt’. 
Ii, , - 0 

0 m,(t-t’)  - 5 

(17) 

i 
For all X E do), the solution to the incre- 
mental field equations must satisfy pre- 
scribed conditions. Here, we are only 
concerned with perturbations due to 
surface loads. Employing the notation 
introduced in (9), the incremental 
boundary condition takes the form (e.g. 
Wolf, 1991) 

[n,thR~+ = -n,q,  (18) 

where q is the prescribed incremental 
load pressure and X E do). 

The general solution to (14)-(16) can 
be derived by means of elementary 
methods if p(@ and t!,@ are expressed in 
terms of the associated local incre- 
ments. Since t:;) = -p(O’S,,, it folIows 
from (1) that 

(19) p(6) = ,(A) +P!?UI. 

(20) t(6) = t‘4- (0) 
11 11 p,k “ k S v  

Substitution of (19) and (20) into (14)- 
(16) and (18) gives 

t!,’”= -p@)S,,+ rn(t-t’) 1 
X d,,[u,,/(t‘)+u,,i(t’)l d t ’ ,  (23) 

[ n , t ~ ) - n , p ~ ) u , ] +  = -n,q.  (24) 

Note that the incremental field equa- 
tions, (21)-(23), no longer depend on 
p!:), and thus in particular agree with the 
ordinary field equations valid in the ab- 
sence of initial stress. However, effects 
due to the initial stress enter through 
the incremental boundary condition, 
(24), which explicitly involves p!?. 

Solutions to (21)-(23) subject to (24) 
will be obtained by means of the Laplace 
transforms of the equations. The Lap- 
lace transform, Y[f(t)], of a function fit) 
is defined by 

Ye[Kt)] = A s )  = ] f(f)e-<’ dt ,  (25) 
0 

where the transform variable, s, will be 
restricted to real values. For the con- 
vergence of the integral in (25) for s 

larger than some value so it is sufficient 
that fit) be piecewise continuous for all 
t E [O,m) and of exponential order as 
t -+ m. Elementary consequences of (25) 
are (e.g. LePage, 1961, pp. 285-328) 

We will also need 

where H ( t )  is the unit step function, 
here formally defined by 

Using (25)-(27) and assuming that 
vanishes at t = 0+, we obtain from 
(21)-(24) the Laplace-transformed in- 
cremental field equations and boundary 
condition: 

2;) = 0, (30) 

2;) = -p(”St,+sm(li,,,+o, J, (32) 

[ n,il,? - n,p!%,] + = - n14. 

= 0, (31) 

(33) 

As in (30)-(33), the argument s of arbit- 
rary Laplace-transformed incremental 
fields will usually be suppressed in the 
following; for brevity, we refer to such 
fields simply as ‘incremental fields’. 

We may use (32) to eliminate iif) from 
(30) and (33). Observing (13) and (31), 
we then arrive at the following incre- 
mental field equations and boundary 
condition: 

-p!?+smlil,,, = 0, (34) 

t i1, I  = 0, (35) 

[nl(p(”)+p~~)ti,)-ym(til ,+~i~,~)]+ = n14. 

(36) 

As an elementary example, we con- 
sider perturbations, induced by surface 
loads, of a plane half-space in a spatially 
homogeneous gravity field. When 
applied to planets, this approximation 
is appropriate only to perturbations 
whose ‘typical’ lateral wavelength is 
short compared with the planet’s 
radius. The symmetry of the half-space 
suggests to introduce Cartesian coord- 
inates: X = (x,y,z). We stipulate that 
0 < x < ~forallXESr(o)suchthatx = 0 

for all X E do). Then, yI = (g,O,O). must 
hold, where x 2 0 is a prescribed 
parameter, and the non-vanishing com- 
ponents of (8) and (10) become 

- p y + p g  = 0, (37) 

[p(O’lr = o+ = 0; (38). 

Supposing in the following that the 
perturbing load is 2D, we orient the y- 
axis normal to the strike of the load. It 
then follows from symmetry considera- 
tions that ti2 = 0, p!:) = 0, tii,z = 0 and 
thus also i::) = $:) = 0. Hence, the 
non-vanishing scalar components of 
(32) are 

(39) iig) = - -(4 

ig) = ~ m & , + t i ~ , ~ ) ,  (40) 

ig = -p(A)+2smli.y,y, (41) 

p +2smfir,r, 

(42) i(4 = - 44 
ZL p ‘ 

Similarly, we find for the non-vanishing 
scalar components of (34) and (35) the 
relations 

-p~,J)+siii(li,,xr+tir,fl) = 0, (43) 

-p!,d’+sm(liy,rx+tiy,yy) = 0, (44) 

tix,r+liy,y = 0. (45) 
With (37) and 11, = (l ,O,O), the scalar 
components of (36) take the forms 

[ax,y+Gy,rIr = O+ = 0, 

[ $ A ’ + p 8 ~ r - ~ ~ t i r , r ] r  = o+ = 4.  
(46) 

(47) 

Equations (43)-(45) are three simultan- 
eous second-order partial differential 
equations for p‘”, tir and ti,, which must 
be solved subject to (46) and (47). These 
equations must be completed by con- 
ditions requiring that the incremental 
fields and their spatial derivatives re- 
main bounded as x + m . 

3 SOLUTION TO THE 
INCREMENTAL EQUATIONS 

We obtain the general solution to the 
equations by means of Love’s strain 
function, A, defined by (e.g. Malvern, 
1969, pp. 552-554) 

ti, = A,w, (48) 

U, = -A,q, (49) 

@”’ = - ~ i j l ( A , , , + A , ~ ) , ~ .  (50) 
Using (48)-(50), equations (39)-(42) can 
also be expressed in terms of A: 

= sfi(A,xr+3A,yy),rt (51) 
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(52) 

(53) 

i(4 = - - 
i(4 = 
xy s~(A.xx-A,yy) .y f l  

yy Sfi(A,Ix--,yy).x, 

i P  = s~~(A, ,+A,,) , , .  (54) 
Upon substitution of (48)-(50) into (43)- 
(45), we find that (43) and (45) are ident- 
ically satisfied. A necessary condition 
for (44) to be valid is 

which is the biharmonic equation. The 
general solution to (55) must satisfy the 
boundary conditions 

(pgX,,-~fi(h,,,+3h,~~),x]x = o+ = q, (57) 

which follow from (46) and (47) upon 
substitution of (48)-(50). An additional 
requirement is that A and its spatial de- 
rivatives remain bounded as x - m. 

The equations are solved on the sup- 
position that the incremental fields can 
be expanded into a Fourier integral. For 
an arbitrary incremental field compon- 
ent, f, and the load pressure, q, we thus 
require that 

where F and Q are the (complex) spec- 
tral densities associated withjand q and 
6 is the wave number. Due to their 
linearity, (48)-(54) then become 

where the arguments x, .$ and s have 
been suppressed. Similarly, (55)-(57) 
reduce to 

In addition to (69), we require that A 
and its spatial derivatives remain 
bounded as x + a. 

For the purposes of the following 
discussion it will be sufficient to assume 
.$ z 0. The solution to (67) satisfying the 
condition at infinity can then be written 
in the form 

1 A = -(A+B.$x)e-@, 

where A and B are integration con- 
stants. Using (70) to substitute for A and 
its derivatives in (60)-(66), we obtain 

(70) t2  

fix = -(A+B.$x)e-@, (71) 

Uy = i[A-B(l-ex)]e-@, (72) 

? A )  = -2(skBe-*, (73) 

Ti:) = 2fsG(A+B.$x)e-Zx, (74) 
= -2i5~k[A-B(l-(x)]e-~', (75) 

?g) = -2.$sk[A-B(2-.$~)]e-~~, (76) 

Ti,") = ~ s f i B e - F .  (7) 
The constants A and B can be deter- 
mined by substitution of (70) and its de- 
rivatives into (68) and (69). We get 

(78) A = B = -  Q 
2.$sm+pg ' 

whence (71)-(77) take the forms 

(85) 

A useful incremental field quantity to 
consider is the maximum shear stress 
occurring in the half-space. Since the 
maximum shear stress can be related to 
the difference between the largest and 
smallest principal stresses, we must 
first determine the principal stresses. 
With i::) = as one of the principal 
stresses, the other two are obtained 
from the characteristic equation 

Upon expansion of the determinant and 
use of (50), (51) and (53), the principal 
stresses are found to be 

Since iiA) and ij" are the largest and 
smallest principal stresses, respect- 
ively, the maximum shear stress, is, is 
given by 

2 '  (88) t ,=-(t '  - 4  --2 t ( 4  ) . - 

Note that we have not added a 
superscript to the symbol is. This is in 
accordance with (20), which shows that 
no distinction between material and 
local increments is required if shear 
stress components or differences 
between normal stress components are 
considered. Substitution of (87) into (88) 
gives 

- 1 -  
(89) t, = - [ ( t ~ ; ) - ~ ~ ~ ) ) 2 + 4 ( i ~ ~ ) ) 2 ] ~ .  

2 

If we put 

is = Tsd.$ i .I 

and equate (89) with (90), we find, using 
(58) and (82)-(84), the relation 

Note that, according to (90) and (91), i, is 
independent of y. 

To proceed beyond (79)-(85) and (91), 
we must specify fi and Q. As a simple 
example, we consider the shear re- 
laxation function for Mamelliun visco- 
elasticity (e.g. Christensen, 1982, pp. 
16-20): 

m = j&(t)e-"'. (92) 

Note that m is determined by two 
parameters: the inverse Maxwell time, 
a, and the shear modulus, p. We 
further consider an 'instantaneous' 
loading event: 

Q = Q ' H ( t ) .  (93) 

In view of (28), the Laplace transforms 
of (92) and (93) are 
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Q = - .  - Q’ 
S 

(95) 

From (94) and (95), we get 

where 

Upon substitution of (96) and (97) and 
subsequent inverse Laplace transforma- 
tion using (28), equations (79)-(85) and 
(91) become 

In view of (99)-(106), /3 will be referred 
to as the inverse relaxation time. 

4 DISCUSSION OF THE 
SOLUTION 

For the discussion of the solution, we 
consider the surface of the half-space, 
x = O + .  It then follows from (99)-(106) 

and Ti$ = T, = 0. Hence, the non- 
vanishing independent surface com- 
ponents are 

that Uy = 0, Tit) = T(A) = T(A) = -p(’) 
Y Y Z  

We also consider the depth, x,, where 
Ts assumes a maximum. Since 

we obtain 

(110) 
1 

= I ’  
Substitution of (110) into (106) then 
gives 

The short-time limits of (107), (108) 
and (111) are 

(112) Q’ [UXL = o+, r = o+ = - 25P + Pg ‘ 

Equations (112)-(114) apply to elasto- 
static equilibrium, governed by the 
shear modulus p, in a half-space subject 
to the hydrostatic initial stress gradient 
pg (e.g. Wolf, 1985a, 1985b). Using (98), 
the long-time limits of (107), (108) and 
(111) are found to be 

Equations (115) describe hydro- 
static equilibrium in a half-space subject 
to the hydrostatic initial stress gradient 
pg. The transition from the instantan- 
eous elastostatic to the final hydrostatic 
equilibrium state is seen from (107), 
(108) and (111) tobeexponential in time, 
where the inverse relaxation time, /3, is 
related to the parameters of the half- 
space by (98). 

If 25cJ(pg) 4 1, equations (98), (107), 
(108) and (111) become, correct to the 
first order in the small quantity, 

p .- ff(l-z), 

A comparison between (98) and (118) 
shows that /3 is now close to its largest 
value, a, i.e. the relaxation proceeds 
rapidly. According to (119)-(121), how- 
ever, the relaxation is insignificant in 
amplitude and vanishes for t p  = 0. 
For perturbations of sufficiently long 
wavelength, the differences between 
the elastostatic and hydrostatic equilib- 
rium states may therefore be ignored. 

If pgl(25p) Q 1 and Pt  4 1, equations 
(98), (107), (108) and (111) become, cor- 
rect to the first order in the small 
quantities, 

(125) 

Equation (122) is the expression for the 
inverse relaxation time for Newtoniun- 
viscous perturbations, controlled by the 
shear viscosity modulus pla, of a half- 
space subject to the hydrostatic initial 
stress gradient pg (Haskell, 1935, 1936; 
Ranalli, 1987, pp. 192-199). 

If pgl(25p) = 0, equations (122)-(125) 
further reduce to 

P = 0, (126) 

(128) 

(129) 

Fort = 0+, equations (127)-(129) apply 
to elastostatic equilibrium in an initially 
unstressed half-space (e.g. Jeffreys, 1976, 
pp. 265-267). Equation (126) shows that 
the subsequent relaxation proceeds in- 
finitely slow. On the other hand, it 
follows with (115) that 

[P ( 4 I x  = O+ = Q’H(t)t 

l + i  
e [Tslx = x,,, = -Q’H(t).  

[UXL = o+, r - m + =J# (130) 

where the instability is due to the 
absence of the gravitational force 
necessary to balance the load in the final 
hydrostatic state. 
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More practically, we may use the con- 
dition pgI (Xp)  s to estimate the 
minimum value of 8 in order that effects 
due to the hydrostatic initialstress may 
be neglected. Considering the Earth as 
an example and taking p = I d  kg m-3, 
g = 10 m s - ~  and p = 10" Pa as  values 
typical of the Earth, we obtain 6 = 
m-' as the minimum wave number. 
This approximately corresponds to a 
maximum wavelength of lob m. Within 
the limits of the half-space approxima- 
tion, the influence of the initial stress is 
therefore negligible as far as elastic per- 
turbations are concerned. However, if 
p < 10" Pa, the initial stress becomes 
noticeable at much shorter wave- 
lengths. This condition in particular 
applies to viscoelastic perturbations, 
where the 'effective' shear modulus, 
sm' , may become arbitrarily small. 

Additional insight is gained by con- 
sidering also P r s .  In view of (19), (37) 
and (58), we have in particular 

4 [P I x  = u+ = [P'% = Ll++pg[U,lx = o+. 

(131) 

Upon substitution of (107) and (108), 
this becomes 

Since it is readily shown that [T;?], = O+ 

= -[P'@Ir ~ 0 + ,  equation (132) simply 
expresses the balance required by (18) 
between the material incremental stress 
component normal to the surface of the 
half-space and the incremental load 
pressure. 

In view of (116), it follows from (131) 
that 

In the final hydrostatic equilibrium 
state, the material incremental pressure 
is thus completely maintained by the 
advective incremental pressure associ- 
ated with the displacement component 
in the direction of the initial pressure 
gradient. Assuming that (116) remains 
valid for p g  4 0, equation (133) also 
applies in this case and we require 

lim pg[UrlX = n+, t + = Q'. 
PS - 0 

IU,l.=o+ I - X - m  

(134) 

Together, (133) and (134) ensure that 
the incremental boundary condition 
given by (132) is satisfied in the final 

hydrostatic state even in the absence of 
initial stress. This illustrates the phys- 
ical significance of the singularity in the 
solution for the displacement noted in 
(130) from a different point of view. 
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APPENDIX: LIST OF SYMBOLS 

Latin symbols 
e 2.71828. . . 
f scalar field 
F,, spectral density off,, 

f i J  tensor field 
f,, partial derivative off,, with 

respect to Xk 
Laplace transform off,, {b initial value off,, 

/(’I local increment of frl 
$J material increment of f ~ )  
8 magnitudeofg, 
81 gravitational force per 

unit mass 
H unit step function 

imaginary unit 
fluid bulk modulus 
bulk relaxation function 
shear relaxation function 
unit vector in the direction of g, 
mechanical pressure 
incremental load pressure 
Laplace-transform variable 
current time 
previous time 
maximum shear stress 
largest principal stress 
smallest principal stress 
Cauchy stress 
particle displacement 
initial particle position 
Cartesian components of X 

x, 

Greek symbols 
(Y inverse Maxwell time 
P inverse relaxation time 
6,) Kronecker symbol 
df partial derivative operator 

A Love’s strain function 
CL shear modulus 
5 wave number 
P mass density 

Calligraphic symbols 
94 2D boundary of v 
Y Laplace transformation 

functional 
V 3Dregion 

depth of maximum value of ts 

with respect tot 
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