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S U M M A R Y  
The incremental gravitational force (IGF) arises from perturbations of the earth's 
gravitational potential. In glacial isostasy, its sources are the surjicial and internal 
mass redistributions associated with the growth and decay of the continental ice 
sheets. 

We examine the errors caused by the neglect of the IGF using closed-form 
solutions of the equations governing surface-load induced perturbations of two types 
of incompressible, spherical-earth models: (1) Maxwellian-viscoelastic mantle en- 
closed by elastic lithosphere, and (2) Maxwellian-viscoelustic mantle enclosing 
inviscid core. Calculations in the Legendre domain of the radial surface displace- 
ment for these models show that neglecting the IGF causes enhancement of the 
elastic response and acceleration of the viscous relaxation. In the space domain, 
these changes entail corresponding modifications of the calculated land adjustment. 
The magnitude of the error caused by the neglect of the IGF strongly depends on 
the deglaciation history and load radius adopted. Assuming a typical deglaciation 
history, the error reaches a maximum of less than 20 m at the end of the deglaciation 
phase for loads comparable in size to the Canadian or the Fennoscandian ice sheets. 

We also compare sphericul-earth models with IGF and plane-earth models 
without IGF. Calculations of the radial surface displacement show that the errors 
due to the neglect of sphericity and the IGF partially compensate each other. Taking 
the uncertainties of the observational data into account, we conclude that the 
majority of the Canadian and Fennoscandian glacial-isostatic adjustment data can be 
modelled with sufficient accuracy using a plane-earth model without IGF. 

Key words: glacial-isostatic adjustment, gravitational viscoelastodynamics, in- 
cremental gravitational force, Maxwellian viscoelasticity, plane-earth 
approximation. 

1 INTRODUCTION 

The uplift of the formerly ice-covered areas in Canada and 
Fennoscandia since the end of the Pleistocene and the 
simultaneous subsidence of the peripheral regions are one of 
the main sources of information on the viscosity of the 
earth's mantle and the thickness of its elastic lithosphere. 
Our knowledge of the values of these parameters is based 
on comparisons between several types of observation of 
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glacial-isostatic adjustment and calculations based on 
simplified earth and load models. Thus, the Canadian data 
have commonly been modelled using spherical-earth models 
with Maxwellian-viscoelastic rheology (e.g. Cathles 1975, 
pp. 196-255; Wu & Peltier 1983; Wolf 1985; Mitrovica & 
Peltier 1989); for the Fennoscandian data, plane-earth 
models with the same rheology have usually been employed 
(e.g. Cathles 1975, pp. 173-196; Wolf 1987; Fjeldskaar & 
Cathles 1991). 

In several recent studies, a number of special features of 
the earth's interior have been examined more closely. These 
features include (1) continuous increase of density with 
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described as infinitesimal perturbation of its initial value, 
f:’).(X), and expressed alternatively in terms of the material 
incrementalfield, f $‘?!.(X, t ) ,  referring to  the particle initially 
at position Xi, or  in terms of the focal incremental field, 
fkA)(X, i), referring to the position X i .  For X ,  E 3 2 ,  the 
fields satisfy certain interface conditions. They are  stated 
concisely using the definition [fi /...( X, t)]’ = lim,x4,&j.,.(~ + 
AX, t )  - limAx+ofi/...(X - AX, t ) .  In the following, we will 
usually suppress the spatial and temporal arguments. More 
detailed accounts on the formulations of the field equations 
and interface conditions can be found elsewhere (e.g. Wolf 
199la, 1994). 

depth due to self-compression (e.g. Wu & Yuen 1991), (2) 
lateral heterogeneities of viscosity and lithosphere thickness 
due to temperature variations (e.g. Gasperini & Sabadini 
1989), and (3) generalized viscoelastic rheologies (e.g. 
Kornig & Muller 1989; Wu 1992). A common characteristic 
of these studies is that, for simplicity, the gravitational force 
is taken as unperturbed: the incrementul-gravitational-force 
(IGF) term in the equilibrium equation is neglected. Such 
earth models have sometimes been referred to as externally 
gravitating; earth models with the IGF included are 
commonly known as self-gravitating. In general, the neglect 
of the IGF has been justitied by arguing that. compared to  
the mass of the earth, the masses of even the major glacial 
loads are sufficiently small that the gravitational effects 
associated with them can be ignored. The principal objective 
of the present study is to examine the validity of this 
argument in detail. 

A related question is whether the use of plane-earth 
models, an approximation adopted in several of the studies 
mentioned above, affects the results of interpretations 
significantly. This problem was addressed by Wolf (1984), 
who concluded that sphericity can be neglected in studies of 
the ‘regional’ Fennoscandian glacial-isostatic adjustment 
process, but not necessarily in studies of the ‘global’ 
Canadian process. However, Wolf compared plane-earth 
models without I G F  with spherical-earth models without 
IGF. We show, by comparison with spherical-earth models 
with IGF,  that Wolf‘s results must be modified: in fact, most 
of the Canadian readjustment data can be modelled with an 
accuracy similar to  that achieved for the Fennoscandian data 
by using plane-earth models without IGF. 

In the following section, we will state the equations 
governing quasi-static gravitational-viscoelastic perturba- 
tions, induced by interface loading, of an incompressible, 
non-rotating and initially hydrostatic fluid earth (Section 2 ) .  
Using closed-form solutions to the equations governing 
models with or  without IGF,  we will then compare the 
calculated values of several observables of postglacial 
adjustment (Section 3). Emphasis will be laid on the radial 
surface displacement and the error incurred in its calculation 
due to  the neglect of the IGF;  furthermore, the dependence 
of the IGF on the size of the ice sheet and the history of the 
deglaciation adopted in the model will be investigated. Our 
study concludes with a brief summary of the results obtained 
(Section 4). 

2 FIELD EQUATIONS A N D  INTERFACE 
CONDITIONS: TENSOR FORMS 

We compile the field equations and interface conditions for 
the initial fields (Section 2.1) and the incremental fields 
(Section 2.2) governing perturbations of an initially 
hydrostatic fluid. For this, we use Cartesian tensor fields in 
indicia1 notation with the usual summation and 
differentiation conventions and employ the Lugrangiun 
kinematic formulation. In particular, we take t = 0 as initial 
time, t E [O, m) as current time, and the initial particle 
position, X ,  E Zu 3 2 ,  as spatial argument, with Z the 
domain occupied by the fluid in the initial state and 3% the 
interfaces of discontinuity of particular parameters of the 
fluid in that state. We also assume that, for all X ,  E 2, the 
current value of an arbitrary field, f,,...( X , ? ) ,  can be 

2.1 Initial state 

Suppose that the fluid is incompressible, non-rotating and 
free from non-gravitational volume forces and that the 
interfaces are initially unforced. Then, the field equations 
and interface conditions governing a hydrostatic initial state 
are 

where p(”’ is the initial mechanical pressure, $(()) the initial 
gravitational potential, p the volume-mass density and G 
Newton’s gravitational constant. Eqs (1) and (2) are 
referred to as initial equilibrium equation and initial 
potential equation. With p prescribed, (1) and ( 2 )  constitute 
a system of linear partial differential equations for p(’) and 
$(O), whose solution must satisfy (3)-(5). 

2.2 Incremental state 

Assume that the fluid undergoes quasi-static gravitational- 
viscoelastic perturbations in response to  incremental masses 
located on the interfaces. With I,...( X, s) denoting the 
Laplace transform of f,/...( X,f) with respect to  t (e.g. 
LePage 1980, pp. 285-318), the following Laplace- 
transformed incremental-field equations and interface 
conditions apply: 

ii . = 0  
I .I 

I 

Referring to Laplace-transformed incremental fields simply 
as incremental fields, 6 is the shear relaxation function, ji(*) 
the material incremental mechanical pressure, i!:) the 
material incremental Cauchy stress, ii, the displacement, 

the local incremental gravitational potential and 6 the 
incremental interface-mass density. We have also used n y ’ ,  
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which is the unit normal with respect t o  2% and anti-parallel 
to $::); note that n:"' is directed to the positive side of 2%. 
Eqs (6)-(9) are referred to as incremental incompressibility 
condition, incremental equilibrium equation, incremental 
constitutive equation of viscoelasticity and incremental 
potential equation. With 6, p and 5 taken as prescribed and 
$ ( I ) )  given as special solution to  (1)-(5), eqs (6)-(9) 
constitute a system of linear partial differential equations for 
p( * ) ,  f::), G, and $ ( A ) ,  whose solution must satisfy 

The  term p$p' in ( 7 )  is the incremental gravitational 
force (IGF) per unit mass. Obviously, it couples the 
mechanical quantities, $*), (;' and Gi, with the 
gravitational quantity, $(A' .  Earth models governed by 
(6)-(9) are commonly referred to  as self-gravitating. 
Frequently, the gravitational force is taken as unperturbed, 
i.e. the IGF is neglected. Then, the mechanical quantities 
decouple from the gravitational quantity. The corresponding 
earth model has sometimes been referred to as externally 
gravitating. However, even in this case, the initial state is 
usually taken as self-gravitating and governed by (1) and 
(2). In the following, we will avoid the terms self-gravitating 
and externally gravitating and, instead, refer to models with 
I G F  and without IGF. 

Closed-form solutions to (1)-(13) were given by Wu & 
Peltier (1982) and Wolf (1994) for a homogeneous sphere 
and by Wolf (1984) for a two-layer sphere; the IGF was 
included only in the solutions for the homogeneous sphere. 
The computational results of the present study are based on 
closed-form solutions, with or without IGF term in the 
equilibrium equation, for two spherical-earth models: (1) 
Maxwellian-viscoelustic mantle enclosed by elastic 
lithosphere (earth model L) and (2) Maxwellian-uiscoelastic 
mantle enclosing inviscid core (earth model C) .  The 
solution for a homogeneous Maxwellian-viscoelastic earth 
(earth model H )  follows from either solution as a special 
case. The corresponding earth models without IGF are 
distinguished by the primed symbols L' ,  C' and H'.  The 
integration of the scalar equations and determination of the 
integration constants is outlined in Appendices A-C. 

(lo)-( 13). 

3 COMPUTATIONAL RESULTS 

To illustrate the significance of the IGF,  we begin with a 
comparison, in the spherical-harmonic domain, between the 
radial surface displacement for spherical-earth models with 
or without I G F  (Section 3.1). After that, we will present 
calculations in the spatial domain and compare radial 
surface displacement and geoid height for these earth 
models (Section 3.2). In particular, we will give the 
numerical values of the errors due to the neglect of the IGF 
when modelling the Fennoscandian and Canadian glacial- 
isostatic adjustment processes. Further, we will test the 
adequacy of the frequently used plane-earth model without 
IGF by comparing its response with the responses of the 
corresponding spherical-earth models with or without IGF. 
The parameters of earth models H ,  L and C are specified in 
Table 1. We employ as the viscous parameter the shear 
viscosity, 77, which is related t o  the inverse Maxwell time, f i ,  
and the shear modulus, p ,  by r]  = p/ /? (Appendix C). 

Table 1. Parameters of spherical-earth models; symbols H', L' and 
C' are used to distinguish models without IGF. 

Earth model 11 Earth model L Earth model C 

a1=6271 km a1=3485 krn 

a2=6371 k m  a2=6371 km 
llad i II s a 2 5 3 7 1  krn 

pl=5514 kg m-3 

p2=5514 kg m-3  

pl=10630 kg m-3 

p2=4510 kg m-3 
Density p2=5514 kg m-3 

3.1 Spherical-harmonic domain 

The spherical-harmonic coefficient of the radial surface 
displacement for Heathide loading, S = S ' H ( t ) ,  is obtained 
by convolution with the corresponding spherical-harmonic 
coefficient for impulse loading, S = S ' 6 ( r )  (Appendix D). 
We get 

where M is the total number of modes with M = 1 (earth 
model H )  or M = 2 (earth models L and C), T"' the elastic 
amplitude, 7':) the viscous amplitude and sm the inverse 
relaxation time (e.g. Wu & Peltier 1982; Wolf 1984, 1994). 
The response for t -+ m follows as 

where the expression in brackets is called total amplitude, 
T(') .  Instead of sm, its inverse, s,;', will henceforth be used. 

3.1.1 Earth model H 

Figure 1 shows the elastic, viscous and total amplitudes, 
T'", T'," and 7('), and the relaxation time, s;', as 
functions of the spherical-harmonic degree, n ,  for earth 
model H. The numerical values of the parameters (Table 1) 
correspond to those of an average earth. The main response 
characteristics are as follows (e.g. Peltier 1976; Wu & 
Peltier 1982; Wolf 1984): Whereas 7"' shows a quasi-linear 
decrease with increasing n ,  T ( ' )  corresponds to  hydrostatic 
equilibrium and is therefore independent of n (Fig. l a ) .  The 
transition between 7'') and T(')  is carried by a single mode, 
MO, which is associated with the density discontinuity at the 
earth's surface. Its amplitude, T?, describes the viscous 
portion of T ( ' )  and increases with increasing n according to  
the decrease of 7'') (Fig. lb) .  Similarly, s;' increases with 
increasing values of n (Fig. Ic). 

If the IGF is neglected, 7'") increases and, since 7") is 
unaffected, 7:"' decreases by the same amount, whereas s;' 
is shortened. As a consequence, the radial surface 
displacement is enhanced and the final state of hydrostatic 
equilibrium approached faster. This behaviour applies in 
particular a t  small values of n. It can be explained by noting 
that the interaction between the masses of earth, load and 
surface depression decompose into (1) the gravitational 
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Figure 1. (a) Elastic amplitude, T"), and total amplitude, T('), (b) viscous amplitude, T?), and (c) relaxation time, l/s,,  as functions of 
spherical-harmonic degree, n, for earth models H (squares) and H' (crosses). MO denotes relaxation mode. 

effect of the earth on the net mass of load and surface 
depression and (2) the net gravitational effect of load and 
surface depression on the mass of the earth. Considering 
that the effects are additive, it is obvious that the radial 
surface displacement becomes larger in magnitude if the 
second force, the IGF, is neglected (cf. Cathles 1975, p. 80). 

3.1.2 Earth model L 

Earth model L differs from earth model H by the inclusion 
of an elastic lithosphere of 100krn thickness; the shear 
modulus of the lithosphere (Table 1) corresponds to average 
values near 100km depth (Bullen 1975, p.254). The 
significance of the lithosphere to glacial isostasy was 
discussed before (e.g. Wu & Peltier 1982; Wolf 1984); here, 
the main response characteristics are briefly recalled. 

Figure 2 shows that T(') and T(')  differ from those for 
earth model H at high values of n :  whereas T(') is enhanced 
slightly, T( ' )  no longer corresponds to the amplitude for 
hydrostatic equilibrium (Fig. 2a). The first effect is due to 
the ieduced shear modulus in the lithosphere; the second 
arises because the shear energy remains partly stored in the 
lithosphere. The relaxation is now characterized by two 

modes (Fig.2~). As for earth model H, the MO mode is 
associated with the density discontinuity at the earth's 
surface, whereas the LO mode is supported by the viscosity 
discontinuity at the lithosphere-mantle boundary. However, 
the total relaxation is mainly carried by the MO mode. For 
small values of n ,  its amplitude is close to that of the MO 
mode in earth model H. The LO mode contributes to the 
relaxation significantly only for n = 8. In view of the 
predominantly elastic response of earth model L for loads of 
short wavelength, the viscous amplitudes approach 0 for 
high values of n. For small n ,  the relaxation time associated 
with the MO mode approaches that of this mode in earth 
model H. However, for large n ,  it  deviates considerably and 
approaches the relaxation time for the LO mode (Fig. 2d). 

If the IGF is neglected, T"' increases as for earth model 
H. The energy partition between the two modes changes but 
the decrease of their sum (Fig. 2b) resembles the decrease of 
7"") for earth model H. Also, the shortening of the 
relaxation time for the MO mode caused by the neglect of 
the IGF corresponds to the behaviour of the relaxation time 
for this mode in earth model H. On the other hand, due to 
the presence of the lithosphere, the IGF now no longer 
vanishes for t -+ m and T(' )  is slightly enhanced if the IGF is 
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Figure 2. (a) Elastic amplitude, 7('), and total amplitude, T ( t ) ,  (b) total viscous amplitude, TI" + T y ) ,  (c) viscous amplitudes, TI" and T$"), 
and (d) relaxation times, l/s, and l/s2, as functions of spherical-harmonic degree, n ,  for earth models L (squares) and L' (crosses). MO and LO 
denote relaxation modes. 

neglected. The latter effect is, however, trifling and cannot 
be detected on the scale of the figure. 

3.1.3 Earth model C 

Earth model C is distinguished from earth model H by the 
inclusion of an inviscid core. The densities adopted for the 
core and the mantle (Table 1) ensure correct gravity values 
at the core-mantle boundary (CMB) and at  the earth's 
surface: y1 = 10.36 m s-' and yz = 9.82 m s-', respectively. 

In Fig. 3, the response characteristics of earth model C 
are illustrated (e.g. Peltier 1976; Wu & Peltier 1982; Wu 
1990). Again, the behaviour of T(") is similar to  that for 
earth model H ,  the deviation for small values of n being due 
to the presence of the core. Also, T") is independent of n 
and corresponds to that for hydrostatic equilibrium 
(Fig. 3a). In addition to the MO mode, the CO mode 
associated with the density discontinuity at the CMB now 
appears (Fig. 3c). However, for n > 10 the deformation of 
the CMB is insignificant and the CO mode barely excited. 
For small values of n, the relaxation time for the CO mode is 
significantly longer than that for the MO mode (Fig. 3d). 

If the I G F  is neglected, the modifications of the response 

are similar to those for earth model H. Hence, the elastic 
amplitude increases, the total viscous amplitude decreases, 
with the energy partition between the MO and CO modes 
changing, and the relaxation times are shortened. This 
suggests that the effects, on the radial surface displacement, 
due to  the IGF arising from the deformation of the CMB 
are fairly small. 

3.2 Spatial domain 

The objective of this section is t o  obtain quantitative 
measures of the errors incurred due to  the neglect of the 
IGF in calculations of the main geophysical observables 
related to  postglacial adjustment: radial surface displace- 
ment and geoid height. A principal difficulty in modelling 
glacial-isostatic adjustment is that the cross-sections and 
deglaciation histories of the Pleistocene ice sheets are 
incompletely known. This fact renders any load model to  be 
employed poorly constrained. Since, in this study, no data 
will be interpreted, it is sufficient to  use two fairly 
elementary load models. 

In load model A ,  we consider axisymmetric loads with 
cross-sections corresponding to  the spherical harmonics pi 
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Figure 3. Same as Fig. 2 but for earth models C and C'. MO and CO denote relaxation modes. 

and Y',)s. If applied to the earth, the intervals inside the first 
roots of these functions will be comparable to the radii of 
the Pleistocene Canadian and Fennoscandian ice sheets, 
respectively. The deglaciation histories are modelled as 
instantaneous unloading at  t = 0. For obvious reasons, it is 
sufficient to calculate field values on the load axes. In load 
model B ,  we simulate the Canadian and Fennoscandian ice 
sheets using an axisymmetric disk load with rectangular 
cross-section and fixed radius of R ,  = 1600 km and 
R ,  = 800 km, respectively. The associated deglaciation 
histories start at t = 0 ,  are  linear and finish at t =  10Kyr. 
Both load models imply that, prior to  deglaciation, the earth 
has been in equilibrium with the load. Computationally, the 
loading histories are accounted for by convolving them with 
the impulse response. The calculation of the response to 
disk loads requires the evaluation of the appropriate 
spherical-harmonic expansions. All results apply to a load 
density of lOOOkgm-' and a maximum load thickness of 
3 km. 

3.2.1 Load model A 

In Canada, the postglacial land uplift in the central region of 
the former ice sheet is barely influenced by the lithosphere 

but significantly by the core (e.g. Wu & Peltier 1982). On 
the other hand, the central land uplift in Fennoscandia is 
moderately sensitive to  the presence of the lithosphere (e.g. 
Wolf 1984) whereas the core is of subordinate importance. 
This suggests the employment of earth model C for 
modelling the central uplift in Canada and earth model L 
for modelling it in Fennoscandia. 

We note that the densities of lithosphere and mantle in 
earth models L and C, respectively, are higher than the 
densities of the earth's upper layers. Since the radial surface 
displacement in hydrostatic equilibrium is inversely propor- 
tional to the upper layer density, the calculated displace- 
ments are therefore too small in magnitude. As is shown 
elsewhere (Amelung 1991), this deficiency of earth models L 
and C does not invalidate our conclusions on the significance 
of the IGF for the interpretation of glacial-isostatic 
adjustment data. 

In Fig. 4, the computational results for earth models C 
and C' and load model A with n = 6  (Canadian ice sheet) 
are displayed. Fig. 4(a) shows that, in accordance with our 
expectations, the radial surface displacement becomes 
smaller in magnitude if the IGF is neglected. The error due 
to this neglect is shown more clearly in Fig.4(b). 
Immediately after load removal, it amounts to  15 m; at 



870 F. Amelung and D. Wolf 

- 
- I \  

I \  - I \  
I \  

- I  \ 
I \  

- 1  1 
I 

- 1  
I - \ 

\ 
\ 
\ 

\ 

I 
\ 
\ . 

I I (9 
- I  

0 
n 

El 
W 

+ -200 d 

i!i 8 -400 
(d 
d 

k 
-600 

50 
n a 40 

ti! 3 20 
9 
n 10 

v 

E 30 

0 

- -20 

-40 -80 I a 
W 

5 .d -60 

L 2 
0 -100 s 

.. 

b" 

0 10 20 0 10 20 

0 10 20 

n a 
W 

50 

40 

30 

20 

10 

0 

c 

0 10 20 

0 10 20 0 10 20 

Time after load removal (kyr) 
Figure 4. (a) Radial surface displacement, u,, as a function of time, f ,  after load removal for earth models C (solid) and C' (dashed) and (b) 
difference between radial surface displacements for earth models C' and C.  (c. d) Same as (a) and (b) but for geoid height, h. (e ,  f )  Same as (a) 
and (b) but for radial surface displacement relative to  geoid, u, - h. Calculations apply to  axis of load model A with n = 6. 

about 1.5 Kyr (approximately the relaxation time of the MO 
mode for n = 6), it has reached its maximum of 45 m; for 
longer times after unloading, the error decreases and has 
almost vanished after 10Kyr. In Figs 4(c) and (d), the 
corresponding results are given for the geoid height. 
Because of the mass deficit after unloading, the geoid height 
is always negative. The time dependences are similar to 
those for the radial surface displacement. This shows that 
the deformation of the CMB, which is largely controlled by 
the relaxation of the CO mode, affects the geoid height only 
insignificantly. 

We may reasonably assume that the deglaciation of 
Canada took place 10 Kyr BP such that the time t = 10 Kyr 
corresponds to the present time. Then, Fig. 4 suggests that 
hydrostatic equilibrium has been essentially restored in that 

region today, and the calculated displacement at a particular 
time t < 10 Kyr can be interpreted as (the negative of) the 
land uplift that has occurred since that time. In the first 
approximation, this uplift is recorded as the elevation of 
ancient shorelines; as Figs 4(a) and (b) show, the shoreline 
elevation is underestimated in our calculations if the IGF is 
neglected. A better approximation is attained if calculations 
of the radial surface displacement are referred to the geoid. 
This is because shoreline elevations are taken with respect 
to the present-day sea surface which, in general, is different 
from the sea surface at the time of formation of the 
shoreline. The radial surface displacement relative to the 
geoid is shown in Fig. 4(e). Since displacement and geoid 
height are negative, the magnitude of the displacement is 
reduced if it is referred to the geoid. Likewise, the 
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difference between earth models C and C’ is diminished, the 
maximum error caused by the neglect of the IGF now being 
about 37 m (Fig. 4f). 

Figure 5 shows the corresponding results for earth models 
L and L’ and load model A with n = 15 (Fennoscandian ice 
sheet). As expected, the relaxation now proceeds more 
slowly than for n = 6. The error due to the neglect of the 
IGF again has its maximum at  a time after unloading close 
to the relaxation time of the MO mode and, for the radial 
surface displacement relative to  the geoid, amounts to  about 
16 m. 

In the following, only the behaviour of the radial surface 
displacement will be further discussed. This strategy 
accounts for the diminution of the errors if displacements 
are referred to the geoid and thus suffices to establish upper 
bounds on the errors caused by the neglect of the IGF in 
interpretations of shoreline data. 

3.2.2 Load model B 

Load model B admits an adequate study of the significance 
of the IGF also for the marginal and peripheral regions of 
the load. Since, in these regions, the response is strongly 
affected by the elastic lithosphere, only earth models L and 
L’ are now considered. Obviously, these models ignore 
effects due to the core, which introduces errors when 
calculating land uplift for Canada. It is shown elsewhere 
(Amelung 1991) that this neglect is without consequences 
for the modification of the calculated land uplift caused by 
the IGF. 

Figures 6 and 7 show the radial surface displacement for 
load model B with R L =  1600km and RL=8OOkm, 
respectively, for several distances from the load axis. For 
both radii, the magnitude of the error due to the neglect of 
the IGF has a maximum on the load axis immediately after 
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Figure 6. (a) Radial surface displacement, u,, as a function of time, I ,  after beginning of load removal for earth model L and (b) difference 
between radial surface displacements for earth models L' and L (dashed) and earth models L," and L (doned) for several distances, R ,  from 
load axis. Calculations apply to load model B with R ,  = 1600 km. 

the end of deglaciation and reaches about 18 m and 17 m for 
R,-  = 1600 km and R ,  = 800 km, respectively. Thus, in 
comparison with instantaneous unloading, the assumption of 
linear unloading reduces the error considerably for a model 
of the Canadian ice sheet, but only slightly for a model of 
the Fennoscandian ice sheet. We therefore conclude that, 
for modelling glacial-isostatic adjustment in Canada or 
Fennoscandia, the IGF has similar importance although the 
diameters of the corresponding loads differ by a factor of 
two. 

If, in addition to the IGF, the sphericity of the earth is 
neglected, we obtain the type of plane-earth model that has 
frequently been used in interpretations of the Fennoscan- 
dian adjustment data (e.g. McConnell 1968; Lliboutry 1971 ; 
Cathles 1975, pp. 173-196; Wolf 1987; Fjeldskaar & Cathles 
1991) and, occasionally, in studies related to the Canadian 
data (e.g. Gasperini, Yuen & Sabadini 1990). In the 
following, this model will be distinguished by symbol L". 

In Figs 6(b) and 7(b), the differences between the radial 
surface displacements for earth models L" and L have been 
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Figure 7. Same as Fig. 6 but for load model B with R ,  = 800 km. 

included. Except for the beginning of deglaciation, the 
magnitudes of these differences are less than the magnitudes 
of the corresponding differences for earth models L' and L. 
Near the load axis, they only reach a maximum of about 
1 5 m  near the end of deglaciation for R , =  1600 km and 
R, = 800 km. This shows that the errors due to the neglect 
of the IGF and due to  the neglect of sphericity partly 
compensate each other. The enhanced errors for earth 
model L" in the central regions of the loads immediately 
after the beginning of deglaciation are of no geophysical 
interest. This is because n o  shorelines could be formed in 
those regions at that time. In the marginal and peripheral 

regions, the errors for earth model L" may reach almost 5 m 
for R, = 800 km and exceed 10 m for R, = 1600 km. 

In order that the bearing of the errors entailed by earth 
model t" on interpretations of glacial-isostatic adjustment 
be assessed, we note that the errors become significant if 
they are comparable in magnitude to  the displacements and 
also exceed the uncertainty of shoreline elevations. Since 
this uncertainty is typically about 5-10111 (e.g. Breuer & 
Wolf 1994), it may thus be concluded that (1) the 
Fennoscandian adjustment can normally be interpreted 
using a plane-earth model without IGF and (2) the 
Canadian adjustment can be  interpreted with such a model 
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provided no high-quality data for the periphery of the load 
and times during deglaciation are considered. It is of interest 
to note that Wolf (1084) regarded the plane-earth 
approximation as not completely adequate for loads 
comparable to the Canadian ice sheet. However, Wolf 
based his conclusions on a simplified loading history and a 
comparison of the plane-earth model without IGF with the 
corresponding spherical-earth model without IGF and not, 
as has been done here, the corresponding spherical-earth 
model with IGF. 

Finally, we note that the consideration of different field 
quantities or forcings may lead to  different conclusions 
regarding the ‘ranking’ of earth models L ,  L‘ and L”. An 
example of this is the study by Sabadini & Spada (1988), 
who discussed effects due to the I G F  and sphericity on uplift 
rates for internal loading. 

4 CONCLUSIONS 

Using closed-form solutions of the equations governing 
quasi-static gravitational-viscoelastic perturbations, induced 
by surface loading, of incompressible, non-rotating and 
initially hydrostatic fluids for two important types of 
spherical-earth model, we have obtained the following 
results. 

( 1 )  In  the spherical-harmonic domain, the neglect of the 
IGF causes enhancement of the elastic amplitude of the 
radial surface displacement and acceleration of the viscous 
relaxation. This behaviour is a consequence of the partition 
of the interaction between the masses of earth, load, and 
surface depression into (a) the gravitational effect of the 
earth on the net mass of load and surface depression and (b) 
the net gravitational effect of load and surface depression on 
the mass of the earth. Since the two effects are additive, the 
radial surface displacement becomes larger if the second 
force, the IGF,  is ignored. 

(2) In the spatial domain, the error due to the neglect of 
the IGF in calculations of the radial surface displacement 
depends on the radius of the ice sheet and the deglaciation 
history adopted in the load model. For instantaneous 
deglaciation, the error is largest a t  a time after load removal 
comparable to the relaxation time of the perturbation and 
reaches a maximum of about 45 m (Canadian ice sheet) and 
about 15 m (Fennoscandian ice sheet); for more realistic 
linear deglaciation, the error is largest near the end of the 
deglaciation phase and reaches a maximum of less than 20 m 
for both load radii. These errors are further reduced by 
about 20 per cent if the displacements are referred to  the 
geoid surface. 

(3) Comparisons between spherical-earth models with or 
without IGF and a plane-earth model without IGF show 
that the errors resulting from the neglect of the IGF and 
from the neglect of sphericity partly compensate each other. 
As a consequence, the Fennoscandian adjustment data can 
normally be interpreted using a plane-earth model without 
IGF.  This conclusion also applies to  data from the centre of 
the Canadian ice sheet. However, high-quality data from its 
periphery are  more accurately interpreted using a 
spherical-earth model with IGF. 
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A P P E N D I X  A:  FIELD EQUATIONS A N D  
INTERFACE CONDITIONS:  SCALAR FORMS 

Assume that the centre of gravity of a fluid earth in the 
initial state of hydrostatic equilibrium coincides with the 
origin, 0, of a Cartesian coordinate system, OX,X,X,. 
Also, suppose that the fluid earth in this state has 
discontinuities at concentric, spherical interfaces of radii a1 
and a, about 0. The symmetry of the configuration then 
suggests to introduce spherical-polar coordinates, r ,  8 and 
A ,  by [ X I , X , , X , ] = [ r s i n 0 c o s A ,  rs inOsinA,  rcos81 ,  
with 0 < r < 30 the radial distance, 0 < 8 < n the colatitude, 
and 0 5 A < 2 n  the longitude. The two interfaces divide 2t' 
into three subdomains, which are uniquely determined by 
the following (open) intervals on the r axis: (0, a,), ( a , ,  u2)  
and (a2, m). For a point in any of the subdomains, we write 
r E 92, where 2 = (0, a , )  U ( u l ,  a2) U (a2, m); for a point on 
either of the interfaces, r E 3% applies, where d B  = 
{ a , ,  u2} .  The parameters of the earth are taken as spatially 
homogeneous in each subdomain. 

A1 Initial state 

Since a,, = 8, = 0, the relevant spherical components of 
(1)-(5) are 

A2 Incremental state 

Upon elimination of fp), we obtain from (6)-(13) the 
spherical components 

1 1 1 
- (r2G,).,  + - (sin 0 G o ) , @  + -&.A = 0 
r sin 0 sin 0 

v2ii, - 

(sin 0 i ie) .e  - 2. 2 iiA,* = 0 i"" (22) 
2 2 -- 

r sin 8 r2 4 - 
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(25) 

(26) 

(27) 

pi,]: = 0 

[ii"]f = 0 

[ii*]t = 0 

(31) 

(32) 

[@A']' = 0 

[@p) - 4nGpii,)]f = -4JccTr 

where V2 = [sin 0 d,(r2 a,) + d,(sin 8 a,) + aAA]/(r2 sin 0). 

APPENDIX B: G E N E R A L  SOLUTIONS 

B1 Initial state 

We only need the general solution for Q("). From (16) and 
(17). we get 

I 
r (33) QU)) = -jnCpr' + - D"' + p), 

with D ( ' )  and D(') arbitrary constants. The gravity is 
defined by y = --Q!:). 

B2 Incremental state 

Assume that the incremental field quantities can be 
expanded into spherical harmonics. Since perturbations due 
to  interface masses are studied, torsional displacements 
cannot be excited and only the equations for the spheroidal 
parts are needed. Hence, suppose solutions of the form 

G,(r, 8,  A, s) = O(r, n ,  r n ,  s ) Y ! , ( H ,  A ) ,  

G,,(r, 8 ,  n , s )  = V(r, n ,  r n , s ) ~ ! , , , ( H ,  A), 
(34) 

(35)  

$")(r, H ,  A , S )  = P(")(r, n ,  rn,s)Y!,(e, A), 
$(A)(r, H ,  A ,  s) = 6 ( A ) ( r .  n .  r n ,  s )Y! , (H,  A), 

(37) 

(38) 
where Y i ( 0 ,  A) are the fully normalized spherical harmonics 
and u ( r ,  n ,  m,  s) etc. the appropriate spherical-harmonic 
coefficients. Using the properties of YL(0, A),  (21)-(24) take 
the forms 

- 2 - n ( n + l )  - u,r +- u -___ v = o  
r r 

2 - 2 n ( n +  1) - - -u+  v = o  
r2 r2 

(39) 

(41) 

(42) 

V f ( W  + p y u  - , p W ) )  = 0 

Vf@"' = 0 

where Vf = d,, + 2a,/r - n ( n  + l ) / rz .  Note that the 
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spherical-harmonic order, 1 ,  does not appear in (39)-(42),  
whence 6, v, p(’) and depend only on the 
spherical-harmonic degree, n. 

After elimination of v, a system of three ordinary 
differential equations in 6, p(6) and results (e.g. Wu & 
Peltier 1982). Introducing [Z,] = [6, v, p(’),  @A)]T, the 
general solution can be written as 

[Z,] = h = l  A(k) [Z jA) ] (J )v ‘k ’ ,  a2 (43)  

with A‘”, . . . , A(”) arbitrary constants and 

[ z ~ I ) ]  = [ n(n + I ) ,  n + 3 , 2 ( n  + 1)(2n + 3 )  - 
S f i  

(44)  

(45)  

(46) 

Note that E is used t o  distinguish the case with IGF ( E  = 1) 
from the case without IGF ( E  = 0). 

A P P E N D I X  C: SPECIAL SOLUTIONS 

C1 Earth model L 

In earth model t, (O,a,), GI and pI  represent the 
viscoelastic mantle, ( a , ,  a , ) ,  k, and p ,  the viscoelastic 
lithosphere, and (a2, m), m3 = 0 and p3 = 0 the exterior of 
the earth. In the mantle and lithosphere, the densities are 
taken as identical, p ,  = p ,  = p .  

C1.1 Initial state 

Constants D‘” and 0‘’) in (33)  are determined using (19)  
and (20)  for r = a ,  and r = a,.  Requiring also Iim,-- +(’) = 
0, we find 

- :nGpr2 + 2nCpa:,  0 < r < a ,  

a , < r < m  

The gravity a t  the earth’s surface follows as y, = 4nCpaJ3 .  

C1.2 Incremental state 

Requiring the boundedness of the solution for r+O and 
r+m, the general solution can be written as 

6 

a ,  < r < a, ,  
k = l  

(57) 

The 10 constants are determined using (25)-(32) for r = a ,  
and r = a,.  Assuming that interface masses are present only 
at r = a, ,  we put 

b(a, ,  8, s) = S(n , m , s) yfr( 0,  A) (60) 

and obtain with (34)-(38) the conditions 

Substituting for the spherical-harmonic coefficients, we 
finally arrive at an inhomogeneous system of 10 equations in 
10 unknowns, A(’) ,  A(*) ,  A(3) ,  @ I ) , .  . . , B(‘) and C(‘). 
Being interested in the solution for the interval ( a , ,  a2 )  
(lithosphere), we eliminate A‘” ,  A‘”, A‘’’ and C(‘). The 
residual (6 x 6) system can be solved using standard 
methods. Explicit expressions for B‘”, . . . , B(”)  are given 
elsewhere (Amelung 1991). Upon substitution of 
@I), . . . , B(‘) into (58), we get in particular 

- E , , M ‘ + E , M + E , S  U(a,)  = - - 
F ; , M ’ + F , M + F ,  p ’  

where M =fi l /6iz and E,,, E l ,  E,, F;,, Fl, F, are listed in 
Appendix E .  Supposing that the mantle is Maxwellian 
vlscoelaslic and the lithosphere elastic, the corresponding 
relaxation functions are f i  I = p ,/(s + B , )  and rii, = p , / s ,  
with p, the inverse Maxwell time of the mantle and p, and 
p,  the shear moduli of the mantle and lithosphere, 
respectively (e.g. Wolf 1991b, 1994). 

C2 Earth model C 

In earth model C ,  ( O , u l ) ,  ml = 0  and p ,  represent the 
inviscid core, ( a , ,  a , ) .  f i ,  and p ,  the viscoelastic mantle, 
and ( a 2 ,  a), f i3 = 0 and p 3  = 0 the exterior of the earth. 
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@ I ) ,  . . . , B(') into (74), we obtain in particular C2.1 Initial state 

Constants D ( l )  and D(') in (33) are determined using (19) 
and (20) for r = a ,  and r = a2.  Imposing also limr+w @(') = 
0, we get 

(p) 
-$nGp1r2  + 2 n G [ p , a :  + p2(az - a:)] ,  0 < r < a l  

; n ~ ( p ,  - p 2 )  - - $ngp2r2 + 2 n ~ p , a ; ,  a ,  < r < a2 

a 2 < r < m  

a: 
r 

1 
3 a p 2 a :  + ( P 1 -  Pz)a:l;, =i (72) 

The gravity at the CMB and at  the earth's surface, 
respectively, follow as yI = 4 n C p l a l / 3  and y2 = 
4nClp2a2 + ( P I  - p2)a7/a:j/3. 

C2.2 Incremental state 

Requiring the boundedness of the solution for r - 0  and 
r -+  00, the general solution reduces to 

[Z,] = C"'[ZyJ - a2 < r < w, 

(73) 

(74) 

(75) 

The 10 constants are determined using (25)-(32) for r = a ,  
and r = a2.  Observing that f i  I = 0 and applying interface 
masses at r = a2,  we get with (34)-(38) the conditions 

Note that, at the CMB, 0 is taken as continuous, whereas 
no restriction is imposed on V.  Different displacement 
conditions for the CMB have been proposed in other studies 
(e.g. Smylie Mansinha 1971). Substituting for the 
spherical-harmonic coefficients, we arrive at an in- 
homogeneous system of nine equations in 10 unknowns, 
A'", A('),  A(?', B"), . . . , B(') and C('). Being interested in 
the solution for the interval ( a l ,  a2)  (mantle), we eliminate 
A ( ' ) ,  A(2) ,  A(3)  (which cannot be determined uniquely) and 
C('), this reduces to a (6 X 6) system for B(", . . . , B('). 
Explicit expressions for the constants can be found 
elsewhere (Amelung 1991). Upon substitution of 

El,(sfi2)2 + E , s f i 2  + E ,  3 
F;l(sfi2)2 + Fls f i2  + F2 p2 ' 

O(a2) = - 

with E,,, E l ,  E, ,  &, F l ,  F2 listed in Appendix E .  Supposing 
Maxwellian viscoelasticity for the mantle, we get 6, = 
p2/(s + p 2 ) ,  with P2 and p2 the inverse Maxwell time and 
the shear modulus, respectively, of the mantle (e.g. Wolf 
199 1 b). 

APPENDIX D:  IMPULSE RESPONSE 

In order that the inverse Laplace transformation can be 
implemented, the load functions must be specified. 
Considering irnpulsiue loading, S = S ' S ( t ) ,  we have 3 = S' 
and (71) and (85) can be recast into 

EAs2 + E ; s  + E ;  - S' 
s 2 +  F ; s + F ;  p 2  

&(a2) = - 

or, alternatively, 

E, ,+  E , M ' +  E 2 M t 2  
E;, = 

F ; , +  F I M ' +  F2M" ' 

P(E1M' + 2E,J E ;  = 
F ; , + F , M ' + F , M ' 2 '  

P2E0 

P(F1 M' + 2F;J 

P2F2 

E; = 4, + FIM' + F2Mf2'  

F ;  = 4, + F, M' + F2MI2' 

F; = 
&,M" + F,M' + F2' 

(93) 

(94) 

(95) 

(97) 

with M' = p 2 / p l  (earth model L )  o r  M' = p r  (earth model 
C), /3 = P I  (earth model L )  or P = p2 (earth model C )  and 
E,,,  E l ,  E,,  F;, ,  F , ,  F2 from Appendix E. 

The radial surface displacement in the time domain for 
impulsive loading follows upon inverse Laplace transforma- 
tion of (87): 

2 S'  
T"'S(t) + C T~)sme-.T,~~f  (98) 

m = l  
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A P P E N D I X  E: INTEGRATION CONSTANTS n(n + 2)(2n2 + 1) 
f 2 = -  n Z - l  aZn 

E l  Earth model L 

In (71), we have used 
n(n  + 2)(2n + 1) 

2n2 + 4n + 3 
+ [ (n’ - 1)(2n + 3) 

(99) 
E l  = -2(2n2 + 4n + 3)a2” 

(2n2 + 4n + 3)(2n + 1 )  
2 

3(2n + 1) a-3 l a -  2 
- 

E ,  = (2n2 + 4n + 3)a2” with a=a, /a , ,  M = f i l / f i 2  and E ‘  = 1 (with IGF) or 
E ’  = 2(n - 1)/(2n + 1) (without IGF). 

E2 Earth model C 

In (85), we have used 

(108) 

(109) 

(110) 

Eo = 0, 

E ,  = e l  - &,el ,  
+ a-l), 

E - ~ ~ ( ~ 4 n t l  - a2n+2 - &2n--2 
2 -  

Fl = E l  + cG3fI - 2(n - 1 ) ~ ’  a -’” ’ a f l 7  
P2 

F2 = E2, (113) 

(114) 
3(p1 - p2) 

2(n - 1)E’P’ + (2n + l ) ( p ,  - p2)(Y3’ 
GI = 

P1-Pz -2n 
EG, - E’ - 1, (115) 

3 

P2 

n(n + 2)(2n - 1) - - 1  e l = n ( n + 2 )  - a [ n2-1 

(n’ - 1)(2n + 3) 
2n2+4n+3 

- 

2n2 + 1 e ; = n ( n  + 2 )  -- - (2n + 1)  [ n2-1 3n(n + 2)(2n - l )(2n + 3) 
2n2 + 4n + 3 

a - 
n(n + 2)(2n - 1) --2 

n2-  1 I T  

+ 
(2n’ + 4n + 3)(2n2 + 1) 

n 2 -  1 
A, = 2(n - 1)(n + 2)( - a’“ 

n(n  + 2)(2n2 + 1) --3 

+ n 2 -  1 l a  
(2n2 + 4n + 3)(2n2 + 1)  

2(n2 - 1) 
-2n-2 - [ 2n(n + 2) + ]a , (106) 

- 2n(n + 2)(2n + 3)(2n - 1)a-I 
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f '  - - n(n + 2)(2n2 + ' 1  * 4 n + l  - n(n  + 2)(zn + 1)&2n+2 
1 -  n ' -1  

+ (2n + 1)[  (n' - 1)(2n + 3) + 
n 2 -  1 

(2n' + 4n + 3)(2n2 + 1) -2n-2 

n2-  1 
a - 

n"(n + 2)2(2n - 1)  (y2n+l 
f 1 = -  n 2 - 1  ( -K')  

+ (2- 1)(2n + 3 ) ( d n - '  - l ) ,  

(121) + (2n2 + 4n + 3)a-',  

with a = a l / a Z  and E ' =  1 (with IGF) or ~ ' = ( 2 n +  1)/ 
[2(n - l ) ]  (without IGF). (120) 


