Der Hypersilylrest, -Si(Si(CH₃)₃)₃, als Ligand in metallorganischen Verbindungen von Elementen der 13. und 14. Gruppe

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

> vorgelegt von Roman E. Wochele aus Sindelfingen

Hauptberichter:

Mitberichter:

Tag der mündlichen Prüfung:

Prof. Dr. J. Weidlein Priv. Doz. Dr. K.W. Klinkhammer 11. Oktober 2001

Institut für Anorganische Chemie der Universität Stuttgart 2001

Ich danke

Herrn Professor Dr. J. Weidlein für die Überlassung des Themas, die stete und außergewöhnliche Hilfs- und Diskussionsbereitschaft, die Aufnahme der Raman-Spektren sowie das gewährte Vertrauen,

Herrn Priv. Doz. Dr. K. W. Klinkhammer für die Übernahme des Mitberichts, die stete Diskussionsbereitschaft und die Auswertung der Röntgenstrukturanalysen,

den Herren Dr. W. Schwarz, Dr. H.-D. Hausen[†], Dr. F. Lissner für die Durchführung und Auswertung der Röntgenstrukturanalysen,

Frau K. Török und Herrn P. Bergk für die Registrierung der NMR-Spektren,

Herrn H. Lenz für die Aufnahme von FIR-Spektren,

Frau B. Förtsch für die Durchführung der Elementaranalysen,

den Kollegen des Arbeitskreises Weidlein für die gute Zusammenarbeit und den inspirierenden Erfahrungsaustausch,

den Herren der Glasbläserei und der mechanischen Werkstatt,

allen Mitarbeitern des Instituts für Anorganische Chemie, die zum Gelingen der Arbeit beigetragen haben,

meinen Eltern für die langjährige Unterstützung meiner Studien.

Für Susanne

INHALTSVERZEICHNIS

1	Einleitung		
1.1	Verbindungen der Alkalimetalle	1	
1.2	Verbindungen des Aluminiums	2	
1.3	Verbindungen des Galliums	4	
1.4	Verbindungen des Indiums	6	
1.5	Verbindungen des Zinns	7	
1.6	Weitere Verbindungen mit Hsi-Liganden	9	
1.7	Ziele	12	
2	Theoretischer Teil	13	
2.1	Solvatfreies Lithiumhypersilanid	13	
2.2	Reaktionen mit Lithiumhypersilanid	18	
2.2.1	Aluminiumhypersilylverbindungen	20	
2.2.2	Galliumhypersilylverbindungen	20	
2.2.3	Indiumhypersilylverbindungen	23	
2.2.4	Zinnhypersilylverbindungen	25	
2.2.5	Alkalimetallgallate	26	
2.2.6	Metallfreie Hypersilylverbindungen	27	
3	Kernresonanzspektroskopie	30	
3.1	Die ²⁹ Si-NMR-Spektren	32	
3.1.1	Zentrales α^{29} Si-Atom des Hypersilylrestes	32	
3.1.2	Die peripheren ²⁹ Si-Atome des Hypersilylrestes		
3.2	¹³ C-NMR-Spektren	40	
3.2.1	Methylkohlenstoffatome des Hsi-Restes	40	
3.2.2	Kohlenstoffatome der Metall-Alkylreste	43	

3.3	Protonenresonanzspektren	47		
3.3.1	Protonen des Hsi-Restes	47		
3.3.2	Protonen der Metall-Alkylreste			
3.4	Weitere NMR-Messungen	52		
4	Schwingungsspektroskopie	54		
4.1	Allgemeines	54		
4.2	Schwingungen des X-SiSi ₃ -Gerüstes	56		
4.3	Die Dialkylhypersilylaluminiumverbindungen 1 und 2	60		
4.4	Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi) ₂ ; 3	65		
4.5	Tris(hypersilyl)gallium, Ga(Hsi) ₃ ; 10	67		
4.6	Die Spektren der Trimethylgallate M ^I [Me ₃ Ga-Hsi] 4, 5 und 6	69		
4.7	Tetrakis(hypersilyl)diindium(II), (Hsi) ₂ In-In(Hsi) ₂ ; 12	73		
4.8	Bis(hypersilyl)dimethylzinn(IV), Me ₂ Sn(Hsi) ₂ ; 8	73		
5	Röntgenstrukturanalysen	75		
5.1	Hypersilylaluminiumverbindungen	75		
5.1.1	Hypersilyl-dimethylaluminium, (Me ₂ Al-Hsi) ₂ ; 1	75		
5.1.2	Hypersilyl-diethylaluminium, (Et ₂ Al-Hsi) ₂ ; 2	78		

5.2	Hypersilylgalliumverbindungen	82
5.2.1	Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi) ₂ ; 3	82
5.2.2	Tris(hypersilyl)gallium, Ga(Hsi) ₃ ; 10	85
5.2.3	Natrium-hypersilyl-trimethylgallat, Na[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 5	88
5.2.4	Kalium-hypersilyl-trimethylgallat, K[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 6	91
5.3	Hypersilylindiumverbindungen	96
5.3.1	Tetrakis(hypersilyl)diindium(II), (Hsi) ₂ In-In(Hsi) ₂ ; 12	96
5.4	Hypersilylzinnverbindungen	99
5.4.1	Bis(hypersilyl)dimethylzinn(IV), Me ₂ Sn(Hsi) ₂ ; 8	99

6	Experimenteller Teil	102		
6.1	Allgemeines			
6.2	Charakterisierungen	102		
6.2.1	Elementaranalysen	102		
6.2.2	IR-Spektroskopie	103		
6.2.3	Ramanspektroskopie	103		
6.2.4	NMR-Spektroskopie	103		
6.2.5	Röntgenstrukturanalyse	104		
6.3	Ausgangsverbindungen	105		
6.4	Darstellungen und Umsetzungen	105		
6.4.1	Metallfreie Hypersilylderivate	105		
6.4.1.1	Tris(trimethylsilyl)silan, H-Hsi und			
	Tetrakis(trimethylsilyl)silan, Si(SiMe ₃) ₄	105		
6.4.1.2	Chlor-tris(trimethylsilyl)silan, Cl-Hsi	107		
6.4.1.3	Hexakis(trimethylsilyl)trisiliran, Si ₃ (SiMe ₃) ₆ ; 9	108		
6.4.1.4	Hexakis(trimethylsilyl)disilan, (Hsi) ₂ ; 13	109		
6.4.2	Alkalimetall-Hypersilanide	110		
6.4.2.1	Lithium-Hypersilanid, Li-Hsi	110		
6.4.2.2	Natrium-Hypersilanid, Na-Hsi	111		
6.4.3	Hypersilyl-Verbindungen der Erdmetalle und des Zinns	112		
6.4.3.1	Hypersilyl-dimethylaluminium, (Me ₂ Al-Hsi) ₂ ; 1	112		
6.4.3.2	Hypersilyl-diethylaluminium, (Et ₂ Al-Hsi) ₂ ; 2	113		
6.4.3.3	Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi) ₂ ; 3	114		
6.4.3.4	Tris(hypersilyl)gallium, Ga(Hsi) ₃ ; 10	115		
6.4.3.5	Hypersilylgallium(I), (Ga-Hsi) ₄ ; 11	116		
6.4.3.6	Tetrakis(hypersilyl)diindium(II), (Hsi) ₂ In-In(Hsi) ₂ , In ₂ Hsi ₄ ; 12	117		
6.4.3.7	Bis(hypersilyl)zinn(II), Sn(Hsi) ₂ ; 7	118		
6.4.3.8	Bis(hypersilyl)dimethylzinn(IV), Me ₂ Sn(Hsi) ₂ ; 8	119		
6.4.4	Hypersilylgallate	120		
6.4.4.1	Lithium-hypersilyl-trimethylgallat, Li[Me ₃ Ga-Hsi]; 4	120		
6.4.4.2	Natrium-hypersilyl-trimethylgallat, Na[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 5	121		
6.4.4.3	Kalium-hypersilyl-trimethylgallat, K[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 6			

7	Zusammenfassung	123
8	Abstract	128
9	Anhang	133
9.1	Tabellen zur Schwingungsspektroskopie	133
9.1.1	Schwingungstabelle (Me ₂ Al-Hsi) ₂	133
9.1.2	Schwingungstabelle (Et ₂ Al-Hsi) ₂	134
9.1.3	Schwingungstabelle (Me(Cl)Ga-Hsi) ₂	135
9.1.4	Schwingungstabelle Li[Me ₃ Ga-Hsi]	136
9.1.5	Schwingungstabelle Na[Me ₃ Ga-Hsi]·C ₇ H ₈	137
9.1.6	Schwingungstabelle K[Me ₃ Ga-Hsi]·C ₇ H ₈	138
9.1.7	Schwingungstabelle Me ₂ Sn(Hsi) ₂	139
9.1.8	Schwingungstabelle Ga(Hsi) ₃	140
9.1.9	Schwingungstabelle (Hsi) ₂ In-In(Hsi) ₂	140
9.2	Daten zur Röntgenstrukturanalyse	141
9.2.1	Hypersilyl-dimethylaluminium, (Me ₂ Al-Hsi) ₂ ; 1	141
9.2.2	Hypersilyl-diethylaluminium, (Et ₂ Al-Hsi) ₂ ; 2	143
9.2.3	Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi) ₂ ; 3	149
9.2.4	Tris(hypersilyl)gallium, Ga(Hsi) ₃ ; 10	151
9.2.5	Natrium-hypersilyl-trimethylgallat, Na[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 5	155
9.2.6	Kalium-hypersilyl-trimethylgallat, K[Me ₃ Ga-Hsi]·C ₇ H ₈ ; 6	159
9.2.7	Tetrakis(hypersilyl)diindium(II), (Hsi) ₂ In-In(Hsi) ₂ , In ₂ Hsi ₄ ; 12	165
9.2.8	Bis(hypersilyl)dimethylzinn(IV), Me ₂ Sn(Hsi) ₂ ; 8	170

10Liste der numerierten Verbindungen173

174

IV

Publikationen, die Ergebnisse der vorliegenden Arbeit enthalten:

R. Wochele, W. Schwarz, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem.2000, 626, 833

R. Wochele, W. Schwarz, K. W. Klinkhammer, K. Locke, J. Weidlein, Z. Anorg. Allg. Chem. 2000, 626, 1963

R. Wochele, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 2001, 627, 1420

G. Becker, H.-M. Hartmann. K. W. Klinkhammer, R. Wochele, J. Weidlein, Z. Anorg. Allg. Chem., in Vorbereitung

1 EINLEITUNG

Vor mehr als 35 Jahren stellten *Gilman et al.* [1-6] die ersten Verbindungen mit dem sterisch anspruchsvollen Tris(trimethylsilyl)silyl-Rest, -Si(SiMe₃)₃, im folgenden Hypersilyl- oder Hsi-Rest genannt, dar. Aufgrund seiner besonderen sterischen und elektronischen Eigenschaften vermag dieser Ligand z.B. einige sehr reaktive Zwischenstufen und/oder Metallzentren in ungewöhnlichen Oxidationsstufen zu stabilisieren und erlangte daher in der metallorganischen Chemie größere Bedeutung.

1.1 VERBINDUNGEN DER ALKALIMETALLE

Als Edukt für viele Synthesen hat sich das von *Gilman und Smith* [2] 1965 erstmals in situ dargestellte und später als stabiles Tri-THF-Addukt [7] isolierte Li-Hsi·3THF etabliert. Der Grund dafür ist die einfache Synthese [8] aus Tetrakis(trimethylsilyl)-silan und Methyllithium in

THF, sowie die gute
Löslichkeit des Adduktes in
organischen Lösungsmitteln.
1985 beschrieb *Hartmann* [9,
10] die analoge Darstellung
des Li-Hsi · 1,5 DME in 1,2Dimethoxyethan. Erst 1997
gelang *Klinkhammer* auch die

Abbildung 1-1: Strukturbild Li-Hsi

Isolierung des wesentlich reaktiveren, lösungsmittelfreien Lithiumhypersilanids [11,

12], sowie der Homologen mit den schwereren Alkalimetallen [13] und deren Nutzung als Edukt in weiteren Synthesen [14]. Die Darstellung erfolgte durch Transmetallierung von Di(hypersilyl)zink oder -quecksilber mit den entsprechenden Alkalimetallen in höhersiedenden Alkanen.

Eine ausführliche Übersicht über Hypersilylverbindungen der 1. und 2. Gruppe lieferten *Lickiss und Smith* 1995 [15].

Organosilylverbindungen, insbesondere Hypersilyl-Derivate von Elementen der 13. und 14. Gruppe wurden in den letzten Jahren von mehreren Forschungsgruppen in großer Zahl synthetisiert und meistens erschöpfend charakterisiert. In der Regel diente THF-komplexiertes Li-Hsi als "Lieferant" des Hypersilylrestes.

1.2 VERBINDUNGEN DES ALUMINIUMS

Als erste Organosilylaluminiumverbindung stellten 1963 *Wiberg et al.* [16] Tris-(triphenylsilyl)aluminium dar, dabei entstand als Nebenprodukt auch Kalium[{phenyltriphenylsilyl-(diphenyl-triphenylsilyl-silyl)-chlor-}alanat], die erste Verbindung des Aluminiums, die sowohl eine Al-Si- als auch eine Al-C-Bindung aufweist. *Rösch* [17] gelang 1977 die Synthese des Tris(trimethylsilyl)aluminium-Diethylether-Addukts. In der Zeit danach wurden einige einfachere Derivate dargestellt [18-20] und einige Strukturen konnten entschlüsselt werden. Diese Trimethylsilylderivate zeigten alle kein außergewöhnliches Verhalten mit Ausnahme der Struktur des lösungsmittelfreien Tris(trimethylsilyl)aluminiums [21], die nicht wie erwartet aus trigonal planaren Einheiten besteht, sondern einen polymeren Aufbau zeigt, wodurch die Unlöslichkeit in *n*-Pentan erklärt werden kann. Tris(trimethylsilyl)silyl-Derivate des Aluminiums wurden erstmals von *Oliver* [22] 1989 beschrieben. Die Darstellung von Al(Hsi)R_xCl_y ·THF (R=Me, Et, Ph, *n*-Bu; x=0-2; y=0-2) erfolgte aus den entsprechenden Organoaluminiumchloriden bzw. aus Aluminiumtrichlorid und Li-Hsi·3THF in *n*-Pentan. Ebenso konnte Lithium-hypersilyl-(trimethyl)alanat und Lithium-hypersilyl(triethyl)alanat als Di- bzw. Tetra-THF-Addukt durch analoge Umsetzung von Trimethyl- bzw. Triethylaluminium erhalten werden. *Laichinger* [23] beschreibt diese Komplexe hingegen im Rahmen seiner Doktorarbeit stets als Tri-THF-Addukte, außerdem untersuchte er noch die 1:1 THF-Ausgangsverbindungen von Diethyl- und Dimethyl(hypersilyl)aluminium. Analoge Verbindungen mit dem eng verwandten Trisyl-Rest (-C(SiMe₃)₃, -Tsi, -TRIS) wurden 1997 von *Roesky et al.* [24] und ein Jahr später mit dem Supersilylrest (-Si'Bu₃, -Ssi) von *Wiberg et al.* [25] dargestellt.

1993 veröffentlichte *Stalke* [26, 27] die Struktur des Tetra-THF-Addukts von Lithiumtrichloro(hypersilyl)alanat, das aus einer Umsetzung von Li-Hsi·3THF und AlCl₃ in THF bei -78 °C hervorging. Die Verbindung zersetzt sich oberhalb von -15 °C unter Abspaltung von THF. Nachdem *Uhl* [28] 1988 mit (Dsi)₂Al-Al(Dsi)₂ die erste molekulare Aluminium(II)-Spezies mit

dem Disyl-Rest (Disyl= -CH(SiMe₃)₂, -Dsi) vorgestellt hatte, die er durch Reduktion von Disylmethylaluminiumchlorid mit Kalium erhielt und in den folgenden Jahren ausführlich untersuchte [29, 30], gab es eine Reihe weiterer Veröffentlichungen analoger Verbindungen mit den genannten, ebenfalls

sperrigen Silvlresten. Erwähnenswert sind das von Wiberg [31] 1998 beschriebene

Tetra(supersilyl)dialuminium (Si^tBu₃)₂Al-Al(Si^tBu₃)₂ und das tetramere dunkelviolette $[Al(SitBu_3)]_4$ von 1996 [32, 33] mit seinem tetrahedralen Aluminiumgerüst, sowie die ersten gemischt-substituierten Hypersilyl-Aluminium(II)-Verbindungen (Hsi)XAl-AlX(Hsi) (X= Cl, Br) als THF-Addukte von *Schnöckel et al.* [34] aus dem Jahr 2000.

1.3 VERBINDUNGEN DES GALLIUMS

Während einfache Galliumorganyle vielfältig untersucht worden sind [35], ist Verbindungen des Galliums mit den schwereren Elementen der 14.Gruppe lange Zeit kaum Aufmerksamkeit gewidmet worden. Erst 1980 wurden von Rösch und Neumann [36] als erste Organosilylgalliumverbindungen die Diethylether-Addukte von Lithiumtetrakis(trimethylsilyl)gallat und Tris(trimethylsilyl)gallium synthetisiert. Die erste Hypersilylgalliumverbindung wurde von Cowley et al. [37] 1986 beschrieben. Das Di-THF-Addukt des Lithium-dihypersilyldichlorogallats ist durch Umsetzung von 3 Äquivalenten Li-Hsi·3THF mit 1 Äquivalent GaCl₃ in Diethylether erhalten worden und war in den Jahren danach ein beliebtes Forschungsobjekt [38, 39]. 1993 stellte Linti [40, 38] Bis(2,2,6,6-tetramethylpiperidino)hypersilylgallium dar, in den folgenden Jahren veröffentlichte derselbe Arbeitskreis eine Vielzahl weiterer Hypersilylgalliumverbindungen. Ähnlich dem Bor zeigt auch Gallium eine starke Tendenz zur Clusterbildung [38, 41-49], sogar gemischte Cluster mit Eisen [41, 50] wurden synthetisiert und strukturell aufgeklärt. Robinson [51] bewies 1999, dass das von ihm dargestellte, dreigliedrige Ringsystem aus Galliumatomen im Na₂[(Mes₂C₆H₃)Ga]₃ aromatischen Charakter hat.

Besonders erwähnenswerte Galliumhypersilyle sind die folgenden, nach steigenden Oxidationsstufen geordnete Verbindungen sowie analoge Produkte mit verwandten Resten:

Die und bislang erste einzige Gallium(I)hypersilyl-Verbindung ist das erstmals 1995 von Linti [38, 44, 45, 51, 52] dargestellte tetramere (Ga-Hsi)₄, das durch Umsetzung von vier Äquivalenten Li-Hsi·3THF mit einem Äqivalent Ga(GaCl₄)·2Dioxan in geringen Ausbeuten entsteht und sich durch seine intensiv dunkelviolette Farbe auszeichnet. Das analoge, dunkelrote (Ga-Tsi)₄ von Uhl [29, 53] entsteht bei der Umsetzung von Ga(GaBr₄) mit Trisyllithium. Wiberg [54] beschrieb 1999 $[Ga(Si'Bu_3)]_4,$ das ebenfalls in dunkelvioletten Kristallen anfällt und im Gegensatz zur Trisyl-Verbindung luftunempfindlich ist. Das gemischtvalente (${}^{t}Bu_{3}Si$)Ga(I)-Ga(II)(Si ${}^{t}Bu_{3}$)₂

Abbildung 1-3: Strukturbild (GaHsi)₄

Abbildung 1-4: Strukturbild Hsi₂Ga-GaHsi₂

von *Wiberg et al.* [55] beinhaltet Gallium der Oxidationsstufen I und II. Beim Tetra-(hypersilyl)digallium, das als Nebenprodukt bei der Darstellung von (GaHsi)₄ entsteht, fand *Linti* [38, 44, 45] 1996 die ungewöhnliche Oxidationsstufe 2 für die zentralen Galliumatome. Die analoge Disyl-Verbindung gilt als Stammverbindung dieser Digalliumderivate und wurde von Uhl [29, 30, 56] bereits 1989 charakterisiert. Im Rahmen seiner Doktorarbeit erforschte Laichinger [23] auch die THF-Addukte halogenfreier Gallium(III)-Verbindungen: Hypersilyldimethylgallium und Hypersilyldiethylgallium sowie die Lithium-hypersilylgallate des Trimethyl- und Triethylgalliums, deren Strukturen er leider nicht aufklären konnte. 1997 beschrieb Linti [46] Di(hypersilyl)galliumchlorid, das $(Hsi)Ga\{\mu-Si(SiMe_3)_2\}_2Ga(Hsi)$ und das das $(Hsi)Ga{\mu-Si(SiMe_3)_2}{\mu-Ga(SiMe_3)(Hsi)}Ga(Hsi)-Anion mit einem Ga_2Si_2- bzw.$ einem Ga₃Si-Ringsystem als zentralem Baustein, die er als "Silizium-Heterocyclen" bezeichnete. Ein Jahr später berichteten Rees Jr. et al. [57] über mehrere Derivate mit aromatischen und heteroaromatischen Resten am Gallium. Gallium(III)-Verbindungen mit dem Disyl-Rest wurden beispielsweise 1992 von Uhl et al. [58] beschrieben, mit dem Trisyl-Rest 1997 von Roesky et al. [24], sowie von Schaller [59], der im Rahmen seiner Doktorarbeit das Sesquichlorid Tsi-Ga(Cl_{1,33})Me_{0,67} erforschte, und die Reihe der Mono- und Disupersilylderivate (${}^{t}Bu_{3}Si_{3-x}Hal_{x}Ga$ mit Hal= Cl, Br und x= 1, 2 von Wiberg et al. [25] 1998. Erwähnenswert sind auch die für die damalige Zeit exotisch anmutenden, fünffach koordinierten Triarylgallium-Komplexe von Green [60] 1993, die eine verzerrt trigonal-bipyramidale Struktur aufweisen.

1.4 VERBINDUNGEN DES INDIUMS

1969 gelang *Bürger* [61] die Synthese von In(SiMe₃)₃, dem ersten Organosilylderivat des Indiums. Die erste Hypersilylindiumverbindung, das Addukt [(Hsi)₂InCl₂]Li·2THF wurde von *Cowley et al.* [37] 1986 veröffentlicht. Laichinger [23] erweiterte die Reihe um Hsi-InMe₂·THF und Hsi-InEt₂·THF, sowie um die Lithiumhypersilylindate [Hsi-InR₃][Li·3THF] mit R= Me, Et. Mit verwandten Resten wurden einige interessante Verbindungen charakterisiert: Das Tetra(disyl)diindium von *Uhl* [29] und das Tetra(supersilyl)diindium von *Wiberg* [32, 33] besitzen entsprechend den homologen Gallium-Verbindungen ein zentrales In^{II} - In^{II} -Skelett. 1998 veröffentlichten *Wiberg et al.* [25] die Reihe der Mono- und Di-(supersilyl)indiumhalogenide mit den Halogenliganden Fluor, Chlor und Brom. Eine eindrucksvolle Disylverbindung ist das von

Abbildung 1-5: Strukturbild Hsi₂InCl₂Li·2THF

Häußlein [62] aufgeklärte "Sesquisulfat", das einen Käfig Sulfat-verbrückter Disylindiumeinheiten mit vier- und fünffach koordinierten Indiumatomen ausbildet. Wie schon beim Gallium beobachtet, neigt auch Indium zur Clusterbildung. Beispiele mit 8- und 12-atomigen In-Aggregaten beschreiben *Wiberg* [63] mit $In_{12}(Si^{t}Bu_{3})_{8}$ und *Power* [64] mit $In_{8}(C_{6}H_{3}-2,6-Mes_{2})_{4}$ (Mes= Mesityl, -C₆H₂-2,4,6-Me₃).

Weitere erwähnenswerte Trisylindiumverbindungen, die in unserem Arbeitskreis behandelt wurden, sind das Trisyldimethylindium und Trisylmethylindiumchlorid von *Schaller* [59], das [Tsi-InBr₃][Li·nTHF] von *Walz* [65], sowie eine größere Anzahl weiterer Mono- und Di(trisyl)verbindungen von *Viefhaus* [66] aus jüngster Zeit.

1.5 VERBINDUNGEN DES ZINNS

Aus der Vielfalt verschiedenartigster Organosilyl-Verbindungen des Zinns und Bleis werden im folgenden nur die wichtigsten Hypersilylverbindungen und deren Verwandte herausgegriffen.

7

Im Jahre 1990 veröffentlichten Mallela und Geanangel [67] eine Reihe von Mono- und Dihypersilylderivaten des zwei- und vierwertigen Zinns mit Methyl- und n-Butyl-Gruppen als weiteren Zinn-ständigen Alkyl-Resten. Von der einzigen halogenhaltigen Verbindung, dem Di(hypersilyl)zinndichlorid konnte die Struktur röntgenstrukturanalytisch aufgeklärt werden. Drei Jahre später beschrieben die Autoren [68] die Darstellung einiger Hypersilylblei(IV)verbindungen. Im Rahmen seiner Doktorarbeit erforschte Gekeler [69] 1992 das homologe [(SiMe₃)₃Ge)]₂SnCl₂, welches in farblosen, lichtluftunempfindlichen Kristallen anfällt. In Arbeitskreis und unserem synthetisierte und charakterisierte Schwarz [70, 71] verschiedene Trisylzinn(IV)halogenide. Er beobachtete dabei die bisher nur von Schaller [59] dokumentierte Eigenschaft des solvenzfreien Trisyl-Lithiums, dass bei der Umsetzung in Toluol benzylierte Produkte erhalten werden, die eine erstaunliche Hydrolyse- und Oxidationsstabilität aufweisen. Mit dem Sn(Hsi)₂Cl-Li(THF)₃ wurde von *Cowley et al.* [72] das erste niedervalente Zinnderivat veröffentlicht. Die einzige bisher bekannte Tri(hypersilyl)verbindung des Zinns, das (Hsi)₃Sn-Na·Toluol wurde von Klinkhammer

[11] 1997 isoliert. Die Verbindung
liegt sowohl in Lösung, als auch
im festen Zustand monomer vor.
Im Gegensatz dazu liegt das
dunkelbraune Di(hypersilyl)zinn
[73] im Feststoff nicht nur dimer
vor, sondern bildet sogar eine
Sn=Sn-Doppelbindung aus. Das
Molekül weist eine sehr stark
verdrillte trans-bent-Konformation

Abbildung 1-6: Strukturbild von Sn(Hsi)₂

auf. Das entsprechende Di(hypersilyl)blei [73, 74] tritt im Gegensatz dazu nur monomer auf. Di(trisyl)zinn, welches intensiv blauviolett ist, wurde von *Schwarz* [71] dargestellt, konnte aber aufgrund seiner extremen Empfindlichkeit nicht röntgenstrukturanalytisch aufgeklärt werden.

1.6 WEITERE VERBINDUNGEN MIT HSI-LIGANDEN

In diesem Abschnitt werden hauptsächlich interessante, metallfreie Hypersilylverbindungen, deren Verwandte und/oder Folgeprodukte erwähnt.

Die erste literaturbekannte Hsi-Verbindung ist Tetrakis(trimetylsilyl)silan, das häufig auch unter der Bezeichnung Hsi-SiMe₃ zu finden ist. Nach der Erstdarstellung durch *Gilman und Smith* [1] aus SiCl₄, ClSiMe₃ und Lithium in THF, erlangte die farblose, gegen Luft und Feuchtigkeit unempfindliche Verbindung vielfältiges Interesse [4, 75, 76, 77]. Das 1966 erstmals von *Gilman und Harrell* [3] isolierte Hexakis-(trimethylsilyl)disilan, das im folgenden (Hsi)₂ bezeichnet wird, ist ebenfalls gegen Luft und Feuchtigkeit recht unempfindlich und tritt (wie Si(SiMe₃)₄) häufig als Nebenprodukt bei Hsi-Metallhalogenid-Umsetzungen auf. Bis in die jüngste Zeit gibt es immer wieder neue Veröffentli-

chungen [5, 7, 27, 78-82], die sich mit der Darstellung und den Eigenschaften von (Hsi)₂ befassen. 1965 berichteten wiederum *Gilman et al.* [2] über die Darstellung von Tris-(trimethylsilyl)silan (H-Hsi) durch Hydrolyse von Li-Hsi·3THF mit ver-

Abbildung 1-7: Strukturbild von (Hsi)₂

9

dünnter Säure. Diese erste Darstellungsmethode, von *Giese* [77] verfeinert, lässt erahnen, dass H-Hsi ein häufig auftretendes Nebenprodukt beim Arbeiten mit Li-Hsi ist. *Bürger und Kilian* [83] fanden zwei Jahre später einen einfacheren Weg zur Darstellung von H-Hsi. Sie setzten HSiCl₃ mit Me₃SiCl und Lithium in THF um und erhielten

Abbildung 1-8: Strukturbild Si₃(SiMe₃)₆

eine Ausbeute von 30 % H-Hsi und 50 % Si(SiMe₃)₄. Über zwanzig Jahre später erforschte *Chatgilialoglu* [84, 85] ausführlicher die reduzierenden Eigenschaften von H-Hsi als Agens in der organischen Chemie. Hypersilylchlorid wurde 1966 als erstes Hsi-halogenid von *Gilman und Harrell* [3] aus H-Hsi und PCl₅ synthetisiert. Weitere Hypersilylhalogenide wurden von diesen Autoren 1967 [5] durch Umsetzung von Li-Hsi·3THF mit Tetrachlormethan, 1,2-Dibromethan und elementarem Iod dargestellt. 1969 [78] und 1970 [86] wurde die vollständige Reihe der Hypersilylhalogenide (F-I) von *Bürger et al.* dargestellt und ausführlich schwingungsspektroskopisch charakterisiert. In den folgenden Jahren wurden noch einige weitere Darstellungsmethoden beschrieben [80] und die Verbindungen ausführlich charakterisiert [87]. Eine interessante Verbindung mit einem CSi₂-Gerüst ist das 1999 von *Oehme et al.* [88] publizierte Di(hypersilyl)methan, das nicht wie angestrebt bei der Umsetzung von Li-Hsi·3THF mit Methylenchlorid, sondern durch Behandlung von Di(hypersilyl)methanol [89,90] mit Phenyllithium entsteht.

Cyclische Organosilyl-verbindungen, die einen drei- oder viergliedrigen Gerüst-Ring aus Silizium [11, 91-95], Germanium [96-100] oder beiden Elementen [94, 99, 101]

10

besitzen, wurden bereits in meiner Diplomarbeit [102] behandelt. Aus der großen Zahl dieser Verbindungen soll hier nur das von *Klinkhammer* [14] im Rahmen seiner Habilitation erstmals synthetisierte Hexakis(trimethylsilyl)trisiliran erwähnt werden, das *Chen und Gaspar* [103] bereits 1982 als Zwischenstufe bei der Bildung von Octakis(trimethylsilyl)cyclotetrasilan postulierten. Si₃(SiMe₃)₆ ist außerordentlich unempfindlich gegenüber Luft und Feuchtigkeit und entsteht bei der Umsetzung von HSiCl₃ mit drei Äquivalenten Na-Hsi, erstaunlicherweise aber nicht mit Li-Hsi.

Von den noch nicht erwähnten, metallhaltigen Hypersilylderivaten sind folgende von gesteigertem Interesse: Hypersilylverbindungen von Metallen der 12. Gruppe, über die erstmals 1969 *Chambers et. al.* [104] berichteten. Mit Ausnahme von Hg(Hsi)₂, das schon häufiger als silylierendes Agens eingesetzt wurde [105] und als Edukt zur Darstellung von solvatfreiem Li-Hsi diente [11], wurden Zn(Hsi)₂ und Cd(Hsi)₂ erst 1986 von *Tilley et al.* [106] und Mitte der Neunziger Jahre von *Klinkhammer* [73, 107] eingehender untersucht.

Zu den oben erwähnten Organosilylverbindungen von zweiwertigen Metallen der 13. Gruppe existieren homologe Thallium-Derivate. Das 1994 von *Klinkhammer* [108] dargestellte dunkelrote (Hsi)₂Tl-Tl(Hsi)₂ entsteht bei der Umsetzung von Rb-Hsi mit TlN(SiMe₃)₂. *Wiberg et al.* [32] isolierten zwei Jahre später bei der Reaktion des einwertigen Thalliumbromids mit Na-Si^tBu₃ unerwartet das schwarzgrüne, zweiwertige Thalliumderivat (^tBu₃Si)₂Tl-Tl(Si^tBu₃)₂.

Abschließend sei noch die bisher einzige Hsi-Verbindung des Goldes, das Addukt MePh₂P-Au-Hsi von *Schubert* [109] mit formal einwertigem Gold erwähnt; eigene Versuche Hypersilylderivate des 3-wertigen Goldes zu erhalten, scheiterten.

1.7 ZIELE

Da die meisten der bisher bekannten Hypersilyl-Verbindungen mit THFkomplexiertem Li-Hsi als Edukt dargestellt wurden, liegen auch die Produkte in der Regel als THF-Komplexe vor. Um zu solvensfreien Reaktionsprodukten zu gelangen, bestand das erste Ziel der vorliegenden Arbeit darin, einen einfachen und schnellen Syntheseweg zur Darstellung von basefreiem Li-Hsi zu entwickeln.

Das solvatfreie Li-Hsi soll im folgenden mit anorganischen und metallorganischen Verbindungen von Elementen der 13. und 14. Gruppe umgesetzt werden. Die elektronischen und sterischen Eigenschaften des Hypersilylrestes machen diesen Rest für die Chemie der 13. Gruppe interessant, da neben eventuell nur locker assoziierten Spezies durchaus auch monomere Molekülverbindungen erwartet werden dürfen. Diese weisen ein vom Hsi-Liganden mehr oder weniger gut abgeschirmtes, lewisacides Metallzentrum auf, was sich auch in den NMR- und/oder den Schwingungsspektren zu erkennen geben muss und aussagekräftige Unterschiede zu den mit Hilfe von Li-Hsi-3THF synthetisierten Pendants aufzeigen sollte. Für ausgewählte, gut kristallisierende Hsi-Derivate ist eine röntgenstrukturanalytische Absicherung der an Hand der Spektren postulierten Strukturen vorgesehen.

2 THEORETISCHER TEIL

2.1 SOLVATFREIES LITHIUMHYPERSILANID

Der bisher bekannte Zugang zu solvatfreiem Lithiumhypersilanid ist der unter 1.1 schon erwähnte Weg von Klinkhammer [11]. Die Darstellung erfolgte durch eine Transmetallierung von $Zn(Hsi)_2$ mit Lithium in siedendem *n*-Heptan innerhalb von 24 Stunden nach dem allgemeinen Reaktionsschema:

Schema 2-1: Transmetallierungsreaktion zur Darstellung der Alkalimetallhypersilanide

Dieser Darstellungsweg ist zwar gut reproduzierbar, ist aber aufwendig und führt auf Grund der vielen Schritte vom leicht zugänglichen, kommerziell erhältlichen Edukt über empfindliche Zwischenstufen zum gewünschten Produkt in lediglich mittelmäßigen Ausbeuten. Folglich ein beschwerlicher Weg, wenn basefreies Li-Hsi als Edukt für weitere Synthesen dienen soll.

Schaller entwickelte 1997 [48] eine neue Methode zur Darstellung von basefreiem Li-Tsi, das davor nur auf einem analogen Weg zur o.a. Darstellung erhalten wurde [110, 111]. Er setzte Tsi-Cl mit elementarem Lithium in unterschiedlichen organischen Solvenzien unter verschiedenen Reaktionsbedingungen um. Die besten Ergebnisse erzielte er in Toluol als Lösungsmittel bei 85 °C über 3,5 Stunden. Es war zu vermuten, dass diese Methode, die sich mittlerweile in unserem Arbeitskreis sehr gut etabliert hat, auf den Hypersilylrest übertragbar ist. Allerdings sind uns auch Berichte von anderen Arbeitskreisen bekannt, die diese Synthese nicht zu reproduzieren vermochten. Nachdem die ersten Testumsetzungen von Cl-Hsi mit elementarem Lithium unter den o.a. Bedingungen sehr unterschiedliche Ergebnisse lieferten, konnte davon ausgegangen werden, dass die Ausbeute nicht nur von Lösungsmittel, Temperatur und Reaktionsdauer abhängig ist. Als ausschlaggebende Komponente kam das eingesetzte, technische Lithium-Pulver von Chemetall, bzw. dessen Beimengungen in Frage. Laut Elementaranalyse besteht dieses aus 99,4 % Li, 0,5 % Na und weiteren Metallen mit Gehalten von 0,001 % bis 0,03 %. Da bei der Direktsynthese oft mit großen Überschüssen an Lithiumpulver gearbeitet wird und dadurch das Verhältnis Na:Cl-Hsi 1:20 bis 1:10 beträgt, wurde eine katalytische Beteiligung von Natrium an der Reaktion vermutet. Mehrere Versuchsreihen zeigten dann deutlich, dass für die Reaktion anfänglich eine sehr hohe Natrium-Konzentration benötigt wird. Allerdings führt dies im Produkt zu Gehalten von bis zu 22 % Na-Hsi.

Die nächste Maßnahme war die Aufteilung der Reaktion in einen 1. Schritt, in dem die Umsetzung mit bis zu äquimolaren Mengen Na (bzgl. Cl-Hsi) erfolgte und ein 2. Schritt, in dem überschüssiges Natrium zum Großteil aus der Reaktionsmischung entfernt und die Umsetzung mit natriumarmem Lithium vollendet wurde. Durch eine anschließende in-situ Umsetzung (3. Schritt) mit hochreinem Lithium (99,9 %, Aldrich) kann der Na-Hsi Gehalt des Rohproduktes von ca. 8 % auf ca. 4 % gesenkt werden.

Die wichtigsten Umsetzungen sind in folgender Tabelle zusammengefasst, als Lösungsmittel wurde ausschließlich Toluol verwendet.

14

Nr.	Verhältnis	Verhältnis	RktDauer	Rkt-Temp.	Ausbeute	Gehalt Na-Hsi
	Li : Cl-Hsi	Na : Cl-Hsi	[h]	[°C]	ges. [%]	[Mol%]
1	18:1 - 24:1	0,04:1	3-6	85	ca. 40	
2	6:1	0,01:1	3,5	80	< 10	
3	6:1	0,01:1	5	90	< 10	
4	6:1	0,06:1	4	90	48	12
5	6:1	0,8:1	4	90	87	22

Tabelle 2-1: Umsetzungen von Cl-Hsi mit Li/Na in Toluol in einem Schritt

Tabelle 2-2: Umsetzungen von Cl-Hsi mit Li/Na in Toluol in zwei und drei Schritten(1: Cl-Hsi + Li/Na 2: Cl-Hsi + Li 3: Cl-Hsi + Li (99,9%))

Nr.	Verhältnis	Verhältnis	RktDauer	Rkt-Temp.	Ausbeute	Gehalt Na-Hsi
	Li : Cl-Hsi	Na : Cl-Hsi	1 / 2 / 3 [h]	1 / 2 / 3 [°C]	ges. [%]	[Mol%]
6	14:1	0,26:1	3 / 1,5	85 / 90	81	8
7	20:1	0,55:1	3 / 2 / 2	85 / 90 / 90	96	4

Das Optimum liegt nach unseren Versuchen bei einem halbäquimolaren Na-Gehalt für den ersten Schritt. Höhere Natriumkonzentrationen führen zu einem höheren Na-Hsi-Gehalt des Rohproduktes, die Verlängerung der Reaktionszeit des 1. Schritts und/oder die Erhöhung der Reaktionstemperatur aller Schritte bedingen zunehmende Braunfärbung der Reaktionslösung durch nicht näher untersuchte Nebenprodukte. Vermutlich handelt es sich um Reaktionsprodukte der Alkalimetalle mit dem Lösungsmittel (Toluol), die durch mehrere Umkristallisationen vom Endprodukt abgetrennt werden können. Während der gesamten Reaktionsdauer ist die Abscheidung von schwarzem, feinverteiltem Natrium am Boden des Reaktionskolbens zu beobachten. Nach den vorliegenden Fakten handelt es sich beim Reaktionsmechanismus um eine Direktsynthese, bei welcher die Beteiligung des Natriums auf zwei Arten beschrieben werden kann (siehe Schema 2-2): 1. als Direktsynthese mit anschließender Transmetallierung, also einem Legierungsverfahren, wobei keine doppelt-molare Menge an Natrium eingesetzt wird oder 2. als "Katalysator", obwohl die Natriummenge halb-äquimolar ist und teilweise während der Reaktion verbraucht wird.

Unabhängig von der Klassifizierung kann davon ausgegangen werden, dass es sich um zwei voneinander abhängige Gleichgewichtsreaktionen handelt, wobei die Bildung des Natriumhypersilanids kinetisch begünstigt (geringere Aktivierungsenergie) und Lithiumhypersilanid das thermodynamisch stabilere Produkt ist (höhere freie Bildungsenthalpie).

Schema 2-2: Postulierter Reaktionsmechanismus der Synthese von Li-Hsi

Der radikalische Mechanismus kann wie folgt postuliert werden: im ersten Schritt erfolgt eine Anlagerung des Cl-Hsi an die Natriumoberfläche oder ein freies Natriumatom. Cl· wird durch ein Na· substituiert, wobei Na-Hsi und ein Chlorradikal, welches mit einem weiteren Na· zusammen ein gelöstes NaCl Ionenpaar bildet. Freie Chlorradikale sind unwahrscheinlich, da diese aufgrund ihrer hohen Reaktivität auch zu nachweisbaren Folgereaktionen mit dem Hsi-Rest, vor allem aber mit dem Reaktionsmedium Toluol führen würden. Ebenso unwahrscheinlich ist die Entstehung freier Hypersilvlradikale, da diese durch den stark elektronenschiebenden Effekt und ihre Sterik sehr gut stabilisiert sind, was zur Bildung von einfach nachzuweisendem Hsi-Hsi führen würde. In einem zweiten Schritt wird nach Anlagerung an die Lithiumoberfläche Natrium durch Lithium substituiert und ein freies Natriumatom entsteht. Dieses entstehende Natriumatom kann seinerseits sofort mit Cl-Hsi weiterreagieren, bis es (durch noch nicht erforschte Faktoren) passiviert wird und als schwarzer feinteiliger Niederschlag ausfällt. Die geringere Stabilität des Na-Hsi kann durch die geringere Elektronendichte am Natrium aufgrund der geringeren Elektronegativität im Vergleich zum Lithium erklärt werden, d.h. der kovalente Bindungsanteil im Li-Hsi ist größer. Ebenso ist der kovalente Bindungsanteil im LiCl höher als im NaCl, weshalb bei der Aufarbeitung fast ausschließlich LiCl gefunden wird. Diese beiden Faktoren bedingen erstens die Bildung des Li-Hsi und zweitens den verhältnismäßig geringen Verbrauch an Natrium. Nur ein Bruchteil der eingesetzten halbäquimolaren Menge an Natrium nimmt an der Reaktion Teil und sammelt sich am Ende der Reaktion als schwarzer metallischer Niederschlag. Trotz allem werden mit geringeren Natriumkonzentrationen schlechtere Ausbeuten erzielt, was den Schluss zulässt, dass die Größe der Natriumoberfläche eine entscheidende Rolle spielt. Somit kann abschließend gesagt werden, dass der Reaktionsmechanismus wesentlich näher an der Katalyse durch Natrium als am Legierungsverfahren liegt.

Die Unterschiede der thermodynamischen Stabilität von Li-Hsi und Na-Hsi scheinen geringer zu sein, als bei den homologen Trisylverbindungen, da bei der Synthese von *Schaller* [48] kein Na-Tsi nachzuweisen war. Untersuchungen von *Viefhaus* [66] zur Darstellung von Li-Tsi mit unterschiedlichen Natriumgehalten bestätigten, dass Natrium auch hier als Katalysator fungiert, da Umsetzungen mit natriumarmen Lithium zu sehr kleinen Ausbeuten führen. In dieses Reaktionsmodell passt auch die Tatsache, dass die Umsetzung von Cl-Hsi mit reinem Natrium nur zu geringen Ausbeuten an Na-Hsi führt. Das Gleichgewicht Cl-Hsi / Na-Hsi liegt nur zu ca. 20 % auf der Seite der Produkte.

Die solvatfreien Alkalimetallhypersilanide sind auf Grund ihrer hohen Reaktivität nicht nur für die Grundlagenforschung sondern auch für technische Anwendungen interessant. So wurde das von mir hergestellte Li-Hsi bei der BASF, Ludwigshafen, als Starter für eine "lebende Polymerisation" getestet.

2.2 REAKTIONEN MIT LITHIUMHYPERSILANID

Für die weiteren Umsetzungen wurde Li-Hsi, wie unter 6.4.2.1 beschrieben, aus *n*-Pentan kristallisiert und wieder in *n*-Pentan mit metallorganischen und anorganischen Verbindungen von Metallen der 13. und 14. Gruppe zur Reaktion gebracht. Die Starttemperatur der Reaktionen lag bei -20 bis -110 °C, um eine größtmögliche Selektivität zu erhalten. Dass diese Temperaturen beim Einsatz des hochreaktiven, basefreien Li-Hsi durchaus sinnvoll sind, zeigt sich an der oft sofort einsetzenden Reaktion, die durch Farbänderung der Reaktionslösung oder an der raschen Erwärmung des Kühlbades um bis zu 20 °C innerhalb einer Minute zu erkennen ist.

In den folgenden Tabellen sind die wichtigsten Umsetzungen aufgeführt:

Edukt:		Edukt:		
Verhältnis MR _x Cl _y M : Li-Hsi		Li-Hsi (Fp. Produkt)	Li-Hsi·3THF	
AlMe ₂ Cl	1:1	(Me ₂ Al-Hsi) ₂ (1) (138 °C)	(Me ₂ Al-Hsi)·THF [23]	
AlEt ₂ Cl	1:1	(Et ₂ Al-Hsi) ₂ (2) (47 °C)	(Et ₂ Al-Hsi)·THF [23]	
GaMe ₂ Cl	1:1	(Me(Cl)Ga-Hsi) ₂ (3) (169 °C)	(Me ₂ Ga-Hsi)·THF [23]	
		und Li[Me ₃ Ga-Hsi] (4) (103 °C)		
GaEt ₂ Cl	1:1	—	(Et ₂ Ga-Hsi)·THF [23]	
InMe ₂ Cl	1:1	_	(Me ₂ In-Hsi)·THF [23]	
InEt ₂ Cl	1:1	_	(Et ₂ In-Hsi)·THF [23]	
SnCl ₂	1:2	Sn(Hsi) ₂ (7); [73]	_	
SnMe ₂ Cl ₂	1:2 / 1:1	Me ₂ Sn(Hsi) ₂ (8) (197 °C, Z.)	Me ₂ Sn(Hsi) ₂ [67]	
HSiCl ₃	1:2	Si ₃ (SiMe ₃) ₆ (9) (216 °C)	HClSi(Hsi) ₂ [112]	
	1:3	Si ₃ (SiMe ₃) ₆ (9) (216 °C)		
GaCl ₃	1:3	Ga(Hsi) ₃ (10) (156 °C, Z.)	—	
		+ΔT: (Ga-Hsi) ₄ (11); [38]		
InCl ₃	1:3	(Hsi) ₂ In-In(Hsi) ₂ (12) (275 °C, Z	.) —	
		und (Hsi) ₂ (13) (350 °C)		

Tabelle 2-3: Übersicht der Umsetzungen von Li-Hsi mit M^{II-IV}R₁₋₂Cl₁₋₃ und die Produkte

Tabelle 2-4: Übersicht der Alkalimetall(hypersilyl)gallate aus den Umsetzungen von M^I-Hsi mit GaMe₃

Edukt	Vanhältnia	Edukt	
M ^I -Hsi	GaMe ₃ : M ¹ -Hsi	GaMe ₃ (Fp. Produkt)	
Li-Hsi	1:1	Li[Me ₃ Ga-Hsi] (4) (103 °C)	
Li-Hsi·3THF	1:1	Li[Me ₃ Ga-Hsi]·3THF [23]	
Na-Hsi	1:1	Na[Me ₃ Ga-Hsi]·C ₇ H ₈ (5) (210 °C)	
K-Hsi	1:1	K[Me ₃ Ga-Hsi]·C ₇ H ₈ (6) (185 °C)	
		K[Me ₃ Ga-Hsi]·C ₆ H ₆	

2.2.1 Aluminiumhypersilylverbindungen

Die Darstellung der Aluminiumderivate 1 und 2 gelingt in guten Ausbeuten und ohne größere Besonderheiten. Erwähnt sei aber, dass die Reaktionsmischung bei 1 durch abgeschiedenes Aluminium leicht grau wird, was auf eine partielle Reduktion hinweist. Hier kann von einem Radikalmechanismus unter Abspaltung von Hypersilylradikalen ausgegangen werden, zumal auch $(Hsi)_2$ mit einem Anteil von 12 % nachgewiesen werden kann. Bei 2 wird dies nicht beobachtet. Ebenso sind die Verbindungen in ihrer Beständigkeit sehr unterschiedlich. Während sich festes 1 selbst bei -20 °C bereits nach einem Monat zu zersetzen beginnt (erkennbar am Zerfließen der Kristalle) und in einer *n*-Pentan Lösung nach einer Woche nur noch die Zersetzungsprodukte $(Hsi)_2$ und H-Hsi nachzuweisen sind, ist 2 in Lösung sehr stabil und zeigt auch als Feststoff nach über einem Jahr in Argonatmosphäre keine erkennbaren Zersetzungserscheinungen.

Interessant ist, dass sich aus den von *Laichinger* [23] untersuchten THF-Addukten das THF nicht durch Sublimation im Vakuum entfernen lässt, weitaus erstaunlicher ist jedoch die Tatsache, dass eine Adduktbildung, ausgehend von den etherfreien Verbindungen, unmöglich scheint, denn eingehend untersuchte THF-Lösungen von 1 und 2 zeigen nur deren Zersetzung zu einer Vielzahl von Produkten, von denen lediglich H-Hsi sicher identifiziert werden konnte. Weiterhin erwähnenswert ist, dass 1 aus *cyclo*-Hexan als 1:1 Addukt kristallisiert.

2.2.2 Galliumhypersilylverbindungen

Bei der Umsetzung von GaMe₂Cl mit Li-Hsi im Verhältnis 1:1 wird, in Anlehnung an die Umsetzung mit Li-Hsi·3THF, die Bildung von Me₂Ga-Hsi erwartet. Dieses dürfte anfänglich auch in Schritt A entstehen (siehe Schema 2-3), bildet dann aber möglicher-

weise mit noch nicht umgesetztem GaMe₂Cl ein Addukt (Schritt B) mit einer Chlorund einer Methylbrücke aus. Diese postulierte, nicht nachzuweisende Zwischenstufe wäre nicht weiter erwähnenswert, wenn sie nicht nur in die Ausgangskomponenten sondern auch in zwei neue "Ausgangsverbindungen" dissoziieren könnte. Verläuft die Spaltung (Schritt C) der Brücken nämlich entsprechend der gezeichneten Trennlinie, entstehen GaMe₃ und Me(Cl)Ga-Hsi. Me(Cl)Ga-Hsi dimerisiert zu **3** und GaMe₃ reagiert mit weiterem Li-Hsi zu **4** weiter.

Schema 2-3: Postulierter Reaktionsmechanismus der Reaktion von Li-Hsi mit GaMe₂Cl

Beide Produkte sind aufgrund ihrer stark unterschiedlichen Löslichkeit in *n*-Pentan sehr gut zu trennen. **3** fällt bereits beim Abkühlen der Reaktionslösung durch die Verdampfungskälte beim destillativen Entfernen des *n*-Pentans im Vakuum in Form farbloser Kristalle aus, während **4** erst nach mehreren Tagen bei -20 °C aus der auf ein Minimum eingeengten Mutterlauge zu kristallisieren beginnt.

Ebenso unterschiedlich ist die Empfindlichkeit der Verbindungen gegenüber Luft und Feuchtigkeit. **3** übersteht kurze Kontakte (bis ca. 1 Sekunde) mit der Raumluft ohne Schaden und ist offen unter Nujol mehrere Stunden und unter Paratone-N mehrere Tage haltbar, zersetzt sich aber in Lösung bei Tageslicht nach wenigen Tagen unter Bildung eines schwarzen, metallischen Niederschlags. Dagegen ist **4** extrem pyrophor, d.h. es verbrennt in Lösung wie auch in fester Form schon nach sehr kurzem Luftkontakt mit greller, blauweißer Flamme. Offen unter Nujol oder Paratone-N überstehen die Kristalle nur wenige Minuten unbeschadet. Daher gelang es trotz mehrfacher Versuche nicht, für eine Strukturbestimmung von **4** geeignete Kristalle zu präparieren. Wird für die geschilderte Reaktion ein mit Na-Hsi kontaminiertes Li-Hsi verwendet, kann als dritte Komponente in geringen Mengen das Natriumgallat **5** isoliert werden. **5** verbleibt aufgrund seiner Schwerlöslichkeit mit den Alkalimetall-chloriden im Reaktionsrückstand und kann mit viel heißem Toluol (80-90 °C) extrahiert werden. (Hsi)₂ entsteht bei dieser Reaktion nur in sehr geringem Maße.

Die Umsetzung von Li-Hsi mit GaCl₃ im Verhältnis 1:3 führt erwartungsgemäß zur Trihypersilylverbindung **10**. Allerdings wird die simple Substitution durch eine Redoxreaktion in geringem Umfang begleitet. Auch hier entsteht in einem Radikalmechanismus (Hsi)₂ und durch formale Reduktion auch elementares Gallium, welches die Reaktionslösung und den Niederschlag leicht grau färbt. **10** ist ein gelber, kristalliner Feststoff, der durch Umkristallisation aus *n*-Pentan oder Toluol leicht zu reinigen und gegenüber Luft und Feuchtigkeit nur mäßig empfindlich ist. Beim Erhitzen zersetzt sich **10** oberhalb 155 °C ohne zu Schmelzen in ein hellgelbes Sublimat, welches zweifelsfrei als $(Hsi)_2$ identifiziert wurde und einen schwarzvioletten Rückstand. Dieser besteht zum Großteil aus (Ga-Hsi)₄ (**11**) mit einwertigem Ga und Resten von $(Hsi)_2$. Die Reinigung erfolgt durch Umkristallisation aus *n*-Pentan und führt zu dunkelvioletten Kristallen von **11**, die an Luft bemerkenswert stabil sind und sich erst nach wenigen Minuten (erkenntlich an der Entfärbung) vollständig zersetzen. Die Bildung von **11** kann wieder über einen Radikalmechanismus erklärt werden, der zur formalen Reduktion des Galliums von +3 nach +1 und Oxidation der zentralen Silizium-Atome der sich abspaltenden Hsi-Reste von -1 nach ±0 führt.

Schema 2-4: Postulierter Reaktionsmechanismus der Zersetzung von Ga(Hsi)₃

2.2.3 Indiumhypersilylverbindungen

Die Umsetzung von InCl₃ mit Li-Hsi im Verhältnis 1:3 ergibt bei Starttemperaturen oberhalb von -60 °C fast ausschließlich (Hsi)₂ (13) und metallisches Indium, welches den LiCl-Niederschlag schwarz färbt. Die Lösung ist leicht braun gefärbt. Bei einer Starttemperatur von -100 °C intensiviert sich die Farbe der Lösung. Die farbgebende Komponente ist rubinrotes (Hsi)₂In-In(Hsi)₂ (12) mit formal zweiwertigem Indium, das in einer Ausbeute von ca. 10 % entsteht. Als Nebenprodukte findet man große Mengen von **13** und metallisches Indium.

Schema 2-5: Postulierter Reaktionsmechanismus der Reaktion InCl₃ mit Li-Hsi (1:3)

Die Bildung von 12 kann mit obigem Schema erklärt werden. Schritt A und B beschreiben prinzipiell die simple Substitution, die im Falle der Umsetzung von GaCl₃ zu 10 führt, jedoch kann hier das erwartete In(Hsi)₃ nicht nachgewiesen werden. Ob es in Schritt B entsteht und sich erst in der Folge in die zwei Radikale spaltet oder diese nach Schritt A frei in Lösung vorliegen, bleibt ungeklärt. Das Hypersilylradikal dimerisiert in gewohnter Weise zu 13 (Schritt E). Das Dihypersilylindiumradikal zerfällt größtenteils zu metallischem Indium und 13 (Schritt D) oder dimerisiert zu 12 (Schritt C). Hier wird auch der Einfluss der Reaktionstemperatur deutlich. Die Lebensdauer der Radikale ist deutlich größer, wodurch die Chance der Dimerisierung und somit auch die Ausbeute an 12 steigt. (Hsi)₂In-In(Hsi)₂ fällt erst nach mehreren Wochen in Form rubinroter, harter Kristalle aus der auf -20 °C gekühlten Lösung aus. Die Trennung von dem ebenfalls in der Reaktionslösung vorliegenden (Hsi)₂ (13) erfolgt durch mehrfache fraktionierende Kristallisation, wobei die schnellwachsenden gelblichen Kristalle von 13 solange regelmäßig aus der Lösung entfernt werden, bis sich ein Kristallgemisch zu bilden beginnt. Aus diesem Kristallgemisch können die gut erkennbaren und wenig empfindlichen Kristalle von 12 mechanisch separiert und für weitere Untersuchungen nochmals umkristallisiert werden. Für die meisten spektroskopischen Untersuchungen war die Reinheit der separierten Kristalle ausreichend, da die Signale der Indiumverbindung zweifelsfrei neben denen von (Hsi)₂ zu identifizieren sind.

Bei dieser Reaktion tritt wieder eine formale Reduktion des Indiums von +3 nach +2 und auch nach ±0 auf, die unter mechanistischen Aspekten nur den Grad des Zerfalls der Erdmetallhypersilylverbindungen widerspiegelt. Dies wird bestätigt, wenn das bemerkenswert thermostabile **12** unter Argon oder im Vakuum erhitzt wird. Bei 275-276 °C zersetzt es sich in Anlehnung an Schritt D spontan und ohne zu Schmelzen in (Hsi)₂ und Indiummetall.

2.2.4 Zinnhypersilylverbindungen

Bei der Umsetzung von Me₂SnCl₂ mit zwei Äquivalenten Li-Hsi entsteht das bereits durch Umsetzung mit Li-Hsi·3THF erhaltene, basenfreie Me₂Sn(Hsi)₂ (8) [67]. Die Verbindung ist gegenüber Luft und Feuchtigkeit nur mäßig empfindlich und kristallisiert gut aus -20 °C kaltem *n*-Pentan, so dass die Struktur röntgenstrukturanalytisch aufgeklärt werden konnte. Unerwartet fällt jedoch das Ergebnis der 1:1-Umsetzung von Me₂SnCl₂ mit Li-Hsi aus: In der Reaktionslösung liegt nicht wie erwartet Me₂Sn(Hsi)Cl, sondern wiederum **8** neben unumgesetztem Me₂SnCl₂ vor. Die Erklärung dafür liegt in dem stark elektronenschiebenden Effekt des Hsi-Restes, d.h. nach der Erstsubstitution ist die Elektronendichte am Zinn so stark erhöht, dass eine Zweitsubstitution gegenüber einer weitern Erstsubstitution eminent begünstigt ist.

Die Umsetzung von SnCl₂ mit zwei Äquivalenten Li-Hsi führt erwartungsgemäß zu Sn(Hsi)₂ (7) [73], welches nur sehr schwer aus Mischungen von *n*-Pentan/Toluol bei -20 bis -60 °C kristallisiert. Der dunkelbraune, licht- und luftempfindliche Feststoff ist zwar IR- und NMR-spektroskopisch gut zu identifizieren, liefert aber aufgrund seiner hohen Lichtabsorption keine verwertbaren Signale im Raman-Spektrum. Unerklärt bleibt jedoch, weshalb für diese Verbindung kein messtechnisch zu erfassendes ¹¹⁹Sn-NMR-Signal gefunden werden konnte. Ein Erklärungsversuch ist die fortschreitende Zersetzung an Licht auf Grund der langen Wartezeit auf die NMR-Messung.

Der gleiche reduzierende Effekt auf das Metallzentrum, wie bei den Erdmetallen, wird bei der Reaktion von SnCl₄ mit 4 Äquivalenten Li-Hsi beobachtet: Nicht das tetrasubstituierte Produkt sondern Sn(Hsi)₂ und (Hsi)₂ lassen sich als Hauptbestandteile in der dunkelbraunen Reaktionslösung IR-spektroskopisch identifizieren.

2.2.5 Alkalimetallgallate

Die Reihe der Alkalimetallgallate von Lithium, Natrium und Kalium wird durch Umsetzung des entsprechenden Alkalimetallhypersilanids mit GaMe₃ in *n*-Pentan erhalten. Die Lithiumverbindung, Li[Me₃Ga-Hsi] (4), unterscheidet sich deutlich von den beiden anderen Gallaten, da sie als einzige sehr pyrophor und in *n*-Pentan oder Toluol sehr gut löslich ist. 4 kristallisiert solvensfrei aus hochkonzentrierten Lösungen von *n*-Pentan oder Mischungen von *n*-Pentan/Toluol nur sehr langsam und ist sowohl in Lösung wie auch als Feststoff nur sehr schwer zu handhaben. Das Natriumgallat, Na[Me₃Ga-Hsi]·C₇H₈ (**5**), ist dagegen nur in viel heißem Toluol (80-90 °C) löslich und kristallisiert bereits beim Abkühlen auf Raumtemperatur in Form langer, dünner und gelblicher Nadeln als Toluolsolvat aus. Die Lösung zersetzt sich nach mehreren Wochen im Licht, wobei ein schwarzer, metallischer Niederschlag entsteht. Die Kaliumverbindung ist in heißem Toluol oder Benzol nur geringfügig besser löslich und kristallisiert in Form von farblosen, quaderförmigen Kristallen (je nach Lösungsmittel) als Toluol- (K[Me₃Ga-Hsi]·C₇H₈, **6**) oder Benzolsolvat (K[Me₃Ga-Hsi]·C₆H₆). Alle Solvate sind im Vergleich zur Lithiumverbindung gegenüber Luft und Feuchtigkeit weitaus weniger empfindlich, bedürfen im Umgang aber dennoch größter Sorgfalt.

2.2.6 Metallfreie Hypersilylverbindungen

Als häufigstes Nebenprodukt tritt bei allen Synthesen (Hsi)₂ (**13**) auf. Es ist in allen verwendeten organischen Solvenzien extrem gut löslich und kristallisiert aber erstaunlicherweise nach bereits einem Tag bei -20 °C aus halbkonzentrierten Lösungen in großen quaderförmigen, gelblichen Kristallen. Die Verbindung ist erstaunlich unempfindlich gegenüber Luft und Feuchtigkeit und wurde von anderen Seiten schon erschöpfend charakterisiert [5, 7, 27, 78, 79, 80, 81, 82].

Das bereits in meiner Diplomarbeit ausführlich behandelte $Si_3(SiMe_3)_6$ (9) entsteht bei der Reaktion von HSiCl₃ mit 3 Äquivalenten Li-Hsi nach folgendem, von *Klinkhammer* [14] postulierten Mechanismus:

Schema 2-6: Reaktionsmechanismus der Bildung von Si₃(SiMe₃)₆ (9)

Als isolierbare Zwischenstufe entsteht in Schritt A $H(Cl)Si(Hsi)_2$, in Schritt B das nicht isolierbare Silen, welches in Schritt C durch Umlagerung das Trisiliran bildet. 9 ist ähnlich unempfindlich gegenüber Luft und Feuchtigkeit wie (Hsi)₂.

Bei einem Ansatz wurde nicht wie von Klinkhammer beschrieben HSiCl₃ mit 3, sondern auf Grund eines Rechenfehlers nur mit 2Äquivalenten Li-Hsi umgesetzt. Im Reaktionsgemisch war daher erwartungsgemäß das Trisiliran zunächst nicht nachzuweisen (Reaktionskontrolle: ¹H-NMR-Spektrum). Aus der auf -20 °C gekühlten und auf 1/5 des Primärvolumens eingeengten Mutterlauge fiel jedoch eine große Menge an farblosen Kristallen aus, die spektroskopisch zweifelsfrei als das gewünschte Produkt 9 identifiziert werden konnten. Die in ein NMR-Röhrchen unter Argon eingeschmolzene Mutterlauge, welche zur Aufnahme von ¹H-NMR-Spektren zur Reaktionskontrolle über den Zeitraum von mehreren Monaten diente, ließ zu keinem Zeitpunkt Veränderungen der Signallagen und -intensitäten erkennen, ebenso war weder das erste Zwischenprodukt, H(Cl)Si(Hsi)₂, noch Trisiliran nachzuweisen, obwohl die eingebrachte Lösung über längere Zeit hohen wie auch tiefen Temperaturen ausgesetzt war, um eine Produktbildung zu begünstigen. Die Vermutung, dass auf Grund der
Reaktionsführung, ähnlich wie im Falle des Me_2SnCl_2 , die Weiterreaktion, in diesem Fall die Eliminierung **B**, vor der Erstsubstitution **A** begünstigt sei, ließ sich nicht bestätigen, da dann Trisiliran in der Reaktionslösung nachweisbar gewesen wäre. Obwohl das gewünschte Produkt in guter Ausbeute erhalten worden ist, bleibt der Ablauf der Reaktion ungeklärt.

Abbildung 2-1: Mikroskopische Aufnahme der Kristalle von Si₃(SiMe₃)₆ nach der Sublimation

3 KERNRESONANZSPEKTROSKOPIE

Mit wenigen Ausnahmen konnten bei allen Verbindungen die erwarteten Signale der verschiedenen Kerne (¹H, ¹³C, ²⁷Al, ²⁹Si, ¹¹⁹Sn und ⁷Li) messtechnisch erfasst werden. Der stets vorhandene Hypersilylrest liefert auf Grund der freien Drehbarkeit der Trimethylsilylgruppen und deren niedriger Rotationsbarriere, sowie der daraus resultierenden, chemischen und magnetischen Äquivalenz der ¹H-, ¹³C und ²⁹Si-Kerne sehr einfache, linienarme NMR-Spektren. Dabei haben die ²⁹Si-NMR-Messungen den größten Aussagewert, weshalb - entgegen der "Norm" - mit deren Besprechung begonnen wird.

Im Gegensatz zu den Spektren vieler analoger THF-Addukte, bei denen auf Grund des negativen Kern-Overhauser-Effektes (NOE) in den Breitband-entkoppelten Spektren keine Signale erkennbar sind [23, 113], können diese Resonanzen der basefreien Verbindungen (bei ausreichender Konzentration) problemlos detektiert werden.

Im ²⁹Si{¹H}-NMR-Spektrum sind für die Hsi-Gruppierung zwei Singulettsignale unterschiedlicher Resonanzlage und Intensität zu erwarten, von denen das Signal bei tieferem Feld in der Regel den peripheren, die erheblich schwächere Hochfeldresonanz dem zentralen Si-Atom des betrachteten Liganden zuzuordnen ist. Dem entsprechenden, Protonen-gekoppelten ²⁹Si-Spektrum lassen sich weitere Kopplungskonstanten entnehmen.

Die Abbildungen 3-1 und 3-2 veranschaulichen die Spektren des später zu Vergleichzwecken genutzten Dihypersilyls (13, Hsi-Hsi) sowie die zu ermittelnden Kopplungen.

Abbildung 3-1: Protonen-entkoppeltes ²⁹Si-NMR-Spektrum von $(Hsi)_2$ **13** (D = Dublett)

Abbildung 3-2: Protonen-gekoppeltes ²⁹Si-NMR-Spektrum von (Hsi)₂ 13

3.1 DIE²⁹SI-NMR-SPEKTREN

3.1.1 Zentrales α^{29} Si-Atom des Hypersilylrestes

Wie oben gezeigt, gehört das bedeutend schwächere ²⁹Si-Signal den zu diskutierenden α Si-Atomen der Hsi-Gruppierung an. Es wird am deutlichsten von den Gegebenheiten des Bindungspartners X in den Hypersilaniden der allgemeinen Zusammensetzung X-Hsi geprägt und tritt daher nach bisherigen Beobachtungen in einem recht weiten Bereich von etwa -190 bis +40 ppm in Resonanz. Allerdings lassen sich systematische Änderungen der chemischen Verschiebung (sowie der zugehörigen Kopplungskonstanten), selbst in homologen Reihen nur selten erkennen.

Zu den wenigen Ausnahmen gehören die Halogenderivate Hal-Hsi (mit Hal = F, Cl, Br, I), bei denen die fraglichen ²⁹Si-Resonanzen bei +33 (F), -13,3 (Cl), -24,8 (Br) und -57,8 ppm (I) [13, 78] in fast optimaler Weise mit der Elektronegativität (EN) des Halogens [114] korreliert werden können. In dieser Reihe lässt sich auch noch der Wert von +3,9 ppm für MeO-Hsi [9] zwanglos zwischen F-Hsi und Cl-Hsi einordnen.

Abbildung 3-3: Korrelation der $\delta \alpha^{29}$ Si-Resonanzen mit den Elektronegativitäten von X

Mit weiter absinkender EN von X ist eine deutliche Hochfeldverschiebung der fraglichen ²⁹Si-Resonanz verbunden., sie erreicht bei den Alkalimetall-Hypersilaniden mit Werten von ca. -190 bis -170 ppm ein Maximum.

Wie aus nachfolgender Tabelle hervorgeht, ergibt sich weder bei den Alkalimetallen (in Abbildung 3-4 grafisch dargestellt), noch in anderen, homologen Reihen ein idealer, mit der EN von X korrelierbarer Zusammenhang.

X-Hsi	EN(X) [114]	δ ²⁹ Si <u>Si</u> Si ₃ /ppm	X-Hsi	EN(X) [114]	δ ²⁹ Si <u>Si</u> Si ₃ /ppm
	0.01	100.4		1 (2	150.0
$L1-HS1 \cdot 3THF$	0,91	-189,4	$Me_2AI-Hs_1 \cdot THF$	1,62	-159,0
Li-Hsi · 1,5DME	0,91		(Me ₂ Al-Hsi) ₂	1,62	-151,6
Li-Hsi	0,91	-181,9	Et ₂ Al-Hsi · THF	1,62	-160,8
Na-Hsi	0,86	-179,8	Et ₂ Al-Hsi	1,62	-149,0
K-Hsi	0,73	-185,7	Me ₂ Ga-Hsi · THF	1,77	-143,3
Rb-Hsi	0,71	-184,4	(Me(Cl)Ga-Hsi) ₂	1,77	-123,6
Cs-Hsi	~0,8	-179,4	(Me ₂ In-Hsi) _x	1,63	-137,5
			Li[Me ₃ Ga-Hsi] · 3THF	1,77	-150,0
Me ₃ Si-Hsi	2,12	-134,3	Li[Me ₃ Ga-Hsi]	1,77	-111,6
Hsi-Hsi	2,12	-129,7			
			Ga(Hsi) ₃	1,77	-95,0
			$In_2(Hsi)_4$	1,63	-103,3

Abbildung 3-4: Korrelation der $\delta \alpha^{29}$ Si-Resonanzen mit den Elektronegativitäten der Alkalimetalle

Generell bedingt in erster Näherung eine Zunahme der EN von X zwar eine Verschiebung der α^{29} Si-Resonanz zu tieferem Feld, doch muss neben diesem trivialen Einfluss der Bindungspolarität von X- α Si auch das weitere Umfeld des X-Atoms berücksichtigt werden. Trägt dieser Bindungspartner beispielsweise Lewis-basische Donorliganden, ist im Vergleich zur unkomplexierten Verbindung eine mehr oder minder deutliche Hochfeldverschiebung zu beobachten (Li-Hsi \rightarrow (Li-Hsi)·3THF oder Et₂Al-Hsi \rightarrow (Et₂Al-Hsi)·THF); umgekehrt tritt das betrachtete α Si-Atom bei vergleichsweise tieferem Feld in Resonanz, wenn X mit stark elektronegativen (z.B. Cl) oder auch weiteren Hsi-Liganden (z.B. Ga(Hsi)₃ oder In₂(Hsi)₄) verbunden ist. Abgesehen von der Polarität der X- α Si-Bindung ist demnach auch die schwierig zu quantifizierende Möglichkeit des Elektronentransfers über diese Bindung hinweg für die Abschirmung (und damit die Resonanzlage) das betrachteten Si-Atoms von Belang.

Ein für weitere Vergleiche sinnvoll erscheinendes Bezugssystem stellt Hexakis-(trimethylsilyl)disilan (oder einfacher: Dihypersilyl, $(Me_3Si)_3Si-Si(SiMe_3)_3 \equiv Si_8Me_{18}$, $(Hsi)_2$) mit seiner unpolaren Si-Si-Zentralbindung dar. Diese beiden α Si-Atome treten bei -129,7 ppm in Resonanz , was dem Wert von -134,3 ppm für das zentrale Si-Atom von Tetrakis(trimethylsilyl)silan sehr ähnlich ist. Bezüglich dieser Verschiebung von $(Hsi)_2$ lässt sich nun für Hypersilylderivate mit Hochfeldsignalen eine $X^{\delta+} - \alpha Si^{\delta-}$ Polarisierung ableiten, die allerdings signifikant durch weitere Substituenten von X geprägt sein kann.

Diese Betrachtungsweise spiegelt beispielsweise die der (geringen) EN-Differenz entsprechende Polarität der X- α Si-Bindung in H-Hsi ($\delta(\alpha^{29}Si) = -115,6$ ppm) wider und lässt auch die korrekte Ladungsverteilung in der homologen Reihe der THFkomplexierten Trimethylmetallate [Me₃M^{δ^+}-Hsi^{δ^-}][Li·3THF] (mit M = Al, Ga, In; $\delta(\alpha^{29}\text{Si}) = -160,2; -150,0; -155,5 \text{ ppm [23]})$ erkennen. Für die basefreien Pendants wird eine Verschiebung der fraglichen Resonanz zu tieferem Feld erwartet. Sie ist aber für die Reihe der Alkalimetall-Hypersilylgallate M^I[Me₃Ga-Hsi] (mit M^I = Li, Na, K) z.T. so stark, dass ein Wechsel der genannten Ga-Hsi -Bindungspolarität diskutiert werden müsste. Andererseits zeigt diese ²⁹Si-Resonanz eine signifikante Abhängigkeit von der Größe des Kations, was plausibel mit einer (auch in Lösung bestehenden) Wechselbeziehung zwischen Alkalimetall und den Gallium-ständigen Methylgruppen gedeutet werden kann. Diese M^I...H-C(-Ga)-Kontakte sind beim kleinen Li-Kation am ausgeprägtesten und damit auch der mögliche Ladungstransfer vom α Si- über das Gallium-Atom zur beanspruchten Methylgruppe hin. Die vergleichsweise schwächeren Kontakte des Kaliumions bedingen eine höhere Abschirmung des betrachteten α Si-Zentrums, aber auch der Gallium-Kohlenstoffatome (siehe 3.2.2).

Abbildung 3-5: Korrelation der $\delta \alpha^{29}$ Si-Resonanzen der Alkalimetallgallate mit den Kationenradien der Alkalimetalle

Abbildung 3-5 zeigt eine mit den Ionenradien der Alkalimetalle [115] korrelierte Abfolge, welche für den Wert des "freien" Gallations (-150,0 ppm) extrapoliert das hypothetische Kation mit einem Radius von ca. 158 pm ergibt (zum Vergleich: $Rb^+ =$ 149; $Cs^+ = 165pm$).

3.1.2 Die peripheren ²⁹Si-Atome des Hypersilylrestes

Der deutlich verminderte Einfluss der besprochenen X-aSi Verhältnisse auf die Resonanzlagen der Titelatome (BSi) gibt sich in einem stark verkleinerten Bereich von etwa -16 bis -2 ppm noch klar zu erkennen. Wird auch hier (Hsi)₂ als Vergleichverbindung gewählt (δ^{29} Si = -9,45 ppm), sind komplementär zu den Gegebenheiten das α Si-Kerns Signale bei höherem Feld mit einer negativen, solche bei tieferem Feld mit einer positiven Partialladung an X in Zusammenhang zu bringen. Es kann von einer (gewissen) entgegengesetzten Polarisierung der endständigen durch das zentrale αSi-Atom die Rede sein, womit aber völlig verschiedene Hypersilylderivate (wie z.B. H-Hsi, Cl-Hsi und [Cl₃Al-Hsi][Li·4THF]), die sich in den $\delta \alpha^{29}$ Si-Verschiebungen auch sehr deutlich unterscheiden, fast identische δ-Werte für die Zentren der Trimethylsilvlgruppen (hier $-11,4 \pm 0,1$ ppm) aufweisen. Trotz dieser Problematik lassen sich einige typische Bereiche nennen: so weisen die Alkalimetall-Hypersilanide mit ihren α^{29} Si-Resonanzen bei höchstem Feld umgekehrt die niedrigsten Werte der chemischen Verschiebungen (ca. -6 \pm 1 ppm) für die endständigen Si-Atome auf; die entsprechenden Atome fast aller hier untersuchten Erdmetallhypersilylverbindungen treten um -7.5 ± 1 ppm in Resonanz, diejenigen der Halogenderivate ($\delta \alpha^{29}$ Si < -100 ppm) zwischen -10 und -15 ppm. In gleicher Weise steigt der Betrag der ${}^{1}J(Si,C)$ Kopplungskonstanten von 38,6 (Cs-Hsi) über 44,2 (Hsi-Hsi) bis maximal 51,3 Hz ((Me₂In-Hsi)_x) an, doch sind sehr selten so überzeugende Korrelationen mit anderen Variablen der betrachteten Verbindungen möglich, wie abschließend für die schon erwähnte Reihe der Trimethylgalliumhypersilanidanionen gezeigt werden soll:

Abbildung 3-6: Korrelation der $\delta \alpha^{29}$ Si- mit den $\delta \beta^{29}$ Si-Resonanzen

Abbildung 3-7: Korrelation der $\delta \alpha^{29}$ Si- und $\delta \beta^{29}$ Si-Resonanzen mit den ¹J(Si,C) Kopplungskonstanten

Abbildung 3-8: Korrelation der $\delta \alpha^{29}$ Si-, $\delta \beta^{29}$ Si-Resonanzen und der ¹J(Si-C) Kopplungskonstanten mit den Elektronegativitäten der Alkalimetalle

Abbildung 3-9: Korrelation der $\delta \alpha^{29}$ Si-, $\delta \beta^{29}$ Si-Resonanzen und der ¹J(Si-C) Kopplungskonstanten mit den Kationenradien der Alkalimetalle

In Tabelle 3-1 sind die chemischen Verschiebungen δ und Kopplungskonstanten J der ²⁹Si-NMR-Spektren aller hier untersuchten sowie zum Vergleich herangezogenen Hypersilylverbindungen zusammengefasst.

Verbindung (Nr.; Lit.)	δ ²⁹ Si (<u>Si</u> (CH ₃) ₃	¹ J (Si,C)	² J (Si,H)	δ ²⁹ Si <u>Si</u> Si ₃	³ J (Si,H)
Li-Hsi · 3THF [23]	-5.1	40	59	-1894	_
Li-Hsi	-7.15	~41	6.0	-181.9	_
Li-Hsi [11]	-8.9	43 3	-	-184 2	_
Na-Hsi [11]	-6.0	40.2	-	-179.8	-
K-Hsi [13]	-5.8	38.8	-	-185 7	-
Rb-Hsi [13]	-5.6	38.9	-	-184.4	-
Cs-Hsi [13]	-5,3	38,6	-	-179,4	-
$Me_2Al-Hsi \cdot THF$ [22, 23]	-8,6	44,9	6,34	-159,0	-
$(Me_2Al-Hsi)_2$ 1	-8,41	44,1	6,44	-151,6	-
$Et_2Al-Hsi \cdot THF$ [22, 23]	-8,6	44,1	6,27	-160,8	-
Et ₂ Al-Hsi 2	-8,45	44,6	6,48	-149,0	-
Me ₂ Ga-Hsi · THF [23]	-8,7	49,1	6,41	-143,3	-
(Me(Cl)Ga-Hsi) ₂ 3	-8,26	45,6	6,5	-123,6	-
$(Me_2In-Hsi)_x$ [23]	-7,5	51,3	6,34	-137,5	-
Li[Me ₃ In-Hsi] · 3THF [23]	-6,2	45	6,3	-155,7	-
$Li[Cl_2In(Hsi)_2] \cdot 2THF [23]$	-6,41	44,4	6,47	-113,1	-
Li[Cl ₃ Al-Hsi] · 4THF [26]	-11,47	-	_	-155,7	-
Li[Me ₃ Ga-Hsi] · 3THF [23]	-7,2	44,1	6,26	-150,0	-
Li[Me ₃ Ga-Hsi] 4	-8,15	44,7	6,5	-111,6	-
Na[Me ₃ Ga-Hsi] 5 ^{a)}	-8,05	43,9	6,4	-123,2	
$K[Me_3Ga-Hsi] 6^{a}$	-7,4	41,9	6,3	-137,9	-
$Me_2Sn(Hsi)_2$ 8 ^{b)}	-7,30	-	6,5	-123,1	-
$Me_2Sn(Hsi)_2$ [67]	-5,6	-	-	-132,9	-
$Si_3(SiMe_3)_6$ 9	-6,13	44,8	6,5	-167,8	-
$Si_3(SiMe_3)_6$ [14]	-8,1	-	-	-170,0	-
Si(SiMe ₃) ₄	-9,80	44,5	6,4	-134,3	-
$Si_2(SiMe_3)_6$, Hsi_2 13, [7] ^{b)}	-9,45	44,2	6,4	-129,7	2,57
H-Hsi () ()	-11,6	-	6,6	-115,6	2,56
$HCISi(Hsi)_2$ [112, 92]	-8,4	-	6,5	-113,7	2,8
F-Hsi [13]	-15,5	44,9	-	33,4	-
CI-Hsi	-11,5	~46	6,6	-13,3	-
CI-Hsi [13]	-11,6	45,8	-	-13,3	-
Br-Hsi [13]	-12,4	46,3	-	-24,8	-
$\begin{bmatrix} 1-HSI & [13] \\ Co(Hai) & 10 \end{bmatrix}$	-13,7	46,7	-	-5/,8	-
$Ga(HSI)_3$ IU Ga Hai 11 ^{a)}	-0,82	44,5	0,41 6.2	-95,0	2,23
$(H_{si})_{In-In}(H_{si})_{a}$ 12 ^{a)}	-4,30	44 1	6.46	-73,3	2.6
$Sn(Hsi)_{2}$ 7	-0,34		-	-105,5	2,0
$Sn(Hsi)_2$ [14, 73]	-2,0	-	-	-64,9	-

Tabelle 3-1: Chemische Verschiebungen δ^{29} Si (ppm) und Kopplungskonstanten J (Hz)

Messungen bei 298 K in d_6 -Benzol^{a)} Messung in d_8 -Toluol^{b) 1}J(Si,Si) für H-Hsi: 60,1, für **13**: 50,7 und für **8**: 50,0 Hz^{c) 1}J(Si,H) für H-Hsi: 154,1 Hz

3.2 ¹³C-NMR-SPEKTREN

3.2.1 Methylkohlenstoffatome des Hsi-Restes

Für den Hypersilylrest wird im ${}^{13}C{}^{1}H$ -NMR-Spektrum stets ein intensives Singulett im Bereich von -1 bis +7 ppm mit Satteliten der ${}^{1}J(C,Si)$ (42 ± 4 Hz) und ${}^{3}J(C,Si)$ -Kopplung (5 ± 1 Hz) beobachtet. Im Protonen-gekoppelten ${}^{13}C$ -NMR-Spektrum spaltet dieses Singulett in ein Quartett von Heptetts auf. Die Kopplungskonstanten liegen für ${}^{1}J(C,H)$ bzw. ${}^{3}J(C,H)$ bei 118 bis 120 Hz bzw. bei 2,5 ± 0,2 Hz. Exemplarisch sind diese Spektren für **13**, dessen sehr gute Löslichkeit in organischen Solvenzien optimale Messungen zulässt, in Abbildung 3-10 und Abbildung 3-11 dargestellt. Im gekoppelten Spektrum (3-11) lassen sich sogar die ${}^{1}J(C,Si)$ -Kopplungen als Satelliten der Heptetts erkennen. Bei H-Hsi ist zusätzlich noch eine weitere, durch die ${}^{3}J(C,H)$ -Kopplung bedingte Aufspaltung der Signale mit etwa 0,8 Hz zu beobachten.

Abbildung 3-10: Protonen-entkoppeltes 13 C-NMR-Spektrum von (Hsi)₂ **13** (D = Dublett)

Abbildung 3-11: Protonen-gekoppeltes ¹³C-NMR-Spektrum von (Hsi)₂ 13

Der zuvor an Hand der ²⁹Si-NMR-Spektren aufgezeigte Einfluss der X- α Si Bindungspolarität, sowie der Besonderheiten des Bindungspartners X, ist in nochmals abgeschwächter Form auch in den ¹³C-NMR-Spektren erkennbar. Der Gang der ¹³C-Resonanzen entspricht demjenigen der peripheren ²⁹Si-Kerne, d.h. die Signale der Hypersilylhalogenverbindungen treten mit ca. +0,6 bis -0,6 ppm bei höchstem, die der Alkalimetall-Hypersilanide mit etwa +7 ± 1 ppm bei tiefstem Feld auf und schließlich nimmt auch hier die chemische Verschiebung δ^{13} C der Vergleichsverbindung (Hsi)₂ mit 4,74 ppm die erwartete Mittelposition ein. Bezüglich dieser erscheinen die entsprechenden Signale sämtlicher Organoerdmetall-Hypersilylderivate mit einer Hsi-Gruppierung maximal 1 ppm Hochfeld-verschoben (3,6 - 4,6 ppm), mehr als ein Ligand dieser Art bedingt hingegen eine Tieffeldverschiebung von bis zu 2 ppm. Die Unterschiede $\Delta\delta$ dieser Resonanzen sind in homologen Reihen eng verwandter

Verbindungen aber meist so gering, dass sie auch durch Konzentrations- bzw. Temperaturunterschiede verursacht sein können und somit Korrelationen wenig sinnvoll erscheinen. Dennoch sei ein derartiger Versuch für die Reihe der Alkalimetall-Hypersilanide grafisch dargestellt.

Abbildung 3-12: Korrelation der δ^{13} C-Resonanzen mit den Elektronegativitäten der Alkalimetalle

In Tabelle 3-2 sind die chemischen Verschiebungen δ und Kopplungskonstanten J der ¹³C-NMR-Spektren der Methylkohlenstoffatome des Hsi-Restes aller hier untersuchten sowie zum Vergleich herangezogenen Hypersilylverbindungen zusammengefasst.

Verbindung (Nr.; Lit.)	δ ¹³ C Si(<u>C</u> H ₃) ₃	¹ J (C,Si)	¹ J (C,H)	³ J (C,H)	² J (C,Si)
Li-Hsi · 3THF [23]	7.1	~41	117.9	_	_
Li-Hsi	5.73	41.6	118.6	2.67	5.0
Li-Hsi [11]	6.5	43.3	-	_,.,	-
Na-Hsi [11]	6.7	40.2	_	_	-
K-Hsi [13]	7.4	38.8	_	_	-
Rb-Hsi [13]	7,5	38,9	-	-	-
Cs-Hsi [13]	7,9	38,6	-	-	-
Me ₂ Al-Hsi · THF [22, 23]	4,3	44,9	119,1	2,5	-
$(Me_2Al-Hsi)_2$ 1	4.03	44.3	119.5	2.63	4.8
Et_2A]-Hsi · THF [22, 23]	4.4	_	119.1	2.5	-
Et ₂ Al-Hsi 2	4.08	44.3	119.6	2.50	4.8
Me ₂ Ga-Hsi · THF [23]	3.8	_	119,5	2,5	-
$(Me(Cl)Ga-Hsi)_2$ 3	3.62	45.8	120.0	2.50	4.2
$(Me_2In-Hsi)_x$ [23]	4,5	-	-	-	-
Li[Me ₃ In-Hsi] · 3THF [23]	4,6	-	-	-	-
$Li[Cl_2In(Hsi)_2] \cdot 2THF$ [23]	4,3	-	-	-	-
$Li[Me_3Ga-Hsi] \cdot 3THF$ [23]	4.6	44.1	118.8	2.3	-
Li[Me ₃ Ga-Hsi] 4	4,31	44,7	120,0	2,54	4.7
$Na[Me_3Ga-Hsi] 5^{a}$	3,83	43,9	119,3	2,58	4,8
$K[Me_3Ga-Hsi]^{6}$ ^{a)}	4,94	41,9	118,8	2,61	-
$Me_2Sn(Hsi)_2$ 8	3,89	44,7	119,8	2,5	4,6
$Me_2Sn(Hsi)_2$ [67]	3,97	-	-	-	-
$Si_3(SiMe_3)_6$ 9	4,62	44,8	120,1	2,50	5,72
$Si_3(SiMe_3)_6$ [14]	4,4	-	120,3	-	-
Si(SiMe ₃) ₄	2,85	44,5	119,6	2,58	-
Si ₂ (SiMe ₃) ₆ , Hsi ₂ 13, [7]	4,74	44,2	119, 8	2,63	4,7
H-Hsi	2,00	44,9	120,0	2,67	5,67
HClSi(Hsi) ₂ [112, 92]	3,3	-	-	-	-
F-Hsi [13]	-0,5	44,9	-	-	-
Cl-Hsi	-0,67	45,8	120,3	2,51	6,1
Cl-Hsi [13]	-0,4	45,8	-	-	-
Br-Hsi [13]	0,0	46,3	-	-	-
I-Hsi [13]	0,6	46,7	-	-	-
$Ga(Hs1)_3$ 10	6,56	44,2	120,0	-	4,2
Ga_4Hsi_4 11 ^a	4,60	44,3	119,8	2,67	4,76
$Ga_4 Hs1_4 [52]$	4,4	-	-	-	-
$(Hs1)_2$ In-In $(Hs1)_2$ IZ "	5,69	44,0	119,7	2,54	4,5
$Sn(HSI)_2$ / $Sn(Hzi)_2$ [14, 72]	4,61	44,2	119,9	2,63	4,7
$Sn(HSI)_2$ [14, /3]	4,9	-	-	-	-

Tabelle 3-2: Chemische Verschiebungen δ^{13} C (ppm) und Kopplungskonstanten J (Hz)

Messungen bei 298 K in d_6 -Benzol^{a)} Messung in d_8 -Toluol

3.2.2 Kohlenstoffatome der Metall-Alkylreste

Die Signale der Metall-ständigen Methyl- bzw. Ethylgruppen sind in den ¹³C-NMR-Spektren von besonderem Interesse, da sie durch ihre unmittelbare Nachbarschaft zu den Zentren X (= M) des Gerüsts X- α Si von den dort herrschenden Ladungsverhältnissen etwa ebenso stark betroffen sind, wie die peripheren β Si-Atome. Man findet die Resonanzen im Bereich von -10 bis +10 ppm, wobei selbst bei gleichen (Erd)Metallatomen Unterschiede von bis zu 10 ppm möglich sind.

Soweit direkt vergleichbare Verbindungen erfasst werden konnten, bedingt eine Adduktbildung mit THF eine signifikante Hochfeldverschiebung der fraglichen ¹³C-Resonanz, welche die gleichsinnige Änderung der zugehörigen β^{29} Si-Signale weit übertrifft. Sehr deutliche Verschiebungen zu tieferem Feld bedingt der Ersatz einzelner Alkylreste durch elektronegative Halogenatome, wie auch durch weitere Hsi-Reste. Zu erwähnen ist letztlich noch die Reihe der Gallate M¹ [Me₃Ga-Hsi] (mit M¹ = Li, Na, K), deren δ^{13} C(Ga)-Werte denselben Gang zeigen, wie die zugehörigen chemischen Verschiebungen der α^{29} Si-Kerne, also eine Abhängigkeit von der Größe des offensichtlich mehr oder weniger stark koordinierten Alkalimetall-Kations erkennen lassen. Es bieten sich somit mehrere Möglichkeiten zur Korrelation verschiedener, den NMR-Spektren entnommener sowie anderer Metall-spezifischer Größen an (Abbildung 3-13 bis Abbildung 3-15).

Abbildung 3-13: Korrelation der $\delta^{13}C(Ga)$ - mit den $\delta\alpha^{29}Si$ -Resonanzen

Abbildung 3-14: Korrelation der $\delta^{13}C(Ga)$ -Resonanzen und ¹J(C,H)-Kopplungskonstanten mit den Elektronegativitäten der Alkalimetalle

Abbildung 3-15: Korrelation der $\delta^{13}C(Ga)$ -Resonanzen und der $^1J(C,H)$ Kopplungskonstanten mit den Kationenradien der Alkalimetalle

Auf Grund der beobachteten Messwerte und der ermittelten Korrelationen kann für die homologe Reihe der Alkalimetallgallate das in Abbildung 3-16 postulierte Polarisationsmodell angenommen werden, da hiermit alle Hoch- und Tieffeldverschiebungen der Resonanzen der Alkali- und Erdmetall-nahen Kerne ausreichend erklärt werden können. Bei den weiter entfernten Kernen sind die Effekte der Ladungsverschiebung (im Modell durch δ + und δ - gekennzeichnet) zwar noch andeutungsweise erkennbar, aber naturgemäß nicht mehr eindeutig auszuwerten.

Abbildung 3-16: Postuliertes Modell der relativen Polarisierung bei Alkalimetallgallaten

In Tabelle 3-3 sind die chemischen Verschiebungen δ und Kopplungskonstanten J der ¹³C-NMR-Spektren der (Erd)metallständigen Methylkohlenstoffatome aller hier untersuchten sowie zum Vergleich herangezogenen Hypersilylverbindungen zusammengefasst.

Verbindung (Nr.; Lit.)	δ ¹³ C M- <u>C</u> H _x	¹ J (C,H)	δ ¹ H C- <u>C</u> H ₃	¹ J (C,H)	² J (C,H)
MesAl-Hsi, THE [22, 23]	-4 9	_	_	_	_
$(Me_2Al-Hsi)_2$ 1	-2.81	114 2	_	_	_
$[t_1 A]_{Hei} \cdot THF [22, 23]$	3.6	117	10.2	124	5.1
$Et_2Al-Hsi 1$	8 33	117 1	8 85	125 0	5,01
Me ₂ GaCl	1.55	126.4	-	-	-
MeaGa-Hsi · THE [23]	0.55	120,1	_	_	_
$(Me(Cl)Ga-Hsi)_{2}$ 3	10.80	128.4	_	_	_
(Mec(CI)Ga-HSI) ₂ 5 (MecIn-Hsi)	-1.2	-	_	_	_
$I i [Me_{\alpha}Ga_{\alpha}Hei] \cdot 3THF [23]$	-3.1	116.1	_	_	_
$Li[Me_{3}Ga^{-113}] + 51111 [25]$	_9 1	110,1	_		
$Li[Me_{3}III-IISI] \cdot 5IIII^{*} [25]$ $Li[Me_{3}G_{2}-Hei] A$	9.04	123.3	-	-	-
$Na[Me_{3}Ga_{-}Hsi] = 5^{a}$	4 26	120,3	_	_	_
$K[Me_{a}Ga-Hsi] = 6^{a}$	-0.41	114.8	_	_	_
	0,41	114,0			
Verbindung (Nr.; Lit.)	δ ¹³ C M- <u>C</u> H _x	¹ J (C,H)	³ J (C,H)	¹ J (C, ¹¹⁹ Sn)	¹ J (C, ¹¹⁷ Sn)
$Me_2Sn(Hsi)_2$ 8	-5,24	129,1 q	2,1 q	169,9	162,6
$Me_2Sn(Hsi)_2$ [67]	2,98	-	-	-	-

Tabelle 3-3: Chemische Verschiebungen δ^{13} C (ppm) und Kopplungskonstanten J (Hz) der Metall-

Alkylreste

Messungen bei 298 K in d_6 -Benzol^{a)} Messung in d_8 -Toluol

3.3 PROTONENRESONANZSPEKTREN

3.3.1 Protonen des Hsi-Restes

Trotz der stark elektronenschiebenden Eigenschaft des Hsi-Restes werden dessen Methylprotonen durch die unterschiedlichen Bindungspartner X nicht nennenswert beeinflusst. Zu beobachten ist stets ein intensives Singulettsignal im Bereich von 0,21 ppm (F-Hsi) bis 0,44 ppm (**10**), sowie die Kopplungen ¹J(H,C) von ca. 119,5 \pm 0,5 Hz und ²J(H,Si) von ca. 6,6 \pm 0,2 Hz. Die Signale der Verbindungen, bei denen die Möglichkeit eines Ladungstransfers zu X besteht, sind leicht tieffeldverschoben zu finden und die Kopplungskonstanten nehmen kleinere Werte an. Systematische Veränderungen sind nicht beobachtbar. Die Signallagen können gelegentlich (**1** - **6**) abhängig von Temperatur, Konzentration und Lösungsmittel (ca. \pm 0,2 ppm) sein. Eine eindeutige Identifizierung der Produkte über die Hypersilylsignale des ¹H-Spektrum ist daher im Allgemeinen nur bedingt möglich.

3.3.2 Protonen der Metall-Alkylreste

Die Protonen-Signale der metallständigen Alkylreste liefern mehr Informationen über die gemessenen Verbindungen als die SiMe₃-Protonen, da sie durch ihre unmittelbare Nachbarschaft zu den (Erd)metallzentren und den dort auftretenden partiellen Ladungen ebenso betroffen sind wie die peripheren Si-Atome. Beobachtet wird für die Methylgruppen im ¹H-NMR-Spektrum ein Singulettsignal von -0,81 ppm (**6**) bis 0,94 ppm (**4**), sowie die ¹J (H,C)-Kopplung mit einer Kopplungskonstante von 121 ± 7 Hz. Bei den Ethylverbindungen wird für das α -CH₂ ein Quartett und für β -CH₃ ein Triplett beobachtet.

Wie schon bei den bereits besprochenen ¹³C- und ²⁹Si-NMR-Spektren ist für die homologe Reihe der Alkalimetallgallate eine direkte, lineare Abhängigkeit der Protonenresonanzfrequenzen, sowie der ¹J(H,C)-Kopplungskonstanten zur Elektronegativität und dem Kationenradius des Alkalimetalls zu erkennen. Dies bestätigt das oben formulierte Modell der relativen Polarisierung (siehe Abbildung 3-16).

Besonders erwähnenswert ist die Serie der Tieftemperaturmessungen von 1 in d_8 -Toluol. Bei 323K zeigt das Protonenresonanzspektrum in d_8 -Toluol für die unterschiedlichen Methylreste zwei Singuletts bei -0,05 (Al) und 0,24 (Si) ppm im Intensitätsverhältnis von etwa 1:4,6, wobei das Me(Al)-Signal erwartungsgemäß verbreitert erscheint. Bei Abkühlung von 323 K auf 270 K wandert das Signal der Methylgruppe des dimeren Moleküls unter weiterer Verbreiterung von -0,05 ppm nach +0,16 ppm, während das Signal des Hsi-Restes eine nur minimale Verschiebung um $\Delta \delta = 0,02$ ppm zu tieferem Feld erfährt. Der Koaleszenzpunkt liegt mit ~265 K etwa 30° höher als beim Al₂Me₆, womit die Assoziation in Lösung belegt werden kann. Bei weiterer Temperaturerniedrigung kann beim Al₂Me₆ [116] (AlMe_{br} 0,2 ppm und AlMe_{en} -0,38 ppm) , sowie beim Tricyclopropylaluminium [117] die vorhergesagte Signalverdopplung auch beobachtet werden. Auf Grund der drastischen Konzentrationsverringerung von 1 durch Auskristallisieren unterhalb von 250 K können die hier nur andeutungsweise erkennbaren Signale bei 0,14 ppm und 0,28 ppm nicht ohne Vorbehalt den endständigen bzw. den verbrückenden Methylgruppen zugeordnet werden.

Interessante Aussagen lassen sich auch für die Signale der Verbindung mit Sn-CH₃-Bindungen treffen. Beobachtet werden die ²J-Kopplungen von ¹H mit ¹¹⁹Sn, ¹¹⁷Sn und ¹¹⁵Sn, sowie die ¹J-Kopplungen von ¹³C mit ¹¹⁹Sn und ¹¹⁷Sn. Entsprechend den gyromagnetischen Verhältnissen können die gefundenen Signale verifiziert werden. Es gilt:

$${}^{n}J(X, {}^{119}Sn) = 1,0462 \cdot {}^{n}J(X, {}^{117}Sn) = 1,1398 \cdot {}^{n}J(X, {}^{115}Sn)$$

Aus den Kopplungskonstanten lässt sich auf Grund des Zusammenhanges von ${}^{n}J(X, {}^{119}Sn)$ und dem s-Anteil der die Bindung vermittelnden Atomorbitale eine Vorhersage für den C-Sn-C Bindungswinkel θ treffen, die sich mit den folgenden einfachen und empirisch ermittelten Gleichungen a) - e) errechnet.

a)
$$\theta = 0.0161 \cdot {^2J(H,^{119}Sn)}^2 - 1.32 \cdot {^2J(H,^{119}Sn)} + 133.4 = 106.3^{\circ}$$
 [118, 119]

b)
$$\theta = \{ {}^{1}J(C, {}^{119}Sn) + 875 \} / 11, 4 = 91, 7 \circ$$
 [119, 120]

c)
$$\theta = \{ {}^{1}J(C, {}^{119}Sn) + 746 \pm 100 \} / \{ 9,99 \pm 0,73 \} = 94,77 \circ$$
 [121]

d)
$$\theta = 0.0862 \cdot {}^{1}J(C, {}^{119}Sn) + 77.823 = 92.46 \circ$$
 [122]

e)
$$\theta = 0.0874 \cdot {}^{1}J(C, {}^{119}Sn) + 79.416 = 94.26^{\circ}$$
 [122, 123]

Trotz der unterschiedlichen Ergebnisse und unter Berücksichtigung der Tatsache, dass die fraglichen Bindungswinkel im Kristall und in Lösung durchaus differieren können, deuten die errechneten Werte stets auf einen merklich kleineren Winkel als den optimalen Tetraederwinkel (109,6 °) hin. Bei der Kristallstrukturanalyse von **8** (siehe 5.4.1 - S.99) wurde ein C-Sn-C Bindungswinkel von 103,6 ° ermittelt, was mit der nach a) berechneten Größe am besten in Einklang steht.

In Tabelle 3-4 sind die chemischen Verschiebungen δ und Kopplungskonstanten J der ¹H-NMR-Spektren der (Erd)metall- und Si-ständigen Alkylwasserstoffatome aller hier untersuchten sowie zum Vergleich herangezogenen Hypersilylverbindungen zusammengefasst.

Verbindung (Nr.; Lit.)	δ ¹ H Si(C <u>H</u> ₃) ₃	¹ J (H,C)	² J (H,Si)	δ ¹ Η M-C <u>H</u> _x	¹ J (H,C)
Li-Hsi · 3THF [23]	0,59	-	5,9	-	-
Li-Hsi	0,36	118,6	6,2	-	-
Li-Hsi [11]	0,45	-	-	-	-
Na-Hsi [11]	0,45	-	-	-	-
K-Hsi [13]	0,53	-	-	-	-
Rb-Hsi [13]	0,53	-	-	-	-
Cs-Hsi [13]	0,47	-	-	-	-
$Me_2Al-Hsi \cdot THF$ [22, 23]	0,39	-	-	-0,36	-
$(Me_2Al-Hsi)_2$ 1	0,31	119,5	6,4	0,09	~115
$Et_2Al-Hsi \cdot THF [22, 23]^{b}$	0,32	-	-	0,22 q	-
$Et_2Al-Hsi 2^{b}$	0,35	119,6	6,6	0,39 q	-
Me ₂ GaCl	-	-	-	0,18	126,4
Me ₂ Ga-Hsi · THF [23]	0,35	-	-	0,08	-
$(Me(Cl)Ga-Hsi)_2$ 3	0,38	120,0	6,4	0,73	-
$(Me_2In-Hsi)_x$ [23]	0,30	-	6,3	0,09	-
Li[Me ₃ In-Hsi] · 3THF [23]	0,56	-	6,3	-0,12	-
$Li[Cl_2In(Hsi)_2] \cdot 2THF$ [23]	0,51	-	6,5	-	-
Li [Cl ₃ Al-Hsi] · 4THF [26]	0,22	-	-	-	-
Li[Me ₃ Ga-Hsi] · 3THF [23]	0,50	-	6,3	-0,11	-
Li[Me ₃ Ga-Hsi] 4	0,35	120,0	6,6	0,94	123,2
$Na[Me_3Ga-Hsi]$ 5 ^{a)}	0,28	119,3	6,9	-0,22	-
$K[Me_3Ga-Hsi]^{6}$ ^{a)}	0,43	118,8	6,4	-0,81	114,9
$Me_2Sn(Hsi)_2$ 8 ^{c)}	0,34	-	6,5	0,58	~128
$Me_2Sn(Hsi)_2$ [67]	0,33	-	-	0,56	-
$Si_3(SiMe_3)_6$ 9	0,42	120,1	6,6	-	-
$Si_3(SiMe_3)_6$ [14]	0,42	120,3	6,4	-	-
Si(SiMe ₃) ₄	0,26	119,6	6,4	-	-
Si ₂ (SiMe ₃) ₆ , Hsi ₂ 13, [7]	0,33	119, 8	6,4	-	-
H-Hsi	0,24	120,0	6,6	2,49 (H	-Si) -
HClSi(Hsi) ₂ [112, 92]	0,22	-	-	-	-
F-Hsi [13]	0,21	-	-	-	-
Cl-Hsi	0,22	120,3	6,5	-	-
Cl-Hsi [13]	0,21	-	-	-	-
Br-Hsi [13]	0,22	-	-	-	-
I-Hsi [13]	0,26	-	-	-	-
$Ga(Hsi)_3$ 10	0,44	120,0	6,4	-	-
Ga_4Hsi_4 11 ^{a)}	0,39	119,8	6,7	-	-
$Ga_4 Hsi_4$ [52]	0,46	-	-	-	-
$(Hsi)_2$ In-In $(Hsi)_2$ 12 ^{a)}	0,35	119,7	6,5	-	-
$Sn(Hsi)_2$ 7	0,36	119,9	6,2	-	-
Sn(Hsi) ₂ [14, 73]	0,60	-	6,1	-	-

Tabelle 3-4: Chemische Verschiebungen δ^{1} H (ppm) und Kopplungskonstanten J (Hz)

Messungen bei 298 K in *d*₆-Benzol^{a)} Messung in *d*₈-Toluol^{b)} δ^1 H(C-C<u>H</u>₃) für Et₂Al-Hsi·THF: 1,24t, für **2**: 1,19t ppm, ¹J(H,C) für **2**: ~124 Hz, ³J(H,H) für Et₂Al-Hsi·THF: 8,1 und für **2**: 8,0 Hz^{c)} Für **8**: ²J(H,¹¹⁹Sn) = 40,4, ²J(H,¹¹⁷Sn) = 38,7 und ²J(H,¹¹⁵Sn) = 35,6 Hz

3.4 WEITERE NMR-MESSUNGEN

Zur Vervollständigung der Daten wurden bei einigen Verbindungen auch alle weiteren, aktiven Kerne NMR-spektroskopisch erfasst. Beobachtet wird im ⁷Li-NMR-Spektrum ein Singulett bei -3,57 ppm (Li[Me₃Ga-Hsi] · 3THF) bis -1,06 ppm (Li-Hsi) mit Satelliten der ¹J (Li,Si)-Kopplung von 38,6 Hz (Li-Hsi · 3THF) bis 46 Hz (Li-Hsi). Im ²⁷Al-NMR-Spektrum tritt für **1** eine Resonanz bei 195 und für **2** bei 210 ppm auf. ¹¹⁹Sn-NMR-Resonanzen wurden nur für **8** gefunden. Hier fallen die sehr kleinen Kopplungskonstanten auf, die auf einen verhältnismäßig kleinen C-Sn-C-Bindungs-winkel schließen lassen (siehe Abschnitt 3.3.2). Für **7** konnten keine ¹¹⁹Sn-Resonanzen beobachtet werden. Dafür kann die Zersetzung der Verbindung durch Lichteinwirkung bei der ungewöhnlich langen Messzeit Ursache sein; wenig wahrscheinlich ist eine Resonanzlage außerhalb der gesetzten Grenzen von -3000 bis +3000 ppm (Die bisher bekannten Extremwerte von 2111,2 ppm für Sn(Tsi)₂ [71] bzw. -2199 ppm für Sn(Cp)₂ [124, 125] liegen weit innerhalb dieses Bereiches).

Da alle o.a. Resonanzen mit Ausnahme der Kopplungen im ¹¹⁹Sn-NMR-Spektrum im erwarteten Bereich liegen, wurden keine weiteren Vergleichsverbindungen vermessen.

In Tabelle 3-5 und Tabelle 3-6 sind die chemischen Verschiebungen δ und Kopplungskonstanten J der weiteren NMR-Messungen zusammengefasst.

Verbindung (Nr.; Lit.)	δ ⁷ Li	¹ J (Li,Si)
Li-Hsi · 3THF [23]	-2,07	38,6
Li-Hsi	-1,06	~46
Li[Me ₃ In-Hsi] · 3THF [23]	-3,32	-
$Li[Cl_2In(Hsi)_2] \cdot 2THF$ [23]	-2,62	-
Li[Me ₃ Ga-Hsi] · 3THF [23]	-3,57	-
Li[Me ₃ Ga-Hsi] 4	-1,80	-
Li[Me ₃ In-Hsi] · 3THF [23] Li[Cl ₂ In(Hsi) ₂] · 2THF [23] Li[Me ₃ Ga-Hsi] · 3THF [23] Li[Me ₃ Ga-Hsi] 4	-3,32 -2,62 -3,57 -1,80	

Tabelle 3-5: Chemische Verschiebungen δ^7 Li (ppm) und Kopplungen J (Hz)

Messungen bei 298 K in d_6 -Benzol^{a)} Messung erfolgte in d_8 -Toluol

Tabelle 3-6: C	Chemische	Verschiebungen	δ^{119} Sn (ppm)	und Kopplung	en J (Hz)

Verbindung (Nr.; Lit.)	δ ¹¹⁹ Sn	¹ J (¹¹⁹ Sn,C)	² J (¹¹⁹ Sn,H)	³ J (¹¹⁹ Sn,C)
$\begin{array}{l} Me_2Sn(Hsi)_2 \ \ \textbf{8} \\ Me_2Sn(Hsi)_2 \ \ [67] \end{array}$	-174,78 -175,1	~169,9	40,4	4,8

Messung bei 298 K in d_6 -Benzol^{a)} Messung erfolgte in d_8 -Toluol

4 SCHWINGUNGSSPEKTROSKOPIE

4.1 ALLGEMEINES

Soweit möglich wurden von allen Verbindungen Schwingungsspektren aufgenommen. In der Regel warf die Registrierung von Ramanspektren farbloser Verbindungen keine Probleme auf (feste Substanzen und/oder Lösung unter Argon in geschlossenen, dünnwandigen Glasröhrchen), die intensiv gefärbten Proben von Sn(Hsi)₂ (7, dunkelbraun), (Ga-Hsi)₄ (11, violett) und (Hsi)₂In-In(Hsi)₂ (12, rubinrot) verhinderten aber auf Grund starker Fluoreszenz oder der Lichtempfindlichkeit die Aufnahme aussagekräftiger Spektren. Ausnahmslos konnten hingegen die IR-Spektren von allen Verbindungen gemessen werden. Selbst bei den stark pyrophoren Verbindungen, wie z.B. dem Lithiumgallat 5, ließ sich durch eine ausgeklügelte Abfülltechnik Hydrolyse und/oder Oxidation des Produktes auf ein Minimum reduzieren.

Der Hypersilylrest lässt sich formal durch die Abspaltung einer Trimethylsilyl-Gruppe aus Tetrakis(trimethylsilyl)silan abgeleiten; dabei erniedrigt sich die Symmetrie von T_d nach C_{3v} , wobei diese beiden Punktgruppen idealisiert sind, denn sie sind nur für eine optimale Orientierung der SiMe₃-Liganden gültig. Die korrekten Symmetrien T und C_3 unterscheiden sich als Untergruppen bezüglich der Schwingungsaktivitäten nicht grundlegend von denen der eingangs genannten Punktgruppen, so dass bei Annahme weitgehend freier Drehbarkeit der SiMe₃-Reste zur Spektrendiskussion in guter Näherung die höheren Symmetrien beibehalten werden können. Für die 40 Atome des Hypersilylrestes Si[Si(CH₃)₃]₃ ergeben sich rechnerisch (3N-6) insgesamt 114 Eigenschwingungen; auf Grund von Entartungen reduziert sich diese Zahl auf 76 Moden, von denen nur 59 beobachtbar sind :

$$\sum_{C_{3\nu}} (Hsi) = 21 A_1(a,p) + 17 A_2(ia,v) + 38 E(a,dp) = 76$$

Von letzteren gehören nur 18 (7 A_1 und 11 E) dem für spektroskopische Aussagen wichtigen Si(SiC₃)₃-Gerüst an, die restlichen 41 Schwingungen (14 A_1 und 27 E) sind demnach als Valenz- und Deformationsschwingungen der Methylreste einzustufen. Es ist allerdings illusorisch, auch nur ein Teil dieser sehr eng benachbarten CH₃-Gleichund Gegentaktschwingungen messtechnisch erfassen zu wollen.

Dennoch werden alle Spektren von diesen zahlreichen Schwingungsbanden der Si-Methylreste dominiert. Ihre bemerkenswerte Lagekonstanz weist auf eine lediglich marginale Beeinflussung durch den Bindungspartner X des Hypersilylrestes hin und stellt somit den zweifelsfreien Beleg für das Vorliegen der Hsi-Gruppierung dar. Andererseits eignen sich diese invarianten Vibrationen nicht für spektroskopische Strukturbestimmungen. Ihre Zuordnungen erfolgten in enger Anlehnung an diejenigen der Vergleichsverbindung Si(SiMe₃)₄. Nachfolgende Gegenüberstellung (Tabelle 4-1) fasst diese markanten Schwingungen nebst deren Intensitäten und Raman-Depolarisationsgraden p zusammen:

Si(SiMe ₃) ₄ [75]		-Si(SiMe ₃) ₃ (Bereiche)			
IR	Raman	Zuordnung (T _d)	IR	Raman	Zuordnung (C _{3v})
1258 s,sh 1244 vs - 835 vvs 745 m 687 s - 623 vs - 217 vs -	1263 w,p 1242 m,dp 876 w,p 835 w,dp 746 w,dp 687 m,dp 629 vvs,p 	$ \begin{split} &\delta_{s} \ CH_{3} \ -Glt \ (A_{1}) \\ &\delta_{s} \ CH_{3} \ -Ggt \ (F_{2}) \\ &(A_{1}) \\ &\rho \ CH_{3} \ (F_{2}) \\ &(E) \\ &v_{as} \ SiC_{3} \ (F_{2}) \\ &v_{s} \ SiC_{3} \ (A_{1}) \\ &v_{s} \ SiC_{3} \ (F_{2}) \\ &\delta_{s} \ SiC_{3} \ (F_{2}) \\ &\delta_{s} \ SiC_{3} \ (A_{1}) \\ &\rho \ SiC_{3} \ (F_{2}) \\ &\delta_{s} \ SiC_{3} \ (A_{1}) \\ &\rho \ SiC_{3} \ (F_{2}, E) \\ &\delta \ SiSi_{3} \end{split} $	1255±2 mw-ms 1240±2 ms-vs 858±5 sh 833± vvs,b 746±2 w-mw 685±3 s-vs - 623±2 s 234±3 sh-mw 220±2 mw-s - ~165 sh	1258±3 vw-mw,p 1239±2 w-m,dp 864±2 vw-mw,p? 830±4 vw,dp 744±2 vw-mw,dp 685±4 w-ms,dp 629±2 vs,p 622±1 vw,sh,dp 232±2 w-mw,dp 222±3 w-mw,dp 175±5 vs,p 170±5 sh,dp	$ \begin{split} &\delta_s \ CH_3 \text{-} Glt \ (A_1) \\ &\delta_s \ CH_3 \text{-} Ggt \ (E) \\ & (A_1) \end{split} \\ & \rho \ CH_3 \ (E+A_1) \cr &\nu_{as} \ SiC_3 \ (E) \\ &\nu_s \ SiC_3 \ (A_1) \\ &\nu_s \ SiC_3 \ (E) \cr &\delta_s \ SiC_3 \ (E+A_1) \cr &\delta_s \ SiC_3 \ (A_1) \\ &\delta_s \ SiC_3 \ (E+A_1) \cr &\delta_s \ SiC_3 \ SiC_$

Tabelle 4-1: Gegenüberstellung der Schwingungsdaten von Si(SiMe₃)₄ und -Hsi

4.2 SCHWINGUNGEN DES X-SISI₃-GERÜSTES

Das X-SiSi₃-Gerüst ist von pyramidaler Struktur und gehört der Punktgruppe C_{3v} an. Von den 9 theoretisch möglichen Vibrationen sind die Schwingungsbilder der 3 beobachtbaren Valenzschwingungen v_1 bis v_3 - theoretisch sind 4 möglich, aber v_3 ist zweifach entartet - in Abbildung 4-1 dargestellt.

Abbildung 4-1: Valenzschwingungen $v_1 - v_3$ des X-SiSi₃-Gerüstes

Während sich v_1 und v_2 durch Kopplung zweier getrennt berechenbarer Schwingungen verdeutlichen lassen, ist bei v_3 eine nennenswerte Beteiligung von X nicht erkennbar, so dass diese Schwingung, auch bei einer Änderung von X recht lagekonstant auftreten wird und vereinfacht als asymmetrische SiSi₃-Streckschwingung bezeichnet werden darf. In welchem Ausmaß auch v_s SiC₃ und/oder δ_s SiC₃ an den gemeinsamen Vibrationen $v_1 - v_3$ anteilig sind, lässt sich nicht ohne weiteres vorhersagen. Da es sich hierbei aber um energetisch deutlich differierende Moden (600 - 700 bzw. < 200 cm⁻¹) handelt, ist ihr Beitrag zu $v_1 - v_3$ als vergleichsweise gering einzustufen.

Die idealsten Kopplungsverhältnisse liegen bei der schon erwähnten Vergleichsverbindung Si(SiMe₃)₄ (d.h. X-Hsi mit X = SiMe₃) vor; hier wird die totalsymmetrische Schwingung v₁ bei 328 cm⁻¹ nur im Raman ($\equiv v_s$ SiSi₄) gefunden, die Moden v₂ und v₃ verschmelzen zum IR/Raman-koinzidierenden, asymmetrischen Pendant bei 455 cm⁻¹. Je stärker sich der Substituent X bezüglich seiner Masse, aber auch seiner elektronischen Eigenheiten von einer SiMe₃-Gruppe unterscheidet, umso deutlicher wird der Frequenzunterschied von v₂ und v₃ ausfallen, so dass letztendlich v₁ und v₃ als reine SiSi₃- und v₂ als Si-X-Valenzschwingung zu bezeichnen ist.

Das Hypersilylsilan, H-Hsi, kann als Extrembeispiel aufgeführt werden, bei welchem eine Kopplung der H-Si-Streckschwingung ($\equiv v_2$) bei ca. 2050 Wellenzahlen mit den SiSi₃-Valenzbewegungen (v_1 : 357 und v_3 : 444 cm⁻¹) zweifellos zu vernachlässigen ist. Nahezu identische Frequenzen (v_1 : 357 und v_3 : 434 cm⁻¹) werden für das fast isolierte Hsi⁻-Anion des weitgehend ionischen Hypersilanids [Li·3THF] [Hsi] angegeben [23] Bei den basefreien Alkalimetallhypersilaniden M^I-Hsi (M^I = Li bis Cs) mit ihren mehr oder weniger stark ausgeprägten M…Si-Brückenbindungen wird die asymmetrische Schwingung v_3 unverändert bei 433±1 cm⁻¹, die zugehörige symmetrische Mode v_1 aber deutlich erhöht um 370 cm⁻¹ beobachtet - in keinem Fall ließ sich jedoch eine den $(M^{I}-Si)_{n}$ -Gerüsten zugehörige IR- oder Ramanbande vom v₂-Typ gesichert identifizieren. Letztere kann offensichtlich nur erfasst werden, wenn der Si-X Bindung ein merklich kovalenter Charakter zukommt. v₂ lässt dann eine ausgeprägte, massenabhängige Frequenzänderung erkennen, die allerdings durch die Kopplung mit den SiSi₃-Bewegungen "nivelliert" und von entsprechenden, aber deutlich geringeren Frequenzverschiebungen von v₁ und v₃ begleitet wird. Besonders ausgeprägt spiegeln sich diese Verhältnisse in der homologen Reihe der Hypersilylhalogenide wider [78]:

Hal-Hsi		\mathbf{v}_1	v ₂	٧3
mit Hal =	F	335	774	470
	Cl	329	491	467
	Br	310	419	463
	Ι	300	393	463

Tabelle 4-2: Vergleich der Frequenzen von $v_1 - v_3$ bei den Hypersilylhalogeniden in cm⁻¹

Zum Vergleich: v Si-Hal: 892 (Me₃SiF); 471 (Me₃SiCl); 430 (Me₃SiBr); 333 (Me₃SiI) cm⁻¹

In der Reihe der bekannten Dimethyl(hypersilyl)metallverbindungen (Me₂M-Hsi)·THF und Trimethyl(hypersilyl)metallate [Me₃M-Hsi]⁻ der Erdmetalle , in welcher von Si-M Bindungen vergleichbarer Polarität auszugehen ist, wird der ebenfalls signifikante Massenunterschied noch deutlicher nivelliert, gibt sich aber im Mittelwert aus $v_1 + v_2$ noch gut zu erkennen (Tabelle 4-3).

Die Schwingungen $v_1 - v_3$ sind bei den Bis(hypersilyl)derivaten des Zinks, Cadmiums und Quecksilber zwar von gleicher Größenordnung, doch bedingt die Kopplung mit dem linearen Si-M-Si-Zentralskelett deutliche IR/Ramanalternanzen, so dass die Spektrenauswertung eine plausible Strukturbestimmung erlaubte [107].

Hsi-Verbindung	\mathbf{v}_1	v ₂	$v_3^{a)}$	$\frac{1}{2} (v_1 + v_2)$
Me ₂ Al-Hsi · THF	325	419	449	377
Me ₂ Ga-Hsi · THF	308	410	454	359
Me_2In -Hsi · THF	304	395	452	349
[Me ₃ Al-Hsi] ⁻	315	412	445	364
[Me ₃ Ga-Hsi] ⁻	298	405	451	352
[Me ₃ In-Hsi]	295	396	(444) ^{b)}	345

Tabelle 4-3: Vergleich der Frequenzen von v_1 bis v_3 bei Hypersilylerdmetall-verbindungen in cm⁻¹

^{a)} IR/Raman-Mittelwerte (soweit möglich) ^{b)} überlagert durch $v_s InC_3$

Bei den hier untersuchten, in der Regel basefreien metallorganischen Hypersilylverbindungen des Aluminiums und Galliums sind für die fraglichen Moden sehr enge Erwartungsbereiche vorgegeben, andererseits ist aber in keinem Fall mit messtechnisch erfassbaren Gleich- und Gegentaktaufspaltungen zu rechnen, so dass für fundierte schwingungsspektroskopische Strukturaussagen andere spezifische Molekülschwingungen herangezogen werden müssen.

In Tabelle 4-4 sind die X-SiSi₃-Gerüstschwingungen $v_1 - v_3$ der untersuchten

Verbindungen zusammengestellt:

Tabelle 4-4: X-SiSi₃-Gerüstschwingungen $v_1 - v_3$ in cm⁻¹

	v1 (IR/Raman) vs XSiSi3 - Glt.	v2 (IR/Raman) vs XSiSi3 - Ggt.	v ₃ (IR/Raman) v _{as} XSiSi ₃
Me. Al-Hsi, THF [22, 23]	325 mw / 325 m	418 m / 420 w	448 ms / 450 w b
$(Me_2Al-Hsi)_2$ 1	300 mw / 300 m	429 m / 430 w-m	445 w h / 444 mw
$Et_2Al-Hsi \cdot THF$ [22, 23]	346 w / 347 vw	425 w / 424 w	445 mw / 444 w
$(Et_2Al-Hsi)_2$ 2			
Me ₂ Ga-Hsi · THF [23]	310 vw / 307 m	410 mw / 410 mw	454 m / 454 w,b
(Me(Cl)Ga-Hsi) ₂ 3	308 vw / 309 ms	412 mw / 412 mw	448 mw / 448 w,b
Li[Me ₃ Ga-Hsi] · 3THF [23]	? / 298 w	(409) / 405 w	450 m / 452 vw
Li[Me ₃ Ga-Hsi] 4	298	412 / 395 m	451,440 / 451,439
Na[Me ₃ Ga-Hsi] 5	- / 302 ms	412 w / 412 m	451 m / 452 mw
$K[Me_3Ga-Hsi] \cdot C_7H_8$ 6			
$Me_2Sn(Hsi)_2$ 8	n.g. / 297m	n.g. / 396 m	n.g. / 451,441 w
Ga(Hsi) ₃ 10	- / 299 ms	- / 416 w	426 m / 424 m
H-Hsi	357 vs	2049 vs	444 m
Si(SiMe ₃) ₄	- / 329 ms	445 vs	/ 454 w
Cl-Hsi	329 s	491 vw	467 w

4.3 DIE DIALKYLHYPERSILYLALUMINIUMVERBINDUNGEN 1 UND 2

Neben den bereits diskutierten Kopplungen innerhalb der AlSiSi₃-Gerüste bewirken auch die Wechselwirkungen mit einigen Schwingungen der NMR-spektroskopisch postulierten, viergliedrigen Al₂C₂-Molekülskelette der im Kristall dimeren Titelverbindungen signifikante Frequenzverschiebungen, so dass sich die Spektren der früher beschriebenen, monomeren Addukte (R₂Al-Hsi)·THF (siehe Tabelle 4-4) nur bedingt für Vergleiche eignen. Andererseits sind bislang keine IR- bzw. Ramanspektren von Organoaluminiumverbindungen dieses sehr seltenen Strukturtyps mit verbrückenden und endständigen Alkylliganden bekannt; somit können lediglich die spektroskopischen Daten der reinen Trialkyle (AlMe₃)₂ [126] bzw. (AlEt₃)₂ [116] Vergleichszwecken dienen.

Für die zentrosymmetrische Al_2C_2 -Zentraleinheit der Symmetrie C_{2h} werden insgesamt 6 innere (Ring-)Schwingungen erwartet, von welchen die nachfolgend angegebenen Moden einen hohen Valenzanteil aufweisen:

(AlMe ₃) ₂ [126]		Zuordnung (Rasse für C _{2h})	(AlEt ₃) ₂ [116]	
IR	RE		IR	RE
365 s - 475 s	455 vs,p (390, ber.)	$ \begin{array}{l} \nu_{s} \ Al_{2}C_{2} \ - \ Glt. \ ("\nu_{2}" \ in \ A_{g}) \\ \nu_{s} \ Al_{2}C_{2} \ - \ Ggt. \ ("\nu_{17}" \ in \ A_{u}) \\ \nu_{as} \ Al_{2}C_{2} \ - \ Glt. \ ("\nu_{6}" \ in \ B_{g}) \\ \nu_{as} \ Al_{2}C_{2} \ - \ Ggt. \ ("\nu_{13}" \ in \ B_{u}) \end{array} $	340 m 493 m	437 s,p 370 w,dp

Tabelle 4-5: Al₂C₂-Gerüst(valenz)schwingungen für (AlR₃)₂

" v_2 ", " v_6 ", " v_{13} " und " v_{17} " sind der Literatur [126, 116] entnommene Bezeichnungen

Da sich die Vierringgerüste der Hypersilylaluminiumverbindungen 1 und 2 nicht grundlegend von denen der entsprechenden Trialkyle unterscheiden, müssen eventuelle Frequenzunterschiede adäquater Moden entweder auf die geänderte Masse eines der terminalen Al-Substituenten oder auf die eingangs zitierten Kopplungsverhältnisse

zurückzuführen sein. Beispielsweise wird die wohl markanteste, nur Raman-aktive Al₂C₂-Pulsation ("v₂") von 445±10 cm⁻¹ um fast 100 Wellenzahlen erniedrigt bei 351 (1) bzw. 357 cm⁻¹ (2), ebenfalls nur im Ramanspektrum gefunden. Da aber das zugehörige, nur IR-aktive Gegentaktpendant " v_{17} " bei 365 (1) bzw. 338 cm⁻¹ (2) unverändert auftritt, wird der Einfluss der Massenerhöhung (Me, Et \rightarrow Hsi) vom Einfluss der Schwingungskopplung offenbar bei weitem übertroffen. Ähnliches gilt für die asymmetrischen Bewegungen " v_6 " und " v_{13} ", von welchen aber nur letztere gesichert zu lokalisieren ist und im Vergleich zu den Trialkylen deutlich erhöht bei 568 (1) bzw. 538 cm⁻¹ (2) beobachtet werden kann. Schließlich gibt sich die Zentrosymmetrie der beiden Hypersilylverbindungen auch in der IR/Raman-Alternanz der terminalen R-Al-Valenzschwingungen zu erkennen: für 1 wird die v AlC-Gleichtaktbewegung bei 632 cm^{-1} als mittelstarker Begleiter der v_s SiC₃ Gleichtakt bei 626 cm⁻¹ gefunden, während das Gegentaktpendant als intensitätsschwache, etwas diffuse Absorption bei 652 cm⁻¹ auftritt. Für 2 ist nur die entsprechende Ramanlinie bei ca. 595 Wellenzahlen zu finden, das erwartete Gegenüber im IR-Spektrum wird vermutlich von der intensiven symmetrischen SiC₃-Gegentaktmode bei 622 Wellenzahlen verdeckt. Diese Streckschwingungen sind z.B. gegenüber den entsprechenden Vibrationen der Alkylaluminiumdihalogenide (RAlHal₂)₂ (R = Me, Et; Hal = Cl, Br) ebenfalls sehr deutlich erniedrigt (50-70 cm⁻¹), so dass letztlich auch für die gemeinsam zu betrachtenden Schwingungen $v_1 - v_3$ der AlSiSi₃-Gerüsteinheiten mit Frequenzverschiebungen gegenüber denen der homologen, aber monomeren THF-Komplexe (R₂Al-Hsi)·THF zu rechnen ist. Diese Änderungen sind aber vergleichsweise gering, sie betreffen nur v_1 $(\Delta v_{max} = -25 \text{ cm}^{-1})$ und v_2 ($\Delta v_{max} = +10 \text{ cm}^{-1}$), während v_3 (erwartungsgemäß) lediglich marginale Verschiebungen aufweist. Bei den Assoziaten mögliche Gleich- und Gegentaktaufspaltungen sind nicht zu erfassen, d.h. es werden nur koinzidierende IR- und Ramanbanden (meist geringer Intensität) gefunden. Die wichtigsten Frequenzwerte der festen Hypersilanide 1 und 2 sind nachfolgend in Tabelle 4-6 zusammengefasst.

(Me ₂ Al-Hsi) ₂ 1			$(Et_2Al-Hsi)_2$ 2		
IR fest	RE fest	RE Lsg. (C_6D_6/C_7H_8)	IR fest	RE fest	Zuordnung
1189 m	1193 mw		n. beob. 985 m 957 w	1190 mw,b 988 mw 957 vw	$\delta_s CH_x(Al)$ $\left. \right\} v C-C, \rho CH_3(AlEt)$
684 s 652 w,b	684 ms	684 mw,b,dp -	682 s (622)	683 ms	v_{as} SiC ₃ - Ggt. + ρ CH ₃ (Al) v Al-C - Ggt.
- - 623 s	632 ms 626 vs	627 s,p	- 622 vs	628 vs	v Al-C - Glt. $v_s \operatorname{SiC}_3$ - Glt. $v_s \operatorname{SiC}_3$ - Ggt. + $\rho \operatorname{CH}_2(\operatorname{Al})$
-	-	-	596 w,sh	595 mw 588 sh	$ \left. \right\} v \text{Al-C} - \text{Glt}. $
454 mw 442 w	451 w 444 w	441 w,b,dp	444 mw 438 mw	439 mw 435 sh	$\left. \begin{array}{c} V_{13} & (V_{as} \operatorname{AI}_2 C_2 - \operatorname{Ggt.}) \\ V_3 & (V_{as} \operatorname{SiSi}_3) \end{array} \right.$
429 m	429 m(w)	428 vw (?)	422 mw	410 w,b(?) 393 vvw	v ₂ (v _s AlSiSi ₃ - Ggt.) "v ₆ " ?
365 m - 307 w	- 351 ms 298 mw	- 351 s,p 300 mw,p	338 mw - n. gem.	- 357 ms 310 mw	" v_{17} " ($v_s Al_2C_2 - Ggt.$) " v_2 " (Al ₂ C ₂ -Pulsation) v_1 ($v_s AlSiSi_3 - Glt.$)
n.gem.	288 mw 200 ms	(290 vw,sh) 200 m,p	C	191 s	δ_s CAl(Si)

Tabelle 4-6: Wichtige IR- und Ramanfrequenzen der Dialkylaluminiumhypersilylverbindungen 1 und 2

Die Notationen " v_2 ", " v_6 ", " v_{13} " und " v_{17} " ist den Arbeiten über die Trialkyle entnommen [116, 126]

Die in der Liste zusätzlich aufgenommenen Ramandaten der gelösten Methylverbindung 1 unterscheiden sich nur unwesentlich von denen des Feststoffes, so dass von übereinstimmenden Molekülstrukturen auszugehen ist. Im Gegensatz dazu differieren die Spektren des kristallinen und geschmolzenen (ca. 60 °C) Ethylhomologen sehr deutlich, was plausibel mit einer Dissoziation der Dimeren interpretiert werden kann. So sind die Ramanlinien des Feststoffes bei 595, 410, 357, und 191 cm⁻¹ im Spektrum der geschmolzenen Verbindung nicht oder nur noch andeutungsweise zu finden, dafür treten bei 551 (w,b) und 333 cm⁻¹ (m) neue Banden auf, die monomerem Et_2Al -Hsi zuzuordnen sind.

Das 7atomige C_2Al -SiSi₃-Gerüst der nicht assoziierten Ethylverbindung ist von geringerer Symmetrie (maximal C_s) und erfordert insgesamt 15 Eigenschwingungen (davon 5 A' und 1 A" Valenzbewegungen), die stets koinzidierend in IR- und Ramanspektren auftreten müssen. Die große Empfindlichkeit von 2 verhinderte zwar die Registrierung eines IR-Spektrum des geschmolzenen Produktes, doch sind auch an Hand der Ramanaufnahme Aussagen möglich.

Die obengenannte, höherfrequente, stark verbreiterte Ramanbande geringer Intensität ist polarisiert und gehört der symmetrischen AlC₂-Streckschwingung an. Sie stimmt in ihrer Lage mit der entsprechenden Mode von (Et₂AlCl)₂ überein, welche allerdings zu einer sehr starken Ramanlinie Anlass gibt [116]. Die zugehörige asymmetrische Bewegung (für (Et₂AlCl)₂ mit geringer Stärke bei 668 cm⁻¹ beobachtet) wird im Spektrum von flüssigem **2** vermutlich durch eine der intensiven SiC₃-Valenzschwingungsbanden bei 626 oder 684 cm⁻¹ verdeckt. Die Vibrationen des verbleibenden AlSiSi₃-Fragmentes sind denen des SiSi₄-Gerüstes der Vergleichsverbindung Si(SiMe₃)₄ [75], aber auch denen des AlSi₃-Skelettes von Al(SiMe₃)₃ (v_s AlSi₃: 312, v_{as} AlSi₃: 415/390 cm⁻¹ [21]) ähnlich und signalisieren damit ein gegenüber den anderen Beispielen geändertes Ausmaß der Schwingungskopplungen.

Die asymmetrische Mode v_3 ist davon am wenigsten betroffen, mit 445 cm⁻¹ (w,b,dp) ist sie im Vergleich zum Feststoff nur ca. 5 Wellenzahlen zu höheren Werten verschoben, ihre schwache Aufspaltung lässt sich mit der geringen Molekülsymmetrie erklären. Die verbleibenden Banden erheblich höherer Intensität bei 333 und 301 cm⁻¹ sind polarisiert, also Moden symmetrischen Charakters und in erster, aber guter Näherung der v Al-Si ($\approx v_2$) bzw. der v_s SiSi₃ ($\approx v_1$) zuzuordnen, selbst wenn wiederum die beträchtliche Kopplung der beiden Schwingungen wahrscheinlich ist. Die signifikante Erniedrigung von v_2 beim Übergang vom Dimer (422/410 cm⁻¹) zum Monomer (?/333 cm⁻¹) lässt aber zusätzlich auf eine merkliche Aufweitung der Al-Si Bindung schließen.

Die Ramanspektren konzentrierter, für Messungen noch geeigneter Lösungen in Benzol oder Toluol zeigen sowohl die Linien des festen wie auch des geschmolzenen Produktes, woraus eine teilweise Dissoziation abgeleitet werden kann.

Nachfolgend sind die wichtigsten und aussagekräftigsten Ramanfrequenzen der Spektren von festem, gelöstem und geschmolzenem Diethylhypersilylaluminium (2) einander gegenübergestellt.

Raman (fest)	Raman (Lsg. C ₆ D ₆ /C ₇ H ₈)	Raman (Schmelze)	Zuordnung
1100 mw b	1186 sh h		δ CH. D
- -	1180 sii,0 1182 w n	1182 mw n	$\delta_{\rm s} {\rm CH}_2 D$
682 s	684 mw.dp	684 m.dp	$v_{s} \operatorname{SiC}_{2} D + M$
628 vs	626 s,p	627 vs,p	$v_{as} SiC_{3} D + M$
595 mw)	
588 sh	585 vw,sh	- }	VAIC D
	550 vw,p	552 w,b,p	$v_s AlC_2 M$
439 mw 435 sh	445 vw,b,dp	445 w,b,dp 433 sh	$v_{as} \operatorname{SiSi}_3(\approx v_3) D+M$
410 w,b	414 vw,dp	410 vvw,sh,dp	$v_2 D$
393 vvw	392 vw(dp?)	-	$v_6 D$
357 ms	360 m,p	359 vvw,p	$v_s Al_2C_2 D$
-	334 ms,p	333 m,p	v Al-Si (\approx v ₂) M
310 mw	-	-	$\mathbf{v}_1 D$
-	300 m,p	301 mw,p	v_{s} SiSi ₃ ($\approx v_{1}$) M
?	284 vw,sh	285 w,sh,p	$\delta_{s} AlC_{2} + \delta AlCC M$
191 vs	~188 w,sh	-	δ CAlSi D

Tabelle 4-7: Wichtige Ramanfrequenzen von festem, gelöstem und flüssigem (Et₂Al-Hsi)₂ 2

D = Dimer; M = Monomer

Abbildung 4-2: Ausschnitt aus den Ramanspektren von festem, gelöstem und flüssigem (Et₂Al-Hsi)₂ 2

4.4 HYPERSILYL-METHYLGALLIUMCHLORID, (ME(CL)GA-HSI)₂; 3

Die Spektren von festem und gelöstem Hypersilyl-methylgalliumchlorid **3** sind weitgehend identisch, es kann somit für beide Zustände von übereinstimmenden Assoziatstrukturen ausgegangen werden.

Da einerseits die Frequenzlage der Ga-C Streckschwingung mit 565 cm⁻¹ eindeutig eine terminale Gallium-Methylgruppe anzeigt, andererseits die drei gekoppelten

65

Schwingungen $v_1 - v_3$ keine signifikanten Veränderungen erkennen lassen, kann nur dem Chlorliganden Brückenfunktion zukommen, zumal auch keine IR- und/oder Ramanbande in dem für endständige Ga-Cl Streckschwingungen typischen Bereich knapp unterhalb von 400 Wellenzahlen auftritt. Als wichtigste Vibration des somit vorliegenden Ga₂Cl₂-Molekülgerüstes ist dessen Pulsation ("v₂"), wie für (Me₂GaCl)₂, (MeGaCl₂)₂, (GaCl₃)₂ [127] beobachtet, zwischen etwa 270-320 cm⁻¹ als Ramanlinie starker bis mittlerer Intensität zu erwarten. Die im Ramanspektrum der festen Titelverbindung bei 309 cm⁻¹ auftretende, der fraglichen Schwingung zuzuordnende Bande hat - im Gegensatz zu den Vergleichsverbindungen - ein IR-Pendant schwacher bis mittlerer Stärke. Daraus ist zunächst zwar auf eine azentrische Molekülstruktur zu schließen, doch muss hier eine zufällige Entartung mit der gekoppelten GaSiSi₃-Mode v_1 in Betracht gezogen werden. Dafür spricht die Aufspaltung der genannten Ramanlinie im Spektrum der Lösung. Der nur hier erkennbare, ebenfalls polarisierte Begleiter bei 296 cm⁻¹ hat kein gegenüber im IR und kann somit der gesuchten Vierringpulsation eines zentrischen Moleküls zugeordnet werden.

Die nur in Absorption erlaubten Valenzschwingungen " v_{13} " und " v_{17} " des Ga₂Cl₂-Skeletts fallen zwar mit SiC₃-Deformationsschwingungen zusammen, geben sich aber bei 252 (" v_{17} ") und 222 cm⁻¹ (" v_{13} ") auf Grund ihrer hohen Intensität dennoch gut zu erkennen. Diese und weitere Frequenzwerte der Spektren sind in Tabelle 4-8 zusammengefasst.

IR fest	Raman fest	Raman Lsg. (C ₆ D ₆ /C ₆ D ₆)	Zuordnung
1190 mw	1197 m	1192 mw,p	$\delta_s CH_3(Ga)$
715 m,b	-	-	ρ CH ₃ (Ga)
688 s	689 mw	687 mw,dp	v_{as} SiC ₃
-	630 vs	627 vs,p	$v_s SiC_3$ - Glt.
623 s	622 w,sh	-	$v_s SiC_3 - Ggt.$
566 ms,b	568 s-vs	564 m,p	v Ga-C
453 sh 449 m	453 w 448 mw	450 vw,dp	$v_3 (v_{as} \text{ GaSiSi}_3)$
412 mw	412 m	411 w.b.tp	v_2 (v_s GaSiSi ₃ - Ggt.)
309 mw	308 ms	308 m,p 296 mw,p	$\begin{cases} v_1 (v_s \text{ GaSiSi}_3 - \text{Glt.}) \\ + v_s \text{ Ga}_2\text{Cl}_2 ("v_2") \end{cases}$
252 ms	248 mw	254 w,b,p	$\delta_{s} SiC_{3} + "v_{17}"$
	233 m	231 w,dp	$\delta, \rho SiC_3$
222 s,b	223 mw	222 w,b,dp	$f + "v_{13}"$
184 m,b	186 ms	n.beob.	δCGaSi
,	92 mw h	_	δ SiSia

Tabelle 4-8: Auszug aus den Schwingungsspektren von (Me(Cl)Ga-Hsi)₂ (3)

" v_2 ", " v_{13} " und " v_{17} " sind der Literatur entnommene Notationen; die zweite ramanaktive Ga₂Cl₂-Ringschwingung " v_6 " ist nicht zu beobachten.

4.5 TRIS(HYPERSILYL)GALLIUM, GA(HSI)₃; 10

Die maximal mögliche Symmetrie von monomerem Trishypersilylgallium **10** gehört der Punktgruppe C_{3h} an, wobei zusätzlich zum Galliumatom und den zentralen Si-Atomen der drei Hsi-Liganden noch jeweils ein Si-Atom der peripheren SiMe₃-Gruppen innerhalb, die verbleibenden zwei Si(Me₃)-Atome oberhalb bzw. unterhalb der trigonalen Basisfläche (GaSi₃) angeordnet sind. Bereits die Verdrillung einer Hsi-Gruppierung bedingt eine drastische Symmetrieerniedrigung.

Rechnerisch erfordert das GaSi₃-Skelett der Molekel zwei (v_s GaSi₃ in A' und v_{as} GaSi₃ in E'), die spezielle, in der Grundfläche orientierte Si-Si'Me₃-Einheit ebenfalls zwei (v SiSi' Glt. in A' und v SiSi'-Ggt. in E') und schließlich das SiSi₂-Paar insgesamt vier Valenzschwingungen (v_s SiSi₂-Glt. in A', v_s SiSi₂-Ggt. in E', v_{as} SiSi₂-Glt. in A" und v_{as} SiSi₂-Ggt. in E"), die teilweises Alternativverhalten (A' und E" nur raman-

aktiv) zeigen müssen. Da sich die verschiedenen SiSi_x-Moden kaum unterscheiden und messtechnisch nicht aufzutrennen sein werden, verbleiben für fundierte Strukturaussagen lediglich die beiden Moden des GaSi₃-Basisgerüstes: die symmetrische Streckbewegung ist bei 381 bzw. in Lösung bei 378 cm⁻¹ nur im Ramanspektrum zu beobachten, die zugehörige, entartete asymmetrische Schwingung wird koinzidierend in IR und Raman bei 389/387 Wellenzahlen gefunden. Die in Vergleich zu Ga(SiMe₃)₃ (v_{as}: 349; v_s 312 cm⁻¹ [127]) beträchtlich erhöhte Frequenzlage beider Schwingungen ist auf deren ausgeprägte Kopplung mit den SiSi₃-Vibrationen (bzw. den SiSi'- sowie SiSi₂-Streckbewegungen) zurückzuführen. Letztere werden bei 425 cm⁻¹ (\equiv v₃, gegenüber der "Norm" um ca. 25 cm⁻¹ zu niedrigeren Werten verschoben und im Spektrum des Feststoffs mehrfach aufgespalten, siehe Tabelle 4-9) und um 300 Wellenzahlen (\equiv v₁, schwache Gleich- und Gegentaktaufspaltung) gemessen. v₂, die wohl markanteste der drei gekoppelten Gerüstschwingungen ist bei diesem Beispiel dem (gewichteten) Mittel der beiden GaSi₃-Moden gleichzusetzen ((1/3)·(380+2·389) = 386).

Abbildung 4-3: IR- und Raman-Spektrum von Ga(Hsi)₃ (10)

IR fest	Raman fest	Raman Lsg. (C ₆ D ₆ /C ₆ D ₆)	Zuordnung
	688 sh	689 sh.dp) cia
680 s	682 m(s)	678 mw,b,dp	$V_{as} S_1 C_3$
	631 s	632 s,p	v_s SiC ₃ - Glt.
626 s-vs	622 sh	623 sh	v_s SiC ₃ - Ggt.
437 vw	431 w		
426 m	425 mw	424 m,dp	v_{as} SiSi ₃
	416 w	-)
389 mw	388 w,sh	387 w,sh,dp	v_{as} GaSi ₃
-	381 m	378 ms,p	v_s GaSi ₃ (~ v_2)
-	347 vvw	358 w,b,p	?
301 w,b	298 mw,b	299 m,b,p	v_1 (v_s SiSi ₃)
n. gem.	250 sh,b	251 w,vb,dp	
	232 mw 222 mw	228 w,b,dp	$\delta_{as}, \rho SiC_3$
	181 s-vs	181 vs,p	δ_s SiC ₃ - Glt.
		175 m,dp	δ_{s} SiC ₃ - Ggt.
	139 ms,b	137 m,b,p	δ GaSi ₃ (?), δ GaSiSi (?)
	73 vvs	· · · <u>-</u>	δSiSi

Tabelle 4-9: Wichtige IR- und Ramanfrequenzen von Ga(Hsi)₃ (10)

4.6 DIE SPEKTREN DER TRIMETHYLGALLATE M^I[ME₃GA-HSI] 4, 5 UND 6

Trotz identische Gallatanionen zeigen die Spektren der Titelverbindungen sowohl untereinander als auch zu denen des THF-komplexierten Lithiumderivats (siehe Tabelle 4-4, [23]) einige Unterschiede, die nicht nur in den zusätzlichen Eigenschwingungen der eingelagerten Toluolmoleküle (**5** und **6**) bzw. denen der addierten Etherbase (THF) bestehen.

So stimmen die Spektren der festen Toluolsolvate **5** (Na) und **6** (K) in weiten Bereichen überein: abgesehen von den lagekonstanten SiC₃-Valenz- bzw. -Deformationsschwingungen zwischen 700-600 bzw. unterhalb 250 Wellenzahlen gilt dies auch für v_{as} und v_s SiSi₃ bei 451 ($\equiv v_3$) und 302 ($\equiv v_1$) sowie für eine im Raman mit starker bis mittlerer Intensität auftretende GaC₃-Streckschwingung bei ca. 500 cm⁻¹. Ihre niedere Frequenzlage gleicht denen anderer Trimethylgallationen (wie z.B. [Me₃GaCl]⁻ mit v_{as} GaC₃: 540, v_s GaC₃: 511 cm⁻¹ [127] oder GaMe₄⁻ mit v_{as} : 492, v_s : 488 cm⁻¹ [128] und lässt sich mit der negativen Ionenladung zwanglos erklären. Andererseits können aber auch die an Hand der ¹³C NMR-Spektren postulierten (s. Seite 46), unterschiedlich ausgeprägten M¹...H-C-Kontakte der Gallium-ständigen Methylgruppen zu Frequenzänderungen der GaC₃-Moden Anlass geben. Zwar konnte in keinem Fall eine IR- und/oder Ramanbande detektiert werden, die einer derartigen M¹...H-C(Ga) Kontakt-Brückenbindung zuzuordnen ist, doch spiegelt sich deren Einfluss auf die Ga-C Bindung in zugehörigen Absorptions- und Ramanbanden wider.

Neben der jeweils relativ starken, schon genannten Ramanlinie bei $500 \pm 1 \text{ cm}^{-1}$ findet man eine weitere Bande geringer Intensität bei 478 (6) bzw. 470 cm⁻¹ (5), die nicht dem GaSiSi₃-Skelett angehört und demzufolge der Vibration einer mehr oder weniger "gelockerten" Gallium-Methylbindung zugeordnet werden kann. Während die frequenzhöheren Ramanlinien koinzidierende Absorptionsbanden hoher Stärke aufweisen, besitzen die niedrigeren kein direktes IR-Pendant. (Die in gleicher Größenordnung (470-472 cm⁻¹) auftretende, ebenfalls intensive CC-Ringdeformation des Toluolmoleküls (Rasse B₁) gibt sich im IR durch ihre Schärfe zweifelsfrei zu erkennen, im Raman ist sie hingegen nicht zu beobachten.)

Somit lassen sich die Frequenzunterschiede der Ga-C Vibrationen durchaus mit geänderten Ga-C Bindungslängen interpretieren. Je mehr sich die zugehörigen Schwingungsfrequenzen denen des vermeintlich "freien" Gallations im [Li(THF)₃]-Komplex annähern, umso besser müssten auch die strukturellen Fakten übereinstimmen. In welchem Ausmaß einzelne oder alle der insgesamt drei Gallium-Methylgruppen tatsächlich zu Brückenfunktionen herangezogen werden, ist den Spektren allerdings nicht zu entnehmen. In folgender Tabelle der wichtigeren IR- und Ramanfrequenzen der Trimethylgallate M^I[Me₃Ga-Hsi] sind diese GaC(H····M^I)-Schwingungen daher nur summarisch zugeordnet.

Abbildung 4-4: Gegenüberstellung der Ramanspektren der Hsi-gallate 4, 5 und 6

Li[Me ₃ Ga	-Hsi] 4	Na[Me ₃ Ga	-Hsi] 5	K[Me ₃ Ga-]	Hsi] 6	Zuordnung
IR	Raman	IR	Raman	IR	Raman	
n. beob. 728 ms 684 s - 623 s 528 ms	1192 w - 684 m 628 s-vs - 527 s	1188 w n. beob. 680 s - 621 s 501 s,b	1192 vw n. beob. 680 ms 626 vs 621 w,sh 500 ms	1186 vw 729 m,sh 678 s - 621 s 507 s	n. beob. n. beob. 678 ms 626 vs	$\delta_{s} CH_{3}(Ga)$ $\rho CH_{3}(Ga)$ $v_{as} SiC_{3}$ $v_{s} SiC_{3} - Glt.$ $v_{s} SiC_{3} - Ggt.$
440 mw 451 mw 412 m n. gem.	438 mw 451 w 395 mw 298 ms	479 mw 451 m 412 mw n. gem.	470 m 452 mw 412 m 302 ms	501 s 485 sh 451 m 408 w,b n. gem.	501 ms 478 mw 452 mw 408 mw 302 ms	$\begin{cases} v \operatorname{GaC}(H \cdots M^{1}) \\ v_{as} \operatorname{SiSi}_{3} (\equiv v_{3}) \\ v_{2} \\ v_{s} \operatorname{SiSi}_{3} (\equiv v_{1}) \end{cases}$
n. gem. n. gem. n. gem.	231 mw 222 mw 172 vs	n. gem. n. gem. n. gem. n. gem.	253 sh,vw 236 w 221 mw 174 vs,b	n. gem. n. gem. n. gem. n. gem.	252 sh,w 233 w,b 222 w,b 171 vs	$\left. \begin{array}{l} \delta, \rho \operatorname{SiC}_3 \\ (s. \operatorname{Tabelle} 4-1) \end{array} \right.$

Tabelle 4-10: Ausgewählte IR und Ramanfrequenzen der festen Gallate 4, 5 und 6

Abbildung 4-5: Korrelation der v GaC-Frequenzen (RE) mit $\delta^{13}C(Ga)$ und ${}^{1}J(C(Ga),H)$ (NMR)

4.7 TETRAKIS(HYPERSILYL)DIINDIUM(II), (HSI)₂IN-IN(HSI)₂; 12

Das nur in Absorption messbare Spektrum der Diindiumverbindung **12** ist dem von $Ga(Hsi)_3$ (**10**) sehr ähnlich. Da aber die beiden aussagekräftigsten Gerüstschwingungen, v In-In und v_s InSi₂-Gleichtakt - unabhängig vom Verdrillungswinkel der Molekülhälften - IR- inaktiv sind (maximal mögliche Symmetrien: D_{2h} (eclipsed), D_{2d} (staggered) oder D₂ (teilweise verdrillt), bei nicht idealer Orientierung der SiMe₃-Einheiten nur C₂ oder geringer), lassen sich keine fundierten Angaben zur Molekülstruktur machen. Die wenigen, zwischen ca. 700 und 270 cm⁻¹ auftretenden IR-Banden sind in Analogie zu Ga(Hsi)₃ wie folgt zuzuordnen: v_{as} SiC₃ 680 ms; v_s SiC₃ - Ggt. 624 s; v_{as} SiSi₃ 441 sh/431 mw; v_{as} InSi₂ - Ggt. 393 mw; v_s SiSi₃ - Ggt. (+ v_s InSi₂ -Ggt.?) 291 w,b.

4.8 BIS(HYPERSILYL)DIMETHYLZINN(IV), ME₂SN(HSI)₂; 8

Die Spektren der Titelverbindung zeigen im Bereich der wichtigen Hsi-Eigenschwingungen keine Besonderheiten. Man beobachtet die gekoppelten Moden in erwarteter Größenordnung bei (IR/Raman) 451, 440/450, 441 cm⁻¹ (v₃), 403(?)/396 cm⁻¹ (v₂) und -/297 cm⁻¹ (v₁). Von höherem Aussagewert sind aber die beiden SnC₂-Streckschwingungen bei 499/499 cm⁻¹ (v_{as}) und 493/493 cm⁻¹ (v_s), deren geringe Frequenzdifferenz eine signifikante Verkleinerung des C-Sn-C Bindungswinkels signalisiert und mit den Ergebnissen der ¹H und ¹³C NMR-Messungen (siehe S.51) bestens korreliert. Die im Vergleich zu anderen Me₂Sn-Derivaten [127] niedrige Frequenzlage der beiden SnC₂-Valenzschwingungen kann mit einer Aufweitung der Sn-C Bindungsabstände in Zusammenhang gebracht werden. Ramanspektroskopisch konnte noch gezeigt werden, dass sich die Verbindung beim Versuch der sublimativen Reinigung in Vakuum unter Bildung von (Hsi)₂ (13) zersetzt. Ob es sich bei dem ebenfalls im Sublimat auftretenden, Zinn-haltigen Produkt eventuell um Me₂(Hsi)Sn-Sn(Hsi)Me₂ handelt (509/503 cm⁻¹: v_{as}/v_s SnC₂; 157 cm⁻¹: v SnSn (?)), ist (leider) nicht genauer untersucht worden.

In nachfolgender Liste sind die wichtigsten IR- und Ramanfrequenzen von Me₂Sn(Hsi)₂ enthalten.

IR fest	Raman fest		Zuordnung
1169 vw 737 m 685 s - 624 s 498 m	1177 mw 1170 mw 737 vw,sh 686 m,b 630 vs 622 w,sh 499 m	}	$\delta_{s} CH_{3}(Sn)$ $\rho CH_{3}(Sn)$ $v_{as} SiC_{3}$ $v_{s} SiC_{3} - Glt.$ $v_{s} SiC_{3} - Ggt.$ $v_{as} SnC_{2}$
493 mw 451 w 440 w 403 vw - n. gem. n. gem.	493 vs 451 w 441 vw 401 vw,sh 396 m 297 m 80 m	} }	$v_{s} SnC_{2}$ v_{3} v_{2} v_{1} $\delta SiSi_{3}$

Tabelle 4-11: Ausgewählte IR und Ramanfrequenzen von 8

5 RÖNTGENSTRUKTURANALYSEN

5.1 Hypersilylaluminiumverbindungen

5.1.1 Hypersilyl-dimethylaluminium, (Me₂Al-Hsi)₂; 1

Hypersilyl-dimethylaluminium **1** kristallisiert in der triklinen Raumgruppe $P\bar{1}$ in Form farbloser Nadeln mit den Konstanten: a = 8,837(4) Å; α = 95,93(2)°; b = 9,299(5) Å; β = 99,29(2)°; c = 13,861(7) Å; γ = 117,20(3)°; V = 979,2(8) Å³; R₁ = 0,0850; Z = 2 (1 Dimer)); ρ = 1,033 Mg/m³ (S. 141). Die Verbindung liegt im Kristall und in Lösung dimer vor, die Assoziation erfolgt - wie NMR- und schwingungsspektroskopisch vorhergesagt - über zwei 2-Elektronen-3-Zentren Al-C-Al Methylbrücken. Solche Assoziationen sind sehr selten zu beobachten; abgesehen vom Trimethylaluminium [129, 130, 131] ist sie meines Wissens nur noch bei der dimeren Amidoverbindung (Me₂AlNR¹R²)₂ mit den sperrigen N-Substituenten R¹ = SiMe₃ und R² = 2,6-(ⁱPr)₂C₆H₃ von *Waezsada et al.* röntgenographisch nachgewiesen [132]. Einfache Al-Me-Al-Brücken sind bei den "Sesquiverbindungen" Me₅Al₂OCMe₃ von *Belyakov et al.* [133] sowie Me₅Al₂NPh₂ von *Magnuson* [134] (Assoziate aus AlMe₃ und Me₂AlOCMe₃ bzw. Me₂AlNPh₂) gefunden worden.

Die planaren Al_2C_2 -Vierringgerüste der genannten, zweifach methylverbrückten Moleküle sind fast identisch: die Al-C Bindungslängen variieren innerhalb der engen Grenzen von 213±2 pm, die Ringwinkel Al-C-Al bzw. C-Al-C um 76±1° bzw. 104±1°. Bei der Titelverbindung wurden für die Al-C01 Bindungslänge 210,9 pm und Al-C01A 211,3 pm, für die Bindungswinkel Al-C01-AlA 76,8° und C01-Al-C01A 103,2° gefunden. Ebenso liegt der Al····AlA Abstand mit 262,3 pm im Rahmen der literaturbekannten Werte. **1** liegt in der trans-Form vor, weist also die zentrosymmetrische Punktsymmetrie C_{2h} auf (Abbildung 5-1). Die Si-Al-C Winkel für die verbrückenden C-Atome liegen bei 110,2° (C01) und 111,3° (C01A), für das endständige bei 117,7° (C1); der Torsionswinkel Si3-Si-Al-C01 beträgt 179,9°. Die terminalen Al-C (192,0(7) pm), Al-Si (239,6(2) pm) und Si-Si (230,9(2) pm) Bindungen sind gegenüber den "Normwerten" (Al-C:195, Al-Si: 247, Si-Si: 235 pm) zum Teil deutlich verkürzt, damit aber noch nicht ungewöhnlich. Beispielsweise ergibt sich die mit Hilfe der modifizierten Schomaker-Stevenson-Gleichung berechnete Al-Si Einfachbindungslänge zu lediglich 232,4 pm [114, 115, 135].

Abbildung 5-1: Molekülstruktur von (Me₂Al-Hsi)₂ (1) (ohne H-Atome)

Eine Auswahl weiterer, wichtiger Molekülparameter von 1 ist in folgenden Tabellen enthalten.

Parameter	Abstände (in pm)	Parameter	Abstände (in pm)	Parameter	Abstände (in pm)
Al-C1	192,0(7)	Si-Si1	230,7(2)	Si2-C23	182,5(8)
Al-C01	210,9(6)	Si-Si2	230,9(2)	Si2-C22	183,2(7)
Al-C01A	211,3(5)	Si-Si3	231,2(2)	Si2-C21	183,9(8)
Al-Si	239,6(2)	Si1-C11	183,3(6)	Si3-C31	181,9(7)
Al-··AlA	262,3(4)	Si1-C13	184,9(7)	Si3-C33	182,1(11)
C01-AlA	211,3(5)	Si1-C12	185,1(7)	Si3-C32	182,0(14)

 Tabelle 5-1: Ausgewählte Bindungsabstände für 1

 Tabelle 5-2: Ausgewählte Bindungswinkel für 1

Parameter	Bindungswinkel in °	Parameter	Bindungswinkel in °
C1-Al-C01	106,7(3)	C11-Si1-C12	106,6(4)
C1-Al-C01A	106,7(3)	C13-Si1-C12	107,3(3)
C01-Al-C01A	103,2(2)	C11-Si1-Si	110,5(2)
C1-Al-Si	117,7(2)	C13-Si1-Si	111,0(2)
C01-Al-Si	110,2(2)	C12-Si1-Si	112,0(2)
C01A-Al-Si	111,3(2)	C23-Si2-C22	109,0(5)
C1-Al-AlA	117,5(2)	C23-Si2-C21	106,7(6)
C01-Al-AlA	51,65(15)	C22-Si2-C21	105,8(4)
C01A-Al-AlA	51,5(2)	C23-Si2-Si	111,5(3)
Si-Al-AlA	124,76(11)	C22-Si2-Si	112,5(3)
Al-C01-AlA	76,8(2)	C21-Si2-Si	111,1(2)
Si1-Si-Si2	108,85(9)	C31-Si3-C33	107,9(5)
Si1-Si-Si3	109,08(9)	C31-Si3-C32	107,8(6)
Si2-Si-Si3	108,41(9)	C33-Si3-C32	105,3(6)
Si1-Si-Al	116,59(9)	C31-Si3-Si	113,2(3)
Si2-Si-Al	106,84(9)	C33-Si3-Si	111,0(4)
Si3-Si-Al	106,81(8)	C32-Si3-Si	111,3(5)
C11-Si1-C13	109,3(4)		

5.1.2 Hypersilyl-diethylaluminium, (Et₂Al-Hsi)₂; 2

Ebenso wie **1** kristallisiert **2** in der triklinen Raumgruppe $P\overline{1}$ in Form farbloser Quader mit den Konstanten: a = 9,649(3) Å; α = 85,44(2)°; b = 14,594(4) Å; β = 87,99(2)°; c = 16,054(4) Å; γ = 76,44(2)°; V = 2190,3(10) Å³; R₁ = 0,0352; Z = 4 (2 Dimere); ρ = 1,009 Mg/m³ (S. 143). Während die Methylverbindung in Lösung und im Kristall dimer vorliegt und zu den seltenen, über Methylgruppen verbrückten Organoaluminiumderivaten zählt, ist das erheblich niedriger schmelzende Ethylhomologe in verdünnter Lösung monomer, was bereits die ausbleibende Signalaufspaltung der bei tiefen Temperaturen (bis ca. 190 K) vermessenen ¹H und ¹³C{¹H} NMR-Spektren vermuten lässt. Des weiteren weisen die Unterschiede in den Ramanspektren fester, gelöster und geschmolzener Proben (ca. 55° C) auf einen Wechsel des Assoziationsgrades hin (S. 60).

Das Methylhomologe ist mit der Titelverbindung nicht isotyp, da hier in der Elementarzelle zwei kristallographisch unabhängige Dimere gefunden werden. Die Assoziation erfolgt stets über die α -Kohlenstoffatome einer Ethylgruppe, was zur Ausbildung planarer Al₂C₂-Grundgerüste mit den dazu trans-ständigen, terminalen Al-Substituenten Et und Hsi führt und somit die erste röntgenstrukturanalytisch aufgeklärte Verbindung mit Al-Et-Al Brücken repräsentiert. Der bei 173±2 K gemessene Datensatz erlaubte mit Hilfe von Differenzfouriersynthesen auch die Bestimmung aller Wasserstoffatomlagen für eines der dimeren Moleküle der Zelle. Im Gegensatz zu (Me₂Al-Hsi)₂ sind bei der Ethylverbindung Ringsysteme mit stark differierenden Al-C-Brückenbindungslängen zu beobachten. Im ersten, nicht fehlgeordneten Molekül der Zelle (siehe Abbildung 5-2) unterscheiden sich diese Brücken bereits um 8 pm (Δ d(Al-C_{br}) 0,4 pm beim Methylprodukt) und sind um 16 bzw. 24 pm länger als der Al-C-Abstand der nicht verbrückenden Ethylfunktion (197,1(2) pm).

Abbildung 5-2: Molekülstruktur von (Et₂Al-Hsi)₂ (**2**) (mit ausgewählten H-Atomen)

Besondere Beachtung verdient die Orientierung der Wasserstoffatome der verbrückenden Methylenfunktionen: H112 und H112A liegen mit marginalen Abweichungen ebenfalls innerhalb der Al₂C₂-Vierringebene, ihr Abstand zu den Aluminiumatomen Al1A bzw. Al1 (in Abbildung 5-2 punktiert eingezeichnet) beträgt lediglich 202(2) pm, während die Atome H111 und H111A entsprechende Abstände von mehr als 240 pm aufweisen. Derartige C-H…Al Kontakte sind anfänglich auch für die Stammverbindung Al₂(CH₃)₆ von *Vranka* und *Byram* et al. diskutiert worden [129, 136]; sie konnten später durch verbesserte Röntgenstrukturdaten von *Huffmann* und *Streib* [137], die Gas-Elektronenbeugung von *Haaland et al.* [130], mit Hilfe theoretischer Berechnungen von *Berthomieu* und *Hong* [138, 139], vor allem aber durch die Neutronenbeugungsmessungen von *McGrady et al.* an mikrokristallinem Al₂(CD₃)₆ [140] zweifelsfrei widerlegt werden. Hier erklären diese agostischen Al…H-Kontakte zwanglos die signifikant differierenden Al-C-Brückenbindungslängen, welche bei der homologen Methylverbindung nicht gegeben sind. Da ab-initio (SCF)-Rechnungen für monomeres Et₂Al-Si(SiH₃)₃ Bindungslängen von 201,5 pm (Al-C), 248,5 pm (Al-Si) und 238 pm (Si-Si) ergeben haben , ließe sich die im Vergleich zum Methylderivat leichter dissoziierende Titelverbindung - mit Einschränkungen - durchaus als "lockeres Addukt" bezeichnen.

Abbildung 5-3: Molekülstruktur von (Et₂Al-Hsi)₂ (2), fehlgeordnetes Molekül

Das zweite Molekül der Zelle ist fehlgeordnet. Die Fehlordnung (Population 60:40) betrifft im wesentlichen die CH₂-Gruppen der Ethylreste (siehe Abbildung 5-3), doch sind auch die damit verbundenen Aluminium- sowie Methylkohlenstoffatome schwach betroffen. Dass deren Lagen nicht mehr optimal zu splitten sind, erklärt die merkliche Beeinträchtigung der zugehörigen Strukturrechnungen. Das Al₂C₂-Skelett der fehlgeordneten Einheit ist gegen das ursprüngliche Gerüst um 32,8° gekippt, die terminalen Ethylreste gegensinnig, fast spiegelsymmetrisch abgeknickt. Wie aus nachfolgender Zusammenstellung hervorgeht, bestehen bei den wichtigen Molekülparametern der beiden unabhängigen Assoziate nur im Fall der geminalen Ringvalenzwinkel nennenswerte Unterschiede:

Parameter	[Me ₂ Al-Hsi] ₂ [1]	I	[Et ₂ Al-Hsi] ₂	[2]	
Abstände (in pm) Winkel (in °)		Molekül 1		Molekül 2 (60%)	
41.0	102.0(7)	107.1(2)		107.0(()	
Al-C _{en}	192,0(7)	197,1(2)		197,0(6)	
Al-C _{br}	210,9(6)	212,96(19)		213,2(5)	
Al-C _{br}	211,3(5)	221,18(19)		220,0(5)	
Al-Si	239,6(2)	246,78(9)		248,4(4)	
Al…Al	262,3	263,04(13)		268,5(7)	
Al-C _{br} Al	76,8(2)	74,56(6)		76,6(2)	
C _{br} Al-C _{br}	103,2(2)	105,44(6)		103,4(2)	

en = endständig, br = verbrückend

Tabelle 5-3:	Ausgewählte	Bindungsabstände	von 2

Molekül 1 ^{a)}	Abstände (in pm)	Molekül 2 (60%) ^{b)}	Abstände (in pm)
Si1-Si11 Si1-Si12 Si1-Si13 C11-C12 C13-C14	235,86(10) 236,53(10) 236,29(9) 153,4(3) 153,2(3)	Si2-Si21 Si2-Si22 Si2-Si23 Al2B…Al2B(A) C21B-C22B	236,40(10) 235,79(9) 235,77(9) 268,5(4) 150,4(7)
ØSi1n-C1nm C11 H111 C11-H112 Al1A…H112 Al1…Al1A	188,0(3) (187,6(3)-188,6(3)) 91(2) 92(2) 201,7(19) 263,04(13)	C23B-C24B Al2B(A)…H215	153,9(7) 167,9(14)

^{a)} Atome A in -x+1, y+1 und -z

^{b)} Atome A in -x+2, y+1 und -z+1

Molekül 1 ^{a)}	Winkel (in °)	Molekül 2 (60%) ^{b)}	Winkel (in°)
C11-Al1-C13 C11A-Al1-C13 Al1-C13-C14 Al1-C11-C12 Al1A-C11-C12 C11-Al1-Si1 C11A-Al1-Si1 C13-Al1-Si1 Al1-Si1-Si12 Al1-Si1-Si12 Al1-Si1-Si13 Si11-Si1-Si13 Si12-Si1-Si13 Si12-Si1-Si13 Si1-Si1-C111	Winkel (in °) 110,07(8) 99,60(8) 115,94(14) 101,54(13) 138,46(15) 109,45(6) 113,85(5) 117,52(7) 117,28(3) 107,58(3) 110,89(3) 106,99(3) 106,40(3) 107,25(3) 110,77(8) 112,28(0)	C21B-Al2B-C23B C21B(A)-Al2B-C23B Al2B-C2313-C24B Al2B-C2313-C24B C21B-Al2B-Si2 C21B(A)-Al2B-Si2 C23B-Al2B-Si2 Al2B-Si2 Si21 Al2B-Si2 Si21 Al2B-Si2-Si22 Al213-Si2-Si23 Al2B-C21B-H215 Al2B(A)-C21B-H15	109,0(2) 99,4(2) 115,3(4) 99,1(3) 109,46(18) 111,37(16) 122,3(2) 117,24(8) 114,17(7) 105,42(8) 46,5(3) 112,0(3)
Si1-Si11-C112 Si1-Si11-C113 Al1-C11-H111 Al1-C11-H112	112,28(9) 111,66(8) 96,4(15) 140,3(15)		
AllA-C11-H111 AllA-C11-H112	$ 112,0(15) \\ 65,8(4) $		

Tabelle 5-4: Ausgewählte Bindungswinkel von 2

^{a)} Atome A in -x+1, y+l und -z

^{b)} Atome A in -x+2, y+1 und -z+1

5.2 Hypersilylgalliumverbindungen

5.2.1 Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi)₂; 3

Hypersilyl-methylgalliumchlorid kristallisiert in der monoklinen Raumgruppe P2₁/n in Form von farblosen Quadern mit den Konstanten: a = 9,0960(9) Å; α = 90°; b = 14,0868(8) Å; β = 90,647(8)°; c = 15,5200(12) Å; γ = 90°; V = 1988,5(3) Å³; R₁ = 0,0477; Z = 4 (2 Dimere); ρ = 1,229 Mg/m³ (S. 149). Die Verbindung liegt als zentrosymmetrisches Dimer mit einem planaren, fast quadratischen Ga₂Cl₂-Grundgerüst vor. Die terminalen Substituenten sind, wie bei den Hypersilylaluminiumverbindungen, in trans-Stellung angeordnet. Von den zahlreichen, bisher untersuchten Galliumhypersilylverbindungen mit drei, zwei wie auch einwertigen Zentralatomen unterscheidet sich Verbindung **3** nicht signifikant. Sowohl die Ga-Cl (Ga-Cl_{br}: 241,3 ± 0,7 pm) als auch die Si-Si Bindungslängen (235,1 \pm 0,5 pm) und Ringwinkel von 90 \pm 0,4° entsprechen den Erwartungen; mit 239,0 pm gilt dies auch für den Ga-Si Abstand (Tabelle 5-5). Allerdings beträgt die Variationsbreite dieser Distanz fast 20 pm (ca. 232 - 250 pm) und wird vor allem durch den Platzbedarf der übrigen Ga-Liganden sowie - in geringerem Maße - durch deren Elektronegativität geprägt. Ein Einfluss der Oxydationsstufe des Galliumatoms ist hingegen nicht erkennbar.

In Tabelle 5-5 ist eine Zusammenstellung von Ga-Si und Ga-Cl Bindungslängen ausgewählter, zum Vergleich geeigneter Verbindungen gegeben.

Verbindung (Nr.; Lit.)	d(Ga-Si) (in pm)	d(Ga-Cl _{en} / Ga-Cl _{br}) (in pm)
ber. Werte [135, 114, 115]	231,6 ^{a)}	209,8 / -
(Hsi-GaCl ₂) THF [38]	236,2(1)	Ø:220,1 / -
$(HSi-Ga^{III}(CI)OH)_2 \cdot 2B^{b}$ [38]	238,4(3)	222,3(4) / -
(Me(Cl)Ga-Hsi) ₂ 3	239,0(1)	- /Ø:240.2
$(ClGa-Hsi)_4$ [44, 45]	Ø: 239.8	- /Ø:240.1
ClGa(Hsi) ₂ [46]	240,3(2)	222,4(3) / -
$(Ga-Hsi)_4 \stackrel{\tilde{c}}{[52]}$	240,6(2)	- /-
(Me ₂ Ga-Hsi)·THF [38]	240,8(2)	- / -
$(Cl_2Ga-Ssi)_2^{d}$ [25]	Ø: 241,3	Ø: 217.6 /Ø:237.6
(Ph ₂ Ga-Hsi)·THF [57]	241,8(1)	- /-
$(OGa-Ssi)_4$ [54]	242,4(1)	- /-
[(Hsi) ₂ GaCl ₂]Li·2THF[37]	Ø: 243,9	- / n. angeg.
Na[Me ₃ Ga-Hsi] \cdot C ₇ H ₈ 5	244,3(1)	- / -
$(Ga-Ssi)_4^{d}$ [54]	Ø: 245,5	- / -
Hsi-Ga $(tmp)_2^{e}$ [40, 45]	246,8(1)	- / -
$ClGa(Ssi)_2^{(d)}$ [25]	248,5(1)	224,6(1) / -
Ga(Hsi) ₃ 10	Ø: 249,8	- /-
$(Me_2GaCl)_2$ [141]	-	- / 237,8(4)
$(MeGaCl_2)_2$ [142]	-	212,9(3) / 233,9(3)
$(GaCl_3)_2$ [143]	-	209,9(1) / 230,0(1)
$[Ga(Mes)_2Cl]_2$ [144]	-	- /Ø:239,6
$[Ga(CH_2Ph)_2Cl]_2$ [145]	-	- /Ø:239,2
$[Ga(^{t}Bu)Cl]_{2}$ [146]	-	- / 234,3(4)
$[Ga(C_5Me_5)Cl_2]_2$ [147]	-	212,4(4) / 235,2(3)
$[Ga(R_F)Cl_2]_2^{g}$ [148]	-	211,4(2) / 232,3(2)
$[Ga(Mes_2C_6H_3)Cl_2]_2^{(1)}$ [149]	-	217,2(5) / 233,3(5)
$[Ga(Mes*_{2}C_{6}H_{3})Cl_{2}]_{2}^{n}$ [150]	-	220,1(5) / 223,0(3)
Mittelwerte ¹⁾	242,4	217,4 / 235,2

Tabelle 5-5: Ga-Si und Ga-Cl Bindungslängen von einigen Galliumverbindungen

^{a)} ab initio (SCF) Rechnungen an Ga^{III}- und Ga^I-Silylverbindungen liefern Werte von 240-248 pm [38, 52] ^{b)} B = 2,6-Dimethylpyridin ^{c)} Co-Kristallisat mit Si(SiMe₃)₄ ^{d)} Supersilylrest Ssi = -Si(CMe₃)₃ ^{e)} tmp = 2,2,6,6,-Tetramethylpiperidin ^{f)} Mes = 2,4,6-Me₃C₆H₂ ^{g)} R_F = 2,4,6-(CF₃)₃C₆H₂ ^{h)} Mes^{*} = 2,4,6-^{*i*}Pr₃C₆H₂ ⁱ⁾ ohne ber. Werte.

Abbildung 5-4: Molekülstruktur von (Me(Cl)Ga-Hsi)₂ (3) (ohne H-Atome)

Parameter	Abstände (in pm)	Parameter	Winkel (in °)
Ga-C1	194.1(4)	Cl-Ga-ClA	89.57(4)
Ga-Cl	240.54(11)	Ga-Cl-GaA	90.43(4)
Ga-ClA	241,98(11)	Si1-Ga-C1	130,07(13)
Ga-Si1	239,00(9)	Si1-Ga-Cl	110,66(4)
Si1-Si2	234,63(13)	Sil-Ga-ClA	111,29(4)
Si1-Si3	235,15(13)	C1-Ga-Cl	103,91(14)
Si1-Si4	235,58(13)	C1-Ga-ClA	103,69(13)
ØSi2-C2n	187,0(4)	Si2-Si1-Ga	111,80(4)
	(186, 6(4) - 187, 5(4))	Si3-Si1-Ga	109,78(4)
ØSi3-C3n	187,3(4)	Si4-Si1-Ga	104,35(4)
	(186,9(4)-187,6(4))	ØSin-Si1-Sim	110,24(5)
ØSi4-C4n	187,0(4)		(109.69(5)-110.64(5))
	(186.2(4) - 187.4(4))	ØC2n-Si2-C1m	107.9(2)
Ga…GaA	342.5		(107.3(2)-108.5(2))
		ØC2n-Si2-Si1	111,01
			(110,4(2)-111,54(15))

 Tabelle 5-6: Ausgewählte Molekülparameter für 3

5.2.2 Tris(hypersilyl)gallium, Ga(Hsi)₃; 10

Tris(hypersilyl)gallium kristallisiert in der monoklinen Raumgruppe P2₁/c in Form verzerrter Hexagone mit den Konstanten: a = 23,156(2) Å; α = 90°; b = 12,5265(11) Å; β = 104,140(8)°; c = 19,029(2) Å; γ = 90°; V = 5352,5(8) Å³; R₁ = 0,0583; Z = 4; ρ = 1,009 Mg/m³ (S. 151). Die Röntgenstrukturanalyse bestätigt die NMR- und schwingungsspektroskopischen Vorhersagen. 1 liegt auch im Kristall monomer vor, das GaSi₃-Skelett ist im Rahmen des beobachteten Fehlers planar, die 4 Atome weichen von der durch sie gelegten besten Ebene um weniger als ±0,5 pm ab. Die Si-Ga-Si Bindungswinkel weisen mit 120 ± 2° auf eine fast ideale Geometrie hin. Die Atome Si13, Si22 und Si31 sind gleichsinnig nur um 21 ± 8 pm aus dieser Ebene herausgedrängt, so dass die postulierte C_{3h}-Symmetrie noch in guter Näherung gewahrt ist. Bemerkenswert ist der gegenüber der "Norm" (siehe Tabelle 5-5) um 3-6 pm auf 249,8 ± 0,2 pm aufgeweitete Ga-Si Abstand sowie ein Teil der Sinm-Sin-Ga Valenzwinkel (nm = 13, 22 und 31), der im Vergleich zu den übrigen Bindungswinkeln dieser Art (105-109°) sehr stark auf 127,5 ± 2,5° vergrößert ist und damit eine deutliche Verzerrung der Hypersilylreste anzeigt (Abbildung 5-6).

Erwähnenswert ist schließlich noch die Anordnung der vier Moleküle in der Einheitszelle (Abbildung 5-7), die alternierend nahezu senkrecht zueinander orientiert sind, was den Gegebenheiten bei den Trimethylderivaten des Indiums [38], Thalliums [151, 152] und Galliums gleicht, wie jüngste Untersungen in unserem Arbeitskreis zeigen, agostische Wechselbeziehungen, wie sie z. B. bei den Trimesityl-Erdmetallverbindungen [153] teilweise postuliert wurden [154], sind hier allerdings nicht gegeben.

Abbildung 5-5: Molekülstruktur von Ga(Hsi)₃ (10) (ohne H-Atome)

Abbildung 5-6: Verzerrung des Hsi-Restes bei 10 am Beispiel der Winkelaufweitung Ga-Si2-Si22

86

Abbildung 5-7: Blick in x-Richtung auf die Elementarzelle von 10 (nur GaSi₃-Gerüste)

In folgender Tabelle sind ausgewählte Molekülparameter für 10 zusammengefasst:

Parameter	Abstände (in pm)	Parameter	Winkel (in °)
Ga-Si1	249,6(3)	Si1-Ga-Si2	122 42(9)
Ga-Si2	249,8(3)	Si1-Ga-Si3	119,29(8)
Ga-Si3	250,1(2)	Si2-Ga-Si3	118,25(8)
Si1-Si11	236,7(4)	Si11-Si1-Ga	108,5(1)
Si1-Si12	237,1(3)	Si12-Si1-Ga	109,3(1)
Si1-Si13	238(4)	Si13-Si1-Ga	125,2(1)
ØSi2-Si2n	238,0(4)	Si21-Si2-Ga	104,9(1)
ØSi3-Si3n	238,3(4)	Si22-Si2-Ga	129,7(1)
ØSi11-C11n	187,5(11)	Si23-Si2-Ga	104,5(1)
ØSi13-C13n	188,3(9)	Si31-Si3-Ga	126,5(1)
		Si11-Si1-Si12	106,4(1)
		Si11-Si1-Si13	102,9(1)
		Si12-Si1-Si13	103,7(1)
		ØC11n-Si11-C11m	106,3(6)
		ØC11n-Si11-Si1	112,5(4)

 Tabelle 5-7: Ausgewählte Molekülparameter für 10

5.2.3 Natrium-hypersilyl-trimethylgallat, Na[Me₃Ga-Hsi]·C₇H₈; 5

Natrium-hypersilyl-trimethylgallat kristallisiert in der orthorhombischen Raumgruppe Pbca in Form langer, dünner, gelblicher Nadeln mit den Konstanten: a = 12,903(3) Å; $\alpha = 90^{\circ}$; b = 18,262(4) Å; $\beta = 90^{\circ}$; c = 24,670(5) Å; $\gamma = 90^{\circ}$; V = 5813(2) Å³; R₁ = 0,0424; Z = 8; $\rho = 1,092$ Mg/m³ (S. 155). Die Röntgenstrukturanalyse bestätigt die bereits auf Grund der geringen Löslichkeit vermutete, polymere Struktur. 5 bildet polymere zick-zack Ketten aus, in welchen Hypersilyl-trimethylgallat-Anionen über Natriumatome verknüpft sind (Abbildung 5-8). Die Assoziation wird über Na…C Kontakte von nur 256 ± 1,1 pm zu zwei Galliummethylgruppen des zugehörigen (d(C1...Na1): 254,9; d(C2...Na1): 257,1 pm) bzw. 268,6 pm zu einer solchen Gruppierung (C3) des benachbarten Anions erreicht; das Alkalimetall ist zusätzlich von einem Toluolmolekül überkappt (d(Na…Ring): 266,5 pm; h³- oder h⁴-Bindungstyp). Diese Art der Verknüpfung, die in ähnlicher Weise auch beim Ausgangssilanid Na-Hsi gegeben ist [11], bedingt hier eine Aufweitung der Ga-C Bindungen auf durchschnittlich 203,4 pm, was die niedrige Frequenzlage der durch die Ga-CH…Na Kontakte beeinträchtigten GaC-Streckschwingungen erklärt. Die Anordnung der gleichgerichteten Ketten verläuft in x-Richtung, wobei ihre Lage in z-Richtung alterniert (Abbildung 5-9). Eine Fehlordnung ist bei den überkappenden Toluolmolekülen zu beobachten - die beiden Varianten sind in der Ringebene um ca. 20° gegeneinander verdreht (Abbildung 5-10). Der Ga-Si Abstand liegt mit 244,33(15) pm nahe dem berechneten Mittelwert der bekannten Vergleichsverbindungen (Tabelle 5-5). Ebenso können alle Bindungslängen und -winkel innerhalb des Hsi-Restes als durchaus normal bezeichnet werden.

Abbildung 5-8: Ausschnitt aus der Kettenstruktur von Na[Me₃Ga-Hsi]·C₇H₈ (5) (ohne H-Atome)

Abbildung 5-9: Elementarzelle von 5 (punktiert eingezeichnet) in x-Richtung (ohne H-Atome und ohne Methyl-C-Atome des Hsi-Restes)

Abbildung 5-10: Fehlordnung der Toluol-Moleküle von 5; Blick durch die Ringebene auf das zugehörige Na-Atom

In folgender Tabelle sind ausgewählte Molekülparameter für 5 zusammengefasst:

Parameter	Abstände (in pm)	Parameter	Winkel (in °)
Gal-Cl	204,4(5)	C1-Ga1-C2	111,4(2)
Ga1-C2	203,3(5)	C1-Ga1-C3	109,7(2)
Ga1-C3	202,4(6)	C2-Ga1-C3	107,4(2)
Ga1-Si	244,33(15)	C1-Ga1-Si1	108,71(16)
Si1-Si11	233,2(2)	C2-Ga1-Si1	110,04(16)
Si1-Si12	234,7(2)	C3-Ga-Si1	109,63(17)
Si1-Si13	234,3(2)	Si11-Si1-Si12	107,23(8)
ØSi11-C	187,7(5)	Sil1-Sil-Sil3	108,15(8)
	(186, 8(5) - 188, 7(5))	Si12-Si1-Si13	108,45(9)
ØSi12-C	187,8(6)	Sil1-Sil-Gal	111,98(7)
	(187, 4(6) - 188, 3(6))	Si12-Si1-Ga1	110,12(7)
ØSi13-C	188,0(6)	Si13-Si1-Ga1	110,77(7)
	(187,3(6)-188,5(6))	ØC-Sill-C	107,5(3)
Na1…C1	254,9(7)		(106,9(3)-108,03(3))
Na1…C2	257,1(7)	ØC-Si11-Si1	111,3(3)
Na1…C3A	268,6(7)		(110,4(2)-113,1(2))
Na1…Ga1	303,9(3)	C1…Na1…C2	82,26(18)
Na1…Z ^{a)}	270,5	C1…Na1…C3A	106,8(2)
Na1…E ^{b)}	266,5	C2…Na1…C3A	111,8(2)
		Ga1-C1…Na1	82,1
		Ga1-C2…Na1	81,7
		Ga1A-C3A…Na1	168,8

Tabelle 5-8: Ausgewählte Bindungslängen und -winkel für Na[Me₃GaHsi]·C₇H₈ (5)

^{a)} Abstand zum Ringzentrum ^{b)} kürzester Abstand zur Ringebene

90

5.2.4 Kalium-hypersilyl-trimethylgallat, K[Me₃Ga-Hsi]·C₇H₈; 6

In der Reihe der Hypersilylgallate besitzt die Titelverbindung die weitaus komplexeste, aber auch interessanteste Struktur, die sich mit Hilfe spektroskopischer Methoden selbst andeutungsweise nicht verifizieren lässt. Kalium-hypersilyltrimethylgallat kristallisiert in der rhomboedrischen Raumgruppe R3 in Form farbloser Quader mit den Konstanten: a = 33,022(5) Å; α = 90°; b = 33,022(5) Å; β = 90°; c = 16,387(3) Å; γ = 120°; V = 15476(4) Å³; R₁ =0,1243; Z = 3; ρ = 1,108 Mg/m³ (S. 159). **6** ist nicht isotyp mit dem Natriumgallat **5**, im Gegensatz zu diesem bildet es keine Ketten sondern hexagonale Stränge in z-Richtung aus, wobei sieben Moleküle eine Einheit darstellen.

Sechs dieser Moleküle sind zu einem hexagonalen Prisma geordnet, dessen Ecken alternierend durch Kalium- und Galliumatome besetzt sind. Die Hsi-Reste weisen vom Prisma nach außen hin weg, die Kaliumatome sind jeweils durch ein Toluolmolekül überkappt. Bemerkenswert ist, dass sich innerhalb des Prismas ein weiteres dreifach fehlgeordnetes Toluolmolekül befindet, wobei die Ringebenen der 3 Orientierungen jeweils auf einer raumhalbierenden Ebene liegen und die Methylgruppe dieses Solvatmoleküls zum siebenten Kaliumatom (K3) hin ausgerichtet ist, welches die obere Fläche des Prismas überkappt. In Strangrichtung ist an dieses Kaliumatom ein weiteres Hypersilyl-trimethylgallat-Anion über die Si-Methylreste seiner Hsi-Gruppierung angelagert, welches seinerseits über die C(Ga3)-Atome und deren Kontakt zu den Kaliumatomen der nächsten Einheit die Ausbildung der hexagonalen Stränge bewirkt.

Abbildung 5-11: Anordnung der Schweratome von 6, die einer 7er-Einheit angehören

Wie aus Abbildung 5-11 ersichtlich, handelt es sich um ein geometrisch nicht exaktes Prisma, da die ausbildenden Sechsringe (durch segmentierte Bindungen dargestellt) in Sesselform vorliegen. In der folgenden Abbildung 5-12 ist eine Einheit mit den wichtigsten Molekülbausteinen und koordinativen Bindungen dargestellt:

Abbildung 5-12: Moleküle einer Einheit von 6 mit Verknüpfung zur nächsten Einheit

(ohne H-Atome, ohne C-Atome an einem Teil der Hsi-Reste, ohne K-überkappende ("side-on") Toluolmoleküle (C101-C105, C201-C205), "inneres" Toluolmolekül ("end-on" C01-C05,C011) komplett, aber ohne fehlgeordnete Varianten)

Diese Einheiten innerhalb der gleichgerichteten Stränge sind gegenüber denen des benachbarten Stranges um 546 pm versetzt angeordnet. Abbildung 5-13 veranschaulicht die Anordnung der Einheiten (punktiert eingezeichnet) innerhalb und teilweise auch außerhalb der Elementarzelle:

93

Abbildung 5-13: Elementarzelle von 6, Moleküle mit ausgewählten C-Atomen (ohne H-Atome, Blick in z-Richtung)

Ein beträchtliches, die Qualität der Strukturrechnungen merklich verringerndes Problem ist in der Tatsache begründet, dass einzelne Stränge der pseudohexagonalen 7er-Einheiten in umgekehrter Abfolge im Kristall auftreten. Diese zunächst als Fehlordnung interpretierte Erscheinung könnte aber auch auf eine Überstruktur zurückzuführen sein, welche sich allerdings auf Grund der nicht optimalen Kristallqualität und damit verbunden der Messdaten einem zweifelsfreien Nachweis entzog.

Die Moleküle selbst weisen keine außergewöhnlichen strukturellen Besonderheiten auf. Die Ga-C Abstände (196,9 \pm 2,1 pm) und C-Ga-C Winkel (108,6 \pm 3,3°) liegen dabei ebenso im Normbereich, wie die Ga-Si Abstände (240,8 \pm 0,6 pm) und die weiteren Parameter des Hsi-Restes. Die Länge der K…C(Ga) Kontaktbindungen variieren stark zwischen 307,0 und 338,7 pm, wohingegen der K…C(Si) Abstand des überkappenden Moleküls (K3-C313) mit 250 pm extrem verkürzt ist. Erwähnenswert ist noch der Kontaktbindungsabstand von K3 zum "end-on" gebundenen, fehlgeordneten und innerhalb des Hexagons befindlichen Toluolmoleküls, der mit 282,4 pm kleiner ist als bei den "side-on" gebundenen.

Abbildung 5-14: Molekülstruktur eines [Me₃Ga-Hsi]⁻-Anions von 6 (ohne H-Atome)

Abbildung 5-15: "Strangeinheit" aus sieben K[Me₃Ga-Hsi]-Molekülen von 6

(ohne zentrales Toluol und H-Atome, K-überkappende "side-on" Toluolmolekühle weiß und ohne Kontaktbindungslinien eingezeichnet)

In folgender Tabelle sind ausgewählte Molekülparameter von 6 zusammengefasst:

Parameter	Abstände (in pm)	Parameter	Winkel (in °)
K1-C21 K1-C22A K1-C12 ^{a)} K1-C31 ^{b)} C22-K1B C23-K2B ^{c)} Ga2-C22	307,0(14) 309,0(2) 314,0(19) 321,5(17) 309,0(2) 329,0(2) 194,8(18)	C22-Ga2-Si2 C21-Ga2-Si2 C23-Ga2-Si2 Si23-Si2-Ga2 Si21-Si2-Ga2 Si22-Si2-Ga2 Ga2-K1-Ga2	108,4(10) 112,0(6) 105,3(16) 112,3(4) 110,5(4) 110,3(4) 119,5(0)
Ga2-C21 Ga2-C23 Ga2-Si2 Si2-Si2n Si2n-C2nm K3-C313 K1Z ^{d)} K2Z ^{d)} K3C011	196,8(12) 199,1(17) 240,4(6) 234,2 Ø: 184,4(13) 250,0(3) 291,8 292,8 282,4(1)	K1-Ga2-K1 Ga1-K2-Ga1 K2-Ga1-K2 Si31-C313-K3 Ga3-C31-K1	105,0(0) 119,8(0) 106,6(0) 91,2(1) 174,2(1)

Tabelle 5-9: Ausgewählte Bindungslängen und -winkel für $K[Me_3Ga-Hsi] \cdot C_7H_8$ (6)

^{a)} C(Ga) in darrüberliegender Ebene ^{b)} C(Ga) des überkappenden Moleküls der darrunterliegenden Einheit ^{c)} K in darrüberliegender Ebene ^{d)} Abstand zum Ringzentrum von Toluol

5.3 HypersilyLindiumverbindungen

1.1.1 Tetrakis(hypersilyl)diindium(II), (Hsi)₂In-In(Hsi)₂; 12

Das Tetrakis(hypersilyl)diindium kristallisiert in der monoklinen Raumgruppe P2₁/c in Form rubinroter Quader mit den Konstanten: a = 23,496(2) Å; $\alpha = 90^{\circ}$; b = 12,926(1)Å; $\beta = 102,612(5)^{\circ}$; c = 23,275(1) Å; $\gamma = 90^{\circ}$; V = 6898,0(9) Å³; $R_1 = 0,0509$; Z = 4; ρ = 1,175 Mg/m³ (S. 165). **12** ist mit der homologen Ga^{II}- [44], nicht aber mit der entsprechenden Tl^{II}-Verbindung [108] isotyp und vervollständigt die Reihe der R₂In-InR₂ Spezies mit den zunehmend voluminöseren Resten R = -CH(SiMe₃)₂ [56, 30], -Si(SiMe₃)₃ sowie -Si(CMe₃)₃ [32]. In dieser Reihenfolge wird die zentrale In-In Bindung von 282,8(1) über 286,8(1) auf 292,2(1) pm aufgeweitet, während der Verdrillungswinkel R₂In/InR₂ von 6,7° sprunghaft auf 78,6° und weiter auf ca. 90° anwächst. Zwangsläufig bedingt der zunehmende Platzbedarf von R auch eine sukzessive Vergrößerung des R₂In-Bindungswinkels: 116,6±0,2° (Disyl), 124,3±0,5° (Hypersilyl) und 129,3±0,1° (Supersilyl). Nachfolgend sind die gemessenen M-M Abstände der bekannten Verbindungen des Typs R₂M-MR₂ einander gegenübergestellt.

R_2M-MR_2 mit R=	-CH(SiMe ₃) ₂	-Si(SiMe ₃) ₃	-Si(CMe ₃) ₃
M-M = Al-Al	266,0(1) 8° [28]	-	275,1(2) ~90° [31]
Ga-Ga	254,1(1) 5° [30]	259,9(4) ~80° [44]	_
In-In	282,8(1) 6,7° [29, 56]	286,8(1) 78,6°	292,2(1) ~90° [32]
T1-T1	-	291,4 <i>78,1</i> °[108]	296,6(2) ~90° [32]

Tabelle 5-10: M-M Abstände und Diederwinkel R₂M/MR₂ ausgewählter Di-Erdmetallverbindungen

Bemerkenswert ist bei 12 auch der In-Si Abstand, der mit durchschnittlich 265,5 pm gegenüber der homologen Supersilylverbindung $(Ssi)_2In-In(Ssi)_2$ [32] um ca. 12 pm verkürzt ist und sich auch deutlich von den In-Si Bindungslängen des Indats [(Hsi)_2InCl_2]Li·2 THF (\emptyset : 259,5 pm [37]) unterscheidet. Die rechnerisch bestimmte In-Si Einfachbindungslänge ist noch mal um 8 pm kürzer [114, 115, 135]. Diskrepanzen dieser Größenordnungen werden bei analogen Organosilylgalliumverbindungen nicht beobachtet (s. Tabelle 5-5). Die Si-Si Bindungslängen und -winkel für die Hsi-Reste Si1 bis Si3 mit 236,2 ± 1,6 pm (Sin-Sinm) und 112 ± 5,6° (In-Sin-Sinm) unterscheiden sich nicht signifikant von den Werten anderer Hypersilylverbindungen. Nur beim fehlgeordneten Hsi-Rest Si4, bei dem die beiden Varianten um ca. 40° gegeneinander verdrillt sind, liegen die Extremwerte für die Bindungslängen Si4-Si51: 219,4(6) und Si4-Si53: 245,7(7) pm sowie die Bindungswinkel In2-Si4-Si53: 102,1(2)° und In2-Si4-Si41: 119,5(9)° weit vom Durchschnittswert entfernt.

Abbildung 5-16: Fehlordnung des Hsi-Restes Si4 bei 12

Parameter	Abstände (in pm)	Parameter	Winkel (in °)	
In1-In2 In1-Si1 In1-Si2 In2-Si3 In2-Si4 ØSin-Sinm	286,80(6) 264,4(2) 267,9(2) 264,2(2) 265,4(2) 236,5	Si1-In1-Si2 Si3-In2-Si4 Si1-In1-In2 Si2-In1-In2 Si3-In2-In1 Si4-In2-In1 Si11-Si1-In1 Si12-Si1-In1 Si31-Si3-In2 Si32-Si3-In2 Si33-Si3-In2 ØSi-Sin-Si	$124,77(5)$ $123,77(5)$ $117,98(4)$ $117,24(4)$ $116,31(4)$ $119,89(4)$ $108,60(8)$ $117,14(8)$ $111,49(7)$ $106,27(8)$ $113,46(8)$ $117,60(8)$ $105,5\pm0,5$	

Tabelle 5-11: Ausgew	/ählte Bindungslänger	ı und -winkel für	r (Hsi) ₂ In-In(Hsi) ₂ 12
----------------------	-----------------------	-------------------	--

Abbildung 5-17: Molekülstruktur von (Hsi)₂In-In(Hsi)₂ (12) (ohne H-Atome)

5.4 Hypersilylzinnverbindungen

5.4.1 Bis(hypersilyl)dimethylzinn(IV), Me₂Sn(Hsi)₂; 8

Bis(hypersilyl)dimethylzinn kristallisiert in der monoklinen Raumgruppe C2/c in Form farbloser Quader mit den Konstanten: a = 16,957(6) Å; α = 90°; b = 9,271(3) Å; β =106,30(3)°; c = 24,736(8) Å; γ = 90°; V = 3733(2) Å³; R₁ = 0,0461; Z = 4; ρ = 1,146 Mg/m³ (S. 170). **8** zeigt entsprechend dem isotypen Bis(hypersilyl)zinndichlorid [67] eine Verzerrung der Tetraedergeometrie am zentralen Zinnatom. Während der Winkel zwischen den beiden Hsi-Resten (Si1-Sn-Si1A) mit 126,8° deutlich aufgeweitet ist,

99

wird der Winkel zwischen den Methylresten (C01-Sn-C01A), wie bereits NMRspekroskopisch vorhergesagt, auf 103,3° vermindert. Wesentlich extremer fällt diese Verzerrung beim Bis(hypersilyl)zinndichlorid mit 142,4° und 99,1° (Cl-Sn-ClA) aus. Bei den Sn-Si Abständen (8: 260,1 pm; SnCl₂(Hsi)₂: 260,0 \pm 0,4 pm), den Sn-Si-Si Bindungswinkeln (8: 109,3 \pm 3,6°; SnCl₂(Hsi)₂: 107,9 \pm 2,5°) sind im Rahmen der Messgenauigkeit fast identische Werte zu beobachten. Ebenso entsprechen alle Winkel und Abstände innerhalb des Hsi-Restes durchaus der Norm.

Abbildung 5-18: Molekülstruktur von Me₂Sn(Hsi)₂ (8) (ohne H-Atome)

Die fast schon obligate Rotationsfehlordnung der Hsi-Reste betrifft nur diejenige an Si2, das Populationsverhältnis beträgt 50:50 (%), die Verdrillung ca. 45°.

Abbildung 5-19: Fehlordnung am Si2-Atom der Hsi-Reste bei 8

Ausgewählte Molekülparameter von 8 sind im Vergleich zu SnCl₂(Hsi)₂ in Tabelle

5-12 zusammengefasst:

Absta	and (in pm)	Parameter	Win	kel (in °)
$Me_2Sn(Hsi)_2$ 8	SnCl ₂ (Hsi) ₂ [67]		$Me_2Sn(Hsi)_2$ 8	SnCl ₂ (Hsi) ₂ [67]
216.9(4)	Ø: 243.3 (Sn-Cl)	C01-Sn-C01A	103.3(3)	99.1 (Cl-Sn-ClA)
260,1(11)	Ø: 260,0	C01-Sn-Si1	107,2(13)	100,2 (Cl-Sn-Si1)
Ø: 235,8	Ø: 235,8	C01A-Sn-Si1	105,1(12)	105,5 (ClA-Sn-Si1)
Ø: 185,7	Ø: 186,8	Si1-Sn-Si1A	126,8(4)	142,4
,	,	Sn-Si1-Sin	Ø: 109,8	Ø: 108,0
		Si1-Sin-Cnm	Ø: 111,7	Ø: 110,2
	Absta Me ₂ Sn(Hsi) ₂ 8 216,9(4) 260,1(11) Ø: 235,8 Ø: 185,7	Abstand (in pm) Me ₂ Sn(Hsi) ₂ 8 SnCl ₂ (Hsi) ₂ [67] 216,9(4) Ø: 243,3 (Sn-Cl) 260,1(11) Ø: 260,0 Ø: 235,8 Ø: 235,8 Ø: 185,7 Ø: 186,8	Abstand (in pm) Parameter Me ₂ Sn(Hsi) ₂ 8 SnCl ₂ (Hsi) ₂ [67] 216,9(4) Ø: 243,3 (Sn-Cl) C01-Sn-C01A 260,1(11) Ø: 260,0 C01-Sn-Si1 Ø: 235,8 Ø: 235,8 C01A-Sn-Si1 Ø: 185,7 Ø: 186,8 Si1-Sn-Si1A Sn-Si1-Sin Si1-Sin-Cnm	Abstand (in pm)ParameterWin $Me_2Sn(Hsi)_2$ 8 $SnCl_2(Hsi)_2$ [67] $Me_2Sn(Hsi)_2$ 8216,9(4) $\emptyset: 243,3$ $(Sn-Cl)$ $C01$ -Sn-C01A $103,3(3)$ 260,1(11) $\emptyset: 260,0$ $C01$ -Sn-Si1 $107,2(13)$ $\emptyset: 235,8$ $\emptyset: 235,8$ $C01A$ -Sn-Si1 $105,1(12)$ $\emptyset: 185,7$ $\emptyset: 186,8$ $Si1$ -Sn-Si1A $126,8(4)$ Sn -Si1-Sin $\emptyset: 109,8$ $Si1$ -Sin-Cnm $\emptyset: 111,7$

 $\label{eq:tabelle} Tabelle \ 5-12: \ Ausgewählte \ Bindungslängen \ und \ -winkel \ für \ Me_2Sn(Hsi)_2 \ 8$

6 EXPERIMENTELLER TEIL

6.1 Allgemeines

Wegen der Oxidations- und Hydrolyseempfindlichkeit von Produkten und Edukten wurden alle Arbeiten an einer kombinierten Hochvakuum-/Schutzgasapparatur durchgeführt. Lösungsmittel sowie Schutzgas (Ar) sind nach den üblichen Verfahren von Wasser, Sauerstoff und anderen Verunreinigungen befreit, deuterierte Lösungsmittel und Nujol über Molekularsieb aufbewahrt worden.

Alle neuen Verbindungen wurden mittels NMR- und Schwingungsspektren sowie Elementaranalysen und zum Teil auch durch Röntgenstrukturanalysen charakterisiert.

6.2 CHARAKTERISIERUNGEN

6.2.1 Elementaranalysen

Die Kohlenstoff-, und Wasserstoffgehalte wurden durch Verbrennungs-Analyse mit einem Gerät der Firma Perkin-Elmer Analyzer, Modell PE 2400 bestimmt. Bekanntermaßen bereiten Analysen des Kohlenstoffgehaltes bei Anwesenheit von Erdmetallen und/oder Silizium Schwierigkeiten, da es zur Bildung von Metall- bzw. Siliziumcarbid kommt und daher häufig zu geringe Werte festgestellt werden [155]. Zur Bestimmung der Halogenanteile sind unter Schutzgas abgewogene Proben mit verdünnter HNO₃ hydrolysiert und anschließend mit einem Potentiographen der Firma Metrohm, Modell E 536, argentometrisch bestimmt worden. Lithium-, Natrium-, Kalium-, Gallium- und Indium-Bestimmungen erfolgten nach geeignetem Aufschluss atomemissionsspektrometrisch mit einem Optima 3000 Array-ICP Gerät der Firma Perkin-Elmer.

6.2.2 IR-Spektroskopie

Die Aufnahme von IR-Spektren erfolgte mit einem FT-IR-Gerät der Firma Perkin-Elmer, Modell Paragon 1000 PC. Flüssige Verbindungen wurden in kapillarer Schicht zwischen CsBr-Scheiben vermessen, Feststoffe im Bereich 4000 bis 250 cm⁻¹ als Nujolverreibungen. Zur Registrierung des Bereichs zwischen 550 und 50 cm⁻¹ diente ein FT-Spektrometer von Bruker, Modell IFS 66/CS, die Substanzen wurden hierfür zwischen PE-Scheiben präpariert.

6.2.3 Ramanspektroskopie

Die Raman-Spektren konnten mit einem XY-Multikanalspektrometer der Firma Dilor (Version II), registriert werden, wobei die Anregung mit einem Argon- sowie einem Kryptonlaser (grüne Linie 514,53 nm, rote Linie 647,1 nm; Leistung 10-25 mW) erfolgte. Feste Substanzen sind in Schmelzpunktsröhrchen, Flüssigkeiten oder Lösungen in NMR-Röhrchen vermessen worden. Auch die zur Röntgenstrukturanalyse verwendeten, in Kapillaren eingeschmolzenen oder unter Nujol bzw. Paratone-N (Exxon) auf Uhrgläsern präparierten Kristalle konnten mittels eines zwischengeschalteten Mikroskop vermessen werden.

6.2.4 NMR-Spektroskopie

Die Kernresonanzspektren wurden an Geräten der Firma Bruker, Modell AM 200, AC 250, AM 400 und AC 500 durchgeführt. Die Einstrahlfrequenzen betrugen für ¹H-NMR-Spektren 200,132/250,133/400,134/500,133 MHz, für ¹³C-Messungen 50,323/62,896/100,614/125,758 MHz. Als interner Standard diente der ¹H- bzw. ¹³C-Anteil der verwendeten Lösungsmittel d₆-Benzol und d₈-Toluol, stets bezogen auf

Tetramethylsilan mit $\delta = 0$ ppm. ²⁹Si-Spektren wurden am AM 200 (39,761 MHz) und AC 400 (79,495 MHz) vermessen, als externer Standard diente TMS. ¹¹⁹Sn-Spektren wurden am AC 400 (149,213 MHz) vermessen, als externer Standard diente SnMe₄. Schließlich fand für die ⁷Li-Spektren das AC 400 (155,508 MHz) Verwendung, als externer Standard diente eine 14,4 M LiCl-Lösung in D₂O.

6.2.5 Röntgenstrukturanalyse

Die für röntgenographische Messungen geeigneten Kristalle wurden unter Nujol oder Paratone-N (Exxon) separiert und in Glas-Kapillaren eingebracht. Die Sammlung der Datensätze für die Strukturbestimmung erfolgte an den beiden rechnergesteuerten Vierkreisdiffraktometern P2₁ der Firma Syntex, Cupertino (USA) und am P4 von Siemens, Madison (USA) bei ca. 173 K, sowie an einem IPDS-Einkreisdiffraktometer der Firma Stoe bei ca. 298 K. Die Lösung und Verfeinerung der Strukturen gelang mit den Programmpaketen SHELXTL PC [156] und SHELXL-97 [157]. Die Lagen der Wasserstoffatome sind bei allen Strukturbestimmungen unter Vorgabe idealer Geometrie und C-H-Bindungslängen von 96 pm (U_{iso} festgehalten beim 1,5fachen Wert des zugehörigen Kohlenstoffatoms ("riding-model")) ermittelt worden. Die Verfeinerungen erfolgten für alle Nichtwasserstoffatome mit anisotropen thermischen Auslenkungsparametern; die Atomformfaktoren der Schweratome stammen von *Cromer* und *Mann* [158], diejenigen der Wasserstoffatome von *Stewart* et al. [159].

6.3 AUSGANGSVERBINDUNGEN

In handelsüblicher Qualität wurden MeLi (1,0 M Lösung in THF/Cumol (Aldrich)), SnCl₄ (1,0 M Lösung in *n*-Heptan), Me₃SiCl, SiCl₄, (Me₃Si)₃SiCl, Li und Na (Aldrich, Strem, Chemetall), ebenso wie GaMe₃, AlClMe₂, AlClEt₂ (Morton, Epichem) eingesetzt.

GaCl₃ und InCl₃ wurden vor der Verwendung durch Vakuumsublimation gereinigt. SnCl₂ ist zur Entwässerung mit Essigsäureanhydrid unter Rückfluss erhitzt, nach dem Dekantieren mit viel THF nachgewaschen und im Vakuum getrocknet worden. HSiCl₃ (Aldrich) wurde mit CaH₂ unter Rückfluss erhitzt und anschließend destilliert. Die Synthese von GaCl₃ und InCl₃ erfolgte aus den Elementen [160]. Die Erdmetallchloride stellten mir M. Häußlein und K.Schmid, K-Hsi K. W. Klinkhammer freundlicherweise zur Verfügung. Me₂GaCl ist durch Umsetzung von GaCl₃ mit zwei Äquivalenten GaMe₃ erhalten und unmittelbar vor der Umsetzung durch Vakuumsublimation gereinigt worden [161].

6.4 DARSTELLUNGEN UND UMSETZUNGEN

6.4.1 Metallfreie Hypersilylderivate

6.4.1.1 Tris(trimethylsilyl)silan, H-Hsi und Tetrakis(trimethylsilyl)silan, Si(SiMe₃)₄

Die Darstellung erfolgt in Anlehnung an die Synthesevorschrift von *Bürger* und *Kilian* [78].

Ansatz:

HSiCl ₃	200 g	149 ml	1,48 mol	
Me ₃ SiCl	465 g	542 ml	4,28 mol	(3:1)
Li	60 g		8,64 mol	(6:1)
THF		650 ml		

Zu einer auf -15 °C gekühlten Suspension von 60 g Lithiumpulver in 350 ml THF und 465 g Trimethylchlorsilan werden unter schnellem Rühren innerhalb von vier Stunden 200 g Trichlorsilan in 300 ml THF zugetropft. Bei Raumtemperatur wird weitere 24 Stunden gerührt. Vom Produktgemisch wird der Niederschlag abfiltriert und THF destillativ im Vakuum entfernt. Durch Rohdestillation werden die zwei Hauptprodukte Si(SiMe₃)₄ und H-Hsi getrennt. (Badtemperatur: 50 °C, Etherbrücke, 2.Kolben mit flüssigem Stickstoff gekühlt).

Si(SiMe₃)₄ wird durch Vakuumsublimation bei $5 \cdot 10^{-2}$ Torr und 110 °C gereinigt. Das Produkt ist ein farbloser, feinkristalliner, luftstabiler Feststoff.

Ausbeute:	243,9 g	760,2	mmol	51 %
Sublimationspunkt:	110 °C /	5·10 ⁻² Tor	r	
Schmelzpunkt:	278 °C (319-321 °C [162])			
Summenformel:	Si ₅ C ₁₂ H ₃₆			
Molmasse:	320,84 g/	mol		
Elementaranalyse:	Si	С	Н	
% gefunden:		43,79	10,99	
% berechnet:	43,78	44,92	11,30	
NMR-Daten (C ₆ D ₆ , ppm):	δ^1 H: (C <u>H</u>	<u>s</u> i) 0,26	(0,21 [6]),	
	δ ¹³ C: (<u>C</u> S	Si) 2,85 (3	,1 [13]),	
	δ ²⁹ Si: (<u>Si</u>	C ₃) -9,80,	(<u>Si</u> Si ₃) -135,4	(-9,8/-135,4 [9])

H-Hsi wird durch Vakuumdestillation über eine Vigreux-Kolonne bei $5 \cdot 10^{-2}$ Torr und 34 °C (90 °C Badtemperatur, Kühlung des Destillates auf -50 °C) gereinigt. Das Produkt ist eine farblose Flüssigkeit.

Ausbeute: 114,6 g 460,8 mmol 31 % 34 °C / 5·10⁻² Torr Sdp: 82-84 °C [162] Destillationstemperatur: Summenformel: $Si_4C_9H_{28}$ Molmasse: 248,66 g/mol Elementaranalyse: Si С Η % gefunden: 41,01 13,22 % berechnet: 45,19 43,47 11,34 NMR-Daten (C₆D₆, ppm): δ^{1} H: (C<u>H</u>₃Si) 0,24, (Si<u>H</u>) 2,49 δ^{13} C: (CSi) 2.0, δ^{29} Si: (SiC₃) -11,6, (SiSi₃) -115,6

6.4.1.2 Chlor-tris(trimethylsilyl)silan, Cl-Hsi

Die Darstellung erfolgt in Anlehnung an die Synthesevorschrift von Bürger, Kilian und Burczyk [78].

Ansatz:

H-Hsi	37,42 g	36 ml	150,5 mmol	
CCl ₄	95,64 g	120 ml	621,6 mmol	(4:1)

Zu 36 ml H-Hsi werden unter Rühren bei Raumtemperatur 120 ml CCl₄ gegeben. Das Reaktionsgemisch wird 6 Stunden unter Rückfluss erhitzt (100 °C Badtemperatur). Nach dem Abkühlen wird HCCl₃ und überschüssiges CCl₄ im Vakuum destillativ entfernt. Die Reinigung erfolgt durch Vakuumsublimation bei $5 \cdot 10^{-2}$ Torr und 70 °C Badtemperatur. Das Produkt ist ein farbloser, kristalliner Feststoff.

Ausbeute:	37,75 g	133,2	8 mmol	88,6 %
Schmelzpunkt:	46 °C (50)-52 °C [1	63])	
Summenformel:	Si ₄ C ₉ H ₂₇	Cl		
Molmasse:	283,11 g/	mol		
Elementaranalyse:	Si	С	Н	Cl
% gefunden:		36,46	10,04	12,60
% berechnet:	39,69	38,18	9,61	12,52
NMR-Daten (C ₆ D ₆ , ppm):	δ^1 H: (C <u>H</u>	<u>s</u> Si) 0,22,	δ ¹³ C: (<u>C</u> S	Si) -0,67,
	δ ²⁹ Si: (<u>Si</u>	C ₃) -11,5,	(<u>Si</u> Si ₃) -13	3,3

6.4.1.3 Hexakis(trimethylsilyl)trisiliran, Si₃(SiMe₃)₆; 9

Die Darstellung erfolgt in Anlehnung an die Synthesevorschrift von *Klinkhammer* [14].

Ansatz:

HSiCl ₃	0,63 g	0,47 ml	4,62 mmol	d=1,342 kg/l
Li-Hsi	3,53 g		13,85 mmol	(3:1)
<i>n</i> -Pentan		30 ml		

Zu einer Lösung von 3,53 g Li-Hsi in 30 ml n-Pentan werden bei -50 °C unter Rühren 0,932 ml HSiCl₃ / n-Pentan (1:1) zugetropft. Nach einer Stunde wird auf RT angewärmt und 2 Tage weitergerührt. Die Lösung wird vom Niederschlag (LiCl) getrennt und eingeengt. Die Kristallisation erfolgt bei -20 °C aus *n*-Pentan. Das Produkt ist ein farbloser, kristalliner Feststoff. Die Reinigung durch Vakuumsublimation führt zu dreieckigen Kristallen.

Ausbeute:	1,50 g	2,86 r	nmol		61,9 %
Sublimationspunkt:	170 °C /	5·10 ⁻² Tori	[Smp:	216 °C
Summenformel:	Si ₉ C ₁₈ H ₅₄	4			
Molmasse:	523,39 g/	mol			
Elementaranalyse:	Si	С	Н		
% gefunden:		40,56	11,1		
% berechnet:	48,31	41,30	10,39		
NMR-Daten (C_6D_6 , ppm):	$\delta^1 H$: (C <u>H</u>	<u>si)</u> 0,42,	δ ¹³ C: ((<u>C</u> Si) 4	,62,
	δ ²⁹ Si: (<u>Si</u>	C ₃) -6,1, (<u>Si</u> Si ₄) -	167,8	

6.4.1.4 Hexakis(trimethylsilyl)disilan, (Hsi)₂; 13

(Hsi)₂ entsteht als Nebenprodukt in hoher Ausbeute bei der Umsetzung von InCl₃ mit 3 Äquivalenten Li-Hsi. Das Produkt, ein gelblicher Feststoff, kristallisiert in sehr großen quaderförmigen Kristallen, die sehr gut in unpolaren organischen Solvenzien löslich und gegen Luft und Wasser erstaunlich unempfindlich sind.

Ausbeute:	ca. 70 %				
Sublimationspunkt:	190 °C /	5·10 ⁻² Tor	r	Smp:	350 °C
Summenformel:	$Si_8C_{18}H_5$	4			
Molmasse:	495,33 g	/mol			
Elementaranalyse:	Si	С	Н		
% gefunden:		43,32	11,71		
% berechnet:	45,37	43,65	10,98		
NMR-Daten (C ₆ D ₆ , ppm):	δ^1 H: (C <u>H</u>	<u>[</u> ₃ Si) 0,33,	δ ¹³ C: ((<u>C</u> Si) 4	,74,
	δ ²⁹ Si: (<u>Si</u>	<u>(</u> C ₃) -9,45,	(<u>Si</u> Si ₃)	-129,7	

6.4.2 Alkalimetall-Hypersilanide

6.4.2.1 Lithium-Hypersilanid, Li-Hsi

Ansatz:

Cl-Hsi	25,00 g	88,31 mmol	
Li	12,0 g	1712 mmol	(19,4:1)
Na	1,12 g	48,6 mmol	(0,55:1)
Toluol	220 ml		

Eine Lösung von 25 g Cl-Hsi in 220 ml Toluol wird mit 12 g Li und 1 g Na, welches in einem Stück zugegeben wird, über 3 Stunden bei 80-85 °C getempert. Die Lösung färbt sich leicht gelbgrün. Das Reaktionsgemisch wird auf Raumtemperatur abgekühlt, das Natriumstück mit Hilfe einer Pinzette entfernt und danach 2 Stunden bei 90 °C weitergerührt, wobei am Boden des Reaktionskolbens langsam ein schwarzer Belag von feinverteiltem, elementarem Natrium zu erkennen ist. Nach erneutem Abkühlen auf Raumtemperatur werden LiCl, NaCl, überschüssiges Lithium sowie Natrium mit einer Schutzgasfritte abgetrennt und Toluol destillativ im Vakuum entfernt. Die Umkristallisation erfolgt aus *n*-Pentan bei -20 °C. Das Produkt ist ein farbloser, kristalliner, stark hydrolyseempfindlicher und pyrophorer Feststoff, der in unpolaren und polaren heteroatomfreien organischen Solvenzien löslich ist.

Ausbeute:	21,5 g	84,5	5 mmol	95,	7 %
Schmelzpunkt:	172-174	4 °C			
Summenformel:	Si ₄ C ₉ H	₂₇ Li			
Molmasse:	254,60	g/mol			
Elementaranalyse:	Si	С	Н	Li	Na
% gefunden:		41,34	10,84	2,64	0,37
% berechnet:	44,14	42,46	10,68	2,72	0

NMR-Daten (C₆D₆, ppm): δ^1 H: (C<u>H</u>₃Si) 0,35 (0,45 [14]), δ^{13} C: (<u>C</u>Si) 5,73 (6,5 [14]), δ^{29} Si: (<u>Si</u>C₃) -7,2, (<u>Si</u>Si₃) -181,9 (-8,9/-184,2 [14])

Bemerkungen:

Die Elementaranalyse zeigt bei einfacher Auskristallisation einen Gehalt von ca. 4 Mol% Na-Hsi im Produkt. Eine vergleichbare Reinheit des unbehandelten Rohproduktes wird durch in-situ Umsetzung der Reaktionslösung mit hochreinem Lithium (99,9 %, Aldrich) bei 90 °C für weitere 2 Stunden erhalten, die durch Umkristallisation aus *n*-Pentan weiter gesteigert werden kann.

6.4.2.2 Natrium-Hypersilanid, Na-Hsi

Ansatz:

Cl-Hsi	6,81 g	2,41 mmol	
Na	3 g	130,5 mmol	(54:1)
Toluol	70 ml		

Eine Lösung von 6,81 g Cl-Hsi in 70 ml Toluol wird mit 3 g Na über 5 Stunden bei 80-85 °C gerührt. Die Lösung färbt sich braun. Nach dem Abkühlen wird das überschüssige Natrium entfernt und Toluol destillativ im Vakuum entfernt. Nach Zugabe von 10 ml *n*-Pentan kann NaCl abgetrennt werden. Die Kristallisation wurde bei -20 °C aus *n*-Pentan und Toluol versucht.

Ausbeute:	ca.10 % (laut ¹ H-NMR-Spektrum)
Summenformel:	Si ₄ C ₉ H ₂₇ Na
Molmasse:	270,64 g/mol
NMR-Daten (C ₇ D ₈ , ppm):	$δ^{1}$ H: (C <u>H</u> ₃ Si) 0,29 (0,45 (C ₆ D ₆) [14]),
	δ ¹³ C: (<u>C</u> Si) 5,73 (0,67 (C ₆ D ₆) [14]),
	δ ²⁹ Si: (<u>Si</u> C ₃) -6,4, (<u>Si</u> Si ₃) -180 (-6,0/-179,8 (C ₆ D ₆) [14])

6.4.3 Hypersilyl-Verbindungen der Erdmetalle und des Zinns

Allgemeine Darstellung nach der Metathese-Methode:

Zu einer Lösung/Aufschlemmung des Metallchlorids in n-Pentan (ca. 2 ml/mmol) wird bei -20 bis -110 °C unter Rühren eine Lösung der äquimolaren Menge Li-Hsi in *n*-Pentan (ca. 2 ml/mmol) zugetropft. Nach Anwärmen auf Raumtemperatur wird bis zu einem Tag weitergerührt. Entstandenes LiCl wird abgetrennt und das Filtrat auf ca. die Hälfte eingeengt. Die Kristallisation erfolgt bei -20 °C. Umkristallisationen erfolgen hauptsächlich aus *n*-Pentan, aber auch aus *n*-Pentan/Toluol-Gemischen sowie aus *cyclo*-Hexan.

Die angegebenen Reaktionszeiten beziehen sich auf die Zeit vor bzw. nach dem Anwärmen auf Raumtemperatur. Die Zeit für die Erwärmung ist abhängig von der Starttemperatur und liegt zwischen 5 Stunden (-20 °C) und 18 Stunden (-110 °C). Als Kühlbad dient *i*-Propanol oder *n*-Pentan mit festem CO₂ oder flüssigem N₂ in einem Dewar-Gefäß

6.4.3.1 Hypersilyl-dimethylaluminium, (Me₂Al-Hsi)₂; 1

Bemerkungen:

Die Reaktionsführung ist invers. Das Produkt, ein farbloser pyrophorer Feststoff, kristallisiert in nadelförmigen Kristallen. Die Haltbarkeit von Me₂Al-Hsi ist begrenzt. Während der Feststoff erst nach einem Monat beginnt sich zu zersetzen (erkennbar am Zerfließen der Kristalle), sind in Lösung bereits nach einer Woche nur noch die Zersetzungsprodukte (Hsi)₂ und H-Hsi zu finden. Aus *cyclo*-Hexan kristallisiert das 1:1 Solvat, aus *n*-Pentan die solvensfreie Verbindung. Die pyrophore Substanz verhinderte zufriedenstellende Elementaranalysen.

A	ns	at	z:

Me ₂ AlCl	1,56 g	1	1,56 m	1	16,9 mmol		
Li-Hsi	4,3 g				16,89 mm	ol	(1:1)
<i>n</i> -Pentan	30 ml						
Starttemperatur:		-40 °C					
Reaktionsdauer:		4h / 5h					
Ausbeute:		3,20 g		10,5 m	imol	62 %	
Schmelzpunkt:		138 °C		$((Me_2A))$	Al-Hsi)₂·C ₆	H ₁₂ : 139°	C)
Summenformel:		$Si_4C_{11}F$	I ₃₃ Al				
Molmasse:		304,71	g/mol		(monomer)	
Elementaranalyse:		Si	С		Н	Al	
% gefunden:			40,7	77	11,62	8,80	
% berechnet:		36,88	43,3	36	10,91	8,85	
Charakterisierungen	ı:	NMR-S	spektre	en (S. 3	30), Schwir	igungsspe	ektren (S. 60)
		Röntge	nstruk	turanal	yse (S. 75)		

6.4.3.2 Hypersilyl-diethylaluminium, (Et₂Al-Hsi)₂; 2

Bemerkungen:

Die Reaktionsführung ist invers. Das Produkt, ein farbloser pyrophorer Feststoff, kristallisiert in großen quaderförmigen Kristallen. Die Haltbarkeit von Et₂Al-Hsi ist im Vergleich zu Me₂Al-Hsi sowohl im festen als auch gelösten Zustand sehr gut. Die pyrophore Substanz verhinderte zufriedenstellende Elementaranalysen.

Et ₂ AlCl	0,81 g	6,7 mmol	
Li-Hsi	1,72 g	6,76 mmol	(1:1)
<i>n</i> -Pentan	20 ml		

Starttemperatur:	-100 °C				
Reaktionsdauer:	4h / 5h				
Ausbeute:	1,85 g	5,56 n	nmol	83 %	
Schmelzpunkt:	47-49 °C				
Summenformel:	Si ₄ C ₁₃ H ₃₇ Al				
Molmasse:	332,77 g/mol		(monomer)		
Elementaranalyse:	Si	С	Н	Al	
% gefunden:		43,32	12,24	8,16	
% berechnet:	33,78	46,92	11,20	8,10	
Charakterisierungen:	NMR-Sp	ektren (S.	30), Schwin	ngungsspektren (S. 60)	
	Röntgens	trukturana	lyse (S. 78))	

6.4.3.3 Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi)₂; 3

Bemerkungen:

Bei der Umsetzung entsteht nicht wie erwartet Me₂Ga-Hsi, sondern das dimere Me(Cl)Ga-Hsi und Li[Me₃Ga-Hsi] in gleichen Anteilen. Die inverse Reaktionsführung lieferte vergleichbare Ergebnisse. Die Trennung der beiden Reaktionsprodukte ist auf Grund der hohen Löslichkeit des Lithiumgallats gut möglich. Die Titelverbindung, ein farbloser, luft- und hydrolyseempfindlicher Feststoff, kristallisiert in quaderförmigen Kristallen. Als weiteres Nebenprodukt kann Natrium-hypersilylgallat nachgewiesen werden, das bei Verwendung eines mit Na-Hsi kontaminierten Li-Hsi entsteht.

Me ₂ GaCl	1,16 g	8,64 mmol
Li-Hsi	2,2 g	8,64 mmol
<i>n</i> -Pentan	20 ml	

Starttemperatur:	-30 °C				
Reaktionsdauer:	1h / 3h				
Ausbeute:	1,20 g 3,28 mmol			38 %	
Schmelzpunkt:	169 °C				
Summenformel:	Si ₄ C ₁₀ H ₃₀ GaCl				
Molmasse:	367,87 g/mol		(monomer)		
Elementaranalyse:	Si	С	Н	Cl	Ga
% gefunden:		32,28	8,35	9,55	18,90
% berechnet:	30,54	32,65	8,22	9,64	18,95
Charakterisierungen:	NMR-Spektren (S. 30), Schwingungsspektren (S. 65)				
	Röntgenstrukturanalyse (S. 82)				

6.4.3.4 Tris(hypersilyl)gallium, Ga(Hsi)₃; 10

Bemerkungen:

Das Produkt, ein gelblicher, nur mäßig gegen Luft und Feuchtigkeit empfindlicher Feststoff, kristallisiert in großen, verzerrt hexagonalen Kristallen. Als Nebenprodukte werden in geringem Umfang elementares Gallium und (Hsi)₂ gefunden.

GaCl ₃	1,0 g		5,68 mmol	
Li-Hsi	4,34 g		17,04 mmol	(3:1)
<i>n</i> -Pentan	40 ml			
Starttemperatur:		-110 °C		
Reaktionsdauer:		1h / 24h		
Ausbeute:		3,19 g	3,92 mmol	69 %
Zersetzungspunkt:		156 °C		
Summenformel:		$Si_{12}C_{27}H_{81}$	Ga	
Molmasse:		812,72 g/n	nol	

Elementaranalyse:	Si	С	Н	Ga	Cl	
% gefunden:		38,81	10,22	8,63	0	
% berechnet:	41,49	39,90	10,04	8,57	0	
Charakterisierungen:	NMR-Spektren (S. 30), Schwingungsspektren (S. 67)					
	Röntgenstrukturanalyse (S.85)					

6.4.3.5 Hypersilylgallium(I), (Ga-Hsi)₄; 11

Bemerkungen:

Das Produkt, ein dunkelvioletter, nur mäßig gegen Luft und Feuchtigkeit empfindlicher Feststoff, wird durch thermische Zersetzung von Tris(hypersilyl)gallium erhalten. Als Nebenprodukt entsteht (Hsi)₂, das durch Vakuumsublimation größtenteils entfernt werden kann. Der zu niedrige Wert der Galliumanalyse zeigt (auch optisch zu erkennen), dass [GaHsi]₄ nur als Rohprodukt vorliegt und mit ca. 0,8 Äquivalenten (Hsi)₂ verunreinigt ist. Die NMR-Spektren bestätigen dies. Die Verbindung ist laut *Linti* [52] tetramer, womit die Farbigkeit erklärt werden kann. Ihm gelang es immerhin bei seiner Synthese eine Ausbeute von insgesamt 109 % an charakterisierten Produkten zu erhalten.

Ansatz:

Ga(Hsi)₃ 1,0 g 1,23 mmol

Reaktionstemperatur:	220 °C					
Reaktionsdauer:	1h					
Ausbeute:	0,27 g	0,21 mmol	69 %	(bezogen af Ga)		
Summenformel:	Si ₁₆ C ₃₆ H ₁	$Si_{16}C_{36}H_{108}Ga_4$				
Molmasse:	1269,54 g/mol					

Elementaranalyse:	Si	С	Н	Ga		
% gefunden:	34,64	32,78	8,16	16,41		
% berechnet:	35,40	34,06	8,57	21,97		
NMR-Daten (C ₆ D ₆ , ppm): δ^1 H: (C <u>H</u> ₃ Si) 0,39 (0,46 [52]),						
	δ^{13} C: (<u>C</u> S	5i) 4,47 (4,	4 [52]), δ^{29}	Si: (<u>Si</u> C ₃) -4,31		

6.4.3.6 Tetrakis(hypersilyl)diindium(II), (Hsi)₂In-In(Hsi)₂, In₂Hsi₄; 12

Bemerkungen:

Das Produkt, ein rubinroter, bemerkenswert hydrolysestabiler Feststoff, kristallisiert sehr langsam in harten, verzerrt sechseckigen Kristallen. Als Nebenprodukte werden elementares Indium und (Hsi)₂ gefunden, die bei höheren Starttemperaturen fast ausschließlich entstehen. Die Verbindung zersetzt sich spontan und ohne zu schmelzen bei 275-276 °C unter Bildung von (Hsi)₂ und elementarem Indium, welches sich in Form winziger Metallkügelchen am Gefäßboden sammelt.

InCl ₃	1,44 g		6,51 mmol	
Li-Hsi	4,98 g		19,53 mmo	l (3:1)
<i>n</i> -Pentan	40 ml			
Starttemperatur:	-100) °C		
Reaktionsdauer:	1h /	5h		
Ausbeute:	0,74	g	0,6 mmol	9,3 %
Zersetzungspunkt:	275-	-276 °C		
Summenformel:	Si ₁₆	C ₃₆ H ₁₀₈ Ir	12	
Molmasse:	122	0,26 g/m	ol	
Elementaranalyse:	Si	С	Н	In
% gefunden:		34,	79 9,04	18,75
% berechnet:	36,84	4 35,4	43 8,92	18,81

Charakterisierungen: NMR-Spektren (S. 30), Schwingungsspektren (S. 73) Röntgenstrukturanalyse (S. 96)

6.4.3.7 Bis(hypersilyl)zinn(II), Sn(Hsi)₂; 7

Bemerkungen:

Die Darstellung erfolgt in Anlehnung an die Synthesevorschrift von *Klinkhammer* [14, 73]. Das Produkt ist ein braunschwarzer, licht- und luftempfindlicher Feststoff. Die Kristallisationsversuche in *n*-Pentan oder Toluol bei -25 und -60 °C blieben erfolglos.

SnCl ₂	0,26 g		1,4	0 mmol	
Li-Hsi	0,71 g	0,71 g		0 mmol	(2:1)
<i>n</i> -Pentan	20 ml				
Starttemperatur:		-50 °C			
Reaktionsdauer:		2h / 6h			
Ausbeute:		0,49 g	0,8	0 mmol	57 %
Summenformel:		Si ₈ C ₁₈ H	54Sn		
Molmasse:		614,03	g/mol	(monon	ner)
Elementaranalyse:		Si	С	Н	Sn
% gefunden:	:		33,67	8,94	19,18
% berechnet:	:	36,60	35,21	8,86	19,33
NMR-Daten (C ₆ D ₆ ,	ppm):	δ ¹ H: (C	<u>H</u> ₃ Si) 0,3	6 (0,60 [73]),
		δ ¹³ C: (<u>C</u>	<u>Si)</u> 4,61	(4,9 [73]),	
		δ^{29} Si: (§	<u>Si</u> C ₃) -2,3	(-2,0 ;(<u>Si</u> S	5i ₃) -64,9 [73])

6.4.3.8 Bis(hypersilyl)dimethylzinn(IV), Me₂Sn(Hsi)₂; 8

Bemerkungen:

Das Produkt, ein farbloser, nur mäßig gegen Luft und Feuchtigkeit empfindlicher Feststoff, kristallisiert in kleinen quaderförmigen Kristallen. Die Verbindung zersetzt sich bei der Schmelztemperatur in elementares Zinn und absublimierendes (Hsi)₂.

$SnCl_2Me_2$	1,0 g		4,9	95 mmol	
Li-Hsi	2,52 g		9,9	90 mmol	(2:1)
<i>n</i> -Pentan	20 ml				
Starttemperatur:		-20 °C			
Reaktionsdauer:		1h / 2h			
Ausbeute:		2,36 g	3,6	66 mmol	74 %
Schmelzpunkt:		197 °C	(Z	ersetzung)	
Summenformel:		Si ₈ C ₂₀ H ₆₀	₀ Sn		
Molmasse:		644,10 g/	mol		
Elementaranalyse:		Si	С	Н	Sn
% gefunden:			35,92	9,50	18,74
% berechnet:		34,89	37,30	9,38	18,43
NMR-Daten (C ₆ D ₆ ,	ppm):	δ^1 H: (C <u>H</u>	<u>s</u> Si) 0,3	34 (0,33 [67])	2
		δ ¹³ C: (<u>C</u> S	Si) 3,89	(<u>C</u> Sn) -5,24 ((3,97; 2,98 [67]),
		δ ²⁹ Si: (<u>Si</u>	C ₃) -7,	30 , (<u>Si</u> Si ₃) -1	23,1 (-5,6; -132,9[67])
Charakterisierungen	:	NMR-Sp	ektren ((S. 30), Schwi	ngungsspektren (S. 73)
		Röntgens	truktur	analyse (S. 99))

6.4.4 Hypersilylgallate

6.4.4.1 Lithium-hypersilyl-trimethylgallat, Li[Me₃Ga-Hsi]; 4

Ansatz:

GaMe ₃	0,97 g	0,84 ml	8,41 mmol	d=1,15 kg/l
Li-Hsi	2,14 g		8,41 mmol	(1:1)
<i>n</i> -Pentan		40 ml		

Zu einer Lösung von 2,14 g Li-Hsi in 40 ml *n*-Pentan wird bei -80 °C unter Rühren die äquimolare Menge GaMe₃ langsam zugetropft. Nach einer Stunde steten Rührens wird langsam auf Raumtemperatur erwärmt und 8 Stunden weitergerührt. Die Lösung wird auf 10-20 % eingeengt. Bei -20 °C kristallisiert die farblose Verbindung in Form großer quaderförmiger, extrem pyrophorer Kristalle, die in den verwendeten organischen Solventien eine außerordentlich gute Löslichkeit zeigen. Die Umkristallisation erfolgte sowohl aus sehr wenig *n*-Pentan, als auch aus *cyclo*-Hexan. Der pyrophore Charakter der Substanz verhinderte zufriedenstellende Elementaranalysen.

Ausbeute:	1,96 g	5,30	mmol	63 %	ý 0
Schmelzpunkt:	103-104	°C			
Summenformel:	Si ₄ C ₁₂ H	36GaLi			
Molmasse:	369,43 g	g/mol			
Elementaranalyse:	Si	С	Н	Ga	Li
% gefunden:		34,28	11,09	18,68	1,85
% berechnet:	30,42	39,02	9,82	18,87	1,87
Charakterisierungen:	NMR-Sp	pektren (S	5. 30), Schv	vingungssj	pektren (S. 69)

6.4.4.2 Natrium-hypersilyl-trimethylgallat, Na[Me₃Ga-Hsi]·C₇H₈; 5

Wird für die Umsetzung 6.4.4.1 ein mit viel Na-Hsi kontaminiertes Li-Hsi verwendet, fällt bereits während der Anwärmphase ein gelber Feststoff aus, der auch in der Wärme nicht mehr in Lösung geht. Nach der Abtrennung des *n*-Pentans und somit auch des darin gelösten Li[Me₃Ga-Hsi], kann das Produkt in viel heißem (ca. 90 °C) Toluol extrahiert werden. Die sehr luft- und feuchtigkeitsempfindliche Verbindung kristallisiert bereits bei Raumtemperatur in Form langer, dünner, gelber Nadeln. Zur Steigerung der Ausbeute kann die Kristallisation, nach einem Tag bei Raumtemperatur, bei -20 °C fortgesetzt werden. Die stark luft- und hydrolyseempfindliche Substanz verhinderte zufriedenstellende Elementaranalysen. Die Verbindung zersetzt sich bei ca. 210 °C vor Erreichen des Schmelzpunktes unter Abspaltung von Toluol und der Bildung von absublimierendem (Hsi)₂. Die toluolische Lösung zersetzt sich unter Einwirkung von Tageslicht im Laufe von 1-2 Monaten unter Abscheidung von elementarem Gallium.

Ausbeute:	ca. 70 %	ca. 70 % (bez. auf eingesetztes Na-Hsi)				
Zersetzungspunkt:	ca. 210 °	ca. 210 °C				
Summenformel:	$\mathrm{Si}_4\mathrm{C}_{19}\mathrm{H}_4$	Si ₄ C ₁₉ H ₄₄ GaNa				
Molmasse:	477,61 g	/mol				
Elementaranalyse:	Si	С	Н	Ga	Na	
% gefunden:		44,21	10,32	14,55	4,75	
% berechnet:	23,53	47,79	9,28	14,59	4,81	
Charakterisierungen:	NMR-Spektren (S. 30), Schwingungsspektren (S. 69)					
	Röntgens	strukturana	alvse (S. 88)		

6.4.4.3	Kalium-hy	persilyl-tri	methylgalla	t, K[Me3Ga	℩-Hsi] ∙C7H8 ; 6
	•				, ,

Ansatz:

GaMe ₃	0,65 g	0,56 ml	5,65 mmol	d=1,15 kg/l
K-Hsi	1,62 g		5,65 mmol	(1:1)
<i>n</i> -Pentan		20 ml		

Analog zu 6.4.4.1 wird eine Suspension von 1,62 g K-Hsi in 20 ml *n*-Pentan bei -60 °C unter Rühren mit der äquimolaren Menge an GaMe₃ umgesetzt. Vergleichbar der Natrium-Verbindung fällt auch die Kalium-Verbindung aus der Reaktionslösung aus. Nach beendeter Reaktion wird das Lösungsmittel destillativ im Vakuum entfernt und der Rückstand in viel heißem Toluol gelöst. Die Kristallisation bei -20 °C liefert farblose, hexagonale, luft- und feuchtigkeitsempfindliche Kristalle des 1:1 Solvats. Die Verbindung zersetzt sich ab ca. 185 °C unter Schwarzfärbung, Abspaltung von Toluol und Bildung von absublimierendem (Hsi)₂ und H-Hsi (waren nachzuweisen). Im Sublimat können ramanspektroskopisch auch Spuren der Kaliumverbindung nachgewiesen werden. Die Umkristallisation aus Benzol bei 5 °C liefert das 1:1 Benzol-Solvat.

Ausbeute: 2,09 g 4,23 mmol 75 % Zersetzungspunkt: ca. 185 °C Summenformel: $Si_4C_{19}H_{44}GaK$ (K[Me₃Ga-Hsi]·C₇H₈) Molmasse: 493,72 g/mol Elementaranalyse: Si С Η Ga Li % gefunden: 43,82 8,85 14,68 7,71 % berechnet: 22,76 46,23 8.98 14,12 7,91 Charakterisierungen: NMR-Spektren (S. 30), Schwingungsspektren (S. 69) Röntgenstrukturanalyse (S. 91)

7 ZUSAMMENFASSUNG

Im ersten Teil der vorliegenden Arbeit wird ein einfacher Syntheseweg zur Darstellung von basefreiem Lithiumhypersilanid (Li-Hsi) beschrieben, welches auf Grund seiner guten Reaktivität ein hervorragendes Edukt zur Einführung des Hypersilylrestes (Tris(trimethylsilyl)silyl-Rest) in unterschiedlichste Verbindungen ist. Dieser Ligand vermag auf Grund seiner besonderen sterischen und elektronischen Eigenschaften z.B. einige sehr reaktive Zwischenstufen und/oder Metallzentren in ungewöhnlichen Oxidationsstufen zu stabilisieren. Die Darstellung von Li-Hsi läuft in einem einzigen Schritt durch Umsetzung von Chlor-tris(trimethylsilyl)silan (Cl-Hsi) mit metallischem Lithium und Natrium in Toluol unter exakt definierten Bedingungen ab. Eine entscheidende Rolle fällt dabei dem Natrium zu, wobei der Mechanismus zwischen einem Legierungsverfahren und einer rein katalytischen Beteiligung anzusiedeln ist. Die Ausbeuten bei diesem Prozess liegen durchweg über 90%; der Anteil des als Nebenprodukt anfallenden Natriumhypersilanids (Na-Hsi) kann durch exakte Reaktionsführung und anschließende Reinigung minimiert werden.

Im zweiten Teil wird die Synthese und ausführliche Charakterisierung einiger einfacher Hypersilylderivate der Erdmetalle (Al, Ga, In) und des Zinns mit Li-Hsi als Edukt beschrieben und Vergleiche mit den schon bekannten, oft basehaltigen Hsi-Verbindungen angestellt. Die Synthesen erfolgten bei Anwendung von Metallhalogeniden als zweitem Edukt ausschließlich nach der Metathese-Methode. Bei der Umsetzung von Trimethylgallium mit M^I-Hsi (M^I = Li, Na, K) wurden die entsprechenden Gallate stets durch eine Additionsreaktion erhalten. Das dimere Hypersilyl-dimethylaluminium ((Me₂Al-Hsi)₂) gehört zu den seltenen Verbindungen, bei denen die Assoziation - wie bei (AlMe₃)₂ über 2-Elektronen-3-Zentren Al-C-Al Methylbrücken erfolgt. Das Grundgerüst bildet ein planarer Al₂C₂-Ring. Das homologe Hypersilyl-diethyl-

aluminium ($(Et_2Al-Hsi)_2$) assoziiert in ähnlicher Weise über die α -C-Atome der Ethylgruppen ebenfalls unter Ausbildung eines Al₂C₂-Grundgerüstes und ist meines Wissens die erste röntgenstrukturanalytisch aufgeklärte Verbindung mit Al-Et-Al

Brücken. Im Gegensatz zum Methylderivat, das sowohl im festen wie gelösten Zustand dimer vorliegt, handelt es sich beim Ethylderivat um ein lockeres Addukt, das in Lösung

C14A C13A C12A Si11 Si12A Si13 Al1A C11A H112A H111A Si13A Si1 H111 H112 Si1A All C11 Si12 C12 Si11A C14 C13

und Schmelze monomer auftritt. Obwohl beide Verbindungen pyrophor sind, ist nur die Ethylverbindung über einen längeren Zeitraum zersetzungsfrei haltbar. Si2 V Si3

zentralem Strukturelement, die terminalen Substituenten sind, wie bei den Aluminiumverbindungen, in trans-Stellung angeordnet. Erstaunlich ist die Tatsache, dass bei der Umsetzung von GaMe₂Cl mit Li-Hsi nicht das erwartete Me₂Ga-Hsi, sondern durch Umlagerungen (Me(Cl)Ga-Hsi)₂ und Li[Me₃Ga-Hsi] in gleichen Anteilen entstehen.

Das sterisch überladene Trishypersilylgallium zeigt sich im Vergleich zu den obigen Verbindungen relativ beständig gegenüber Luft- und Feuchtigkeit. Wie bereits bei anderen, mehrfach hypersilylierten Verbindungen beobachtet, wächst auch bei $Ga(Hsi)_3$ der M-Si Bindungsabstand im

planaren GaSi₃-Skelett an (d(Ga-Si): 250 pm) und die M-Si-Si Bindungswinkel weiten sich auf bis zu 129,7° auf.

Die homologe Reihe der Gallate $M^{I}[Me_{3}Ga-Hsi]$ ($M^{I} = Li$, Na, K) präsentiert sich zwar in der NMR- und schwin-

gungsspektroskopischen Charakterisierung als eine "wirkliche" Reihe, jedoch zeigt die Röntgenstrukturanalyse für das als Toluolsolvat kristallisierende Na- und K-gallat

unterschiedliche Strukturen: während das in Form langer dünner Nadeln

kristallisierende und sehr schwer lösliche Na[Me₃Ga-Hsi]·C₇H₈ polymere Ketten ausbildet, weist K[Me₃Ga-Hsi]·C₇H₈ eine sehr komplexe Struktur auf, bei der parallel orientierte Stränge aus Einheiten von 7 Molekülen vorliegen, von denen 6 ein verzerrthexagonales Prisma und eines den

Kontakt zur nächsten Einheit ausbilden. Die Empfindlichkeit der Verbindungen gegenüber Luft und Feuchtigkeit nimmt vom sehr pyrophoren Li-gallat zum K-gallat hin ab.

Eine der seltenen Verbindungen mit Indium der Oxidationsstufe +2 ist Tetrakis-

(hypersilyl)diindium mit einer zentralen In-In Bindung von 286,8 pm Länge und einem Verdrillungswinkel von 78,6°. Das rubinrote (Hsi)₂In-In(Hsi)₂ ist, wie das ebenfalls komplett hypersilylierte Ga(Hsi)₃ erstaunlich stabil an Luft. Die Darstellung, die analog zum Ga(Hsi)₃ verläuft, führt auf Grund der reduzierenden Eigenschaften des

Hsi-Restes beim reduktionssensiblen Indium nicht zur erwarteten Trishypersilyl-Verbindung, sondern zur Diindium-Verbindung neben (Hsi)₂. Die stark elektronenschiebende Eigenschaft des Hypersilylrestes führt bei der

äquimolaren Umsetzung von Me₂SnCl₂ mit Li-Hsi ausschließlich zum zweifach hypersilylierten Produkt. Die Struktur des Bis(hypersilyl)dimethylzinns weist einen mit 126,8° deutlich aufgeweiteten Si-Sn-Si Bindungswinkel zwischen den Hsi-Resten auf, während

der C-Sn-C Bindungswinkel zwischen den Methylresten auf 103,3° vermindert wird.

8 ABSTRACT

In the first part of this work a simple method of synthesizing base-free Lithiumhypersilanid (Li-Hsi) is described and due to its good reactivity it is an outstanding Educt for the introduction of the Hypersilyl group (Tris(trimethylsilyl)-silyl-group) into many different compounds. This substituent is by reason of its special steric and electronic characteristics exceptionally well suited to stabilize some very reactive intermediates and/or metal centers in unusual oxidation levels. The Li-Hsi is prepared in a single step by reaction of Chlor-tris(trimethylsilyl)silan (Cl-Hsi) with metallic lithium and sodium in toluene under clearly defined conditions. Sodium plays a very decisive role in this case as in which the mechanism is located between an alloy-method and a mere catalytic involvement. The yields with this process are considerably above 90 %; the percentage of the resulting by-product Sodium-hypersilanid (Na-Hsi) can be minimized by correct reaction conduction and subsequent cleaning.

In the second part the synthesis and full characterization of some simple hypersilyl derivates of the earth metals (Al, Ga, In) and of tin with Li-Hsi as Educt and comparisons with already known, often base-containing Hsi-compounds is described. The syntheses was carried out by using metallic halides as second Educt exclusively by the metathesis-method. By reacting Trimethylgallium with M^I-Hsi (M^I = Li, Na, K) via addition reaction the corresponding Gallates were obtained.

The dimerous Hypersilyl-dimethylaluminium ((Me₂Al-Hsi)₂) belongs to those rare compounds, in which the association occurs as in (AlMe₃)₂ via 2-electron-3-centers Al-C-Al methylbridges. A planar Al₂C₂-ring forms the basic framework. Likewise the homologous Hypersilyl-diethylaluminium ((Et₂Al-Hsi)₂) associates in

similar way via the α -C-Atoms of the ethyl groups also under formation of a Al₂C₂ basic framework and to my knowledge it is the first compound with Al-Et-Al bridges investigated by X-ray single

crystal structure analysis. Unlike the methyl derivate, that is dimerous both in the solid state and in solution, the ethyl derivate is a loose adduct that occurs monomerous in solution and melt. Although both compounds are pyrophoric, only the ethyl derivate can be kept without decomposing over a longer period of time.

The dimerization of Hypersilyl-methylgalliumchlorid (Me(Cl)Ga-Hsi)₂ leads

to the already often described, almost quadratic Ga₂Cl₂ ring as a central structure-

129

constituent, the terminal substituents, as like the aluminum compounds, are transplaced. What is amazing, is that during the reaction of GaMe₂Cl with Li-Hsi not the expected Me₂Ga-Hsi, but (Me(Cl)Ga-Hsi)₂ and Li[Me₃Ga-Hsi] in equal parts is obtained by relocation.

The sterically overloaded Trishypersilylgallium shows itself as compared to the above compounds to be relatively stable to air and humidity. As already observed with other, multi-hypersilylated compounds, the M-Si bond distance in the planar GaSi₃ skeleton of Ga(Hsi)₃ also increases (d(Ga Si): 250 pm) and the M-Si-Si bond angle expands upto 129,7°.

The homologous series of the Gallates $M^{I}[Me_{3}Ga-Hsi]$ ($M^{I} = Li$, Na, K) presents themselves as a real series in the NMR- and vibration-spectroscopical characterization

but the X-ray analysis shows different structures for the Na- and K-gallate crystallizing as Toluenesolvate: Whereas the highly insoluble, long thin needle shaped crystals of Na[Me₃Ga-Hsi].C₇H₈ builds polymeric chains,

K[Me₃Ga-Hsi].C₇H₈ shows a very complex structure in which parallel orientated

strings of 7 molecule units are present where 6 of them form a distorted-hexagonal prism and one establishes contact to the next unit. The sensitivity of the compounds to air and humidity decreases from the very pyrophoric Li-gallate to the K-gallate.

One of the rare compounds of indium with the oxidation level +2 is Tetrakis-(hypersilyl)diindium with a central In-In bond-length of 286,8 pm and a torsionangle of 78,6°. The ruby-red $(Hsi)_2In-$ In(Hsi)₂ is, similar to the completely hypersilylated Ga(Hsi)₃ amazingly airstable. The preparation which is

analogous to that of $Ga(Hsi)_3$ leads not to the expected Trishypersilyl-compound, but to the Di-Indium- compound besides $(Hsi)_2$ owing to the reductional properties of the Hsi-group of the reduction-sensitive indium.

During the equimolar reaction of Me₂SnCl₂ with Li-Hsi the strong electron pushing characteristic of the hypersilyl group leads exclusively to the

twice hypersilylated product. The structure of the Bis(hypersilyl)dimethyltin shows clearly expanded Si-Sn-Si bond angle with 126,8° between the Hsi-Rests, while the C-Sn-C bond angle between the methyl residues is being reduced to 103,3°.

9 ANHANG

9.1 TABELLEN ZUR SCHWINGUNGSSPEKTROSKOPIE

9.1.1 Schwingungstabelle (Me₂Al-Hsi)₂

IR,fest	Raman, fest	Raman,Lös ı C ₆ D ₆ /C ₇ H ₈	ing	Zuordnungen
1393 mw	1402 vw			δ _{ac} CH ₂ (Si)
1307 w b				Oberton $(684+623)$
	1300 vw			
1256 s	1258 vw			$\delta_{\rm c}$ CH ₂ (Si)
1243 vvs	1239 w			$\delta_{\rm s}$ CH ₂ (Si)
1189 m	1193 mw			$\delta_{\rm s}$ CH _s (Al)
1169 vw				$O_{S} OII_{X}(III)$
1156 vw	1140 w			δ_{-} CH ₂ (ω -CH ₂)
864 sh	868 vw			
831 vvs b	832 vw			0_{rs} CH ₂ (Si)
749 s	746 vw	746		$\rho_a CH_2(Si)$
735 ms	736 vw	,		v_{ac} SiC ₂ - Glt
684 s	684 ms	684 mw.b.di)	$v_{as} SiC_3 - Ggt$
661 sh				$v_{as} AlC_2$
652 w.b	_	-		v Al-C - Get
	632 ms)	$v_{\rm c}$ AlC - Glt
	626 vs	627	}	v_{s} SiC ₂ - Glt
623 s			-	v_s SiC ₃ - Ggt.
610 sh				v_s SiC ₃ - Ggt. + ρ CH ₂ (Al)
568 ms				$"v_{12}" (v_{ac} Al_2C_2 - Ggt)$
526 sh		517		$v_s AlC_2$
476 w	484 vw			. 5 2
454 mw	451 w)	(
442 w	444 vw	441 w,b,dp	}	$v_3 (v_{as} S_1 S_{13})$
429 m	429 m(w)	428 vw (?)		v_2 (v_s AlSiSi ₃ - Ggt.)
		390		v_{as} SiSi ₃
365 m	-	-		v_{17} " (v _s Al ₂ C ₂ Ggt)
-	351 ms	351 s,p		" v_2 " (Al ₂ C ₂ -Pulsation)
307 w	298 mw	300 mw,p		v_1 (v_s AlSiSi ₃ Glt)
	288 mw	(290 vw,sh)		
	250 vw,sh			$\delta_s SiC_3$
	230 w,sh	232		δ_{s} SiC ₃
	222 mw	220		δ_{as} SiC ₃
	200 ms	200 m,p		δ_{s} CAl(Si)
	181 sh	177 sh		$\delta, \rho SiC_3$
	169 vs	169		δ, ρ SiC ₃
	94 mw			δ SiSi ₃
	66 ms			Gitter

Die Notationen " v_2 ", " v_6 ", " v_{13} " und " v_{17} " ist den Arbeiten über die Trialkyle entnommen [116, 126]

IR, fest	Raman, fest	Raman, Lösung C ₆ D ₆ /C ₇ H ₈	Raman, Schmelze	Zuordnung
	1463 w			
1440 mw	1441 w			
1409 w	1409 mw			$\delta_{as} CH_3(Si)$
	1403 mw			
1394 mw	1381 sh			
1304 vw	12(0	10(0		Oberton (682+622)
1056	1260 mw	1260		$\delta_{s} CH_{3}(S_{1})$
1256 m	1254 sh	1040		$\delta_{s} CH_{3}(S_{1})$
1242 vs	1240 m	1240		$\delta_{s} CH_{3}(S1)$
	1190 mw,b	1186 sh,b	-	$\delta_{s} CH_{2} D$
0.05	-	1182 w,p	1182 mw,p	$\delta_{\rm s} {\rm CH}_2 M$
985 m	988 mw)	
95/W	95 / VW		Ĵ	\sim v C-C, ρ CH ₃ (AlEt)
921 W 831 ys b	922 VW 831 W			
746 w	746 mw			$\rho_{as} CH_3(SI)$
740 w	740 mw			$p_s CH_3(SI)$
733 w 724 sh	733 W			$V_{as} SIC_3$ - GIL.
/24 811				
(022)	-	(0.4	(04 1.	v Al-C - Ggt.
682 S	683 ms	684 mw,ap	684 m,ap	v_{as} SiC ₃ - Ggt. D+M
-	628 vs	626 s,p	627 vs,p	$V_s SiC_3 - Git. D+M$
(22		-	-	V AI-C GIt
022 VS	-			$V_s SIC_3 Ggt + \rho CH_2(AI)$
590 w,sii	595 IIIw 588 sh	585 yw ch	-	\cdot v AlC - Glt. D
	500 511	550 vw n	552 w h n	$v AlC_{2} M$
532 mw b	_	000 (W,p	002 m,0,p	$v_s m c_2 m$ $v_s m c_2 m$
444 mw	439 mw		445 w h dn	v_{13} (v_{as} $m_2 c_2$ $c_3 c_1$)
438 mw	435 sh	445 vw,b,dp	433 sh	$\sim v_{as} \operatorname{SiSi}_3(\approx v_3) D + M$
422 mw	410 w,b	414 vw,dp	410 vvw,sh,dp	$v_2 D$
	393 vvw	392 vw(dp?)	-	v_{6} <i>D</i>
	357 ms	360 m,p	359 vvw,p	$v_s Al_2C_2 D$
338 mw	-	334 ms,p	333 m,p	v Al-Si ($\approx v_2$) M
	310 mw	-	-	$v_1 D$
	-	300 m,p	301 mw,p	v_{s} SiSi ₃ ($\approx v_{1}$) M
283 w	?	284 vw,sh	285 w,sh,p	$\delta_{s} AlC_{2} + \delta AlCC M$
	235 sh		-	δ_{s} SiC ₃
	224 mw		225	δ_{as} SiC ₃
	191 vs	~188 w,sh	-	δ CAlSi D
	173 vvs			δ,ρ SiC ₃
	148 sh			δ SiSi ₃
	70 ms			Gitter

9.1.2 Schwingungstabelle (Et₂Al-Hsi)₂

 \overline{D} = Dimer; M = Monomer; Die Notationen "v₂", "v₆", "v₁₃" und "v₁₇" ist den Arbeiten über die Trialkyle entnommen [116, 126]

IR, fest	Raman, fest	Raman, Lösung C ₆ D ₆ , n-Hexan	Zuordnung
1448 sh 1396 m 1309 w 1257 ms 1243 vs 1190 mw 862 s 833 vvs,b	1443 w 1404 w 1259 vw 1239 vw 1197 w 867 vw 833 w 823 sh	<pre>} 1263 w-vw,p 1243 vw,dp 1192 mw,p }</pre>	$\begin{split} &\delta_{as} \ CH_3(Si), (Ga) \\ &Oberton \ 688+623 \\ &\delta_s \ CH_3(Si) \ - \ Glt. \\ &\delta_s \ CH_3(Si) \ - \ Ggt. \\ &\delta_s \ CH_3(Ga) \\ & \rho_{as} \ CH_3(Si) \end{split}$
747 m 737 mw 715 m,b 688 s 623 s 565 ms,b 493 mw	747 w ? 689 mw 630 vs 622 w,sh 568 s-vs	745 mw,dp 687 mw,dp 627 vs,p 564 m,p	$\rho_s CH_3(Si)$ $\nu_{as} SiC_3 - Glt.$ $\rho CH_3(Ga)$ $\nu_{as} SiC_3$ $\nu_s SiC_3 - Glt.$ $\nu_s SiC_3 - Ggt.$ $\nu Ga-C$ Zersetzung ?
453 sh 448 mw 412 mw 353 vw	453 w 448 w 412 m 347 vw	450 vvw 411 w,b,tp	$v_{as} \text{ GaSiSi}_{3} (v_{3})$ $v_{s} \text{ GaSiSi}_{3} - \text{ Ggt.} (v_{2})$ $?$
252 ms 222 s,b	248 mw 233 m 223 mw	308 m,p 296 mw,p 254 w,b,p 231 w,dp 222 w,b,dp	$v_1 (v_s \text{ GaSiSi}_3 - \text{Git.})$ + $v_s \text{ Ga}_2\text{Cl}_2 ("v_2")$ $\delta_s \text{SiC}_3 + "v_{17}"$ $\delta_{,\rho} \text{SiC}_3$ + " v_{13} "
184 m,b 154 mw	186 ms 170 vvs 155 sh 127 w	171 vs,p 156 sh,dp 124 vw,dp	δ CGaSi ρ SiC ₃ - Glt. ρ SiC ₃ - Ggt. δ CGaSi
115 vw	102 mw,vb 92 mw,b 55 s	}	δ SiSi₃ Gitter

9.1.3 Schwingungstabelle (Me(Cl)Ga-Hsi)₂

IR, fest	Raman, fest		Zuordnung
1457 mw		_	
1438 m	1437 w		
	1404 mw	<u>}</u>	δ_{as} CH ₃ (S1),(Ga)
1393 ms		J	
1305 w			Oberton
1256 s	1261 m		δ_{s} CH ₃ (Si) - Glt.
1239 vvs	1239 s		$\delta_{\rm s} {\rm CH}_3({\rm Si})$ - Ggt.
1203 sh			
	1192 w		δ_{s} CH ₂ (Ga)
1184 vw			$\delta_{\rm s}$ CH ₂ (Ga) - Glt
1174 w	1175 vs		$\delta_{s} CH_{2}(Ga) - Got$
11, 1 1	866 m		0§ 0113(0 <i>u</i>) 0gt.
	836 sh	Ì	0_{-1} CH ₂ (Si)
831 yys b	828 m	5	
774 sh	020	-	
744 ms	744 vvs		$\rho_{\rm r}$ CH ₂ (Si)
736 ms	736 ms		v_{-1} SiC ₂ - Glt
728 ms	-		$O(CH_2(Ga))$
684 s	684 m		$v = SiC_2$
-	628 s-vs		v_{as} SiC ₂ - Glt
623 s	-		$v_s SiC_s - Gat$
528 ms	- 527 s		v_s SIC ₃ - Ogt.
520 ms	527 5	ר	v GeC(HI i)
440 w	439 vw	1	V Gae(II ~ EI)
451 mw	451 w	_	$v = SiSi_{2} (=v_{2})$
412 m	395 mw		v_{as} SiSis - Gat (= v_{a})
395 sh	395 ww		v_{s} Gabibility - Ggt. ($-v_{2}$)
308 vw	305 sh		
500 1 1	298 mw	}	v_s GaSiSi ₃ - Glt. ($\equiv v_1$)
279 vw	290 111		
253 ms	251 vw		δ ₂ SiC ₂
	231 mw		$\delta_{\rm s} {\rm SiC}_2$
	222 mw		δ_s SiC ₂
	172 vs		δ_{as} SiC
	172 vs 155 sh		δ SiC.
	83 mg		S C C C C C C C C C C C C C C C C C C C
	05 1115		0 51513

9.1.4 Schwingungstabelle Li[Me₃Ga-Hsi]
IR, fest		Raman, fest		Zuordnung
1604 sh		1601 vw		v CC Toluol
1598 mw		1570		
1522		15/8 VW		I Oluol Teluel
1322 VW 1494 s				Toluol
1441 sh		1439 vw		Toluol
1391 mw		1402 vw		δ_{ac} CH ₂ (Si) (Ga)
1384 mw		1384 vw		Toluol
		1330 vvw		Toluol
1300 w				Oberton (680+621)
1250 ms		1255 vw		$\delta_{s} \operatorname{CH}_{3}(\operatorname{Si})$ - Glt.
1238 vvs		1235 vw		$\delta_{s} \operatorname{CH}_{3}(\operatorname{Si})$ - Ggt.
1100		1211 vw		Toluol
1188 w		1192 vw		$\delta_{\rm s}$ CH ₃ (Ga)
1177 mw		1179 w		Toluol
1158 Sh 1114 ch		1156 VW		101001
1114 811 1109 mw		1113 VW 1109 VW		
1081 mw		1081 vw		Toluol
1045 vw		1043 vvw		Toluol
1029 w		1028 w		Toluol
1001 vw		1002 vvs		Toluol (Pulsation)
		989 vw		Toluol
901 w		894 vvw		Toluol
863 s		866 vw		
833 vvs b		831 vw		$\rho_{as} CH_3(S1)$
/8/ mw 746 s		/86 m 742 ww		
740 s 728 ms		743 VW		$\rho_s CH_3(SI)$
728 ms		755 VW		$\rho CH_3(Ga)$
693 s				Toluol
680 s		680 ms		V _{ac} SiC ₃
666 sh				· as 0103
		626 vs		$v_s SiC_3$ - Glt.
621 s		621 w,sh		$v_s SiC_3 - Ggt.$
520 sh		521 w		Toluol
501 s,b		500 w	۶	$v G_2 C(H_{}N_2)$
479 mw		470 m	5	V Gae(II···Na)
465 sh	}	452 vw		v_{as} GaSiSi ₃ ($\equiv v_3$)
451 mw)	412		
412 IIIW 245 ww		412 III 346 yw		v_s GaSiSi ₃ - Ggt. ($\equiv v_2$)
343VW 308 w		340 VW 302 ms		$v G_2 SiSi - Glt (=v)$
254 m		253 vw sh		$v_s \text{ 0asisi3} - \text{0it.} (=v_1)$ 8 SiC.
2JT III		235 vw,sn 236 w		$\delta_{s} SiC_{3}$
		221 mw		δ_{s} SiC ₂
		174 vs.b		$\delta_{as} SiC_{3}$
		88 m		δSiSi3
		52 vs		Gitter

9.1.5 Schwingungstabelle Na[Me₃Ga-Hsi]·C₇H₈

IR, fest	Raman, fest	Zuordnung
1494 m		Toluol
	1438 vw	Toluol
	1402 vw	$\delta_{as} CH_3(Si) oder \delta_{as} CH_3(Ga)$
1390 mw	1386 vw	Toluol
1356 sh		
1343 sh		
	1319 vvw	Toluol
1299 w	1050	Oberton (678+621)
1249 sh	1250 vw	$\delta_{\rm s}$ CH ₃ (Si) Glt.
1236 vs	1236 w	$\delta_{\rm s}$ CH ₃ (Si) Ggt.
	1232 w	
	1211 vw	Toluol
1186 vw		δ_{s} CH ₃ (Ga)
1180 vw	1181 vvw	Toluol
	1159 sh	Toluol
1083 vw		Toluol
1044 vw		Toluol
1028 vw	1029 w	Toluol
1001 vvw	1003 ms	Toluol (Pulsation)
	994 sh	Toluol
906 sh		
864 sh	868 vw	
833 vvs b	834 vw	$\rho_{as} CH_3(S_1)$
795 al	829 VW	Talual
785 Sn 746 www	/80 W	
740 VVS 720 m sh	742 VW 723 sh	$\rho_{\rm s} CH_3(SI)$
729 III,811 700 s	/ 55 81	$\rho CH_3(Ga)$
700 s 694 m		Toluol
678 s	678 ms	v SiC
-	626 vs	$v_{as} SiC_3$
621 s	-	v_s SiC ₃ - Grt
021 5	520 yw	V _s SIC ₃ - Ogt. Toluol
507 s	520 VW	101001
501 s	501 m	v GaC(H····K)
485 sh	478 mw	v Suc(II II)
465 sh)	v _{as} GaSiSi₃ (≡v₃)
451 m	452 mw }	as 2021213 (13)
408 w,b	408 mw	v_s GaSiSi ₃ - Ggt. ($\equiv v_2$)
394 vw		
379 vw		?
342 vvw	344 vvw	Toluol
304 vw	302 ms	v_s GaSiSi ₃ - Glt. ($\equiv v_1$)
254 m	252 w,sh	$\delta_s SiC_3$
	233 w,b	$\delta_s SiC_3$
	222 w,b	$\delta_{as} SiC_3$
	171 vs	δ,ρ SiC ₃
	79 vs	δ SiSi ₃
	57 vvs	Gitter

9.1.6 Schwingungstabelle K[Me₃Ga-Hsi]·C₇H₈

IR, fest	Raman, fest		Zuordnung
	1439 vw		
1421 sh			
1392 sh	1405 vw		$\delta_{as} CH_3(Si)$
1354 sh	1364 vvw		
1343 sh			
1257 mw	1259 vw		$\delta_{\rm s}$ CH ₃ (Si) - Glt.
1243 ms	1238 w		$\delta_{\rm s} {\rm CH}_3({\rm Si})$ - Ggt.
	1177 ms	}	$\delta CH_2(Sn)$
1169 vw	1170 mw)	
853 sh	866 vw		(-)
834 vvs	828 vw		$\rho_{as} CH_3(Si)$
745 mw	746 vw		ρ _s CH ₃ (Si)
737 m	736 w,sh		$\rho_{s} \operatorname{CH}_{3}(\operatorname{Sn})$
685 mw	686 mw		$v_{as} SiC_3$
	630 vs		$v_s \operatorname{SiC}_3$ - Glt.
624 s	622 w,sh		$v_s \operatorname{SiC}_3$ - Ggt.
551 vw			
498 m	499 m		$v_{as} \ SnC_2$
493 mw	493 vs		$v_s SnC_2$
451 w	451 w	1	$y = C_{n}C_{i}C_{i}(-y)$
440 w	441 vw	\$	$v_{as} S S S S S S S S S S S S S S S S S S S$
403 vw	401 w,sh	}	v Gasisia - Gat (=va)
-	396 m	5	v_s dubibly dgt. $(-v_2)$
355 vvw			
330 vw			
325 vw			
304 vw	207		
299 vw	297 m		v_s GaSiSi ₃ - Glt. ($\equiv v_1$)
291 vw			
285 VW			
268 W			
260 mw			S 0.0
255 mw	222		$o_s SiC_3$
	232 W		$\delta_s S1C_3$
	222 VW		$\delta_{as} S1C_3$
	181 sh		$\delta, \rho CH_3(S_1)$
	166 ms		$\delta_s SiC_3$
	154 sh		
	107 w		
	81 m		0 S1S1 ₃

9.1.7 Schwingungstabelle Me₂Sn(Hsi)₂

IR, fest	Raman, fest	Raman, Lösung C ₆ D ₆		Zuordnung
1448 sh 1397 mw 1306 mw 1258 mw 1242 vs	1435 sh 1404 vw 1261 vw 1243 sh 1237 vw	1260 w,p 1241 w,b,dp		$\begin{array}{l} \delta_{as} \ CH_3(Si) \\ \delta_{as} \ CH_3(Si) \\ Oberton \ (680+626) \\ \delta_s \ CH_3(Si) \ - \ Glt. \\ \delta_s \ CH_3(Si) \ - \ Ggt. \end{array}$
852 sh 833 vvs b 746 mw 680 s 626 s-vs 437 vw 426 m 389 mw - - 301 w,b 283 vw 255 mw	867 vw 831 vw 746 mw 688 sh 682 m(s) 631 s 622 sh 431 w 425 mw 416 w 388 w,sh 381 m 347 vvw 298 mw,b 250 sh,b 232 mw 222 mw 181 s-vs 154 sh 138 s	747 w,dp 689 vw,sh,dp 679 mw,b,dp 632 s,p 623 sh,dp 424 m,dp 387 w,sh,dp 378 ms,p 358 w,b,p 298 m,b,p 299 m,p 251 w,vb,dp 228 w,b,dp 181 vs,p 175 m,sh,dp 153 w,sh,dp 137 ms,p	<pre>} }</pre>	$\begin{array}{l} \rho_{as} CH_3(Si) \\ \rho_s CH_3(Si) \\ \nu_{as} SiC_3 \\ \nu_s SiC_3 - Glt. \\ \nu_s SiC_3 - Ggt. \\ \nu_{as} SiSi_3 \\ \nu_{as} GaSi_3 \\ \nu_s GaSi_3 \ (\sim \nu_2) \\ ? \\ \nu_s SiSi_3 \ (\sim \nu_1) \\ \nu_s SiSi_3 - Glt. \\ ? \\ \delta_{as}, \rho SiC_3 \\ \delta_s SiC_3 - Ggt. \\ \delta GaSiSi_3 \ (?), \delta GaSiSi \ (?) \end{array}$
	82 sh 73 vvs		}	δ SiSi ₃ + Gitter

9.1.8 Schwingungstabelle Ga(Hsi)₃

9.1.9 Schwingungstabelle (Hsi)₂In-In(Hsi)₂

IR, fest	Zuordnung	IR, fest	Zuordnung
1447 sh 1392 sh 1254 sh 1239 ms 849 sh 832 vvs 745 w 680 ms 624 ms	$\begin{array}{l} \delta_{as} \ CH_3(Si) \\ \delta_{as} \ CH_3(Si) \\ \delta_s \ CH_3(Si) - Glt. \\ \delta_s \ CH_3(Si) - Ggt. \\ \rho_{as} \ CH_3(Si) \\ \rho_s \ CH_3(Si) \\ \nu_{as} \ SiC_3 \\ \nu_s \ SiC_3 - Ggt \end{array}$	441 sh 431 mw 393 vw 382 sh 304 vw 291 w,b 283 vw 261 mw 255 mw	$v_{as} InSiSi_3 (\equiv v_3)$ $v_s InSi_2 (v_2?)$ $v_s InSiSi_3 - Glt. (\equiv v_1)$ $v_s SiSi_3 - Ggt.$ $(+ v_s InSi_2 - Ggt.?)$ $\delta_{as} SiC_3$

9.2 DATEN ZUR RÖNTGENSTRUKTURANALYSE

9.2.1 Hypersilyl-dimethylaluminium, (Me₂Al-Hsi)₂; 1

9.2.1.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	C ₂₂ H ₆₆ Al ₂ Si ₈	
Formelgewicht:	609,43 g/Mol	
Temperatur:	173(2) K	
Wellenlänge:	0,71073 Å	
Kristallsystem, Raumgruppe:	triklin, P1 (Nr.2)	
Größe der Elementarzelle:	a = 8,837(4) Å	$\alpha = 95,93(2)^{\circ}$
	b = 9,299(5) Å	$\beta = 99,29(2)^{\circ}$
	c = 13,861(7) Å	$\gamma = 117,20(3)^{\circ}$
Volumen der Elementarzelle:	979,2(8) $Å^3$	
Z; röntgenographische Dichte:	1; 1,033 Mg/m^3	
Absorptionskoeffizient:	$0,330 \text{ mm}^{-1}$	
F(000):	336	
Farbe / Gestalt / Größe des Kristalls:	farblose Nadeln	0,4 x 0,2 x 0,2 mm
Messbereich; Abtastmodus:	$3,04^{\circ} \le 2\theta \le 50,00^{\circ}$; w-Scans
Messbereich des reziproken Raumes:	$-8 \le h \le 10, -10 \le k$	$\leq 9, -16 \leq l \leq 16$
Beobachtete / symmetrieunabhängige Re	eflexe: 3660 /	3418 [R(int) = 0,1038]
Absorptionskorrektur:	keine	
Strukturverfeinerung:	Volle Matrix,	
	kleinste Fehlerquadi	atsumme an F ²
Daten / Variable Parameter:	3418 / 135	
GooF (Goodness-of-fit an F^2):	1,005	
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0850$	$wR_2 = 0,2347$
Gütefaktoren R ₁ und wR ₂ (alle Daten):	$R_1 = 0,1184$	$wR_2 = 0,2577$
Maximale / minimale Restelektronendic	nte: 0,942	/ -0,660 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-1 (S.76) zu entnehmen.

9.2.1.2	Ortskoordinaten	und Auslenkungsparameter	der asymmetrischen	Einheit
---------	-----------------	--------------------------	--------------------	---------

	4		4							
Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
A 1	004(2)	6206(2)	720(1)	32(1)	21(1)	35(1)	21(1)	5(1)	7(1)	15(1)
C(01)	904(2) 976(7)	4051(7)	554(4)	32(1) 31(1)	42(3)	39(3)	20(3)	1(2)	-2(2)	30(3)
C(1)	3123(9)	7963(10)	593(5)	69(2)	48(4)	70(5)	51(4)	-7(4)	19(3)	0(4)
Si	1(2)	6720(2)	2225(1)	28(1)	28(1)	26(1)	30(1)	5(1)	6(1)	12(1)
Si(1)	-2686(2)	4698(2)	2352(1)	33(1)	28(1)	35(1)	35(1)	10(1)	6(1)	14(1)
C(11)	-4439(8)	4529(9)	1361(5)	58(2)	34(3)	67(5)	63(5)	27(4)	0(3)	17(3)
C(12)	-3200(9)	5162(9)	3550(5)	56(2)	53(4)	59(4)	55(4)	10(3)	25(3)	23(4)
C(13)	-2743(9)	2675(8)	2274(6)	53(2)	50(4)	39(4)	71(5)	19(3)	25(3)	18(3)
Si(2)	2132(2)	6975(2)	3542(1)	40(1)	33(1)	47(1)	30(1)	2(1)	0(1)	15(1)
C(21)	2153(13)	5008(11)	3549(6)	86(3)	122(8)	104(7)	49(5)	-10(4)	-26(5)	89(7)

C(22)	1773(12)	7547(11)	4756(5)	72(2)	96(6)	99(6)	41(4)	0(4)	5(4)	70(6)
C(23)	4314(10)	8488(17)	3461(7)	142(6)	33(4)	213(14)	90(8)	84(9)	-20(4)	-15(6)
Si(3)	-19(2)	9208(2)	2331(2)	45(1)	54(1)	31(1)	61(1)	14(1)	27(1)	25(1)
C(31)	-641(14)	9761(11)	3443(6)	90(3)	166(10)	82(6)	74(6)	28(5)	67(6)	89(7)
C(32)	2117(18)	10888(18)	2327(11)	147(5)						
C(33)	-1521(15)	9168(16)	1248(8)	114(4)						

9.2.1.3 Bindungslängen

Atome	Bindungs- Atome länge in Å		Bindungs- länge in Å	Atome	Bindungs- länge in Å
A1-C(1)	1 920(7)	Si-Si(1)	2 307(2)	Si(2)-C(23)	1 825(8)
Al-C(01)	2.109(6)	Si - Si(2)	2.309(2)	Si(2) - C(22)	1.832(7)
Al-C(01A)	2.113(5)	Si-Si(3)	2.312(2)	Si(2)-C(21)	1.839(8)
Al-Si	2.396(2)	Si(1)-C(11)	1.833(6)	Si(3)-C(31)	1.819(7)
Al-AlA	2.623(4)	Si(1)-C(13)	1.849(7)	Si(3)-C(33)	1.821(11)
C(01)-AlA	2.113(5)	Si(1)-C(12)	1.851(7)	Si(3)-C(32)	1.820(14)

9.2.1.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
C(1)-Al-C(01)	106.7(3)	C(11)-Si(1)-C(12)	106.6(4)
C(1)-Al-C(01A)	106.7(3)	C(13)-Si(1)-C(12)	107.3(3)
C(01)-Al-C(01A)	103.2(2)	C(11)-Si(1)-Si	110.5(2)
C(1)-Al-Si	117.7(2)	C(13)-Si(1)-Si	111.0(2)
C(01)-Al-Si	110.2(2)	C(12)-Si(1)-Si	112.0(2)
C(01A)-Al-Si	111.3(2)	C(23)-Si(2)-C(22)	109.0(5)
C(1)-Al-AlA	117.5(2)	C(23)-Si(2)-C(21)	106.7(6)
C(01)-Al-AlA	51.65(15)	C(22)-Si(2)-C(21)	105.8(4)
C(01A)-Al-AlA	51.5(2)	C(23)-Si(2)-Si	111.5(3)
Si-Al-AlA	124.76(11)	C(22)-Si(2)-Si	112.5(3)
Al-C(01)-AlA	76.8(2)	C(21)-Si(2)-Si	111.1(2)
Si(1)-Si-Si(2)	108.85(9)	C(31)-Si(3)-C(33)	107.9(5)
Si(1)-Si-Si(3)	109.08(9)	C(31)-Si(3)-C(32)	107.8(6)
Si(2)-Si-Si(3)	108.41(9)	C(33)-Si(3)-C(32)	105.3(6)
Si(1)-Si-Al	116.59(9)	C(31)-Si(3)-Si	113.2(3)
Si(2)-Si-Al	106.84(9)	C(33)-Si(3)-Si	111.0(4)
Si(3)-Si-Al	106.81(8)	C(32)-Si(3)-Si	111.3(5)
C(11)-Si(1)-C(13)	109.3(4)		

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}
H(1A)	3148(9)	9012(10)	668(5)	103	H(22A)	629(12)	6754(11)	4805(5)	108
H(1B)	3288(9)	7689(10)	-55(5)	103	H(22B)	1861(12)	8621(11)	4820(5)	108
H(1C)	4044(9)	8021(10)	1097(5)	103	H(22C)	2642(12)	7563(11)	5279(5)	108
H(11A)	-4412(8)	5577(9)	1400(5)	87	H(23A)	4512(10)	8196(17)	2826(7)	213
H(11B)	-5550(8)	3716(9)	1441(5)	87	H(23B)	5176(10)	8500(17)	3986(7)	213
H(11C)	-4274(8)	4205(9)	723(5)	87	H(23C)	4401(10)	9562(17)	3527(7)	213
H(12A)	-2311(9)	5262(9)	4093(5)	84	H(31A)	133(14)	9790(11)	4025(6)	135
H(12B)	-4315(9)	4285(9)	3579(5)	84	H(31B)	-1821(14)	8956(11)	3423(6)	135
H(12C)	-3242(9)	6180(9)	3599(5)	84	H(31C)	-564(14)	10828(11)	3466(6)	135
H(13A)	-1825(9)	2760(8)	2792(6)	79	H(32A)	2477(18)	10626(18)	1746(11)	221
H(13B)	-2579(9)	2352(8)	1635(6)	79	H(32B)	2955(18)	11039(18)	2916(11)	221
H(13C)	-3855(9)	1864(8)	2353(6)	79	H(32C)	2045(18)	11886(18)	2316(11)	221
H(21A)	1024(13)	4173(11)	3591(6)	128	H(33A)	-1219(15)	8878(16)	650(8)	171
H(21B)	3025(13)	5138(11)	4114(6)	128	H(33B)	-1439(15)	10238(16)	1282(8)	171
H(21C)	2422(13)	4687(11)	2946(6)	128	H(33C)	-2696(15)	8366(16)	1240(8)	171

9.2.1.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

9.2.2 Hypersilyl-diethylaluminium, (Et₂Al-Hsi)₂; 2

Einheit

9.2.2.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	C ₁₃ H ₃₇ Al Si ₄
Formelgewicht:	332,77 g/Mol
Temperatur:	173(2) K
Wellenlänge:	0,71073 Å
Kristallsystem, Raumgruppe:	triklin, P1 (Nr.2)
Größe der Elementarzelle:	$a = 9,649(3) \text{ Å}$ $\alpha = 85,44(2)^{\circ}$
	$b = 14,594(4) \text{ Å} \qquad \beta = 87,99(2)^{\circ}$
	$c = 16,054(4) \text{ Å} \qquad \gamma = 76,44(2)^{\circ}$
Volumen der Elementarzelle:	2190,3(10) Å ³
Z; röntgenographische Dichte:	4; 1,009 Mg/m ³
Absorptionskoeffizient:	0,300 mm ⁻¹
F(000):	736
Farbe / Gestalt / Größe des Kristalls:	farblose Quader $0,5 \ge 0,4 \ge 0,3 \text{ mm}$
Messbereich; Abtastmodus:	$3,70^\circ \le 2\theta \le 52,00^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-11 \le h \le 11, -17 \le k \le 17, 0 \le l \le 19$
Beobachtete / symmetrieunabhängige Re	eflexe: $8595 / 8595 [R(int) = 0,0000]$
Vollständigkeit zu θ:	26,00 100,0 %
Absorptionskorrektur:	keine
Strukturverfeinerung:	Volle Matrix,
	kleinste Fehlerquadratsumme an F ²
Daten / restraints / Parameter:	8595 / 112 / 527

GooF (Goodness-of-fit an F ²):	1,038	
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0352$	$wR_2 = 0,0890$
Gütefaktoren R_1 und wR_2 (alle Daten):	$R_1 = 0,0441$	$wR_2 = 0,0954$
Maximale / minimale Restelektronendic	hte:	0,583 / -0,398 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-2 (S. 79) und Abbildung 5-3 (S. 80) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(11)	5076(2)	5462(1)	951(1)	21(1)	25(1)	19(1)	19(1)	-2(1)	-1(1)	-5(1)
C(12)	3846(3)	5745(2)	1580(1)	44(1)	38(1)	68(2)	30(1)	-20(1)	8(1)	-15(1)
C(13)	2032(2)	5558(2)	-44(1)	29(1)	23(1)	32(1)	33(1)	-4(1)	4(1)	-10(1)
C(14)	1253(2)	5480(2)	-841(2)	38(1)	27(1)	46(1)	42(1)	6(1)	-8(1)	-14(1)
Al(1)	3982(1)	5749(1)	-204(1)	19(1)	18(1)	19(1)	20(1)	-1(1)	0(1)	-5(1)
Si(1)	4248(1)	7287(1)	-861(1)	20(1)	21(1)	20(1)	21(1)	1(1)	-1(1)	-5(1)
Si(11)	6587(1)	7502(1)	-1066(1)	25(1)	24(1)	25(1)	28(1)	-2(1)	0(1)	-10(1)
C(111)	7537(2)	6779(2)	-1921(2)	39(1)	33(1)	47(1)	37(1)	-9(1)	6(1)	-11(1)
C(112)	6614(3)	8770(2)	-1367(2)	47(1)	45(1)	34(1)	65(2)	5(1)	-5(1)	-21(1)
C(113)	7655(2)	7167(2)	-84(2)	38(1)	31(1)	43(1)	40(1)	-4(1)	-10(1)	-10(1)
Si(12)	3026(1)	8472(1)	-1(1)	27(1)	31(1)	20(1)	27(1)	0(1)	3(1)	-3(1)
C(121)	2717(3)	9672(2)	-574(2)	45(1)	58(2)	24(1)	46(1)	2(1)	4(1)	0(1)
C(122)	1221(3)	8294(2)	351(2)	45(1)	36(1)	43(1)	54(2)	-5(1)	14(1)	-4(1)
C(123)	4076(3)	8491(2)	956(2)	41(1)	54(2)	35(1)	34(1)	-9(1)	-2(1)	-7(1)
Si(13)	3165(1)	7601(1)	-2183(1)	27(1)	28(1)	28(1)	23(1)	3(1)	-5(1)	-8(1)
C(131)	3792(3)	8569(2)	-2828(1)	40(1)	48(1)	41(1)	31(1)	10(1)	-5(1)	-14(1)
C(132)	3640(3)	6517(2)	-2789(1)	40(1)	50(1)	42(1)	28(1)	-4(1)	-7(1)	-13(1)
C(133)	1166(2)	8006(2)	-2100(2)	42(1)	31(1)	45(1)	49(1)	6(1)	-12(1)	-6(1)
Al(2B)	10542(4)	5744(2)	4743(2)	24(1)	25(1)	26(1)	21(2)	-3(1)	-4(1)	-1(1)
C(21B)	9672(5)	5457(3)	5948(2)	22(1)	31(1)	18(1)	17(1)	0(1)	-6(1)	-6(1)
C(22B)	10565(6)	5904(4)	6467(3)	29(1)	37(2)	25(2)	22(1)	1(1)	-8(1)	-2(1)
C(23B)	12635(5)	5471(4)	4812(3)	34(1)	27(1)	41(1)	32(2)	-7(1)	-1(1)	-5(1)
C(24B)	13440(8)	5440(6)	3966(4)	35(1)	29(1)	44(1)	32(2)	-6(2)	0(2)	-5(1)
Al(2A)	10425(2)	5630(1)	4481(1)	19(1)	22(1)	19(1)	17(1)	0(1)	-2(1)	-4(1)
C(21A)	10840(3)	5363(2)	5797(2)	23(1)	32(1)	20(1)	19(1)	0(1)	-7(1)	-6(1)
C(22A)	10104(4)	6192(3)	6321(2)	30(1)	38(1)	27(1)	24(1)	-3(1)	-9(1)	-2(1)
C(23A)	12239(3)	5251(3)	3847(2)	32(1)	26(1)	39(1)	31(1)	-7(1)	0(1)	-5(1)
C(24A)	13580(5)	5462(4)	4233(3)	35(1)	27(1)	45(1)	33(2)	-7(1)	-3(1)	-8(1)
Si(2)	9121(1)	7263(1)	4101(1)	21(1)	24(1)	19(1)	19(1)	-1(1)	-1(1)	-3(1)
Si(21)	7084(1)	8031(1)	4851(1)	28(1)	29(1)	23(1)	31(1)	-3(1)	5(1)	-2(1)
C(211)	7578(3)	8572(2)	5790(2)	49(1)	53(1)	55(2)	40(1)	-21(1)	12(1)	-11(1)
C(212)	5931(3)	9010(2)	4177(2)	47(1)	42(1)	32(1)	55(1)	4(1)	3(1)	8(1)
C(213)	5922(2)	7208(2)	5213(2)	46(1)	35(1)	39(1)	61(2)	1(1)	12(1)	-8(1)
Si(22)	8363(1)	7176(1)	2735(1)	26(1)	32(1)	26(1)	21(1)	-1(1)	-5(1)	-7(1)
C(221)	7946(3)	8370(2)	2146(1)	42(1)	61(1)	35(1)	29(1)	7(1)	-13(1)	-8(1)
C(222)	9786(2)	6391(2)	2113(1)	39(1)	48(1)	42(1)	25(1)	-9(1)	2(1)	-8(1)
C(223)	6715(2)	6695(2)	2743(2)	43(1)	41(1)	50(1)	43(1)	-6(1)	-9(1)	-18(1)
Si(23)	10690(1)	8288(1)	3972(1)	29(1)	29(1)	28(1)	31(1)	-4(1)	-2(1)	-10(1)
C(231)	9700(3)	9556(2)	3786(2)	47(1)	56(1)	26(1)	61(2)	0(1)	-10(1)	-14(1)
C(232)	11721(3)	8194(2)	4959(2)	45(1)	41(1)	47(1)	50(1)	-12(1)	-14(1)	-11(1)
C(233)	12012(3)	8020(2)	3080(2)	53(1)	50(1)	61(2)	53(2)	-9(1)	19(1)	-25(1)

9.2.2.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

Bindungs-Bindungs-Bindungs-Atome Atome Atome länge in Å länge in Å länge in Å C(11)-C(12)1.534(3)Si(13)-C(132) 1.880(2)C(23A)-H(232) 0.9900 C(11)-Al(1) 2.1296(19) Si(13)-C(133) 1.883(2)C(24A)-H(241) 0.9800 C(11)-Al(1A) 2.2118(19) Si(13)-C(131) 1.886(2)C(24A)-H(242) 0.9800 C(11)-H(111) C(131)-H(13A) C(24A)-H(243) 0.9800 0.91(2)0.91(3)0.92(2)Si(2)-Si(23) 2.3577(9) C(11)-H(112) C(131)-H(13B) 1.01(3)2.3579(9)C(12)-H(121) 1.04(3)C(131)-H(13C) 0.97(3)Si(2)-Si(22)C(12)-H(122) 1.00(3)Si(2)-Si(21) 2.3640(10)C(132)-H(13D) 0.94(3)C(12)-H(123) 0.91(3)C(132)-H(13E) 0.97(3)Si(21)-C(213) 1.873(2)C(13)-C(14)1.532(3)C(132)-H(13F) 0.95(3)Si(21)-C(211) 1.880(2)C(13)-Al(1) 1.971(2)C(133)-H(13G) 0.94(3)Si(21)-C(212) 1.882(2)0.91(3)C(211)-H(21A) 0.9800 C(13)-H(131) 0.96(3)C(133)-H(13H) C(13)-H(132) 0.94(3)C(133)-H(13I) 0.94(3)C(211)-H(21B) 0.9800 C(14)-H(141) 0.89(3)Al(2B)-C(23B) 1.970(6) C(211)-H(21C) 0.9800 C(14)-H(142) 0.92(3)Al(2B)-C(21B) 2.132(5)C(212)-H(21D) 0.9800 C(14)-H(143) Al(2B)-C(21B)#2 C(212)-H(21E) 1.00(3)2.200(5)0.9800 2.2118(19)Al(2B)-Si(2) 2.484(4)C(212)-H(21F) 0.9800 Al(1)-C(11A)C(213)-H(21G) Al(1)-Si(1)2.4678(9)Al(2B)-Al(2B)#2 2.685(7)0.9800 Al(1)-Al(1A)2.6304(13)Al(2B)-H(212) 1.71(4)C(213)-H(21H) 0.9800 Si(1)-Si(11)2.3586(10)C(21B)-C(22B) 1.504(7)C(213)-H(21I) 0.9800 2.3629(9)C(21B)-H(214) 0.9900 Si(22)-C(221) 1.878(2)Si(1)-Si(13) 0.9900 Si(1)-Si(12) 2.3653(10)C(21B)-H(215) Si(22)-C(222) 1.882(2)Si(11)-C(111) 1.878(2)C(21B)-H(211) Si(22)-C(223) 1.882(2)1.55(4)1.880(2)C(22B)-H(224) 0.9800 C(221)-H(22G) 0.9800 Si(11)-C(112) Si(11)-C(113) 1.881(2)C(22B)-H(225) 0.9800 C(221)-H(22H) 0.9800 C(111)-H(11A) 0.90(3)0.9800 C(221)-H(22I) 0.9800 C(22B)-H(226) 0.9800 C(111)-H(11B) 0.87(3)C(23B)-C(24B) 1.539(7)C(222)-H(22J) C(111)-H(11C)1.00(3)C(23B)-H(234) 0.9900 C(222)-H(22K) 0.9800 C(112)-H(11D) 0.99(3)C(23B)-H(235) 0.9900 C(222)-H(22L) 0.9800 C(112)-H(11E) 1.00(3)C(23B)-H(212) 1.57(5)C(223)-H(22M) 0.9800 C(112)-H(11F) 0.88(3)C(24B)-H(244) 0.9800 C(223)-H(22N) 0.9800 C(113)-H(11G) 0.86(3)C(24B)-H(245) 0.9800 C(223)-H(22O) 0.9800 0.93(3)0.9800 Si(23)-C(231) C(113)-H(11H) C(24B)-H(246) 1.879(2)C(113)-H(11I) 0.96(4)Al(2A)-C(23A) 1.979(4)Si(23)-C(232) 1.880(2)Si(12)-C(123) 1.876(2)Si(23)-C(233) 1.886(2)Al(2A)-C(21A) 2.152(3)C(231)-H(23A) Si(12)-C(121) 1.877(2)Al(2A)-C(21A)#2 2.182(4)0.9800 C(231)-H(23B) Si(12)-C(122) 1.882(2)Al(2A)-Si(2)2.460(2)0.9800 C(231)-H(23C) C(121)-H(12D) Al(2A)-Al(2A)#2 2.638(4)0.9800 0.94(3)C(121)-H(12E) 0.96(3)C(21A)-C(22A) 1.547(4)C(232)-H(23D) 0.9800 C(121)-H(12F) 0.89(4)C(21A)-H(211) 0.86(4)C(232)-H(23E) 0.9800 C(122)-H(12G) 0.95(3)C(21A)-H(212) 0.84(5)C(232)-H(23F) 0.9800 C(122)-H(12H) 0.97(3)C(22A)-H(221) 0.9800 C(233)-H(23G) 0.9800 0.9800 0.9800 C(122)-H(12I) 0.91(4)C(22A)-H(222) C(233)-H(23H) C(123)-H(12J) 0.90(3)C(22A)-H(223) 0.9800 C(233)-H(23I) 0.9800 1.557(5) C(123)-H(12K) 0.96(3)C(23A)-C(24A) C(123)-H(12L) 0.93(3)C(23A)-H(231) 0.9900

9.2.2.3 Bindungslängen

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
C(12)-C(11)-Al(1)	101.54(13)	H(214)-C(21B)-H(211)	165.5
C(12)-C(11)-Al(1A)	138.46(15)	H(215)-C(21B)-H(211)	60.8
Al(1)-C(11)-Al(1A)	74.56(6)	C(21B)-C(22B)-H(224)	109.5
C(12)-C(11)-H(111)	109.6(15)	C(21B)-C(22B)-H(225)	109.5
Al(1)-C(11)-H(111)	96.4(15)	H(224)-C(22B)-H(225)	109.5
Al(1A)-C(11)-H(111)	112.0(15)	C(21B)-C(22B)-H(226)	109.5
C(12)-C(11)-H(112)	108.5(15)	H(224)-C(22B)-H(226)	109.5
Al(1)-C(11)-H(112)	140.3(15)	H(225)-C(22B)-H(226)	109.5
Al(1A)-C(11)-H(112)	65.8(15)	C(24B)-C(23B)-Al(2B)	115.3(4)
H(111)-C(11)-H(112)	97(2)	C(24B)-C(23B)-H(234)	108.5
C(11)-C(12)-H(121)	112.9(17)	AI(2B)-C(23B)-H(234)	108.5
C(11)-C(12)-H(122)	111.4(14)	C(24B)-C(23B)-H(235)	108.5
H(121)-C(12)-H(122)	110(2)	AI(2B)-C(23B)-H(235)	108.5
U(12) - U(12) - H(123)	109.0(15) 107(2)	H(234)-C(23B)-H(233) C(24B)-C(22B)-H(212)	107.3 170.2(16)
$\Pi(121) - C(12) - \Pi(123)$ $\Pi(122) - C(12) - \Pi(123)$	10/(2) 106(2)	$C(24B)-C(23B)-\Pi(212)$	1/0.2(10)
$\Gamma(122)$ - $C(12)$ - $\Gamma(123)$ $C(14)$ $C(13)$ $\Lambda(1)$	100(2) 115 $04(14)$	$H(2D)-C(23D)-\Pi(212)$ H(23A) C(23B) H(212)	30.0(10) 80.3
C(14) - C(13) - AI(1) C(14) - C(13) - H(131)	113.94(14) 100 $4(15)$	H(234)-C(23B)-H(212) H(235)-C(23B)-H(212)	00.3 71.8
$A_1(1) - C(13) - H(131)$	109.4(15) 107.3(15)	C(23B)-C(24B)-H(244)	109 5
C(14)-C(13)-H(132)	107.3(13) 109.9(17)	C(23B)-C(24B)-H(245)	109.5
$A_1(1)-C(13)-H(132)$	107.9(17) 107.1(17)	H(244)-C(24B)-H(245)	109.5
H(131)-C(13)-H(132)	107(2)	C(23B)-C(24B)-H(246)	109.5
C(13)-C(14)-H(141)	113.8(18)	H(244)-C(24B)-H(246)	109.5
C(13)-C(14)-H(142)	114.3(17)	H(245)-C(24B)-H(246)	109.5
H(141)-C(14)-H(142)	106(2)	C(23A)-Al(2A)-C(21A)	109.08(16)
C(13)-C(14)-H(143)	112.0(16)	C(23A)-Al(2A)-C(21A)#2	105.65(15)
H(141)-C(14)-H(143)	102(2)	C(21A)-Al(2A)-C(21A)#2	105.01(13)
H(142)-C(14)-H(143)	108(2)	C(23A)-Al(2A)-Si(2)	113.18(14)
C(13)-Al(1)-C(11)	110.07(8)	C(21A)-Al(2A)-Si(2)	112.99(11)
C(13)-Al(1)-C(11A)	99.60(8)	C(21A)#2-Al(2A)-Si(2)	110.37(12)
C(11)-Al(1)-C(11A)	105.44(6)	C(23A)-Al(2A)-Al(2A)#2	119.32(17)
C(13)-Al(1)-Si(1)	117.52(7)	C(21A)-Al(2A)-Al(2A)#2	53.02(11)
C(11)-Al(1)-Si(1)	109.45(6)	C(21A)#2-Al(2A)-Al(2A)#2	51.98(10)
C(11A)-Al(1)-Si(1)	113.85(5)	Si(2)-Al(2A)-Al(2A)#2	127.33(13)
C(13)-Al(1)-Al(1A)	114.71(7)	C(22A)-C(21A)-Al(2A)	113.7(2)
C(11)-Al(1)-Al(1A)	54.15(5)	C(22A)-C(21A)-H(211)	113(3)
C(11A)-AI(1)-AI(1A)	51.30(5)	AI(2A)-C(21A)-H(211)	132(3)
$S_1(1) - A_1(1) - A_1(1A)$	127.55(4)	C(22A)-C(21A)-H(212)	111(3)
$S_1(11) - S_1(1) - S_1(13)$	106.40(3)	AI(2A)-C(21A)-H(212)	77(3)
SI(11)-SI(1)-SI(12) Si(12)-Si(1)-Si(12)	106.99(3) 107.25(2)	H(211)-C(21A)-H(212)	95(4)
SI(13)-SI(1)-SI(12) Si(11)-Si(1)-A1(1)	107.23(3) 117.28(2)	C(21A) - C(22A) - H(221)	109.5
SI(11) - SI(1) - AI(1) Si(12) Si(1) - AI(1)	11/.20(3) 110.80(3)	$U(21A) - U(22A) - \Pi(222)$	109.5
SI(15)-SI(1)-AI(1) Si(12) Si(1) AI(1)	110.89(3) 107.58(3)	$\Pi(221)-\Omega(22A)-\Pi(222)$ $\Gamma(21A)-\Gamma(22A)-\Pi(222)$	109.5
C(111)-Si(11)-C(112)	107.38(3) 107.32(13)	H(221)-C(22A)-H(223)	109.5
C(111)-Si(11)-C(112)	107.32(13) 108.79(12)	H(222)-C(22A)-H(223)	109.5
C(112)-Si(11)-C(113)	105.79(12) 105.78(12)	C(24A)-C(23A)-Al(2A)	116 3(3)
C(112) $Si(11)$ $C(113)$	100.70(12) 110.77(8)	C(24A)-C(23A)-H(231)	108.2
C(112)-Si(11)-Si(1)	112 28(9)	$A_1(2A)-C_2(23A)-H_2(231)$	108.2
C(113)-Si(11)-Si(1)	111.66(8)	C(24A)-C(23A)-H(232)	108.2
Si(11)-C(111)-H(11A)	109.0(17)	Al(2A)-C(23A)-H(232)	108.2
Si(11)-C(111)-H(11B)	114(2)	H(231)-C(23A)-H(232)	107.4
H(11Å)-Č(111)-H(11B)	109(3)	C(23A)-C(24A)-H(241)	109.5
Si(11)-C(111)-H(11C)	108.2(16)	C(23A)-C(24A)-H(242)	109.5
H(11A)-C(111)-H(11C)	108(2)	H(241)-C(24A)-H(242)	109.5

9.2.2.4 Bindungswinkel

H(11B)-C(111)-H(11C)	107(2)	C(23A)-C(24A)-H(243)	109.5
$S_{i}(11) - C(112) - H(11D)$	1077(19)	H(241) - C(24A) - H(243)	109 5
	107.7(19)	H(2+1) - C(2+A) - H(2+3)	109.5
$S_1(11)-C(112)-H(11E)$	113.6(18)	H(242)-C(24A)-H(243)	109.5
H(11D)-C(112)-H(11E)	104(3)	Si(23)-Si(2)-Si(22)	105 82(3)
C(11) C(112) U(11E)	114(2)	$S_{1}(22) = S_{1}(2) = S_{1}(21)$	107.00(2)
SI(11)-C(112)-H(11F)	114(2)	S1(23)-S1(2)-S1(21)	107.09(3)
H(11D)-C(112)-H(11F)	110(3)	Si(22)-Si(2)-Si(21)	106.34(3)
H(11E) C(112) H(11E)	107(2)	$S_{1}(22) = S_{1}(2) = A_{1}(2A)$	110.75(6)
$\Pi(\Pi E) - C(\Pi Z) - \Pi(\Pi F)$	107(3)	SI(23)-SI(2)-AI(2A)	110.75(0)
Si(11)-C(113)-H(11G)	109.9(19)	Si(22)-Si(2)-Al(2A)	102.82(5)
Si(11)-C(113)-H(11H)	111 5(19)	Si(21)-Si(2)-Al(2A)	122 70(6)
H(11C) C(112) H(11H)	105(2)	$S_1(21) = S_1(2) + S_1(211)$	122.70(0)
H(11G)-C(113)-H(11H)	105(3)	SI(23)-SI(2)-AI(2B)	105.42(8)
Si(11)-C(113)-H(11I)	115(2)	Si(22)-Si(2)-Al(2B)	114.17(7)
H(11G) C(113) H(111)	103(3)	$S_{i}(21)$ $S_{i}(2)$ $A_{i}(2B)$	117 24(8)
п(110)-С(113)-п(111)	105(5)	SI(21)-SI(2)-AI(2B)	11/.24(8)
H(11H)-C(113)-H(11I)	112(3)	AI(2A)-Si(2)-AI(2B)	11.38(5)
C(123)-Si(12)-C(121)	108.02(13)	C(213)-Si(21)-C(211)	$108 \ 31(12)$
C(122) S(12) C(122)	107.91(12)	C(212) S(21) C(212)	105.07(12)
C(123)-SI(12)-C(122)	107.81(13)	C(213)-SI(21)-C(212)	105.97(12)
C(121)-Si(12)-C(122)	106.55(13)	C(211)-Si(21)-C(212)	107.30(12)
C(123)-Si(12)-Si(1)	110.84(8)	C(213)-Si(21)-Si(2)	112 09(8)
C(123) S(12) S(1)	111.05(0)	C(213) - S(21) - S(2)	112.07(0)
C(121)-S1(12)-S1(1)	111.05(9)	C(211)-S1(21)-S1(2)	111.80(8)
C(122)-Si(12)-Si(1)	112.35(9)	C(212)-Si(21)-Si(2)	111.08(8)
$S_{1}(12) C(121) H(12D)$	100 5(10)	$S_{i}(21) C(211) H(21A)$	100.5
SI(12) - C(121) - II(12D)	109.3(19)	SI(21)-C(211)-II(21R)	109.5
Si(12)-C(121)-H(12E)	107.5(19)	Si(21)-C(211)-H(21B)	109.5
H(12D)-C(121)-H(12E)	107(3)	H(21A)-C(211)-H(21B)	109.5
$S_{1}(122) = C(121) = H(122)$	100(2)	S(21) C(211) U(21C)	100.5
$SI(12)-C(121)-\Pi(12F)$	109(2)	$SI(21)-C(211)-\Pi(21C)$	109.5
H(12D)-C(121)-H(12F)	113(3)	H(21A)-C(211)-H(21C)	109.5
H(12E)-C(121)-H(12E)	110(3)	H(21B)-C(211)-H(21C)	109 5
H(12L) = O(121) H(121)	110(5)	$\Pi(21D) \ \Theta(210) \ \Pi(210)$	109.5
S1(12)-C(122)-H(12G)	110.6(19)	$S_1(21)-C(212)-H(21D)$	109.5
Si(12)-C(122)-H(12H)	110.8(18)	Si(21)-C(212)-H(21E)	109.5
H(12G) - C(122) - H(12H)	111(3)	H(21D) - C(212) - H(21E)	100 5
	111(5)	$\Pi(21D) - C(212) - \Pi(21E)$	109.5
$S_1(12)-C(122)-H(121)$	110(2)	$S_1(21)-C(212)-H(21F)$	109.5
H(12G)-C(122)-H(12I)	109(3)	H(21D)-C(212)-H(21F)	109.5
U(12U) C(122) U(12I)	106(2)	H(21E) C(212) H(21E)	100.5
$\Pi(12\Pi) - C(122) - \Pi(121)$	100(3)	$\Pi(21E) - C(212) - \Pi(21F)$	109.5
Si(12)-C(123)-H(12J)	109.5(19)	Si(21)-C(213)-H(21G)	109.5
Si(12)-C(123)-H(12K)	113 1(16)	Si(21)-C(213)-H(21H)	109 5
H(121) C(122) H(1212)	100(2)	H(21C) C(213) H(21H)	109.5
H(12J)-C(123)-H(12K)	109(2)	H(21G)-C(213)-H(21H)	109.5
Si(12)-C(123)-H(12L)	109.2(16)	Si(21)-C(213)-H(21I)	109.5
H(12I) - C(123) - H(12I)	109(2)	H(21G) - C(213) - H(211)	109 5
H(12J) C(12J) H(12L)	107(2)	H(210) C(213) H(211)	109.5
H(12K)-C(123)-H(12L)	107(2)	H(21H)-C(213)-H(211)	109.5
C(132)-Si(13)-C(133)	109.22(12)	C(221)-Si(22)-C(222)	106.73(11)
C(132) - S(13) - C(131)	107.04(12)	C(221) $S(22)$ $C(223)$	107 64(11)
C(152)- $SI(15)$ - $C(151)$	107.04(12)	C(221)-SI(22)-C(223)	107.04(11)
C(133)-S1(13)-C(131)	106.12(12)	C(222)-S1(22)-C(223)	107.79(11)
C(132)-Si(13)-Si(1)	110.11(8)	C(221)-Si(22)-Si(2)	111.44(8)
C(122) Si(12) Si(1)	112 42(0)	C(222) $Si(22)$ $Si(2)$	11120(7)
C(133)-SI(13)-SI(1)	112.42(9)	C(222)-SI(22)-SI(2)	111.39(7)
C(131)-S1(13)-S1(1)	111.71(8)	C(223)-S1(22)-S1(2)	111.62(8)
Si(13)-C(131)-H(13A)	110.6(16)	Si(22)-C(221)-H(22G)	109.5
$S_{1}(12) C(121) U(12D)$	112 1(15)	$S_{i}(22) C(221) U(22U)$	100.5
$SI(13)-C(131)-\Pi(13D)$	113.1(13)	$SI(22)-C(221)-\Pi(22\Pi)$	109.5
H(13A)-C(131)-H(13B)	108(2)	H(22G)-C(221)-H(22H)	109.5
Si(13)-C(131)-H(13C)	105 0(16)	Si(22)-C(221)-H(221)	109 5
H(12A) = O(121) H(12O)	100(2)	H(22C) = C(221) H(221)	109.5
H(13A)-C(131)-H(13C)	109(2)	H(22G)-C(221)-H(221)	109.5
H(13B)-C(131)-H(13C)	111(2)	H(22H)-C(221)-H(22I)	109.5
$S_{1}(13) - C(132) - H(13D)$	$109\dot{4}(17)$	$S_{i}(22) - C_{i}(222) - H_{i}(221)$	109 5
S(13) - C(132) - H(13D)	107.4(17)	SI(22) - C(222) - II(223)	109.5
S1(13)-C(132)-H(13E)	111.9(16)	$S_1(22)-C(222)-H(22K)$	109.5
H(13D)-C(132)-H(13E)	109(2)	H(22J)-C(222)-H(22K)	109.5
$S_{i}(12) C(122) H(12E)$	100.3(17)	$S_{i}(22) = C(222) = H(221)$	100.5
S(13) - C(132) - II(131)	109.5(17)	SI(22) - C(222) - II(22L)	109.5
H(13D)-C(132)-H(13F)	108(2)	H(22J)-C(222)-H(22L)	109.5
H(13E)-C(132)-H(13F)	108(2)	H(22K)-C(222)-H(22L)	109.5
$S_{i}(12) C(122) U(12C)$	110(2)	$S_{1}(22) C(222) U(22) M(22) M(22)$	100 5
ы(13)-С(133)-П(13С)	110(2)	$SI(22) - C(223) - \Pi(22NI)$	109.3
S1(13)-C(133)-H(13H)	111.9(17)	S1(22)-C(223)-H(22N)	109.5
H(13G)-C(133)-H(13H)	105(2)	H(22M)-C(223)-H(22N)	109.5
S(12) C(122) H(121)	112(2)	C(223) = C(223) = C(223)	100 5
ы(13)-С(133)-П(131)	112(2)	SI(22)-C(223)-H(220)	109.3
H(13G)-C(133)-H(13I)	112(3)	H(22M)-C(223)-H(22O)	109.5
H(13H)-C(133)-H(13L)	106(3)	H(22N) - C(223) - H(220)	109 5
$C(22D) \wedge I(2D) \cap C(21D)$	100.0(2)	C(221) C(223) - H(220)	107.14(11)
C(23B)-AI(2B)- $C(21B)$	109.0(2)	C(231)-SI(23)-C(232)	10/.14(11)

C(23B)-Al(2B)-C(21B)#2	99.4(2)	C(231)-Si(23)-C(233)	107.02(13)
C(21B)-Al(2B)-C(21B)#2	103.4(2)	C(232)-Si(23)-C(233)	107.92(12)
C(23B)-Al(2B)-Si(2)	122.3(2)	C(231)-Si(23)-Si(2)	111.63(8)
C(21B)-Al(2B)-Si(2)	109.46(18)	C(232)-Si(23)-Si(2)	110.36(9)
C(21B)#2-Al(2B)-Si(2)	111.37(16)	C(233)-Si(23)-Si(2)	112.52(9)
C(23B)-Al(2B)-Al(2B)#2	113.1(3)	Si(23)-C(231)-H(23A)	109.5
C(21B)-Al(2B)-Al(2B)#2	52.85(16)	Si(23)-C(231)-H(23B)	109.5
C(21B)#2-Al(2B)-Al(2B)#2	50.58(15)	H(23A)-C(231)-H(23B)	109.5
Si(2)-Al(2B)-Al(2B)#2	124.3(2)	Si(23)-C(231)-H(23C)	109.5
C(23B)-Al(2B)-H(212)	49.9(15)	H(23A)-C(231)-H(23C)	109.5
C(21B)-Al(2B)-H(212)	59.3(16)	H(23B)-C(231)-H(23C)	109.5
C(21B)#2-Al(2B)-H(212)	114.5(14)	Si(23)-C(232)-H(23D)	109.5
Si(2)-Al(2B)-H(212)	134.2(14)	Si(23)-C(232)-H(23E)	109.5
Al(2B)#2-Al(2B)-H(212)	86.2(15)	H(23D)-C(232)-H(23E)	109.5
C(22B)-C(21B)-Al(2B)	99.1(3)	Si(23)-C(232)-H(23F)	109.5
C(22B)-C(21B)-H(214)	112.0	H(23D)-C(232)-H(23F)	109.5
Al(2B)-C(21B)-H(214)	112.0	H(23E)-C(232)-H(23F)	109.5
C(22B)-C(21B)-H(215)	112.0	Si(23)-C(233)-H(23G)	109.5
Al(2B)-C(21B)-H(215)	112.0	Si(23)-C(233)-H(23H)	109.5
H(214)-C(21B)-H(215)	109.6	H(23G)-C(233)-H(23H)	109.5
C(22B)-C(21B)-H(211)	65.9(15)	Si(23)-C(233)-H(23I)	109.5
Al(2B)-C(21B)-H(211)	82.4(15)	H(23G)-C(233)-H(23I)	109.5
		H(23H)-C(233)-H(23I)	109.5

9.2.2.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

T .	1 .
Ein	heit

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}
H(111)	5550(20)	5929(17)	871(14)	37(6)	H(234)	12893	5959	5130	40
H(112)	5790(30)	5016(17)	1214(15)	38(6)	H(235)	12966	4855	5132	40
H(121)	3040(30)	6300(20)	1349(19)	69(9)	H(244)	13199	4957	3644	53
H(122)	4200(30)	5893(18)	2124(16)	46(7)	H(245)	14469	5284	4061	53
H(123)	3440(30)	5243(18)	1705(15)	38(6)	H(246)	13164	6058	3654	53
H(131)	2090(30)	4994(19)	317(16)	46(7)	H(211)	11200(40)	4850(30)	6100(30)	40(10)
H(132)	1510(30)	6060(20)	249(17)	56(8)	H(212)	11620(50)	5440(30)	5600(30)	47(12)
H(141)	1200(30)	5970(20)	-1216(18)	57(8)	H(221)	10373	6037	6907	45
H(142)	330(30)	5413(19)	-752(17)	56(8)	H(222)	9067	6299	6277	45
H(143)	1780(30)	4940(20)	-1165(18)	61(8)	H(223)	10405	6765	6111	45
H(11A)	7020(30)	6931(19)	-2390(18)	53(8)	H(231)	12427	4564	3784	39
H(11B)	7710(30)	6170(20)	-1801(19)	66(9)	H(232)	12114	5576	3280	39
H(11C)	8470(30)	6945(19)	-2032(17)	54(7)	H(241)	13426	6143	4287	52
H(11D)	7620(40)	8810(20)	-1440(20)	77(10)	H(242)	14412	5252	3868	52
H(11E)	6240(30)	9210(20)	-910(20)	75(10)	H(243)	13747	5124	4785	52
H(11F)	6140(30)	9010(20)	-1820(20)	67(9)	H(21A)	6711	8926	6058	73
H(11G)	8490(30)	7270(20)	-170(18)	59(8)	H(21B)	8194	9001	5613	73
H(11H)	7810(30)	6520(20)	70(20)	73(10)	H(21C)	8085	8071	6187	73
H(11I)	7300(40)	7540(30)	370(20)	88(11)	H(21D)	5607	8746	3697	70
H(12D)	2240(30)	10130(20)	-220(20)	69(9)	H(21E)	6483	9471	3979	70
H(12E)	2090(30)	9680(20)	-1030(20)	70(9)	H(21F)	5103	9322	4505	70
H(12F)	3550(40)	9770(20)	-770(20)	78(11)	H(21G)	6439	6719	5617	68
H(12G)	1310(30)	7720(20)	690(20)	74(10)	H(21H)	5667	6911	4732	68
H(12H)	630(30)	8300(20)	-120(20)	69(9)	H(21I)	5053	7564	5478	68
H(12I)	750(40)	8780(20)	650(20)	78(10)	H(22G)	7654	8308	1579	63

H(12J)	4910(30)	8640(20)	804(19)	67(9)	H(22H)	8796	8630	2118	63
H(12K)	4280(30)	7900(20)	1284(17)	53(7)	H(22I)	7171	8793	2434	63
H(12L)	3560(30)	8940(20)	1295(17)	52(7)	H(22J)	9551	6495	1518	58
H(13A)	4740(30)	8386(18)	-2947(15)	43(7)	H(22K)	9841	5728	2301	58
H(13B)	3620(30)	9180(20)	-2543(17)	51(7)	H(22L)	10707	6542	2195	58
H(13C)	3260(30)	8655(19)	-3342(18)	57(8)	H(22M)	5922	7133	3004	64
H(13D)	3310(30)	6670(20)	-3338(19)	57(8)	H(22N)	6892	6079	3062	64
H(13E)	3230(30)	6010(20)	-2535(17)	56(8)	H(22O)	6471	6623	2168	64
H(13F)	4650(30)	6290(20)	-2809(17)	57(8)	H(23A)	9055	9738	4260	70
H(13G)	770(30)	8100(20)	-2630(20)	73(9)	H(23B)	9147	9632	3274	70
H(13H)	890(30)	8580(20)	-1886(17)	50(7)	H(23C)	10383	9961	3725	70
H(13I)	760(30)	7590(20)	-1740(20)	77(10)	H(23D)	12348	8636	4903	68
H(214)	8645	5764	5993	26	H(23E)	12297	7548	5059	68
H(215)	9818	4770	6098	26	H(23F)	11057	8349	5430	68
H(224)	10530	6550	6234	43	H(23G)	12701	8417	3089	79
H(225)	11554	5534	6462	43	H(23H)	11506	8153	2549	79
H(226)	10193	5919	7043	43	H(23I)	12514	7353	3138	79

9.2.3 Hypersilyl-methylgalliumchlorid, (Me(Cl)Ga-Hsi)₂; 3

9.2.3.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	C ₁₀ H ₃₀ Cl Ga Si ₄	
Formelgewicht:	367,87 g/Mol	
Temperatur:	173(2) K	
Wellenlänge:	0,71073 Å	
Kristallsystem, Raumgruppe:	monoklin, P2 ₁ /n (Ni	r.14)
Größe der Elementarzelle:	a = 9,0960(9) Å	$\alpha = 90^{\circ}$
	b = 14,0868(8) Å	$\beta = 90,647(8)^{\circ}$
	c = 15,5200(12) Å	$\gamma = 90^{\circ}$
Volumen der Elementarzelle:	1988,5(3) Å ³	
Z; röntgenographische Dichte:	4; 1,229 Mg/m ³	
Absorptionskoeffizient:	$1,740 \text{ mm}^{-1}$	
F(000):	776	
Farbe / Gestalt / Größe des Kristalls:	farblose Quader	0,35 x 0,25 x 0,20 mm
Messbereich; Abtastmodus:	$3,90^\circ \le 2\theta \le 58,00^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-12 \le h \le 12, -6 \le k$	$\leq 19, -21 \leq 1 \leq 21$
Beobachtete / symmetrieunabhängige Re	eflexe: 6718 /	5294 [R(int) = 0,0454]
Absorptionskorrektur:	semiempirisch (PSI-	-Scan)
Transmission minimal / maximal:	0,505 / 0,602	
Strukturverfeinerung:	Volle Matrix,	
-	kleinste Fehlerquad	ratsumme an F ²
Daten / Variable Parameter:	5294 / 145	
GooF (Goodness-of-fit an F^2):	1,014	
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0477$	$wR_2 = 0,0990$
Gütefaktoren R_1 und wR_2 (alle Daten):	$R_1 = 0,0868$	$wR_2 = 0,1156$
Maximale / minimale Restelektronendicl	nte: 0,965	/ -0,733 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-4 (S.84) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ga	8936(1)	873(1)	441(1)	27(1)	24(1)	24(1)	35(1)	-5(1)	-2(1)	-1(1)
C(1)	6873(4)	585(3)	241(3)	$\frac{27(1)}{43(1)}$	27(1) 20(2)	$\frac{2}{4}(1)$	56(3)	-2(2)	-2(1)	-1(1)
C(1)	0075(4)	505(3)	241(3)	43(1)	$\frac{29(2)}{49(1)}$	$\frac{44(2)}{24(1)}$	$\frac{30(3)}{47(1)}$	-2(2)	-4(2)	-1(2)
	9930(1)	-018(1)	940(1)	43(1)	40(1)	34(1)	4/(1)	-/(1)	-1(1)	4(1)
S1(1)	10056(1)	21/6(1)	1183(1)	22(1)	20(1)	20(1)	25(1)	0(1)	0(1)	-1(1)
Si(2)	11689(1)	3008(1)	300(1)	27(1)	28(1)	24(1)	29(1)	-1(1)	5(1)	-3(1)
C(21)	13177(4)	2231(3)	-124(3)	42(1)	30(2)	39(2)	56(3)	7(2)	14(2)	8(2)
C(22)	10685(5)	3568(3)	-631(3)	46(1)	46(2)	56(3)	36(2)	16(2)	8(2)	10(2)
C(23)	12613(6)	3978(3)	926(3)	55(1)	62(3)	50(3)	53(3)	-11(2)	13(2)	-27(2)
Si(3)	11268(1)	1627(1)	2433(1)	29(1)	29(1)	30(1)	28(1)	4(1)	-4(1)	0(1)
C(31)	9999(5)	873(3)	3087(3)	43(1)	47(2)	45(2)	36(2)	14(2)	2(2)	2(2)
C(32)	12927(4)	913(3)	2153(3)	47(1)	32(2)	53(3)	55(3)	9(2)	-4(2)	11(2)
C(33)	11886(6)	2653(3)	3117(3)	53(1)	71(3)	49(3)	40(2)	2(2)	-24(2)	-7(2)
Si(4)	8070(1)	3155(1)	1569(1)	28(1)	24(1)	28(1)	32(1)	-1(1)	2(1)	3(1)
C(41)	7102(5)	3634(4)	589(3)	51(1)	39(2)	69(3)	46(2)	12(2)	0(2)	22(2)
C(42)	8691(5)	4179(3)	2252(4)	63(2)	46(3)	56(3)	86(4)	-35(3)	-14(3)	19(2)
C(43)	6695(5)	2467(4)	2192(3)	58(1)	47(3)	56(3)	73(3)	14(3)	28(2)	4(2)

9.2.3.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

9.2.3.3 Bindungslängen

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
Ga-C(1)	1.941(4)	Si(1)- $Si(3)$	2.3515(13)	Si(3)-C(33)	1.875(4)
Ga-Si(1)	2.3900(9)	Si(1)-Si(4)	2.3558(13)	Si(3)-C(31)	1.876(4)
Ga-ClA	2.4054(11)	Si(2)-C(21)	1.866(4)	Si(4)-C(43)	1.862(4)
Ga-Cl	2.4198(11)	Si(2)-C(23)	1.870(4)	Si(4)-C(41)	1.874(4)
Cl-GaA	2.4054(11)	Si(2)-C(22)	1.875(4)	Si(4)-C(42)	1.874(4)
Si(1)-Si(2)	2.3463(13)	Si(3)-C(32)	1.869(4)		

9.2.3.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °	
C(1)-Ga-Si(1)	130.07(13)	C(21)-Si(2)-Si(1)	112.30(13)	
C(1)-Ga-ClA	103.91(14)	C(23)-Si(2)-Si(1)	110.18(15)	
Si(1)-Ga-ClA	111.29(4)	C(22)-Si(2)-Si(1)	110.74(14)	
C(1)-Ga-Cl	103.69(13)	C(32)-Si(3)-C(33)	108.0(2)	
Si(1)-Ga-Cl	110.66(4)	C(32)-Si(3)-C(31)	108.9(2)	
ClA-Ga-Cl	89.57(4)	C(33)-Si(3)-C(31)	108.2(2)	
GaA-Cl-Ga	90.43(4)	C(32)-Si(3)-Si(1)	110.91(14)	
Si(2)-Si(1)-Si(3)	110.64(5)	C(33)-Si(3)-Si(1)	110.35(14)	
Si(2)-Si(1)-Si(4)	110.40(5)	C(31)-Si(3)-Si(1)	110.31(13)	
Si(3)-Si(1)-Si(4)	109.69(5)	C(43)-Si(4)-C(41)	107.3(2)	

Si(2)-Si(1)-Ga Si(3)-Si(1)-Ga Si(4)-Si(1)-Ga C(21)-Si(2)-C(23) C(21)-Si(2)-C(22) C(23) Si(2)-C(22)	$111.80(4) \\109.78(4) \\104.35(4) \\106.8(2) \\108.9(2) \\107.8(2) \\1$	C(43)-Si(4)-C(42) C(41)-Si(4)-C(42) C(43)-Si(4)-Si(1) C(41)-Si(4)-Si(1) C(42)-Si(4)-Si(1)	107.9(3) 108.5(2) 110.4(2) 111.08(14) 111.54(15)
C(23)-Si(2)-C(22)	107.8(2)		

9.2.3.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq
H(1A)	6785(4)	-7(3)	-88(3)	65	H(32A)	12631(4)	371(3)	1795(3)	70
H(1B)	6413(4)	1104(3)	-86(3)	65	H(32B)	13403(4)	682(3)	2682(3)	70
H(1C)	6378(4)	514(3)	795(3)	65	H(32C)	13618(4)	1311(3)	1834(3)	70
H(21A)	12739(4)	1710(3)	-458(3)	63	H(33A)	11032(6)	3039(3)	3272(3)	80
H(21B)	13752(4)	1970(3)	358(3)	63	H(33B)	12581(6)	3043(3)	2793(3)	80
H(21C)	13821(4)	2604(3)	-496(3)	63	H(33C)	12367(6)	2414(3)	3642(3)	80
H(22A)	9901(5)	3978(3)	-414(3)	69	H(41A)	7795(5)	4002(4)	245(3)	77
H(22B)	10255(5)	3071(3)	-997(3)	69	H(41B)	6289(5)	4045(4)	767(3)	77
H(22C)	11373(5)	3948(3)	-969(3)	69	H(41D)	6714(5)	3106(4)	244(3)	77
H(23A)	11867(6)	4405(3)	1161(3)	83	H(42A)	9417(5)	4554(3)	1938(4)	94
H(23B)	13262(6)	4336(3)	545(3)	83	H(42D)	9136(5)	3940(3)	2788(4)	94
H(23C)	13193(6)	3702(3)	1399(3)	83	H(42B)	7844(5)	4580(3)	2389(4)	94
H(31A)	9125(5)	1242(3)	3237(3)	64	H(43D)	7166(5)	2205(4)	2711(3)	88
H(31B)	10506(5)	667(3)	3616(3)	64	H(43A)	6311(5)	1947(4)	1835(3)	88
H(31C)	9702(5)	315(3)	2751(3)	64	H(43B)	5886(5)	2885(4)	2357(3)	88

Einheit

9.2.4 Tris(hypersilyl)gallium, Ga(Hsi)₃; 10

9.2.4.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

C ₂₇ H ₈₁ Ga Si ₁₂	
812,72 g/Mol	
173(2) K	
0,71073 Å	
monoklin, P2 ₁ /c	
a = 23,156(2) Å	$\alpha = 90^{\circ}$
b = 12,5265(11) Å	$\beta = 104, 140(8)^{\circ}$
c = 19,029(2) Å	$\gamma = 90^{\circ}$
5352,5(8) Å ³	
4; 1,009 Mg/m ³	
0,798 mm ⁻¹	
1768	
farblose Quader	0,5 x 0,4 x 0,3 mm
	C ₂₇ H ₈₁ Ga Si ₁₂ 812,72 g/Mol 173(2) K 0,71073 Å monoklin, P2 ₁ /c a = 23,156(2) Å b = 12,5265(11) Å c = 19,029(2) Å 5352,5(8) Å ³ 4; 1,009 Mg/m ³ 0,798 mm ⁻¹ 1768 farblose Quader

Messbereich; Abtastmodus:	$3,56^\circ \le 2\theta \le 50,00^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-27 \le h \le 26, -14 \le k \le 14, -13 \le l \le 22$
Beobachtete / symmetrieunabhängige Re	eflexe: $9632 / 9321 [R(int) = 0,0671]$
Absorptionskorrektur:	keine
Strukturverfeinerung:	Volle Matrix,
	kleinste Fehlerquadratsumme an F ²
Daten / Variable Parameter:	9321 / 361
GooF (Goodness-of-fit an F^2):	0,978
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0.0583$ $wR_2 = 0.1888$
Gütefaktoren R ₁ und wR ₂ (alle Daten):	$R_1 = 0,1336$ $wR_2 = 0,2098$
Maximale / minimale Restelektronendic	hte: $2,210 / -0,432 \text{ e} \cdot \text{Å}^{-3}$

Die Nummerierung der Atome ist Abbildung 5-5 (S.86) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ga	2380(1)	5165(1)	2336(1)	18(1)	17(1)	17(1)	19(1)	0(1)	4(1)	1(1)
Si(1)	2101(1)	3540(2)	1569(1)	22(1)	30(1)	18(1)	22(1)	-2(1)	9(1)	-2(1)
Si(11)	2697(1)	2098(2)	2136(2)	37(1)	50(2)	29(2)	35(2)	5(1)	16(1)	12(1)
C(111)	2421(6)	774(8)	1716(6)	64(4)	106(10)	22(6)	70(8)	13(6)	36(8)	17(6)
C(112)	3488(5)	2137(11)	2065(6)	77(4)	47(7)	110(12)	64(8)	23(8)	-6(6)	8(8)
C(113)	2706(5)	2039(9)	3121(5)	59(3)	80(9)	58(8)	40(7)	20(6)	15(6)	36(7)
Si(12)	2341(1)	3807(2)	439(1)	26(1)	33(1)	26(2)	22(1)	-1(1)	10(1)	-1(1)
C(121)	1679(4)	4127(8)	-320(4)	37(2)	48(6)	42(6)	24(5)	-5(5)	10(5)	-7(5)
C(122)	2696(5)	2575(8)	148(5)	50(3)	81(8)	42(7)	34(6)	-3(5)	29(6)	13(6)
C(123)	2868(4)	4943(8)	502(5)	42(3)	50(6)	43(7)	36(5)	10(5)	18(5)	-6(5)
Si(13)	1132(1)	2763(2)	1245(1)	34(1)	38(2)	33(2)	34(2)	-7(1)	13(1)	-14(1)
C(131)	1109(5)	1720(8)	521(5)	51(3)	74(8)	42(7)	40(6)	-16(5)	24(6)	-18(6)
C(132)	912(5)	2046(8)	2007(5)	53(3)	56(7)	54(8)	58(7)	0(6)	32(6)	-31(6)
C(133)	505(4)	3707(9)	852(5)	50(3)	33(6)	67(8)	50(7)	0(6)	11(5)	-7(6)
Si(2)	3432(1)	5792(2)	2756(1)	26(1)	18(1)	30(2)	28(1)	-2(1)	3(1)	1(1)
Si(21)	3576(1)	6091(3)	4023(2)	43(1)	37(2)	57(2)	29(2)	-4(2)	-6(1)	11(2)
C(211)	2991(5)	5267(10)	4338(6)	70(4)	95(10)	76(9)	43(7)	10(7)	23(7)	-11(8)
C(212)	3560(5)	7502(9)	4249(6)	65(4)	73(8)	70(9)	47(7)	-24(6)	7(6)	-8(7)
C(213)	4292(6)	5597(13)	4612(7)	113(6)	94(11)	171(17)	52(8)	-19(10)	-27(8)	73(11)
Si(22)	4333(1)	4918(3)	2706(2)	48(1)	$2\dot{4}(1)$	62(2)	57(2)	-2(2)	8(1)	$1\dot{4}(2)$
C(221)	4417(5)	4487(10)	1784(6)	74(4)	60(8)	90(11)	84(9)	-11(8)	39(7)	32(7)
C(222)	4951(5)	5908(12)	3021(7)	94(5)	34(7)	147(15)	96(11)	-2(10)	7(7)	-19(8)
C(223)	4521(6)	3749(10)	3340(6)	77(4)	84(10)	76(10)	56(8)	-4(7)	-11(7)	45(8)
Si(23)	3467(1)	7390(2)	2090(2)	34(1)	32(2)	31(2)	37(2)	-3(1)	7(1)	-9(1)
C(231)	3917(5)	7238(9)	1395(6)	55(3)	54(7)	55(8)	61(7)	4(6)	26(6)	-11(6)
C(232)	2701(4)	7769(8)	1566(5)	42(3)	46(6)	31(6)	45(6)	3(5)	3(5)	5(5)
C(233)	3813(5)	8580(8)	2658(6)	50(3)	52(7)	38(7)	58(7)	-9(6)	9(6)	-21(5)
Si(3)	1579(1)	6253(2)	2665(1)	19(1)	20(1)	19(1)	20(1)	-1(1)	6(1)	1(1)
Si(31)	1717(1)	7776(2)	3431(1)	27(1)	29(1)	24(2)	29(1)	-6(1)	8(1)	1(1)
C(311)	944(4)	8310(8)	3371(6)	47(3)	46(6)	35(6)	63(7)	-6(6)	17(6)	11(5)
C(312)	2064(4)	7524(8)	4415(5)	39(2)	34(5)	53(7)	29(5)	-13(5)	8(4)	0(5)
C(313)	2137(4)	8908(7)	3123(5)	41(3)	48(6)	34(6)	44(6)	-9(5)	17(5)	-11(5)
Si(32)	958(1)	6922(2)	1560(1)	26(1)	23(1)	30(2)	25(1)	3(1)	2(1)	5(1)
C(321)	1178(4)	6261(8)	776(5)	39(3)	35(6)	51(7)	30(5)	-3(5)	4(4)	3(5)
C(322)	143(4)	6710(8)	1473(5)	38(2)	28(5)	51(7)	33(6)	9(5)	4(4)	8(5)

9.2.4.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

C(323)	1053(4)	8409(7)	1422(5)	45(3)	48(7)	38(6)	42(6)	10(5)	1(5)	10(5)
Si(33)	1073(1)	5053(2)	3281(1)	29(1)	32(1)	29(2)	30(1)	2(1)	11(1)	-5(1)
C(331)	1553(4)	3840(8)	3534(6)	54(3)	48(7)	42(7)	72(8)	20(6)	15(6)	1(6)
C(332)	322(4)	4614(8)	2730(5)	41(3)	27(5)	39(6)	60(7)	3(5)	15(5)	-9(5)
C(333)	921(6)	5577(9)	4145(6)	69(4)	111(11)	55(8)	56(8)	-16(6)	52(8)	-24(7)

9.2.4.3 Bindungslängen

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
Ga-Si(1)	2496(3)	$S_{i}(13) - C(133)$	1 881(10)	Si(23) - C(233)	1 900(9)
Ga-Si(2)	2.490(3) 2.498(3)	Si(13)-C(131)	1.881(10)	Si(23)-C(233) Si(3)-Si(31)	2 375(3)
Ga-Si(3)	2.501(2)	Si(2)-Si(22)	2.378(4)	Si(3) - Si(33)	2.385(3)
Si(1)-Si(11)	2.367(4)	Si(2)-Si(21)	2.381(4)	Si(3)-Si(32)	2.390(3)
Si(1)-Si(12)	2.371(3)	Si(2)-Si(23)	2.381(4)	Si(31)-C(312)	1.876(9)
Si(1)-Si(13)	2.385(4)	Si(21)-C(212)	1.822(11)	Si(31)-C(311)	1.888(9)
Si(11)-C(113)	1.870(10)	Si(21)-C(213)	1.866(11)	Si(31)-C(313)	1.892(9)
Si(11)-C(112)	1.871(11)	Si(21)-C(211)	1.913(11)	Si(32)-C(322)	1.873(9)
Si(11)-C(111)	1.883(11)	Si(22)-C(222)	1.877(12)	Si(32)-C(321)	1.882(9)
Si(12)-C(123)	1.861(9)	Si(22)-C(223)	1.880(12)	Si(32)-C(323)	1.902(10)
Si(12)-C(121)	1.874(9)	Si(22)-C(221)	1.891(11)	Si(33)-C(331)	1.875(10)
Si(12)-C(122)	1.893(10)	Si(23)-C(232)	1.872(9)	Si(33)-C(332)	1.880(9)
Si(13)-C(132)	1.879(9)	Si(23)-C(231)	1.883(10)	Si(33)-C(333)	1.881(10)

9.2.4.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
$S_{i}(1) C_{2} S_{i}(2)$	122 42(0)	C(212) Si(21) Si(2)	116 1(A)
Si(1) - Ga - Si(2)	122.42(9) 110.20(8)	C(213)-SI(21)-SI(2) C(211)-Si(21)-Si(2)	10.1(4)
Si(1) - Ga - Si(3) Si(2) - Ga - Si(3)	119.29(8) 119.25(8)	C(211)-SI(21)-SI(2) C(222)-Si(22)-C(222)	107.4(4) 105.8(6)
SI(2)-Ga- $SI(3)$	110.23(0) 10(.27(12))	C(222)-SI(22)-C(223)	103.8(6)
SI(11) - SI(1) - SI(12)	106.37(13)	C(222)-SI(22)-C(221)	103.9(6)
$S_1(11) - S_1(1) - S_1(13)$	102.29(13)	C(223)-Si(22)-C(221)	108.2(5)
$S_1(12)-S_1(1)-S_1(13)$	103.71(12)	C(222)-S1(22)-S1(2)	107.0(5)
Si(11)-Si(1)-Ga	108.49(12)	C(223)-Si(22)-Si(2)	113.6(4)
Si(12)-Si(1)-Ga	109.32(11)	C(221)-Si(22)-Si(2)	117.3(4)
Si(13)-Si(1)-Ga	125.20(12)	C(232)-Si(23)-C(231)	105.5(5)
C(113)-Si(11)-C(112)	107.6(5)	C(232)-Si(23)-C(233)	108.5(5)
C(113)-Si(11)-C(111)	108.1(5)	C(231)-Si(23)-C(233)	104.5(5)
C(112)-Si(11)-C(111)	103.2(6)	C(232)-Si(23)-Si(2)	110.2(3)
C(113)-Si(11)-Si(1)	110.5(3)	C(231)-Si(23)-Si(2)	112.6(4)
C(112)-Si(11)-Si(1)	114.7(4)	C(233)-Si(23)-Si(2)	114.9(3)
C(111)-Si(11)-Si(1)	112.3(4)	Si(31)-Si(3)-Si(33)	102.28(12)
C(123)-Si(12)-C(121)	106.6(4)	Si(31)-Si(3)-Si(32)	102.67(12)
C(123)-Si(12)-C(122)	108.5(5)	Si(33)-Si(3)-Si(32)	112.99(12)
C(121)-Si(12)-C(122)	106.3(4)	Si(31)-Si(3)-Ga	126.54(11)
C(123)-Si(12)-Si(1)	110.2(3)	Si(33)-Si(3)-Ga	105.29(11)
C(121)-Si(12)-Si(1)	113.6(3)	Si(32)-Si(3)-Ga	107.15(10)
C(122)-Si(12)-Si(1)	111.4(3)	C(312)-Si(31)-C(311)	106.7(4)

C(132)-Si(13)-C(133)	106.2(5)	C(312)-Si(31)-C(313)	107.9(4)
C(132)-Si(13)-C(131)	105.5(5)	C(311)-Si(31)-C(313)	105.6(4)
C(133)-Si(13)-C(131)	105.3(5)	C(312)-Si(31)-Si(3)	116.0(3)
C(132)-Si(13)-Si(1)	114.3(3)	C(311)-Si(31)-Si(3)	105.4(3)
C(133)-Si(13)-Si(1)	115.6(3)	C(313)-Si(31)-Si(3)	114.4(3)
C(131)-Si(13)-Si(1)	109.1(4)	C(322)-Si(32)-C(321)	109.2(4)
Si(22)-Si(2)-Si(21)	101.87(13)	C(322)-Si(32)-C(323)	106.0(4)
Si(22)-Si(2)-Si(23)	102.80(14)	C(321)-Si(32)-C(323)	105.0(4)
Si(21)-Si(2)-Si(23)	113.05(14)	C(322)-Si(32)-Si(3)	113.9(3)
Si(22)-Si(2)-Ga	129.74(13)	C(321)-Si(32)-Si(3)	108.7(3)
Si(21)-Si(2)-Ga	104.95(12)	C(323)-Si(32)-Si(3)	113.6(3)
Si(23)-Si(2)-Ga	104.54(11)	C(331)-Si(33)-C(332)	108.4(5)
C(212)-Si(21)-C(213)	104.2(6)	C(331)-Si(33)-C(333)	106.5(5)
C(212)-Si(21)-C(211)	113.1(6)	C(332)-Si(33)-C(333)	104.2(5)
C(213)-Si(21)-C(211)	103.0(7)	C(331)-Si(33)-Si(3)	107.7(3)
C(212)-Si(21)-Si(2)	112.7(4)	C(332)-Si(33)-Si(3)	114.1(3)
· · · · · · · · ·		C(333)-Si(33)-Si(3)	115.4(4)

9.2.4.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

Einheit

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq
H(11A)	2412(6)	787(8)	1199(6)	95	H(22F)	4968(5)	6118(12)	3521(7)	141
H(11B)	2019(6)	642(8)	1776(6)	95	H(22G)	4211(6)	3202(10)	3202(6)	115
H(11C)	2688(6)	205(8)	1955(6)	95	H(22H)	4543(6)	3985(10)	3837(6)	115
H(11D)	3498(5)	2168(11)	1553(6)	116	H(22I)	4905(6)	3450(10)	3312(6)	115
H(11E)	3696(5)	1494(11)	2287(6)	116	H(23A)	4326(5)	7038(9)	1637(6)	82
H(11F)	3685(5)	2770(11)	2317(6)	116	H(23B)	3919(5)	7916(9)	1138(6)	82
H(11G)	2297(5)	2018(9)	3176(5)	89	H(23C)	3739(5)	6681(9)	1047(6)	82
H(11H)	2908(5)	2673(9)	3366(5)	89	H(23D)	2442(4)	7861(8)	1900(5)	63
H(11I)	2919(5)	1397(9)	3336(5)	89	H(23E)	2539(4)	7205(8)	1216(5)	63
$H(12\dot{A})$	1388(4)	3547(8)	-373(4)	56	H(23F)	2719(4)	8440(8)	1307(5)	63
H(12B)	1806(4)	4208(8)	-772(4)	56	H(23G)	4215(5)	8394(8)	2936(6)	75
H(12C)	1497(4)	4794(8)	-212(4)	56	H(23H)	3568(5)	8775(8)	2992(6)	75
H(12D)	2423(5)	1968(8)	113(5)	75	H(23I)	3835(5)	9186(8)	2340(6)	75
H(12E)	3068(5)	2416(8)	507(5)	75	H(31Å)	745(4)	8454(8)	2864(6)	71
H(12F)	2780(5)	2703(8)	-325(5)	75	H(31B)	971(4)	8973(8)	3652(6)	71
H(12G)	3223(4)	4810(8)	894(5)	63	H(31C)	714(4)	7782(8)	3568(6)	71
H(12H)	2675(4)	5603(8)	602(5)	63	H(31D)	2468(4)	7244(8)	4471(5)	58
H(12I)	2985(4)	5017(8)	42(5)	63	H(31E)	1824(4)	7002(8)	4603(5)	58
H(13Å)	1220(5)	2047(8)	105(5)	76	H(31F)	2081(4)	8193(8)	4686(5)	58
H(13B)	705(5)	1428(8)	366(5)	76	H(31G)	1964(4)	9055(7)	2609(5)	62
H(13C)	1389(5)	1145(8)	717(5)	76	H(31H)	2556(4)	8707(7)	3192(5)	62
H(13D)	1226(5)	1541(8)	2232(5)	79	H(31I)	2110(4)	9549(7)	3408(5)	62
H(13E)	539(5)	1657(8)	1817(5)	79	H(32A)	1604(4)	6371(8)	820(5)	59
H(13F)	856(5)	2566(8)	2370(5)	79	H(32B)	950(4)	6575(8)	321(5)	59
H(13G)	598(4)	4104(9)	449(5)	75	H(32C)	1094(4)	5495(8)	780(5)	59
H(13H)	453(4)	4209(9)	1227(5)	75	H(32D)	27(4)	7053(8)	1881(5)	57
H(13I)	136(4)	3301(9)	674(5)	75	H(32E)	60(4)	5943(8)	1476(5)	57
H(21A)	3020(5)	4518(10)	4203(6)	105	H(32F)	-85(4)	7023(8)	1017(5)	57
H(21B)	2593(5)	5539(10)	4108(6)	105	H(32G)	1474(4)	8567(7)	1462(5)	67
H(21C)	3060(5)	5323(10)	4866(6)	105	H(32H)	915(4)	8810(7)	1793(5)	67
H(21D)	3193(5)	7826(9)	3959(6)	97	H(32I)	818(4)	8618(7)	941(5)	67

H(21E)	3906(5)	7862(9)	4144(6)	97	H(33A)	1947(4)	4056(8)	3822(6)	81
H(21F)	3573(5)	7578(9)	4765(6)	97	H(33B)	1595(4)	3477(8)	3093(6)	81
H(21G)	4336(6)	4835(13)	4523(7)	170	H(33C)	1369(4)	3354(8)	3819(6)	81
H(21H)	4292(6)	5707(13)	5122(7)	170	H(33D)	65(4)	5240(8)	2593(5)	62
H(21I)	4625(6)	5991(13)	4501(7)	170	H(33E)	141(4)	4125(8)	3017(5)	62
H(22A)	4108(5)	3963(10)	1577(6)	112	H(33F)	368(4)	4248(8)	2292(5)	62
H(22B)	4811(5)	4164(10)	1833(6)	112	H(33G)	670(6)	6215(9)	4039(6)	103
H(22C)	4377(5)	5109(10)	1464(6)	112	H(33H)	1299(6)	5760(9)	4486(6)	103
H(22D)	4877(5)	6540(12)	2708(7)	141	H(33I)	716(6)	5028(9)	4360(6)	103
H(22E)	5331(5)	5582(12)	2997(7)	141					

9.2.5 Natrium-hypersilyl-trimethylgallat, Na[Me₃Ga-Hsi]·C₇H₈; 5

9.2.5.1 Angaben zur Messung der Reflexintensitäten und zur

Summenformel:	C ₁₉ H ₄₄ Ga Na Si ₄
Formelgewicht:	477,61 g/Mol
Temperatur:	293(2) K
Wellenlänge:	0,71073 Å
Kristallsystem, Raumgruppe:	orthorhombisch, Pbca (Nr.61)
Größe der Elementarzelle:	$a = 12,903(3) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 18,262(4) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 24,670(5) \text{ Å} \qquad \gamma = 90^{\circ}$
Volumen der Elementarzelle:	$5813(2) \text{ Å}^3$
Z; röntgenographische Dichte:	8; 1,092 Mg/m ³
Absorptionskoeffizient:	$1,129 \text{ mm}^{-1}$
F(000):	2048
Farbe / Gestalt / Größe des Kristalls:	fahlgelbe Nadeln 0,1 x 0,2 x 0,8 mm
Messbereich; Abtastmodus:	$3,30^\circ \le 2\theta \le 44,56^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-13 \le h \le 12, -19 \le k \le 19, -26 \le l \le 26$
Beobachtete / symmetrieunabhängige Re	eflexe: $27961 / 3539 [R(int) = 0,0838]$
Absorptionskorrektur:	keine
Vollständigkeit zu θ:	22,28 95,7 %
Strukturverfeinerung:	Volle Matrix,
	kleinste Fehlerquadratsumme an F ²
Daten / restraints / Parameter:	3539 / 177 / 305
GooF (Goodness-of-fit an F ²):	0,763
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0424$ $wR_2 = 0,0953$
Gütefaktoren R ₁ und wR ₂ (alle Daten):	$R_1 = 0,0943$ $wR_2 = 0,1077$
Extinktionskoeffizient:	0,00014(14)
Maximale / minimale Restelektronendic	hte: $0,267 / -0,456 \text{ e} \cdot \text{Å}^{-3}$

Die Nummerierung der Atome ist Abbildung 5-8 (S.89) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ga(1)	7882(1)	1284(1)	2967(1)	64(1)	72(1)	67(1)	54(1)	0(1)	0(1)	9(1)
C(1)	6931(5)	409(3)	3105(2)	90(2)	115(6)	71(4)	85(4)	-2(3)	-3(4)	-2(4)
C(2)	7468(5)	1832(3)	2283(2)	83(2)	97(7)	90(4)	63(4)	1(3)	-6(3)	7(3)
C(3)	9356(5)	932(3)	2864(2)	87(2)	91(6)	98(4)	74(4)	-4(3)	7(3)	24(4)
Si(1)	7799(1)	2104(1)	3749(1)	59(1)	63(1)	66(1)	49(1)	4(1)	2(1)	6(1)
Si(11)	6323(1)	2840(1)	3731(1)	64(1)	65(1)	66(1)	61(1)	5(1)	4(1)	8(1)
C(111)	6441(5)	3554(3)	3192(2)	88(2)	89(5)	86(4)	88(4)	24(3)	2(4)	7(4)
C(112)	6086(5)	3336(3)	4390(2)	98(2)	105(6)	110(5)	78(4)	-12(4)	11(4)	27(4)
C(113)	5146(5)	2276(3)	3576(2)	95(2)	71(5)	94(5)	120(5)	4(4)	-8(4)	-8(4)
Si(12)	9241(1)	2887(1)	3756(1)	74(1)	68(1)	95(1)	59(1)	-2(1)	-1(1)	-5(1)
C(121)	9098(5)	3707(3)	4212(2)	107(2)	114(7)	107(5)	99(5)	-31(4)	-3(4)	-26(4)
C(122)	9471(6)	3250(4)	3055(2)	102(2)	108(6)	125(5)	75(4)	14(4)	10(4)	-32(4)
C(123)	10449(5)	2397(4)	3972(2)	115(2)	87(6)	165(7)	93(5)	-1(5)	-19(4)	7(5)
Si(13)	7787(2)	1435(1)	4559(1)	78(1)	94(1)	84(1)	55(1)	13(1)	10(1)	20(1)
C(131)	8090(6)	2016(3)	5170(2)	108(3)	136(8)	136(6)	53(3)	-1(3)	-8(4)	29(5)
C(132)	8779(6)	681(3)	4530(2)	115(3)	158(8)	108(5)	80(4)	27(4)	12(4)	55(5)
C(133)	6498(6)	995(4)	4685(3)	124(3)	132(7)	139(6)	102(5)	37(5)	33(5)	-8(5)
Na(1)	6402(3)	661(2)	2127(1)	135(1)	122(3)	148(3)	134(2)	-26(2)	-22(2)	12(2)
C(21)	7780(30)	280(20)	1094(18)	93(7)	98(16)	99(12)	81(14)	-14(9)	9(13)	-2(14)
C(211)	8400(30)	798(17)	810(14)	198(19)	280(50)	150(20)	170(30)	-22(17)	70(30)	-140(30)
C(22)	8196(19)	-168(14)	1452(10)	102(6)	107(12)	125(17)	74(11)	20(11)	-2(10)	15(12)
C(23)	7605(19)	-672(17)	1753(13)	115(8)	100(20)	133(17)	112(12)	10(13)	-17(16)	13(16)
C(24)	6600(20)	-774(13)	1633(10)	108(7)	91(16)	134(14)	97(15)	17(10)	-4(14)	5(13)
C(25)	6174(19)	-284(13)	1214(10)	100(7)	97(13)	105(15)	100(16)	-26(12)	-25(10)	21(10)
C(26)	6740(20)	265(17)	951(14)	111(8)	121(15)	119(18)	93(16)	-16(12)	-6(12)	12(14)
C(31)	7540(30)	360(30)	1030(20)	97(9)	94(18)	115(15)	82(15)	-9(12)	-1(15)	10(15)
C(311)	7800(40)	920(20)	662(16)	180(20)	310(60)	130(20)	100(18)	38(16)	20(30)	20(30)
C(32)	6620(20)	54(19)	1061(15)	83(7)	87(15)	86(16)	77(14)	10(12)	-2(12)	-2(11)
C(33)	6410(30)	-530(17)	1423(13)	112(10)	121(19)	120(20)	90(20)	-8(15)	-11(16)	-7(16)
C(34)	7160(30)	-830(20)	1717(17)	121(10)	110(20)	140(17)	110(15)	-5(13)	-20(20)	0(19)
C(35)	8150(30)	-427(16)	1709(13)	116(9)	121(19)	118(18)	109(16)	5(14)	-20(17)	24(15)
C(36)	8370(20)	158(16)	1358(14)	118(8)	129(16)	122(18)	102(16)	-6(15)	-23(13)	43(15)

9.2.5.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

9.2.5.3 Bindungslängen

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
Ga(1)-C(3)	2.024(6)	Si(12)-C(121)	1.883(6)	C(21)-C(22)	1.32(4)
Ga(1)-C(2)	2.033(5)	Si(13)-C(133)	1.873(7)	C(21)-C(211)	1.419(18)
Ga(1)-C(1)	2.044(5)	Si(13)-C(132)	1.881(6)	C(21)-C(26)	1.39(5)
Ga(1)-Si(1)	2.4433(15)	Si(13)-C(131)	1.885(6)	C(22)-C(23)	1.41(3)
Ga(1)-Na(1)	3.039(3)	Na(1)-C(3)A	2.686(7)	C(23)-C(24)	1.34(2)
Si(1)-Si(11)	2.332(2)	Na(1)-C(33)	2.78(3)	C(24)-C(25)	1.48(2)
Si(1)-Si(13)	2.343(2)	Na(1)-C(25)	2.85(2)	C(25)-C(26)	1.40(3)
Si(1)-Si(12)	2.347(2)	Na(1)-C(32)	2.87(4)	C(31)-C(32)	1.32(4)
Si(11)-C(111)	1.868(5)	Na(1)-C(24)	2.90(3)	C(31)-C(311)	1.412(19)
Si(11)-C(113)	1.875(6)	Na(1)-C(26)	3.02(4)	C(31)-C(36)	1.39(5)
Si(11)-C(112)	1.887(5)	Na(1)-C(34)	3.07(5)	C(32)-C(33)	1.42(3)

C(35)-C(36) = 1.41(3)	Si(12)-C(123) Si(12)-C(122)	1.874(6) 1.877(5)	Na(1)-C(23) Na(1)-C(31)	3.03(3) 3.13(6)	C(33)-C(34) C(34)-C(35) C(35)-C(36)	1.33(2) 1.47(3) 1.41(3)
-----------------------	--------------------------------	----------------------	----------------------------	--------------------	---	-------------------------------

9.2.5.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
C(3)-Ga(1)-C(2)	107.4(2)	C(33)-Na(1)-C(26)	38.1(7)
C(3)-Ga(1)-C(1)	109.7(2)	C(25)-Na(1)-C(26)	27.4(5)
C(2)-Ga(1)-C(1)	111.4(2)	C(32)-Na(1)-C(26)	9.2(9)
C(3)-Ga(1)-Si(1)	109.63(17)	C(24)-Na(1)-C(26)	50.8(7)
C(2)-Ga(1)-Si(1)	110.04(16)	C(1)-Na(1)-C(34)	93.8(7)
C(1)-Ga(1)-Si(1)	108.71(16)	C(2)-Na(1)-C(34)	128.1(7)
C(3)-Ga(1)-Na(1)	112.65(17)	C(3)A-Na(1)-C(34)	118.7(7)
C(2)-Ga(1)-Na(1)	56.85(17)	C(33)-Na(1)-C(34)	25.7(6)
C(1)-Ga(1)-Na(1)	56.17(17)	C(25)-Na(1)-C(34)	40.1(6)
Si(1)-Ga(1)-Na(1)	137.72(8)	C(32)-Na(1)-C(34)	47.4(8)
Si(11)-Si(1)-Si(13)	108.15(8)	C(24)-Na(1)-C(34)	14.2(7)
Si(11)-Si(1)-Si(12)	107.23(8)	C(26)-Na(1)-C(34)	54.9(9)
Si(13)-Si(1)-Si(12)	108.45(9)	C(1)-Na(1)-Ga(1)	41.76(13)
Si(11)-Si(1)-Ga(1)	111.98(7)	C(2)-Na(1)-Ga(1)	41.45(12)
Si(13)-Si(1)-Ga(1)	110.77(7)	C(3)A-Na(1)-Ga(1)	122.89(16)
Si(12)-Si(1)-Ga(1)	110.12(7)	C(33)-Na(1)-Ga(1)	135.8(8)
C(111)-Si(11)-C(113)	107.7(3)	C(25)-Na(1)-Ga(1)	146.1(5)
C(111)-Si(11)-C(112)	106.9(3)	C(32)-Na(1)-Ga(1)	135.2(6)
C(113)-Si(11)-C(112)	108.0(3)	C(24)-Na(1)-Ga(1)	124.6(5)
C(111)-Si(11)-Si(1)	110.4(2)	C(26)-Na(1)-Ga(1)	130.8(6)
C(113)-Si(11)-Si(1)	110.4(2)	C(34)-Na(1)-Ga(1)	110.9(7)
C(112)-Si(11)-Si(1)	113.1(2)	C(1)-Na(1)-C(23)	90.4(6)
C(123)-Si(12)-C(122)	107.4(3)	C(2)-Na(1)-C(23)	116.1(5)
C(123)-Si(12)-C(121)	107.0(3)	C(3)A-Na(1)-C(23)	130.8(5)
C(122)-Si(12)-C(121)	106.6(3)	C(33)-Na(1)-C(23)	35.0(9)
C(123)-Si(12)-Si(1)	111.8(2)	C(25)-Na(1)-C(23)	47.7(6)
C(122)-Si(12)-Si(1)	109.5(2)	C(32)-Na(1)-C(23)	50.3(9)
C(121)-Si(12)-Si(1)	114.3(2)	C(24)-Na(1)-C(23)	25.9(5)
C(133)-Si(13)-C(132)	107.3(3)	C(26)-Na(1)-C(23)	56.0(8)
C(133)-Si(13)-C(131)	107.1(3)	C(34)-Na(1)-C(23)	12.2(6)
C(132)-Si(13)-C(131)	107.6(3)	Ga(1)-Na(1)-C(23)	100.8(5)
C(133)-Si(13)-Si(1)	111.7(2)	C(1)-Na(1)-C(31)	131.4(8)
C(132)-Si(13)-Si(1)	110.2(2)	C(2)-Na(1)-C(31)	91.4(9)
C(131)-Si(13)-Si(1)	112.8(2)	C(3)A-Na(1)-C(31)	120.1(8)
C(1)-Na(1)-C(2)	82.26(18)	C(33)-Na(1)-C(31)	47.2(10)
C(1)-Na(1)-C(3)A	106.8(2)	C(25)-Na(1)-C(31)	42.2(10)
C(2)-Na(1)-C(3)A	111.8(2)	C(32)-Na(1)-C(31)	24.9(9)
C(1)-Na(1)-C(33)	116.7(7)	C(24)-Na(1)-C(31)	55.6(10)
C(2)-Na(1)-C(33)	137.8(7)	C(26)-Na(1)-C(31)	19.8(9)
C(3)A-Na(1)-C(33)	98.7(8)	C(34)-Na(1)-C(31)	53.7(10)
C(1)-Na(1)-C(25)	131.8(5)	Ga(1)-Na(1)-C(31)	111.1(9)
C(2)-Na(1)-C(25)	132.5(6)	C(23)-Na(1)-C(31)	49.7(10)
C(3)A-Na(1)-C(25)	90.9(5)	C(22)-C(21)-C(211)	121(3)
C(33)-Na(1)-C(25)	15.2(5)	C(22)-C(21)-C(26)	123.4(18)
C(1)-Na(1)-C(32)	140.6(7)	C(211)-C(21)-C(26)	115(3)
C(2)-Na(1)-C(32)	114.0(6)	C(21)-C(22)-C(23)	123(2)
C(3)A-Na(1)-C(32)	100.0(7)	C(24)-C(23)-C(22)	120(3)

C(33)-Na(1)-C(32)	29.0(6)	C(23)-C(24)-C(25)	116(3)	
C(25)-Na(1)-C(32)	18.5(7)	C(26)-C(25)-C(24)	124(2)	
C(1)-Na(1)-C(24)	102.2(5)	C(25)-C(26)-C(21)	114(2)	
C(2)-Na(1)-C(24)	140.0(6)	C(32)-C(31)-C(311)	124(4)	
C(3)A-Na(1)-C(24)	105.0(6)	C(32)-C(31)-C(36)	123(2)	
C(33)-Na(1)-C(24)	14.6(5)	C(311)-C(31)-C(36)	113(3)	
C(25)-Na(1)-C(24)	29.7(5)	C(31)-C(32)-C(33)	122(3)	
C(32)-Na(1)-C(24)	42.0(7)	C(34)-C(33)-C(32)	121(3)	
C(1)-Na(1)-C(26)	145.8(6)	C(33)-C(34)-C(35)	114(3)	
C(2)-Na(1)-C(26)	105.4(6)	C(36)-C(35)-C(34)	125(3)	
C(3)A-Na(1)-C(26)	101.2(6)	C(35)-C(36)-C(31)	114(3)	

9.2.5.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

Einheit

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}
H(1A)	7001	63	2814	136	H(12I)	11038	2709	3913	172
H(1R)	6226	574	3125	136	H(13A)	8009	1728	5493	162
H(1C)	7120	179	3441	136	H(13R)	7625	2426	5182	162
H(2A)	7850	2282	2261	125	H(13C)	8791	2190	5147	162
H(2B)	6739	1936	2293	125	H(13D)	9450	888	4460	173
H(2C)	7620	1535	1972	125	H(13E)	8602	345	4245	173
H(3A)	9371	558	2590	131	H(13F)	8792	426	4870	173
H(3B)	9612	735	3199	131	H(13G)	6548	671	4990	187
H(3C)	9785	1334	2753	131	H(13H)	6293	721	4370	187
H(11A)	6537	3321	2847	131	H(13I)	5991	1366	4758	187
H(11B)	7026	3862	3269	131	H(21A)	8899	1006	1052	298
H(11C)	5822	3845	3184	131	H(21B)	7959	1179	671	298
H(11D)	5503	3658	4351	147	H(21C)	8745	559	516	298
H(11E)	6689	3617	4484	147	H(22)	8908	-151	1508	122
H(11F)	5946	2986	4672	147	H(23)	7910	-934	2034	138
H(11G)	5018	1942	3869	143	H(24)	6206	-1131	1803	129
H(11H)	5258	2005	3247	143	H(25)	5481	-343	1118	121
H(11I)	4557	2592	3531	143	H(26)	6449	588	703	133
H(12A)	9703	4010	4183	160	H(31A)	7191	1065	464	271
H(12B)	9019	3547	4580	160	H(31B)	8317	750	414	271
H(12C)	8498	3983	4106	160	H(31C)	8063	1336	859	271
H(12D)	10090	3543	3053	154	H(32)	6086	228	841	100
H(12E)	8892	3545	2946	154	H(33)	5735	-705	1455	134
H(12F)	9551	2849	2807	154	H(34)	7072	-1266	1910	145
H(12G)	10526	1957	3763	172	H(35)	8657	-568	1954	139
H(12H)	10402	2275	4349	172	H(36)	9014	389	1346	141

9.2.6 Kalium-hypersilyl-trimethylgallat, K[Me₃Ga-Hsi]·C₇H₈; 6

9.2.6.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	C266 H616 Ga14 K14	Si55
Formelgewicht:	3442,01 g/Mol	
Temperatur:	173(2) K	
Wellenlänge:	0,71073 Å	
Kristallsystem; Raumgruppe:	rhomboedrisch (he	exagonal); R3
Größe der Elementarzelle:	a = 33,022(5) Å	$\alpha = 90^{\circ}$
	b = 33,022(5) Å	$\beta = 90^{\circ}$
	c = 16,387(3) Å	$\gamma = 120^{\circ}$
Volumen der Elementarzelle:	15476(4) Å ³	
Z; röntgenographische Dichte:	3; 1,108 Mg/m ³	
Absorptionskoeffizient:	$1,237 \text{ mm}^{-1}$	
F(000):	5523	
Farbe / Gestalt / Größe des Kristalls:	farblose Quader	0,3 x 0,4 x 0,3 mm
Messbereich; Abtastmodus:	$3,78^\circ \le 2\theta \le 50,02$	2°; w-Scans
Messbereich des reziproken Raumes:	$-39 \le h \le 39, -39 \le 10^{-39}$	$\leq k \leq 39, 0 \leq l \leq 19$
Beobachtete / symmetrieunabhängige Ro	eflexe: 1887	79 / 6307 [R(int) = 0.0983]
Vollständigkeit zu θ:	25,01 99,9 %	
Absorptionskorrektur:	keine	
Strukturverfeinerung:	Volle Matrix,	
C C	kleinste Fehlerqua	dratsumme an F ²
Daten / restraints / Parameter:	6307 / 149 / 533	
GooF (Goodness-of-fit an F^2):	1,904	
Gütefaktoren R_1 und wR_2 (I>2 $\sigma(I)$):	$R_1 = 0,1243$	$wR_2 = 0,3017$
Gütefaktoren R_1 und wR_2 (alle Daten):	$R_1 = 0,1920$	$wR_2 = 0,3418$
Absoluter Strukturparameter:	-0,05(5)	
Maximale / minimale Restelektronendic	hte: 3,46	5 / -1,444 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-12 (S.93) und Abbildung 5-14 (S.95) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(101)	022(14)	2(20(12)	17780(20)	07(11)	100(20)	100(20)	(4(10)	2(19)	2((10)	50(20)
C(101)	923(14)	2628(13)	17/80(20)	8/(11)	100(30)	100(30)	64(19)	2(18)	-26(19)	50(20)
C(102)	1020(30)	2528(14)	1/190(40)	220(30)	400(90)	40(20)	160(50)	0(30)	-30(60)	/0(30)
C(103)	672(10)	2292(15)	16480(30)	109(17)	47(16)	130(30)	160(40)	90(30)	50(20)	50(20)
C(104)	265(12)	2262(11)	16670(20)	74(9)	90(20)	62(18)	80(20)	-6(15)	-54(18)	48(16)
C(105)	127(13)	2366(10)	17450(40)	140(20)	90(20)	41(16)	300(70)	-20(30)	-60(30)	31(17)
C(106)	532(11)	2561(9)	17920(20)	74(10)	71(19)	27(12)	120(30)	9(14)	-9(18)	26(13)
C(107)	-90(40)	2099(19)	16010(40)	470(100)	900(200)	100(40)	170(60)	-20(40)	300(100)	50(70)
K(1)	306(2)	1536(2)	18009(5)	62(2)	52(4)	69(4)	57(4)	-1(3)	-6(3)	25(3)
Ga(1)	328(1)	1664(1)	21135(2)	61(1)	51(2)	79(2)	47(2)	-8(2)	-3(2)	26(2)
C(11)	703(9)	1556(9)	21910(20)	300(40)	200(40)	170(30)	150(30)	140(30)	-170(30)	-190(30)
C(12)	310(20)	1642(16)	19913(10)	220(30)	480(100)	140(40)	50(20)	-20(20)	-90(40)	170(50)

9.2.6.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	-300(5)	1142(7)	21440(20)	105(13)	6(8)	58(15)	230(40)	-20(20)	23(14)	3(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI(1) Si(11)	311(2) 1226(2)	2413(2)	210/3(3) 21102(4)	51(2)	47(4)	(10)	50(5)	14(4)	3(3)	23(4)
	SI(11)	1230(2)	2999(3)	21192(4)	59(2)	43(3)	03(0)	50(3)	-4(4)	-9(4)	21(4) 21(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI(12) Si(12)	509(3)	2420(3)	23082(0) 21242(4)	64(2)	61(5)	/3(0)	51(5) 55(5)	3(4) 14(5)	-10(4)	$\frac{51(5)}{48(5)}$
$ \begin{array}{c} C(11) & 1240(1s) & 303(19) & 200(10) & 200(40) & 190(30) & 100(20) & 100(20) & 100(40) & 500(50) & 102(20) \\ C(113) & 170(1(1) & 2877(19) & 21490(30) & 200(40) & 200(40) & 240(50) & 310(70) & 180(50) & 170(30) & 110(30) \\ C(121) & -56(11) & 1971(19) & 23492(18) & 290(50) & 80(20) & 400(80) & 44(18) & -20(30) & 123(17) & -130(40) \\ C(122) & 442(14) & 2896(10) & 23510(30) & 160(19) & 120(30) & 110(30) & 270(60) & 50(30) & 20(30) & 80(30) \\ C(123) & -940(20) & 2300(30) & 23580(20) & 290(50) & 370(80) & 710(140) & 90(30) & -100(40) & -100(40) & 99(100) \\ C(131) & 79(15) & 3188(9) & 21580(40) & 170(20) & 130(30) & 100(30) & 330(70) & -10(40) & -100(40) & 99(100) \\ C(132) & 49(9) & 2794(12) & 20175(9) & 104(10) & 63(18) & 140(30) & 120(30) & 0(20) & -10(17) & 57(19) \\ C(213) & -647(6) & 2160(11) & 1262(30) & 128(18) & 10(11) & 80(20) & 270(50) & 90(30) & 81(18) & 7(11) \\ C(210) & 2364(14) & 2216(10) & 22670(20) & 150(20) & 90(30) & 210(50) & 90(30) & -110(40) & -10(20) & 30(30) \\ C(202) & 2235(5) & 1634(20) & 23300(20) & 150(20) & 90(30) & 210(50) & 90(30) & -10(40) & -00(20) & 30(30) \\ C(203) & 2273(15) & 1580(20) & 23300(20) & 150(20) & 90(30) & 210(50) & -80(30) & 20(20) & 0(20) & 20(30) \\ C(204) & 2445(10) & 1447(11) & 22960(20) & 63(7) & 71(16) & 310(14) & 51(16) & 50(16) \\ C(205) & 2595(9) & 1674(14) & 22310(30) & 172(17) & 120(30) & 170(40) & 210(50) & -80(30) & 20(30) & 110(30) \\ K(2) & 1526(2) & 1235(15) & 24050(30) & 172(17) & 120(30) & 170(40) & 200(50) & -80(30) & 50(30) & 110(30) \\ K(2) & 1526(2) & 1233(1) & 18875(5) & 70(2) & 58(5) & 47(4) & 71(4) & -13(3) & 264(4) & 213(5) & 184(3) & 61(1) & 78(3) & 62(2) & 43(2) & 10(2) & -30(30) & 100(30) & 40(10) & 50(30) & -100(40) & 30(40) \\ C(22) & -1526(2) & 1236(1) & 1881(3) & 50(2) & 20(70) & 180(40) & 90(30) & -100(40) & 30(40) \\ C(21) & -168(2) & 595(5) & 144(1) & 17(3) & 62(2) & 43(4) & 41(4) & 9(3) & 6(3) & 11(4) \\ S(12) & -164(4) & 1231(3) & 1879(5) & 70(3) & 98(7) & 49(5) & 59(5) & 0(4) & 11(6) & 30(4) \\ C(21) & -168(2) & 506(0) & 506(10) & 60(20$	C(111)	-08(3)	2000(3)	21242(4) 20076(0)	220(40)	100(50)	100(50)	50(20)	14(3) 10(20)	-0(4)	40(3)
$ \begin{array}{c} C(12) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(113) \\ C(121) \\ C(121) \\ C(121) \\ C(122) \\ C(12) \\ C(12)$	C(111) C(112)	1240(10) 1277(17)	3033(19) 3521(11)	20070(9)	250(40) 250(40)	120(30)	50(30)	50(20)	10(20) 10(40)	-20(50)	-90(40) 10(20)
	C(112) C(112)	1377(17) 1701(11)	3331(11) 2877(10)	21/60(30) 21400(30)	230(40) 100(20)	120(40) 70(20)	30(20)	330(120) 310(70)	-10(40) 180(50)	-80(30)	10(20) 110(20)
$ \begin{array}{c} C(12) & 42(14) & 236(10) & 250(30) & 10(13) & 120(30) & 10(30) & 70(60) & 50(30) & 12(17) & 130(60) \\ C(122) & 442(14) & 236(10) & 2350(20) & 290(50) & 370(80) & 710(140) & 90(30) & 180(50) & -140(40) & 490(100) \\ C(131) & 79(15) & 3188(9) & 2158(40) & 170(20) & 130(30) & 100(30) & 330(70) & -10(40) & -100(40) & 90(30) \\ C(132) & 49(9) & 2794(12) & 20175(9) & 104(10) & 63(18) & 140(30) & 120(30) & 0(20) & -10(17) & 57(19) \\ C(133) & -647(6) & 216(11) & 2620(30) & 128(18) & 10(11) & 80(20) & 270(50) & 90(30) & 81(18) & 7(13) \\ C(201) & 2364(14) & 2216(10) & 22670(20) & 104(16) & 150(30) & 41(16) & 70(20) & 19(14) & -70(20) & 8(18) \\ C(202) & 2237(15) & 1580(20) & 2350(20) & 150(20) & 90(30) & 210(50) & 90(30) & -10(40) & -10(20) & 30(30) \\ C(204) & 2245(10) & 1447(11) & 22960(20) & 63(7) & 51(16) & 90(19) & 69(17) & 2.16) & -10(14) & 51(16) \\ C(206) & 259(9) & 1674(14) & 2231(03) & 113(15) & 18(13) & 130(30) & 190(40) & 60(30) & 29(19) & 32(16) \\ C(207) & 2014(15) & 2135(15) & 24050(30) & 170(20) & 160(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(21) & -1320(1) & 326(1) & 18818(3) & 66(1) & 78(3) & 62(2) & 43(2) & 10(2) & -3(2) & 22(2) \\ C(21) & -695(4) & 826(6) & 18535(12) & 49(5) & 21(8) & 49(11) & 53(12) & 18(9) & -14(8) & 0(8) \\ C(22) & -1482(8) & -291(9) 18430(30) & 500(100) & 60(20) 1090(190) & 500(90) -720(130) & -160(40) & 260(60) \\ S(22) & -1918(2) & 493(3) & 18334(5) & 50(2) & 55(5) & 43(4) & 41(4) & 9(3) & 6(3) & 17(4) \\ S(21) & -1764(4) & 1231(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ S(12) & -1918(2) & 493(3) & 18334(5) & 50(2) & 55(5) & 43(4) & 41(4) & 9(3) & 6(3) & 17(4) \\ S(21) & -1764(4) & 1231(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ S(12) & -2263(3) & -67(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ C(21) & -1764(4) & 1231(3) & 1879(5) & 70(13) & 98(07) & 70(20) & -100(30) & 130(30) & -70(20) & -100(30) & 130(30) \\ C(212) & -1826(1) & 538(14) & 14690(12) & 300(60) & 70(10) & 30(30) & $	C(113)	56(11)	2077(19) 1071(10)	21490(30) 23402(18)	190(30)	×0(30)	240(30)	$\frac{310(70)}{44(19)}$	20(30)	12(17)	120(30)
$ \begin{array}{c} C(12) \\ C(12) \\ C(12) \\ C(13) $	C(121) C(122)	-30(11)	2896(10)	23492(18) 23510(30)	160(10)	120(20)	110(30)	270(60)	-20(30)	20(30)	-130(40) 80(30)
$ \begin{array}{c} C(12) & 79(15) & 2138(8) & 2158(4) & 2150(2) & 210(3) & 710(140) & 70(3) & 710(140) & 70(3) & 710(140) & 70(3) & 710(140) & 70(3) & 710(140) & 70(3) & 710(140) & 70(3) & 710(140) & 70(20) & 70(11) & 71($	C(122) C(123)	940(20)	2300(10)	23510(30) 23580(20)	200(50)	370(80)	710(140)	270(00)	-180(50)	-140(40)	400(100)
$ \begin{array}{c} C(12) & f(12) & f(13) & f(16) & f(13) & f(16) $	C(123)	79(15)	3188(9)	23580(20) 21580(40)	170(20)	130(30)	10(140)	330(70)	-10(30)	-100(40)	90(30)
$ \begin{array}{c} C(13) & -647(6) & 216(11) & 2162(10) & 104(16) & 104(16) & 104(16) & 120(50) & 120(50) & 90(13) & 104(17) & 7(13) \\ C(21) & 2364(14) & 2216(10) & 22670(20) & 104(16) & 150(30) & 41(16) & 70(20) & 90(13) & -110(14) & -70(20) & 8(18) \\ C(202) & 2223(15) & 1580(20) & 23500(20) & 150(20) & 90(30) & 200(60) & 60(20) & 20(30) & -30(20) & 0(30) \\ C(204) & 2445(10) & 1447(11) & 22960(20) & 63(7) & 51(16) & 90(19) & 69(17) & 2(16) & -10(14) & 51(16) \\ C(205) & 2595(9) & 1674(14) & 22310(30) & 113(15) & 18(113) & 130(30) & 190(40) & 60(30) & 29(19) & 32(16) \\ C(205) & 2595(9) & 1674(14) & 22310(30) & 170(20) & 160(30) & 170(40) & 20(20) & 0(20) & 20(30) \\ C(207) & 2014(15) & 2135(15) & 2405(30) & 170(20) & 160(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(21) & -1526(2) & 1230(3) & 22007(5) & 72(2) & 45(4) & 74(5) & 91(5) & 4(4) & -1(3) & 26(4) \\ Ga(2) & -1330(1) & 32c(1) & 18818(3) & 66(1) & 78(3) & 62(2) & 43(2) & 10(2) & -3(2) & 22(2) \\ C(21) & -695(4) & 826(6) & 18535(12) & 49(5) & 21(8) & 49(11) & 53(12) & 18(9) & -14(8) & 0(8) \\ C(23) & -1401(18) & 284(17) & 20026(10) & 230(30) & 290(70) & 180(40) & 90(30) & 60(30) & -100(40) & 30(40) \\ C(23) & -1401(18) & 284(17) & 20026(10) & 230(30) & 290(70) & 180(40) & 90(30) & -100(40) & 30(40) \\ C(23) & -1401(18) & 284(17) & 20026(10) & 230(30) & 290(70) & 180(40) & 90(30) & -100(40) & 130(40) & 260(60) \\ C(23) & -2663(3) & -67(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ S(12) & -1760(20) & 125(5) & 19924(9) & 220(3) & 510(100) & 170(40) & 90(30) & -110(30) & -130(40) & 260(60) \\ C(211) & -1764(4) & 1243(13) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -110(5) & 120(50) & 200(70) \\ C(212) & -2186(10) & 748(14) & 1858(20) & 128(16) & 180(40) & 200(30) & 50(16) & -10(50) & 200(70) \\ C(213) & -275(16) & -644(19) & 844(15) & 100(11) & 76(19) & 180(30) & 54(15) & -22(18) & -300(14) & 70(20) \\ C(23) & -2266(10) & 748(14) & 55(5) & 120(3) & 100(30) & 30(100) & 30(18) & 40(40) \\ C(23) & -257(16) & -644(9) & 1844(05) & 200(40) & 90(30) $	C(131)	49(9)	2794(12)	21380(40) 20175(9)	104(10)	63(18)	140(30)	120(30)	-10(+0) 0(20)	-100(40)	57(19)
$ \begin{array}{c} C(2) & 2364(14) & 216(16) & 2267(020) & 104(16) & 150(16) & 41(16) & 70(20) & 19(14) & -70(20) & 30(13) \\ C(202) & 2223(15) & 2040(20) & 23430(30) & 150(20) & 90(30) & 210(50) & 90(30) & -110(40) & -10(20) & 30(30) \\ C(203) & 2273(15) & 1580(20) & 3500(20) & 150(20) & 90(30) & 200(60) & 60(20) & 20(30) & -30(20) & 0(30) \\ C(204) & 2445(10) & 1447(11) & 22960(20) & 63(7) & 51(16) & 90(19) & 69(17) & 2(16) & -10(14) & 51(16) \\ C(205) & 2595(9) & 1674(14) & 22310(30) & 113(15) & 18(13) & 130(30) & 190(40) & 60(30) & 29(19) & 32(16) \\ C(205) & 220(15) & 213(15) & 2020(30) & 124(17) & 120(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(205) & 220(15) & 213(15) & 2020(30) & 170(20) & 160(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(20) & -1262(2) & 1230(3) & 22007(5) & 72(2) & 45(4) & 74(5) & 91(5) & 4(4) & -1(3) & 26(4) \\ G(2) & -1330(1) & 326(1) & 18818(3) & 66(1) & 78(3) & 62(2) & 43(2) & 10(2) & -3(2) & 22(2) \\ C(21) & -695(4) & 826(6) & 18535(12) & 49(5) & 21(8) & 49(11) & 53(12) & 18(9) & -14(8) & 0(8) \\ C(23) & -1401(18) & 284(17) & 20026(10) & 230(30) & 290(70) & 180(40) & 90(30) & 60(30) & -100(40) & 30(40) \\ Si(21) & -1764(4) & 123(13) & 18799(5) & 70(3) & 98(7) & 49(5) & 59(5) & 0(4) & 11(5) & 33(5) \\ Si(22) & -1926(3) & 500(3) & 16895(5) & 69(3) & 79(6) & 71(6) & 39(5) & 77(4) & -11(4) & 25(5) \\ Si(23) & -2663(3) & -67(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ C(211) & -1760(20) & 1215(15) & 19924(9) & 220(30) & 510(100) & 170(40) & 90(30) & -100(30) & 130(30) \\ C(212) & -1322(7) & 890(20) & 16540(20) & 210(30) & 110(30) & 390(80) & 54(15) & -22(18) & -30(14) & 70(20) \\ C(23) & -2266(10) & 744(11) & 5440(15) & 102(11) & 76(10) & 130(30) & -100(30) & 130(30) & 200(70) & 200(70) & 200(70) \\ C(23) & -2526(10) & 744(11) & 5440(15) & 102(11) & 76(10) & 100(30) & 54(15) & -22(18) & -30(14) & 70(20) \\ C(23) & -2216(12) & 1388(14) & 15690(20) & 350(60) & 750(180) & 200(60) & 100(40) & 200(30) & 230(70) & 230(70) & 230(70) & 230(70) & 230(70) & 230(70) & $	C(132)	-647(6)	2794(12) 2160(11)	20175(9) 21620(30)	104(10) 128(18)	10(11)	80(20)	270(50)	90(30)	8(18)	7(13)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(201)	2364(14)	2100(11) 2216(10)	21020(30) 22670(20)	104(16)	150(30)	41(16)	70(20)	19(14)	-70(20)	8(18)
$ \begin{array}{c} C(203) & 2273(15) & 1580(20) & 2500(20) & 150(20) & 90(30) & 200(60) & 60(20) & 20(30) & -30(20) & 0(30) \\ C(204) & 2445(10) & 1447(11) & 22960(20) & 63(7) & 51(16) & 90(19) & 69(17) & 2(16) & -10(14) & 51(16) \\ C(205) & 2595(9) & 167(14) & 22310(30) & 113(15) & 18(13) & 130(30) & 170(40) & 60(30) & 29(19) & 32(16) \\ C(206) & 2620(15) & 2131(15) & 22020(30) & 124(17) & 120(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(207) & 2014(15) & 2135(15) & 24050(30) & 170(20) & 160(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(201) & 230(3) & 2200(75) & 72(2) & 45(4) & 74(5) & 91(5) & 44(4) & -1(3) & 26(4) \\ Ga(2) & -1330(1) & 326(1) & 18818(3) & 66(1) & 78(3) & 62(2) & 43(2) & 10(2) & -3(2) & 22(2) \\ C(21) & -695(4) & 826(6) & 18535(12) & 49(5) & 21(8) & 49(11) & 53(12) & 18(9) & -14(8) & 0(8) \\ C(22) & -1482(8) & -291(9) & 18430(30) & 560(100) & 60(20) & 1900(190) & 500(90) -720(130) & 166(40) & 260(60) \\ C(23) & -1401(18) & 284(17) & 20026(10) & 230(30) & 290(70) & 180(40) & 90(30) & 60(30) & -100(40) & 30(40) \\ Si(2) & -1918(2) & 493(3) & 18334(5) & 50(2) & 55(5) & 43(4) & 41(4) & 9(3) & 6(3) & 17(4) \\ Si(21) & -1764(4) & 1231(3) & 18799(5) & 77(3) & 78(6) & 71(6) & 39(5) & 7(4) & -11(4) & 25(5) \\ Si(22) & -1926(3) & 500(3) & 16895(5) & 69(3) & 79(6) & 71(6) & 39(5) & 7(4) & -11(4) & 25(5) \\ Si(22) & -2266(12) & 215(15) & 19924(9) & 220(30) & 510(100) & 170(40) & 90(30) & -110(30) & -130(40) & 260(60) \\ C(212) & -2216(12) & 1388(14) & 1880(20) & 128(16) & 180(40) & 140(30) & 130(30) & -70(20) & -100(30) & 130(30) \\ C(221) & -125(16) & -644(9) & 1840(51) & 120(11) & 76(18) & 390(80) & 51(16) & 80(30) & 30(18) & 40(40) \\ C(231) & -2752(16) & -644(9) & 1840(51) & 120(50) & 200(60) & 100(40) & 20(30) & 230(70) & 230(90) \\ C(223) & -3267(11) & -51(5) & 18360(40) & 200(30) & 100(30) & 400(120) & -100(50) & 120(50) & 20(30) \\ C(231) & -2752(16) & -644(9) & 1840(50) & 200(40) & 80(30) & 100(30) & 420(100) & 110(40) & 50(40) & 50(20) \\ C(231) & -2752(16) & -644(9) & 1840(50) & 200(30) & 100(30) &$	C(201)	2223(15)	2040(20)	23430(30)	150(20)	90(30)	210(50)	90(30)	-110(40)	-10(20)	30(30)
$ \begin{array}{c} C(204) & 2445(10) & 1447(11) & 22500(20) & 63(7) & 51(16) & 90(16) & 60(17) & 21(6) & -10(14) & 51(16) \\ C(205) & 2595(9) & 1674(14) & 22310(30) & 113(15) & 18(13) & 130(30) & 190(40) & 60(30) & 29(19) & 32(16) \\ C(205) & 2620(15) & 2131(15) & 22002(30) & 124(17) & 120(30) & 120(30) & 70(20) & 20(20) & 0(20) & 20(30) \\ C(207) & 2014(15) & 2135(15) & 24050(30) & 170(20) & 160(30) & 170(40) & 210(50) & -80(30) & 50(30) & 110(30) \\ C(20) & 1526(2) & 1230(3) & 22007(5) & 72(2) & 45(4) & 74(5) & 91(5) & 4(4) & -1(3) & 26(4) \\ Ga(2) & -1330(1) & 326(1) & 1881(3) & 66(1) & 78(3) & 62(2) & 43(2) & 10(2) & -3(2) & 22(2) \\ C(21) & -695(4) & 826(6) & 18535(12) & 49(5) & 21(8) & 49(11) & 53(12) & 18(9) & -14(8) & 0(8) \\ C(22) & -1482(8) & -291(9) & 18430(30) & 560(100) & 60(20) & 1090(190) & 500(90) -720(130) & -160(40) & 260(60) \\ C(23) & -1401(18) & 284(17) & 2002(10) & 230(30) & 290(70) & 180(40) & 90(30) & -60(30) & -100(40) & 30(40) \\ Si(2) & -1918(2) & 493(3) & 18334(5) & 50(2) & 55(5) & 43(4) & 41(4) & 9(3) & 6(3) & 17(4) \\ Si(21) & -1764(4) & 1231(3) & 18799(5) & 70(3) & 98(7) & 49(5) & 59(5) & 0(4) & 11(5) & 33(5) \\ Si(22) & -2663(3) & -67(3) & 18737(5) & 74(3) & 73(6) & 55(6) & 77(6) & -11(5) & 13(5) & 18(5) \\ C(211) & -1760(20) & 1215(15) & 19924(9) & 220(30) & 510(100) & 170(40) & 90(30) & -100(30) & -30(40) & 260(60) \\ C(212) & -2216(12) & 18836(120) & 1380(20) & 128(16) & 180(40) & 140(130) & -130(40) & 260(60) \\ C(213) & -217(16) & 1697(12) & 18350(50) & 310(60) & 190(60) & 40(20) 630(160) & -10(50) & 220(80) & 10(30) \\ C(213) & -1217(16) & 1697(12) & 18350(50) & 310(60) & 190(30) & 40(120) & 630(130) & -01(50) & 220(80) & 10(30) \\ C(213) & -2266(10) & 748(11) & 16440(15) & 100(11) & 76(19) & 180(30) & 54(16) & -20(18) & -30(14) & 70(20) \\ C(23) & -2266(10) & 748(11) & 16440(15) & 100(11) & 76(19) & 180(30) & 54(16) & -20(18) & -30(14) & 70(20) \\ C(23) & -2266(10) & 748(10) & 100(30) & 80(100) & 100(30) & 40(120) & 100(30) & 40(120) \\ C(23) & -276(12) & -438(12) & -308(14) & 120(4) & 120(4) & 69(4) &$	C(202)	2223(15) 2273(15)	1580(20)	23500(20)	150(20)	90(30)	200(60)	60(20)	20(30)	-30(20)	0(30)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(203)	2445(10)	1447(11)	22960(20)	63(7)	51(16)	90(19)	69(17)	20(30) 2(16)	-10(14)	51(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(205)	2595(9)	1674(14)	22310(30)	113(15)	18(13)	130(30)	190(40)	60(30)	29(19)	32(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(206)	2620(15)	2131(15)	22020(30)	124(17)	120(30)	120(30)	70(20)	20(20)	0(20)	20(30)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(200)	2020(15) 2014(15)	2135(15)	24050(30)	170(20)	160(30)	170(40)	210(50)	-80(30)	50(30)	110(30)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K(2)	1526(2)	1230(3)	22007(5)	72(2)	45(4)	74(5)	91(5)	4(4)	-1(3)	26(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga(2)	-1330(1)	326(1)	18818(3)	66(1)	78(3)	62(2)	43(2)	10(2)	-3(2)	22(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	-695(4)	826(6)	18535(12)	49(5)	21(8)	49(11)	53(12)	18(9)	-14(8)	0(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	-1482(8)	-291(9)	18430(30)	560(100)	60(20)	1090(190)	500(90)	-720(130)	-160(40)	260(60)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	-1401(18)	284(17)	20026(10)	230(30)	290(70)	180(40)	90(30)	60(30)	-100(40)	30(40)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(2)	-1918(2)	493(3)	18334(5)	50(2)	55(5)	43(4)	41(4)	9(3)	6(3)	17(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(21)	-1764(4)	1231(3)	18799(5)	70(3)	98(7)	49(5)	59(5)	0(4)	11(5)	33(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(22)	-1926(3)	500(3)	16895(5)	69(3)	79(6)	71(6)	39(5)	7(4)	-11(4)	25(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(23)	-2663(3)	-67(3)	18737(5)	74(3)	73(6)	55(6)	77(6)	-11(5)	13(5)	18(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(211)	-1760(20)	1215(15)	19924(9)	220(30)	510(100)	170(40)	90(30)	-110(30)	-130(40)	260(60)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(212)	-2216(12)	1388(14)	18580(20)	128(16)	180(40)	140(30)	130(30)	-70(20)	-100(30)	130(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(213)	-1217(16)	1697(12)	18350(50)	310(60)	190(60)	40(20)	630(160)	-10(50)	220(80)	10(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(221)	-1850(30)	3(18)	16590(20)	350(60)	750(180)	200(60)	100(40)	20(30)	230(70)	230(90)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(222)	-1322(7)	890(20)	16540(20)	210(30)	110(30)	390(80)	35(16)	80(30)	30(18)	40(40)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(223)	-2266(10)	748(11)	16440(15)	100(11)	76(19)	180(30)	54(15)	-22(18)	-30(14)	70(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(231)	-2752(16)	-644(9)	18440(50)	220(40)	90(30)	100(30)	440(120)	0(50)	120(50)	20(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(232)	-3155(11)	-5(15)	18360(40)	200(30)	80(30)	100(30)	420(100)	110(40)	50(40)	50(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(233)	-2678(12)	-233(11)	19816(10)	137(16)	150(30)	70(20)	90(20)	18(17)	70(20)	-20(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga(3)	0	0	16588(5)	103(3)	120(4)	120(4)	69(4)	0	0	60(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K(3)	0	0	13342(4)	25(2)	26(2)	26(2)	23(4)	0	0	13(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	129(11)	608(7)	17064(18)	98(9)	110(20)	90(20)	100(20)	19(17)	25(19)	58(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1(3)	0	0	15107(6)	12(3)	13(3)	13(3)	10(8)	0	0	6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1(31)	-589(3)	143(3)	14690(4)	94(3)	124(7)	149(8)	41(4)	5(4)	-16(4)	92(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(313)	-714(12)	63(13)	13592(9)	270(40)	180(50)	340(80)	270(70)	80(60)	-110(50)	100(50)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(311)	-1156(6)	-233(13)	15180(20)	360(70)	1/0(60)	480(130)	2/0(80)	280(100)	0(50)	40(70)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(312)	-403(12)	/42(8)	14900(20)	340(60)	540(120)	330(70)	300(90)	-310(70)	-360(90)	390(90)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(011)	-130(30)	10(40)	1030(30) 10700(20)	20(14U) 20(20)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(01)	-00(20)	40(20)	10790(30) 10220(40)	80(20) 70(20)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(02) C(02)	-340(20)	130(20)	0400(40)	160(60)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(03)	-220(30) 131(11)	130(30) 117(12)	0180(20)	100(00) 6(0)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(04)	340(20)	0(20)	9100(20) 9700(40)	80(20)						
	C(05)	300(20)	_20(20)	10580(30)	60(20)						
		500(20)	20(20)	1000(00)	00(20)						

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
C(101) C(102)	1 11(6)	$S_{2}(12) C(122)$	1 925(11)	S(22) C(222)	1.044(12)
C(101)-C(102)	1.11(0) 1.21(5)	SI(13)-C(133)	1.833(11) 1.826(11)	SI(22)-C(223) Si(22)-C(223)	1.644(13) 1.842(12)
C(101)- $C(100)$	1.21(3) 2.15(4)	SI(13)-C(131) Si(12)-C(122)	1.830(11) 1.827(11)	SI(23)-C(232) Si(22)-C(232)	1.643(13) 1.844(12)
C(101)- $K(1)$	5.15(4) 1.55(6)	SI(13)-C(132)	1.83/(11) 1.25(6)	SI(23)-C(233) Si(22)-C(221)	1.844(13) 1.845(12)
C(102)- $C(103)$	1.33(0) 2.04(8)	C(201)- $C(202)$	1.33(0) 1.47(6)	SI(23) - C(231)	1.643(15) 1.002(16)
C(102)- $C(100)$	2.04(8)	C(201)- $C(200)$	1.4/(0)	Ga(3)-C(31)A	1.992(10)
C(102)- $K(1)$	3.22(5) 1.24(5)	C(201)- $K(2)$	3.23(3) 1.25(5)	Ga(3)-C(31)	1.992(16)
C(103)- $C(104)$	1.34(5)	C(202)-C(207)	1.35(5)	Ga(3)-C(31)B	1.992(16)
C(103)-K(1)	3.31(3)	C(202)-C(203)	1.63(8)	Ga(3)-Si(3)	2.427(8)
C(104)-C(105)	1.46(6)	C(202)-K(2)	3.43(4)	K(3)-C(313)A	2.50(3)
C(104)-C(107)	1.4/(11)	C(203)-C(204)	1.24(6)	K(3)-C(313)	2.50(3)
C(104)-K(1)	3.30(3)	C(203)-K(2)	3.25(4)	K(3)-C(313)B	2.50(3)
C(105)-C(106)	1.39(5)	C(204)-C(205)	1.26(5)	K(3)-C(011)B	2.82(6)
C(105)-K(1)	3.21(3)	C(204)-K(2)	3.16(2)	K(3)-C(011)	2.82(6)
C(106)-K(1)	3.08(3)	C(205)-C(206)	1.54(6)	K(3)-C(011)A	2.82(6)
K(1)-C(21)	3.070(14)	C(205)-K(2)	3.11(3)	K(3)-Si(3)	2.891(10)
K(1)-C(22)A	3.09(2)	C(206)-K(2)	3.34(4)	K(3)-Si(31)A	3.133(9)
K(1)-C(12)	3.140(19)	K(2)-C(13)A	3.086(17)	K(3)-Si(31)	3.133(9)
K(1)-C(31)	3.215(17)	K(2)-C(23)A	3.29(2)	K(3)-Si(31)B	3.133(9)
Ga(1)-C(11)	1.928(16)	K(2)-C(313)C	3.40(2)	Si(3)-Si(31)A	2.324(7)
Ga(1)-C(13)	1.987(14)	Ga(2)-C(22)	1.948(18)	Si(3)-Si(31)	2.324(7)
Ga(1)-C(12)	2.004(16)	Ga(2)-C(21)	1.968(12)	Si(3)-Si(31)B	2.324(7)
Ga(1)-Si(1)	2.411(6)	Ga(2)-C(23)	1.991(17)	Si(31)-C(313)	1.836(11)
C(11)-K(2)	3.39(4)	Ga(2)-Si(2)	2.404(6)	Si(31)-C(311)	1.835(11)
C(13)-K(2)B	3.086(17)	C(22)-K(1)B	3.09(2)	Si(31)-C(312)	1.836(11)
Si(1)-Si(12)	2.306(12)	C(23)-K(2)B	3.29(2)	C(313)-K(2)D	3.40(2)
Si(1)-Si(11)	2.337(9)	Si(2)-Si(23)	2.314(12)	C(011)-C(01)	1.44(2)
Si(1)-Si(13)	2.386(11)	Si(2)-Si(21)	2.354(11)	C(01)-C(02)	1.34(6)
Si(11)-C(112)	1.835(11)	Si(2)-Si(22)	2.358(12)	C(01)-C(06)	1.34(6)
Si(11)-C(113)	1.836(11)	Si(21)-C(212)	1.843(13)	C(02)-C(03)	1.43(6)
Si(11)-C(111)	1.837(11)	Si(21)-C(213)	1.843(13)	C(03)-C(04)	1.27(7)
Si(12)-C(122)	1.834(11)	Si(21)-C(211)	1.845(13)	C(04)-C(05)	1.28(7)
Si(12)-C(123)	1.835(11)	Si(22)-C(221)	1.844(13)	C(05)-C(06)	1.43(6)
Si(12)-C(121)	1.835(11)	Si(22)-C(222)	1.843(13)		
			· · ·		

9.2.6.3 Bindungslängen

9.2.6.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
C(102) $C(101)$ $C(100)$	102(5)	C(201) K(2) C(200)	25.7(11)
C(102)-C(101)-C(100) C(102)-C(101)-K(1)	122(3) 83(3)	C(201)-K(2)-C(206) C(203)-K(2)-C(206)	23.7(11) 52.2(10)
C(102)-C(101)-K(1) C(106)-C(101)-K(1)	75(2)	C(23)-K(2)-C(200) C(23)A-K(2)-C(206)	81.1(12)
C(101)-C(102)-C(103)	124(7)	C(13)A-K(2)-C(11)	127.9(7)
C(101)-C(102)-C(106)	30(3)	C(205)-K(2)-C(11)	139.4(9)
C(103)-C(102)-C(106)	94(4)	C(204)-K(2)-C(11)	141.5(8)
C(101)-C(102)-K(1)	77(4)	C(201)-K(2)-C(11)	96.6(10)
C(103)-C(102)-K(1)	80(2)	C(203)-K(2)-C(11)	120.7(15)
C(106)-C(102)-K(1)	67.6(18)	C(23)A-K(2)-C(11)	89.2(10)
C(104)-C(103)-C(102)	108(5)	C(206)-K(2)-C(11)	113.6(10)

C(104)- $C(103)$ - $K(1)$	78(2)	C(13)A-K(2)-C(313)C	92 8(9)
C(102)-C(103)-K(1)	73(2)	C(205)-K(2)-C(313)C	1191(11)
C(102) - C(103) - K(1)	128(4)	C(203)- $K(2)$ - $C(313)$ C	06 A(0)
C(103) - C(104) - C(105)	120(4) 115(5)	C(204)- $K(2)$ - $C(313)C$	90.4(9)
C(105) - C(104) - C(107)	113(3) 117(4)	C(201)- $K(2)$ - $C(313)C$	107.0(10)
C(103)- $C(104)$ - $C(107)$	11/(4)	C(203) - K(2) - C(313)C	80.3(10)
C(103)- $C(104)$ - $K(1)$	79.0(19)	C(23)A-K(2)-C(313)C	148.6(11)
C(105)-C(104)-K(1)	73.8(19)	C(206)-K(2)-C(313)C	129.3(9)
C(107)-C(104)-K(1)	122(3)	C(11)-K(2)-C(313)C	72.3(8)
C(106)-C(105)-C(104)	104(4)	C(13)A-K(2)-C(202)	132.4(14)
C(106)-C(105)-K(1)	72.0(18)	C(205)-K(2)-C(202)	50.5(12)
C(104)-C(105)-K(1)	80.4(18)	C(204)-K(2)-C(202)	45.1(12)
C(101)-C(106)-C(105)	132(4)	C(201)-K(2)-C(202)	23.1(11)
C(101)-C(106)-C(102)	27(2)	C(203)-K(2)-C(202)	28.1(14)
C(105)-C(106)-C(102)	105(4)	C(23)A-K(2)-C(202)	123.2(15)
C(101)-C(106)-K(1)	82(2)	C(206)-K(2)-C(202)	45.0(11)
C(105)-C(106)-K(1)	82.6(17)	C(11)-K(2)-C(202)	96.5(12)
C(102)-C(106)-K(1)	74.7(15)	C(313)C-K(2)-C(202)	84.9(11)
C(106)-K(1)-C(21)	115.4(8)	C(22)-Ga(2)-C(21)	114.1(10)
C(106)-K(1)-C(22)A	110.9(8)	C(22)-Ga(2)-C(23)	107(2)
C(21)-K(1)-C(22)A	125.6(7)	C(21)-Ga(2)-C(23)	109.4(16)
C(106)-K(1)-C(12)	86.5(10)	C(22)-Ga(2)-Si(2)	108.4(10)
C(21)-K(1)-C(12)	75.3(13)	C(21)-Ga(2)-Si(2)	112.0(6)
C(22)A-K(1)-C(12)	80.7(15)	C(23)-Ga(2)-Si(2)	105.3(16)
C(106)-K(1)-C(101)	22.4(8)	Ga(2)-C(21)-K(1)	174.7(11)
C(21)-K(1)-C(101)	137.7(9)	Ga(2)-C(22)-K(1)B	167.8(16)
C(22)A-K(1)-C(101)	90.2(9)	Ga(2)-C(23)-K(2)B	165(2)
C(12)-K(1)-C(101)	91.5(11)	Si(23)-Si(2)-Si(21)	109.2(5)
C(106)-K(1)-C(102)	37.7(13)	Si(23)-Si(2)-Si(22)	106.3(4)
C(21)-K(1)-C(102)	148.6(14)	Si(21)-Si(2)-Si(22)	108.2(4)
C(22)A-K(1)-C(102)	85.5(15)	Si(23)-Si(2)-Ga(2)	112.3(4)
C(12)-K(1)-C(102)	109.9(14)	Si(21)-Si(2)-Ga(2)	110.5(4)
C(101)-K(1)-C(102)	20.1(11)	Si(22)-Si(2)-Ga(2)	110.3(4)
C(106)-K(1)-C(105)	25.4(8)	C(212)-Si(21)-C(213)	106(3)
C(21)-K(1)-C(105)	98.2(9)	C(212)-Si(21)-C(211)	103(2)
C(22)A-K(1)-C(105)	134.0(8)	C(213)-Si(21)-C(211)	114(3)
C(12)-K(1)-C(105)	100.2(13)	C(212)-Si(21)-Si(2)	116.2(11)
C(101)-K(1)-C(105)	43.9(9)	C(213)-Si(21)-Si(2)	110.4(15)
C(102)-K(1)-C(105)	50.6(15)	C(211)-Si(21)-Si(2)	107.1(11)
C(106)-K(1)-C(31)	148.4(9)	C(221)-Si(22)-C(222)	88(3)
C(21)-K(1)-C(31)	78.1(7)	C(221)-Si(22)-C(223)	132(3)
C(22)A-K(1)-C(31)	77.2(8)	C(222)-Si(22)-C(223)	105(2)
C(12)-K(1)-C(31)	125.1(9)	C(221)-Si(22)-Si(2)	105.0(14)
C(101)-K(1)-C(31)	137.6(9)	C(222)-Si(22)-Si(2)	107.8(11)
C(102)-K(1)-C(31)	117.6(13)	C(223)-Si(22)-Si(2)	114.9(10)
C(105)-K(1)-C(31)	130.8(12)	C(232)-Si(23)-C(233)	117(3)
C(106)-K(1)-C(104)	41.1(9)	C(232)-Si(23)-C(231)	109(3)
C(21)-K(1)-C(104)	108.7(7)	C(233)-Si(23)-C(231)	89(3)
C(22)A-K(1)-C(104)	124.9(10)	C(232)-Si(23)-Si(2)	117.4(15)
C(12)-K(1)-C(104)	125.2(10)	C(233)-Si(23)-Si(2)	111.9(11)
C(101)-K(1)-C(104)	47.8(8)	C(231)-Si(23)-Si(2)	107.8(14)
C(102)-K(1)-C(104)	42.1(15)	C(31)A-Ga(3)-C(31)	105.6(10)
C(105)-K(1)-C(104)	25.8(11)	C(31)A-Ga(3)-C(31)B	105.6(10)
C(31)-K(1)-C(104)	108.6(9)	C(31)-Ga(3)-C(31)B	105.6(10)
C(106)-K(1)-C(103)	48.7(11)	C(31)A-Ga(3)-Si(3)	113.1(9)
C(21)-K(1)-C(103)	129.5(7)	C(31)-Ga(3)-Si(3)	113.1(9)
C(22)A-K(1)-C(103)	102.3(9)	C(31)B-Ga(3)-Si(3)	113.1(9)
C(12)-K(1)-C(103)	133.6(12)	C(313)A-K(3)-C(313)	117.38(19)
C(101)-K(1)-C(103)	42.7(10)	C(313)A-K(3)-C(313)B	117.38(19)
C(102)-K(1)-C(103)	27.4(11)	C(313)-K(3)-C(313)B	117.38(19)
C(105)-K(1)-C(103)	45.2(13)	C(313)A-K(3)-C(011)B	104(2)
C(31)-K(1)-C(103)	100.2(11)	C(313)-K(3)-C(011)B	105(2)
C(104)-K(1)-C(103)	23.3(8)	C(313)B-K(3)-C(011)B	89.0(16)

C(11)-Ga(1)-C(13)	99.2(12)	C(313)A-K(3)-C(011)	105(2)
C(11)-Ga(1)-C(12)	132(2)	C(313)-K(3)-C(011)	89 0(16)
C(12) = C(12)	102(2)	C(212) D K(2) C(011)	104(2)
C(13)-Ga(1)-C(12)	103(2)	C(313)B-K(3)-C(011)	104(2)
C(11)-Ga(1)-Si(1)	95.4(12)	C(011)B-K(3)-C(011)	18(3)
C(13)-Ga(1)-Si(1)	114 5(8)	C(313)A-K(3)-C(011)A	89 0(17)
$C(12) C_{2}(1) S_{1}(1)$	1120(12)	C(212) K(2) C(011) A	104(2)
C(12)-Ga(1)-SI(1)	113.0(12)	C(313)-K(3)-C(011)A	104(2)
Ga(1)-C(11)-K(2)	141(2)	C(313)B-K(3)-C(011)A	105(2)
$G_{2}(1) - C(12) - K(1)$	174(2)	C(011)B-K(3)-C(011)A	18(3)
$G_{1}(1) = G_{1}(1) = G_{1}(1)$	171(2)	C(011) K(2) C(011) A	10(3)
Ga(1)-C(13)-K(2)B	1/5.0(14)	C(011)-K(3)-C(011)A	18(3)
Si(12)-Si(1)-Si(11)	109.8(4)	C(313)A-K(3)-Si(3)	80.6(3)
Si(12)-Si(1)-Si(13)	106 9(4)	C(313)-K(3)-Si(3)	80 6(3)
$S_{i}(12) = S_{i}(1) = S_{i}(12)$	100.0(1)	C(212) D V(2) Si(2)	80.6(2)
SI(11) - SI(1) - SI(13)	108.0(4)	C(313)B-K(3)-SI(3)	80.0(3)
Si(12)-Si(1)-Ga(1)	112.0(4)	C(011)B-K(3)-Si(3)	169.5(16)
Si(11)-Si(1)-Ga(1)	110 5(4)	C(011)-K(3)-Si(3)	169 5(16)
$S_{i}(12) S_{i}(1) C_{0}(1)$	100.5(4)	$C(011) \land V(2) Si(2)$	160 5(16)
SI(15) - SI(1) - Oa(1)	109.3(4)	C(011)A-K(3)-SI(3)	109.5(10)
C(112)-S1(11)-C(113)	103(3)	C(313)A-K(3)-Si(31)A	35.9(3)
C(112)-Si(11)-C(111)	115(3)	C(313)-K(3)-Si(31)A	107.5(6)
C(113) S (11) $C(111)$	100(3)	C(212) P K(2) Si(21) A	00 A(7)
C(113)-SI(11)-C(111)	109(3)	C(313)D-R(3)-SI(31)A	99.4(7)
C(112)-Si(11)-Si(1)	106.3(16)	C(011)B-K(3)-Si(31)A	138(2)
C(113)-Si(11)-Si(1)	110.7(13)	C(011)-K(3)-Si(31)A	140(2)
C(111) S $i(11)$ S $i(1)$	111.0(13)	$C(011) \wedge K(3) Si(31) \wedge$	124 5(16)
C(111)-S(11)-S(1)	111.9(13)	C(011)A - K(3) - SI(31)A	124.3(10)
C(122)-Si(12)-C(123)	117(2)	$S_1(3)-K(3)-S_1(31)A$	45.16(14)
C(122)-Si(12)-C(121)	92(3)	C(313)A-K(3)-Si(31)	99.4(7)
C(123)-Si(12)-C(121)	$10\dot{4}(\dot{3})$	C(313) - K(3) - Si(31)	35 9(3)
C(123) S(12) C(121)	1122(14)	C(212) D K(2) C(21)	107.5(5)
C(122)-SI(12)-SI(1)	113.2(14)	C(313)B-K(3)-SI(31)	107.5(5)
C(123)-Si(12)-Si(1)	115.7(13)	C(011)B-K(3)-Si(31)	140(2)
C(121)-Si(12)-Si(1)	111.5(11)	C(011)-K(3)-Si(31)	124 5(16)
C(122) S(12) C(121)	111(2)	$C(011) \land V(2) S(21)$	121.3(10) 129(2)
C(133)-SI(13)-C(131)	111(2)	C(011)A-K(3)-SI(31)	138(2)
C(133)-Si(13)-C(132)	123.2(17)	Si(3)-K(3)-Si(31)	45.16(14)
C(131)-Si(13)-C(132)	91(2)	Si(31)A-K(3)-Si(31)	75 8(2)
C(122) $Si(12)$ $Si(1)$	110.5(10)	$C(212) \land V(2) Si(31) P$	107.5(5)
C(133)-SI(13)-SI(1)	110.3(10)	C(313)A-K(3)-SI(31)B	107.5(5)
C(131)-Si(13)-Si(1)	111.1(12)	C(313)-K(3)-Si(31)B	99.4(7)
C(132)-Si(13)-Si(1)	108.6(10)	C(313)B-K(3)-Si(31)B	35.9(3)
C(202) C(201) C(206)	134(5)	$C(011) \mathbf{P} K(3) \mathbf{S}(31) \mathbf{P}$	124 5(16)
C(202) - C(201) - C(200)	134(3)	C(011)D-K(3)-SI(31)D	124.3(10)
C(202)-C(201)-K(2)	87(2)	C(011)-K(3)-Si(31)B	138(2)
C(206)-C(201)-K(2)	82(2)	C(011)A-K(3)-Si(31)B	140(2)
C(207) - C(202) - C(201)	136(7)	Si(3)-K(3)-Si(31)B	45 16(14)
C(207) C(202) C(201)	117(()	$G'(21) \wedge V(2) G'(21) D$	75.10(14)
C(207)-C(202)-C(203)	11/(6)	S1(31)A-K(3)-S1(31)B	/5.8(2)
C(201)-C(202)-C(203)	107(4)	Si(31)-K(3)-Si(31)B	75.8(2)
C(207) - C(202) - K(2)	118(3)	$G_{2}(3) - C(31) - K(1)$	1742(14)
C(201) C(202) K(2)	70.1(19)	$G_{i}(21) \wedge G_{i}(21) \oplus G_{i}(21)$	11110(2)
C(201)-C(202)-K(2)	/0.1(18)	SI(31)A-SI(3)-SI(31)	111.8(3)
C(203)-C(202)-K(2)	69.9(19)	Si(31)A-Si(3)-Si(31)B	111.8(3)
C(204)-C(203)-C(202)	124(4)	Si(31)-Si(3)-Si(31)B	111.8(3)
C(204) - C(203) - K(2)	75(2)	$S_{i}(31) \wedge S_{i}(3) - G_{2}(3)$	107 1(3)
C(204) - C(203) - K(2)	75(2)	SI(51)A-SI(5)-Ga(5)	107.1(3)
C(202)-C(203)-K(2)	82(2)	$S_1(31)-S_1(3)-G_a(3)$	107.1(3)
C(203)-C(204)-C(205)	121(4)	Si(31)B-Si(3)-Ga(3)	107.1(3)
C(203) - C(204) - K(2)	83(2)	Si(31)A - Si(3) - K(3)	72 9(3)
C(205) C(204) K(2)	(5(2))	G'(21) G'(2) V(2)	72.9(3)
C(205)-C(204)-K(2)	/6.1(1/)	S1(31)-S1(3)-K(3)	/2.9(3)
C(204)-C(205)-C(206)	131(4)	Si(31)B-Si(3)-K(3)	72.9(3)
C(204)-C(205)-K(2)	80 7(17)	Ga(3)-Si(3)-K(3)	180,000(5)
C(201) C(205) K(2)	95(2)	C(212) S(21) C(211)	100.000(3)
C(206) - C(205) - K(2)	85(2)	C(313)-SI(31)-C(311)	104.8(12)
C(201)-C(206)-C(205)	102(3)	C(313)-Si(31)-C(312)	104.7(12)
C(201)-C(206)-K(2)	73(2)	C(311)-Si(31)-C(312)	104.7(12)
C(205) - C(206) V(2)	68 1(18)	$C(313)_{Si(21)}Si(21)$	114.0(10)
C(200) - C(200) - K(2)	00.1(10)		114.0(10)
C(13)A-K(2)-C(205)	91.8(9)	C(311)-S1(31)-S1(3)	114.0(10)
C(13)A-K(2)-C(204)	88.4(7)	C(312)-Si(31)-Si(3)	113.7(10)
$C(205)_{K(2)}C(204)$	23 2(9)	$C(313)_{-}Si(31)_{-}K(3)$	52 9(10)
$C(203)^{-}K(2)^{-}C(204)$	23.2(9)	C(313)- $S(31)$ - $K(3)$	$\frac{125}{125}$
C(13)A-K(2)-C(201)	135.2(10)	C(311)-S1(31)-K(3)	133.0(13)
C(205)-K(2)-C(201)	43.3(12)	C(312)-Si(31)-K(3)	118.1(12)
C(204) - K(2) - C(201)	50 5(8)	Si(3)-Si(31)-K(3)	61.9(3)
$C(12) \land V(2) C(201)$	104.6(14)	$S_{1}(21) C(212) V(2)$	01.2(11)
C(13)A-K(2)-C(203)	104.0(14)	SI(51)-C(515)-K(5)	91.2(11)
C(205)-K(2)-C(203)	39.9(12)	S1(31)-C(313)-K(2)D	144.8(16)

C(204)-K(2)-C(203)	22.2(11)	K(3)-C(313)-K(2)D	119.6(8)	
C(201)-K(2)-C(203)	43.4(12)	C(01)-C(011)-K(3)	159(3)	
C(13)A-K(2)-C(23)A	78.6(11)	C(02)-C(01)-C(06)	131(6)	
C(205)-K(2)-C(23)A	91.6(13)	C(02)-C(01)-C(011)	115(3)	
C(204)-K(2)-C(23)A	113.3(11)	C(06)-C(01)-C(011)	115(3)	
C(201)-K(2)-C(23)A	100.1(12)	C(01)-C(02)-C(03)	108(6)	
C(203)-K(2)-C(23)A	130.8(13)	C(04)-C(03)-C(02)	129(6)	
C(13)A-K(2)-C(206)	114.0(10)	C(03)-C(04)-C(05)	112(6)	
C(205)-K(2)-C(206)	27.3(10)	C(04)-C(05)-C(06)	129(6)	
C(204)-K(2)-C(206)	46.1(10)	C(01)-C(06)-C(05)	108(6)	

9.2.6.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

Einheit

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	\mathbf{U}_{eq}
H(10A)	1171	2808	18177	104	H(21L)	-667	860	17953	73
H(10B)	1106	2837	16968	261	H(22A)	-1250	-363	18615	839
H(10C)	756	2236	15932	131	H(22B)	-1488	-294	17841	839
H(10D)	-154	2388	17561	172	H(22C)	-1784	-520	18632	839
H(10E)	442	2252	18145	89	H(23A)	-1175	215	20259	339
H(10F)	-33	2361	15683	707	H(23B)	-1711	40	20165	339
H(10G)	-393	1957	16247	707	H(23C)	-1352	577	20237	339
H(10H)	-57	1874	15684	707	H(21A)	-1697	1512	20137	330
H(11A)	682	1261	21798	445	H(21B)	-1520	1152	20105	330
H(11K)	591	1552	22453	445	H(21C)	-2058	974	20118	330
H(11L)	1023	1801	21869	445	H(21D)	-2119	1694	18797	192
H(12J)	234	1336	19732	328	H(21E)	-2505	1164	18835	192
H(12K)	605	1871	19698	328	H(21F)	-2260	1388	18004	192
H(12L)	70	1707	19724	328	H(21G)	-1159	1996	18541	464
H(13A)	-346	856	21206	158	H(21H)	-1245	1686	17763	464
H(13B)	-536	1206	21245	158	H(21I)	-962	1651	18501	464
H(13C)	-321	1112	22026	158	H(22D)	-1856	-16	16002	529
H(11B)	1543	3294	19900	343	H(22E)	-2106	-281	16806	529
H(11C)	1008	3132	19914	343	H(22F)	-1562	48	16793	529
H(11D)	1170	2762	19830	343	H(22G)	-1316	897	15958	318
H(11E)	1674	3782	21587	372	H(22H)	-1125	773	16738	318
H(11F)	1392	3477	22337	372	H(22I)	-1212	1198	16753	318
H(11G)	1140	3613	21670	372	H(22J)	-2251	737	15856	150
H(11H)	1995	3121	21286	284	H(22K)	-2137	1067	16613	150
H(11I)	1636	2582	21264	284	H(22L)	-2585	570	16614	150
H(11J)	1713	2865	22074	284	H(23D)	-3059	-883	18594	331
H(12A)	-48	1986	24077	432	H(23E)	-2523	-697	18700	331
H(12B)	-117	1668	23320	432	H(23F)	-2719	-652	17854	331
H(12C)	-299	2024	23293	432	H(23G)	-3443	-258	18566	295
H(12D)	444	2881	24099	240	H(23H)	-3158	-10	17777	295
H(12E)	152	2866	23334	240	H(23I)	-3120	287	18551	295
H(12F)	697	3191	23335	240	H(23J)	-2991	-467	19960	206
H(12G)	908	2309	24157	436	H(23K)	-2579	37	20156	206
H(12H)	1247	2536	23414	436	H(23L)	-2472	-357	19893	206
H(12I)	882	1999	23413	436	H(31I)	125	588	17649	147
H(13D)	-159	3254	21398	258	H(31J)	-106	678	16887	147
H(13E)	375	3414	21356	258	H(31K)	431	851	16886	147
H(13F)	96	3202	22166	258	H(31A)	-997	67	13480	407

H(13G)	-182	2870	19992	157	H(31B)	-749	-232	13424	407
H(13H)	34	2549	19841	157	H(31L)	-460	311	13297	407
H(13I)	354	3066	20132	157	H(31C)	-1219	-53	15568	542
H(13J)	-876	2240	21437	191	H(31D)	-1146	-484	15462	542
H(13K)	-644	2153	22201	191	H(31E)	-1397	-360	14776	542
H(13L)	-725	1859	21405	191	H(31F)	-669	736	15320	504
H(20A)	2315	2479	22544	125	H(31G)	-510	874	14412	504
H(20B)	2176	1402	24012	177	H(31H)	-145	928	15076	504
H(20C)	2507	1192	23080	76	H(01A)	57	-68	11930	572
H(20D)	2751	1559	21942	136	H(01B)	-468	-227	11749	572
H(20E)	2801	2337	21569	148	H(01C)	-101	306	11840	572
H(20F)	2248	2362	24410	249	H(02A)	-576	175	10521	79
H(20G)	1822	1852	24352	249	H(03A)	-423	140	9114	194
H(20H)	1823	2255	23845	249	H(04A)	224	188	8641	8
H(21J)	-471	746	18737	73	H(05A)	543	-92	9487	94
H(21K)	-637	1114	18777	73	H(06A)	491	-71	10935	76

9.2.7 Tetrakis(hypersilyl)diindium(II), (Hsi)₂In-In(Hsi)₂, In₂Hsi₄; 12

9.2.7.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	In2 Si16 C36 H108	
Formelgewicht:	1220,3 g/Mol	
Temperatur:	173(2) K	
Wellenlänge:	0,71073 Å	
Kristallsystem, Raumgruppe:	monoklin; P2 ₁ /c (Nr	r.14)
Größe der Elementarzelle:	a = 23,496(2) Å	$\alpha = 90^{\circ}$
	b = 12,926(1) Å	$\beta = 102,612(5)^{\circ}$
	c = 23,275(1) Å	$\gamma = 90^{\circ}$
Volumen der Elementarzelle:	6898,0(9) Å ³	
Z; röntgenographische Dichte:	4; 1,175 Mg/m ³	
Absorptionskoeffizient:	$0,97 \text{ mm}^{-1}$	
F(000):	2584	
Farbe / Gestalt / Größe des Kristalls:	rubinrote Quader	0,5 x 0,4 x 0,3 mm
Messbereich; Abtastmodus:	$3,56^\circ \le 2\theta \le 50,00^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-27 \le h \le 27, -15 \le 1$	$k \le 0, \ 0 \le l \le 24$
Beobachtete / symmetrieunabhängige Re	eflexe: 12211	/ 11875 [R(int) = 0,0469]
Absorptionskorrektur:	keine	
Strukturverfeinerung:	Volle Matrix,	_
	kleinste Fehlerquad	ratsumme an F ²
Daten / Variable Parameter:	11861 / 505	
GooF (Goodness-of-fit an F^2):	1,038	
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0509$	$wR_2 = 0,1138$
Gütefaktoren R ₁ und wR ₂ (alle Daten):	$R_1 = 0,0944$	$wR_2 = 0,1484$
Maximale / minimale Restelektronendic	hte: 1,008	/ -0,906 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-17 (S.99) zu entnehmen.

	T <i>L</i> 1 04		7/ 104							
Atom	X/a·10 [*]	Y/b·10 ²	Z/c·10	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
In(1)	2003(1)	1234(1)	3977(1)	18(1)	19(1)	19(1)	17(1)	1(1)	2(1)	-1(1)
Si(1)	1970(1)	-211(1)	4773(1)	23(1)	25(1)	23(1)	20(1)	4(1)	5(1)	1(1)
Si(11)	2930(1)	-734(2)	5189(1)	38(1)	28(1)	46(1)	38(1)	17(1)	6(1)	11(1)
C(111)	2956(4)	-2090(7)	5475(5)	88(4)	57(6)	74(7)	124(9)	58(7)	5(6)	26(5)
C(112)	3384(3)	-663(7)	4618(3)	57(2)	39(4)	88(6)	44(5)	6(5)	11(4)	8(4)
C(113)	3285(3)	103(8)	5821(3)	63(3)	37(4)	106(7)	40(5)	4(5)	-8(4)	3(5)
Si(12)	1422(1)	-1724(1)	4448(1)	31(1)	40(1)	23(1)	31(1)	-1(1)	13(1)	-4(1)
C(121)	698(3)	-1441(6)	3960(3)	48(2)	43(4)	47(4)	51(5)	-3(4)	4(4)	-11(3)
C(122)	1267(3)	-2449(5)	5099(3)	43(2)	57(5)	30(4)	47(5)	6(3)	20(4)	-12(3)
C(123)	1809(4)	-2639(5)	4050(4)	55(2)	79(6)	29(4)	66(6)	-4(4)	36(5)	-1(4)
Si(13)	1593(1)	434(1)	5552(1)	25(1)	27(1)	27(1)	20(1)	1(1)	4(1)	-3(1)
C(131)	778(3)	489(5)	5355(3)	36(2)	34(4)	36(4)	39(4)	4(3)	10(3)	0(3)
C(132)	1810(3)	-380(6)	6235(3)	44(2)	49(4)	53(5)	30(4)	7(3)	13(3)	9(4)
C(133)	1879(3)	1769(5)	5749(3)	45(2)	59(5)	40(4)	35(5)	-10(3)	10(4)	-17(4)
Si(2)	1165(1)	2639(1)	3610(1)	21(1)	20(1)	23(1)	21(1)	2(1)	3(1)	4(1)
Si(21)	985(1)	3866(1)	4310(1)	30(1)	37(1)	27(1)	26(1)	0(1)	8(1)	5(1)
C(211)	1672(3)	4447(5)	4753(3)	45(2)	65(5)	32(4)	35(5)	-6(3)	3(4)	-6(3)
C(212)	536(4)	4971(6)	3942(3)	53(2)	66(5)	40(4)	52(5)	-5(4)	10(4)	24(4)
C(213)	562(4)	3314(6)	4837(4)	56(2)	73(6)	47(5)	59(6)	2(4)	36(5)	6(4)
Si(22)	243(1)	1906(1)	3212(1)	29(1)	21(1)	30(1)	34(1)	5(1)	0(1)	-2(1)
C(221)	-309(3)	2927(6)	2911(4)	52(2)	23(4)	67(5)	62(6)	15(4)	-2(3)	13(4)
C(222)	-64(3)	1188(6)	3768(4)	57(2)	48(5)	63(5)	58(6)	15(4)	8(4)	-20(4)
C(223)	265(3)	970(6)	2606(3)	51(2)	46(4)	54(5)	44(5)	-7(4)	-10(4)	-9(4)
Si(23)	1419(1)	3543(1)	2813(1)	25(1)	25(1)	27(1)	23(1)	3(1)	4(1)	2(1)
C(231)	1568(3)	4958(5)	2950(3)	41(2)	55(5)	31(4)	37(5)	7(3)	11(3)	5(3)
C(232)	2102(3)	2969(5)	2651(3)	37(2)	37(4)	40(4)	34(4)	13(3)	10(3)	5(3)
C(233)	857(3)	3435(6)	2105(3)	45(2)	39(4)	67(5)	24(4)	16(4)	-4(3)	-5(4)
In(2)	3001(1)	1296(1)	3455(1)	19(1)	17(1)	19(1)	19(1)	0(1)	2(1)	0(1)
Si(3)	3021(1)	-69(1)	2614(1)	24(1)	27(1)	23(1)	23(1)	-3(1)	7(1)	0(1)
Si(31)	2041(1)	-487(2)	2204(1)	34(1)	32(1)	37(1)	32(1)	-14(1)	4(1)	-8(1)
C(311)	1641(3)	-515(6)	2810(3)	47(2)	34(4)	62(5)	44(5)	-14(4)	9(3)	-14(4)
C(312)	1659(3)	479(6)	1646(3)	54(2)	49(5)	68(5)	40(5)	-4(4)	-4(4)	3(4)
C(313)	1954(3)	-1783(6)	1820(4)	61(2)	53(5)	60(5)	68(6)	-38(5)	8(4)	-23(4)
Si(32)	3413(1)	587(1)	1844(1)	28(1)	33(1)	30(1)	25(1)	1(1)	10(1)	5(1)
C(321)	4224(3)	489(6)	2005(4)	53(2)	46(5)	59(5)	59(6)	18(4)	25(4)	14(4)
C(322)	3116(4)	-127(6)	1142(3)	51(2)	69(5)	56(5)	30(5)	-8(4)	17(4)	1(4)
C(323)	3204(3)	1975(5)	1741(3)	45(2)	54(5)	39(4)	44(5)	13(3)	16(4)	11(3)
Si(33)	3493(1)	-1667(1)	2892(1)	35(1)	46(1)	23(1)	37(1)	2(1)	16(1)	5(1)
C(331)	4216(3)	-1532(6)	3393(3)	48(2)	44(4)	46(4)	53(5)	11(4)	6(4)	12(3)
C(332)	3605(4)	-2358(6)	2219(4)	58(2)	93(7)	34(4)	57(6)	-1(4)	38(5)	17(4)
C(333)	3036(4)	-2543(6)	3251(4)	60(2)	76(6)	35(4)	74(6)	9(4)	25(5)	1(4)
Si(4)	3825(1)	2706(1)	3804(1)	29(1)	21(1)	32(1)	33(1)	-9(1)	4(1)	-7(1)
Si(41)	4005(1)	4000(2)	3114(1)	$\frac{2}{34(1)}$	33(1)	28(1)	45(2)	-3(1)	15(1)	-8(1)
C(411)	3367(7)	4534(12)	2594(7)	47(5)	55(1)	20(1)	13(2)	5(1)	15(1)	0(1)
C(412)	4407(5)	5131(8)	3534(5)	35(2)						
C(413)	4492(5)	3484(8)	2639(5)	38(3)						
Si(42)	4725(1)	2018(2)	4224(1)	37(1)	20(1)	34(2)	50(2)	-2(1)	-6(1)	2(1)
C(421)	5317(5)	3002(10)	4437(6)	57(1) 50(3)	20(1)	5 (2)	55(2)	2(1)	0(1)	<u>~(1)</u>
C(422)	4963(7)	1054(13)	3632(8)	59(5)						
C(423)	4688(6)	1322(11)	4923(7)	65(4)						
Si(43)	3537(1)	3694(2)	4548(1)	25(1)	26(1)	27(1)	24(2)	_9(1)	8(1)	-8(1)
C(431)	3057(1)	4827(11)	4278(7)	54(A)	20(1)	2/(1)	24(2)	-2(1)	0(1)	-0(1)
C(431)	3057(0) 3105(5)	7027(11) 2851(10)	72/0(7)	$\frac{34(4)}{11(2)}$						
C(432)	1171(2)	2031(10) 4201(11)	4703(J) 5087(G)	44(3) 57(2)						
$S_{1}(51)$	$\frac{1}{3618(2)}$	4291(11)	3002(0) 3587(2)	$\frac{3}{46(2)}$	$\Lambda\Lambda(\Lambda)$	30(2)	64(5)	5(2)	11(2)	0(2)
51(51)	2010(2)	4554(5)	5567(5)	+0(2)	++(+)	50(5)	0+(J)	J(J)	11(3)	-2(3)

9.2.7.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

C(511)	4274(10)	5227(18)	3813(11)	43(6)						
C(512)	2964(10)	4748(17)	3995(12)	38(6)						
C(513)	3316(11)	4629(20)	2735(13)	30(7)						
Si(52)	4765(3)	2298(6)	3615(4)	53(2)	24(3)	54(4)	78(6)	-7(4)	6(3)	1(3)
C(521)	4737(11)	3003(20)	2839(12)	56(6)						
C(522)	5349(8)	3052(15)	4146(10)	27(5)						
C(523)	4971(13)	938(24)	3818(15)	48(9)						
Si(53)	3995(3)	2572(5)	4881(3)	52(2)	58(5)	46(4)	43(4)	-4(3)	-5(3)	-14(3)
C(531)	4335(9)	3804(18)	5229(10)	37(5)						
C(532)	4497(10)	1504(18)	5160(11)	45(6)						
C(533)	3278(10)	2511(16)	5066(9)	30(5)						

9.2.7.3 Bindungslängen

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
In(1)-Si(1)	2.644(2)	Si(22)-C(223)	1.868(8)	Si(4)-Si(52)	2.404(7)
In(1)-Si(2)	2.679(2)	Si(22)-C(221)	1.875(7)	Si(4)-Si(41)	2.420(3)
In(1)- $In(2)$	2.8680(6)	Si(23)-C(231)	1.877(7)	Si(4)-Si(53)	2.457(7)
Si(1)-Si(13)	2.338(2)	Si(23)-C(232)	1.879(7)	Si(41)-C(411)	1.84(2)
Si(1)-Si(11)	2.351(2)	Si(23)-C(233)	1.880(6)	Si(41)-C(413)	1.880(11)
Si(1)-Si(12)	2.372(2)	In(2)-Si(3)	2.642(2)	Si(41)-C(412)	1.892(11)
Si(11)-C(113)	1.869(8)	In(2)-Si(4)	2.654(2)	Si(42)-C(421)	1.870(13)
Si(11)-C(111)	1.871(9)	Si(3)-Si(32)	2.345(2)	Si(42)-C(423)	1.878(15)
Si(11)-C(112)	1.880(8)	Si(3)-Si(31)	2.354(2)	Si(42)-C(422)	2.03(2)
Si(12)-C(123)	1.858(7)	Si(3)-Si(33)	2.367(2)	Si(43)-C(431)	1.871(14)
Si(12)-C(121)	1.864(7)	Si(31)-C(311)	1.860(7)	Si(43)-C(433)	1.889(13)
Si(12)-C(122)	1.883(7)	Si(31)-C(312)	1.881(8)	Si(43)-C(432)	1.890(12)
Si(13)-C(131)	1.870(6)	Si(31)-C(313)	1.889(7)	Si(51)-C(511)	1.90(2)
Si(13)-C(133)	1.872(7)	Si(32)-C(323)	1.861(7)	Si(51)-C(513)	1.99(3)
Si(13)-C(132)	1.881(7)	Si(32)-C(321)	1.866(7)	Si(51)-C(512)	2.05(2)
Si(2)-Si(22)	2.362(2)	Si(32)-C(322)	1.874(7)	Si(52)-C(523)	1.86(3)
Si(2)-Si(23)	2.374(2)	Si(33)-C(331)	1.847(7)	Si(52)-C(522)	1.90(2)
Si(2)-Si(21)	2.378(2)	Si(33)-C(332)	1.870(7)	Si(52)-C(521)	2.01(3)
Si(21)-C(212)	1.868(7)	Si(33)-C(333)	1.879(8)	Si(53)-C(533)	1.83(2)
Si(21)-C(211)	1.873(7)	Si(4)-Si(51)	2.194(6)	Si(53)-C(532)	1.84(2)
Si(21)-C(213)	1.879(8)	Si(4) - Si(42)	2.306(3)	Si(53)-C(531)	1.88(2)
Si(22)-C(222)	1.862(7)	Si(4)-Si(43)	2.366(3)		

9.2.7.4 Bindungswinkel

Atome	Bindungswinkel in °	Atome	Bindungswinkel in °
Si(1)-In(1)-Si(2)	124.77(5)	C(311)-Si(31)-Si(3)	107.9(2)
Si(1)-In(1)-In(2)	117.98(4)	C(312)-Si(31)-Si(3)	113.9(3)
Si(2)-In(1)-In(2)	117.24(4)	C(313)-Si(31)-Si(3)	113.0(3)
Si(13)-Si(1)-Si(11)	105.90(9)	C(323)-Si(32)-C(321)	108.7(4)
Si(13)-Si(1)-Si(12)	105.71(9)	C(323)-Si(32)-C(322)	109.0(4)
Si(11)-Si(1)-Si(12)	107.38(9)	C(321)-Si(32)-C(322)	108.1(4)

Si(13)-Si(1)-In(1)	111 49(7)	C(323)-Si(32)-Si(3)	$108 \ 1(2)$
S(13) S(1) I(1)	111.+9(7)	$C(323) \ SI(32) \ SI(3)$	100.1(2)
$S_1(11) - S_1(1) - In(1)$	108.60(8)	C(321)-S1(32)-S1(3)	112.1(3)
Si(12)-Si(1)-In(1)	117.14(8)	C(322)-Si(32)-Si(3)	110.8(3)
C(113) S (11) $C(111)$	106 7(5)	C(331) Si(33) $C(332)$	107.2(4)
	100.7(3)	C(331)- $SI(33)$ - $C(332)$	107.2(4)
C(113)-Si(11)-C(112)	107.6(4)	C(331)-Si(33)-C(333)	108.2(4)
C(111)-Si(11)-C(112)	108.5(4)	C(332)-Si(33)-C(333)	1064(4)
C(112) C(11) C(112)	1125(2)	C(221) S(22) S(22)	100.1(1) 112.7(2)
C(113)-SI(11)-SI(1)	112.5(3)	C(331)-SI(33)-SI(3)	113.7(2)
C(111)-Si(11)-Si(1)	111.7(3)	C(332)-Si(33)-Si(3)	109.4(3)
C(112)-Si(11)-Si(1)	109.7(3)	C(333)-Si(33)-Si(3)	111.6(3)
C(123) - Si(12) - C(121)	107.5(4)	$S_{i}(A_{2}) - S_{i}(A_{1}) - S_{i}(A_{3})$	106.28(12)
C(123)-SI(12)-C(121)	107.3(4)	Si(42) - Si(4) - Si(43)	100.20(12)
C(123)-Si(12)-C(122)	106.7(3)	$S_1(51) - S_1(4) - S_1(52)$	109.5(3)
C(121)-Si(12)-C(122)	106.1(4)	Si(42)-Si(4)-Si(41)	105.73(12)
C(123) - Si(12) - Si(1)	113 2(3)	Si(A3) - Si(A) - Si(A1)	103 40(11)
C(121) C(12) C(1)	113.2(3)	$S_{1}(+5) = S_{1}(+1) = S_{1}(+1)$ $S_{2}(+5) = S_{1}(+1) = S_{2}(+1)$	105.40(11)
C(121)-SI(12)-SI(1)	113.0(2)	51(51)-51(4)-51(55)	100.3(3)
C(122)-Si(12)-Si(1)	109.9(2)	Si(52)-Si(4)-Si(53)	102.7(3)
C(131)-Si(13)-C(133)	108 6(3)	Si(51)-Si(4)-In(2)	118.6(2)
C(121) $S(12)$ $C(122)$	107.6(2)	$S_{i}(42) S_{i}(4) I_{n}(2)$	112.02(10)
C(131)-SI(13)-C(132)	107.0(3)	SI(42) - SI(4) - III(2)	115.92(10)
C(133)-S1(13)-C(132)	107.0(3)	$S_1(43)-S_1(4)-In(2)$	106.78(9)
C(131)-Si(13)-Si(1)	111.3(2)	Si(52)-Si(4)-In(2)	115.6(2)
C(133)-Si(13)-Si(1)	1100(2)	Si(41)-Si(4)-In(2)	11954(9)
C(122) = S(12) = S(1)	110.0(2)	Si(+1)-Si(+)-Iii(2) Si(52)-Si(4)-Iii(2)	117.34(7)
C(132)-SI(13)-SI(1)	112.2(2)	S1(53)-S1(4)-In(2)	102.1(2)
Si(22)-Si(2)-Si(23)	104.87(9)	C(411)-Si(41)-C(413)	105.0(6)
Si(22)-Si(2)-Si(21)	104 52(9)	C(411)-Si(41)-C(412)	107.0(6)
$S_{1}(22) = S_{1}(2) = S_{1}(21)$	108.67(0)	C(412) Si(41) C(412)	106.2(5)
SI(23) - SI(2) - SI(21)	108.07(9)	C(413)-SI(41)-C(412)	100.2(3)
$S_1(22)-S_1(2)-In(1)$	113.60(8)	C(411)-Si(41)-Si(4)	117.4(5)
Si(23)-Si(2)-In(1)	106.89(7)	C(413)-Si(41)-Si(4)	111.2(4)
Si(21)-Si(2)-In(1)	117 53(8)	C(412)-Si(41)-Si(4)	109.3(4)
C(212) S(21) C(211)	106 1(2)	C(421) S(42) C(422)	105.5(1)
C(212)-SI(21)-C(211)	100.1(3)	C(421)-SI(42)-C(423)	103.0(0)
C(212)-Si(21)-C(213)	105.3(4)	C(421)-Si(42)-C(422)	107.4(6)
C(211)-Si(21)-C(213)	107.9(4)	C(423)-Si(42)-C(422)	111.5(7)
C(212) - Si(21) - Si(2)	111.3(3)	C(A21) - Si(A2) - Si(A)	114.2(4)
C(212)- $S(21)$ - $S(2)$	111.5(5)	C(421)-S1(42)-S1(4)	114.2(4)
C(211)-Si(21)-Si(2)	112.6(3)	C(423)-S1(42)-S1(4)	109.9(5)
C(213)-Si(21)-Si(2)	113.2(3)	C(422)-Si(42)-Si(4)	108.2(5)
C(222)-Si (22) -C (223)	1064(4)	C(431) - Si(43) - C(433)	103 5(6)
C(222) SI(22) C(223)	105.4(4)	C(421) S(42) C(422)	105.9(6)
C(222)-SI(22)-C(221)	103.0(4)	C(431)-SI(43)-C(432)	103.8(0)
C(223)-Si(22)-C(221)	107.8(4)	C(433)-Si(43)-C(432)	109.6(6)
C(222)-Si(22)-Si(2)	112.9(3)	C(431)-Si(43)-Si(4)	115.1(5)
C(223) - Si(22) - Si(2)	1124(2)	C(433) - Si(43) - Si(4)	112 9(4)
C(223)-SI(22)-SI(2)	112.4(2)	C(433) - SI(43) - SI(4)	112.9(4)
C(221)-S1(22)-S1(2)	111.3(3)	C(432)-S1(43)-S1(4)	109.5(4)
C(231)-Si(23)-C(232)	106.5(3)	C(511)-Si(51)-C(513)	104.5(11)
C(231)-Si(23)-C(233)	106.9(3)	C(511)-Si(51)-C(512)	111.0(11)
C(222) Si(22) $C(222)$	105 1(3)	C(513) Si(51) $C(512)$	105.7(11)
C(232)-SI(23)-C(233)	103.1(3)	C(515)-S(51)-C(512)	103.7(11)
C(231)-S1(23)-S1(2)	114.6(2)	C(511)-Si(51)-Si(4)	113.1(/)
C(232)-Si(23)-Si(2)	109.5(2)	C(513)-Si(51)-Si(4)	115.2(8)
C(233)-Si(23)-Si(2)	113 6(2)	C(512)-Si(51)-Si(4)	107 1(7)
$S_{1}^{2}(2)$ $I_{2}^{2}(2)$ $S_{1}^{2}(2)$ $S_{2}^{2}(4)$	122.77(5)	C(512) S(51) S((1))	107.1(7)
SI(3)-III(2)-SI(4)	123.77(5)	C(525)-SI(52)-C(522)	102.1(12)
$S_1(3)-In(2)-In(1)$	116.31(4)	C(523)-Si(52)-C(521)	127.8(14)
Si(4)-In(2)-In(1)	119.89(4)	C(522)-Si(52)-C(521)	103.3(10)
Si(32)-Si(3)-Si(31)	106 56(9)	C(523)-Si(52)-Si(4)	111 1(10)
$S_{1}(22) = S_{1}(2) = S_{1}(22)$	100.50(9)	C(523) Si(52) Si(1)	100.2(7)
51(52)-51(5)-51(55)	100.30(9)	C(322)-SI(32)-SI(4)	109.2(7)
Si(31)-Si(3)-Si(33)	105.62(9)	C(521)-Si(52)-Si(4)	102.3(8)
Si(32)-Si(3)-In(2)	113.46(8)	C(533)-Si(53)-C(532)	115.9(11)
Si(31)-Si(3)-In(2)	106 27(8)	C(533)-Si(53)-C(521)	105 1(10)
G'(22) G'(2) I'(2)	117 (0(0)	C(533) - S(53) - C(531)	103.1(10)
S1(33)-S1(3)-In(2)	11/.60(8)	C(532)-S1(53)-C(531)	107.7(10)
C(311)-Si(31)-C(312)	107.0(4)	C(533)-Si(53)-Si(4)	106.9(7)
C(311)-Si(31)-C(313)	108.8(4)	C(532)-Si(53)-Si(4)	111.2(9)
C(312) Si(21) $C(212)$	106.0(4)	$C(531)_{Si}(52)_{Si}(4)$	100 8(7)
C(312) - SI(31) - C(313)	100.0(4)	C(331) - 31(33) - 31(4)	109.0(7)

9.2.7.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

T .	1 · · ·
Hin	hoit

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}
H(11A)	2773(4)	-2557(7)	5157(5)	131	H(22F)	-456(3)	941(6)	3587(4)	85
H(11B)	2746(4)	-2127(7)	5795(5)	131	H(22G)	425(3)	1313(6)	2300(3)	77
H(11C)	3363(4)	-2296(7)	5624(5)	131	H(22H)	-130(3)	724(6)	2436(3)	77
H(11D)	3208(3)	-1095(7)	4280(3)	85	H(22I)	513(3)	381(6)	2763(3)	77
H(11E)	3779(3)	-911(7)	4788(3)	85	H(23Å)	1222(3)	5293(5)	3037(3)	62
H(11F)	3402(3)	56(7)	4489(3)	85	H(23B)	1661(3)	5276(5)	2599(3)	62
H(11G)	3281(3)	824(8)	5690(3)	95	H(23C)	1899(3)	5046(5)	3285(3)	62
H(11H)	3689(3)	-122(8)	5966(3)	95	H(23D)	2045(3)	2226(5)	2576(3)	55
H(11I)	3072(3)	46(8)	6137(3)	95	H(23E)	2427(3)	3076(5)	2989(3)	55
H(12Å)	483(3)	-958(6)	4159(3)	72	H(23F)	2189(3)	3306(5)	2303(3)	55
H(12B)	476(3)	-2085(6)	3872(3)	72	H(23G)	767(3)	2704(6)	2017(3)	67
H(12C)	755(3)	-1130(6)	3593(3)	72	H(23H)	1010(3)	3745(6)	1784(3)	67
H(12D)	1062(3)	-1994(5)	5323(3)	65	H(23I)	502(3)	3800(6)	2143(3)	67
H(12E)	1635(3)	-2679(5)	5352(3)	65	H(31Å)	1828(3)	-1011(6)	3111(3)	70
H(12F)	1023(3)	-3053(5)	4960(3)	65	H(31B)	1236(3)	-723(6)	2654(3)	70
H(12G)	2193(4)	-2804(5)	4296(4)	83	H(31C)	1648(3)	176(6)	2986(3)	70
H(12H)	1859(4)	-2321(5)	3682(4)	83	H(31D)	1858(3)	516(6)	1318(3)	81
H(12I)	1580(4)	-3276(5)	3961(4)	83	H(31E)	1666(3)	1161(6)	1832(3)	81
H(13Å)	623(3)	-206(5)	5250(3)	54	H(31F)	1254(3)	262(6)	1499(3)	81
H(13B)	653(3)	954(5)	5018(3)	54	H(31G)	2164(3)	-1777(6)	1499(4)	92
H(13C)	633(3)	746(5)	5692(3)	54	H(31H)	1540(3)	-1918(6)	1659(4)	92
H(13D)	2237(3)	-423(6)	6349(3)	65	H(31I)	2115(3)	-2328(6)	2102(4)	92
H(13E)	1648(3)	-1077(6)	6156(3)	65	H(32Å)	4340(3)	-239(6)	2060(4)	79
H(13F)	1660(3)	-65(6)	6555(3)	65	H(32B)	4389(3)	878(6)	2364(4)	79
H(13G)	2306(3)	1752(5)	5854(3)	67	H(32C)	4370(3)	776(6)	1675(4)	79
H(13H)	1731(3)	2023(5)	6085(3)	67	H(32D)	3224(4)	-859(6)	1193(3)	76
H(13I)	1750(3)	2231(5)	5412(3)	67	H(32E)	3279(4)	167(6)	825(3)	76
H(21Å)	1924(3)	3896(5)	4957(3)	68	H(32F)	2690(4)	-64(6)	1041(3)	76
H(21B)	1576(3)	4927(5)	5044(3)	68	H(32G)	2779(3)	2038(5)	1656(3)	67
H(21C)	1875(3)	4821(5)	4491(3)	68	H(32H)	3353(3)	2259(5)	1411(3)	67
H(21D)	169(4)	4707(6)	3703(3)	79	H(32I)	3372(3)	2360(5)	2101(3)	67
H(21E)	752(4)	5339(6)	3689(3)	79	H(33Å)	4174(3)	-1172(6)	3752(3)	73
H(21F)	453(4)	5445(6)	4242(3)	79	H(33B)	4475(3)	-1134(6)	3198(3)	73
H(21G)	776(4)	2725(6)	5047(4)	84	H(33C)	4384(3)	-2220(6)	3496(3)	73
H(21H)	179(4)	3081(6)	4618(4)	84	H(33D)	3229(4)	-2443(6)	1942(4)	87
H(21I)	512(4)	3846(6)	5122(4)	84	H(33E)	3777(4)	-3039(6)	2330(4)	87
H(22A)	-171(3)	3334(6)	2613(4)	79	H(33F)	3868(4)	-1953(6)	2032(4)	87
H(22B)	-363(3)	3383(6)	3231(4)	79	H(33G)	2650(4)	-2625(6)	2991(4)	90
H(22C)	-681(3)	2598(6)	2731(4)	79	H(33H)	2995(4)	-2241(6)	3626(4)	90
H(22D)	-85(3)	1650(6)	4097(4)	85	H(33I)	3225(4)	-3221(6)	3323(4)	90
H(22E)	187(3)	597(6)	3914(4)	85	× /	. /	. /	. ,	

9.2.8 Bis(hypersilyl)dimethylzinn(IV), Me₂Sn(Hsi)₂; 8

9.2.8.1 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung

Summenformel:	$C_{20}H_{60}Si_8Sn$	
Formelgewicht:	644,09 g/Mol	
Temperatur:	173(2) K	
Wellenlänge:	0.71073 Å	
Kristallsystem, Raumgruppe:	monoklin; C2/c	
Größe der Elementarzelle:	a = 16,957(6) Å	$\alpha = 90^{\circ}$
	b = 9,271(3) Å	$\beta = 106, 30(3)^{\circ}$
	c = 24,736(8) Å	$\gamma = 90^{\circ}$
Volumen der Elementarzelle:	3733(2) Å ³	
Z; röntgenographische Dichte:	4; 1,146 Mg/m^3	
Absorptionskoeffizient:	$0,949 \text{ mm}^{-1}$	
F(000):	1368	
Farbe / Gestalt / Größe des Kristalls:	farblose Quader	0,3 x 0,3 x 0,2 mm
Messbereich; Abtastmodus:	$3,44^\circ \le 2\theta \le 60,04^\circ$; w-Scans
Messbereich des reziproken Raumes:	$-13 \le h \le 23, -7 \le k$	$\leq 13, -34 \leq l \leq 34$
Beobachtete / symmetrieunabhängige Re	eflexe: 6651 /	5454 [R(int) = 0.0411]
Absorptionskorrektur:	keine	
Strukturverfeinerung:	Volle Matrix,	
	kleinste Fehlerquad	ratsumme an F ²
Daten / restraints / Parameter:	5448 / 24 / 167	
GooF (Goodness-of-fit an F ²):	1,035	
Gütefaktoren R_1 und w R_2 (I>2 σ (I)):	$R_1 = 0,0461$	$wR_2 = 0,1041$
Gütefaktoren R_1 und wR_2 (alle Daten):	$R_1 = 0,0709$	$wR_2 = 0,0,1166$
Maximale / minimale Restelektronendic	hte: 1,325	/ -0,650 e·Å ⁻³

Die Nummerierung der Atome ist Abbildung 5-18 (S.100) zu entnehmen.

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(01)	3996(4)	4862(5)	7497(2)	76(2)	116(4)	64(3)	49(2)	8(2)	26(2)	53(3)
Sn	5000	3411(1)	7500	34(1)	49(1)	25(1)	30(1)	Ó	16(1)	Ó
Si(1)	4641(1)	2153(1)	6521(1)	29(1)	31(1)	27(1)	32(1)	-2(1)	13(1)	0(1)
Si(2)	5825(1)	1209(1)	6324(1)	42(1)	37(1)	45(1)	46(1)	-7(1)	19(1)	6(1)
C(21)	6775(5)	1693(15)	6905(5)	78(4)	28(4)	117(10)	88(7)	-43(6)	13(4)	-2(5)
C(22)	6041(7)	2099(16)	5694(5)	92(5)	85(8)	139(12)	77(7)	35(7)	62(6)	47(8)
C(23)	5803(6)	-706(10)	6241(7)	94(5)	61(6)	49(5)	191(16)	-34(7)	66(8)	0(4)
C(24)	6233(12)	-469(19)	6756(8)	131(8)	143(15)	150(16)	124(13)	47(12)	78(12)	103(14)
C(25)	5554(9)	500(30)	5594(5)	155(12)	99(11)	300(30)	67(8)	-59(13)	29(7)	87(15)
C(26)	6632(10)	2488(18)	6435(13)	187(14)	94(12)	90(12)	430(40)	-83(19)	160(20)	-38(10)
Si(3)	3610(1)	396(1)	6412(1)	39(1)	35(1)	35(1)	46(1)	-1(1)	11(1)	-6(1)
C(31)	2651(3)	1208(6)	6512(3)	80(2)	55(3)	72(3)	128(5)	-16(3)	52(3)	-11(2)
C(32)	3324(3)	-396(6)	5689(2)	79(2)	83(4)	91(4)	63(3)	-28(3)	20(2)	-39(3)
C(33)	3973(3)	-1128(6)	6912(3)	93(2)	72(3)	68(3)	117(5)	48(3)	-10(3)	-28(3)

9.2.8.2 Ortskoordinaten und Auslenkungsparameter der asymmetrischen Einheit

Si(4)	4122(1)	4008(1)	5863(1)	39(1)	47(1)	39(1)	35(1)	6(1)	17(1)	4(1)
C(41)	3868(4)	3322(6)	5125(2)	81(2)	116(4)	88(4)	34(2)	5(2)	16(2)	39(3)
C(42)	3149(3)	4804(7)	5941(2)	78(2)	81(3)	100(4)	59(3)	24(3)	30(2)	48(3)
C(43)	4855(4)	5538(6)	5945(3)	100(2)	95(4)	78(4)	112(5)	54(4)	4(3)	-27(3)
C(43)	4855(4)	5538(6)	5945(3)	100(2)	95(4)	78(4)	112(5)	54(4)	4(3)	-27(3)

9.2.8.3 Bindungslängen

Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å	Atome	Bindungs- länge in Å
C(01)-Sn	2.169(4)	Si(2)-C(26)	1.772(12)	Si(3)-C(32)	1.867(5)
Sn-C(01)A	2.169(4)	Si(2)-C(23)	1.786(9)	Si(3)-C(31)	1.869(5)
Sn-Si(1)	2.6010(11)	Si(2)-C(25)	1.855(11)	Si(4)-C(43)	1.860(5)
Sn-Si(1)A	2.6010(11)	Si(2)-C(21)	1.887(8)	Si(4)-C(42)	1.866(5)
Si(1)- $Si(3)$	2.3493(13)	Si(2)-C(22)	1.888(8)	Si(4)-C(41)	1.866(4)
Si(1)- $Si(4)$	2.3615(14)	Si(2)-C(24)	1.903(12)		
Si(1)-Si(2)	2.3643(14)	Si(3)-C(33)	1.863(5)		

9.2.8.4 Bindungswinkel

Atome	tome Bindungswinkel in °		Bindungswinkel in °
C(01)-Sn- $C(01)A$	103.3(3)	C(23)-Si(2)-C(24)	41.0(7)
C(01)-Sn-Si(1)	107.22(13)	C(25)-Si(2)-C(24)	102.0(8)
C(01)A-Sn-Si(1)	105.07(12)	C(21)-Si(2)-C(24)	70.7(8)
C(01)-Sn-Si(1)A	105.07(12)	C(22)-Si(2)-C(24)	134.1(5)
C(01)A-Sn-Si(1)A	107.22(13)	C(26)-Si(2)-Si(1)	112.6(5)
Si(1)-Sn-Si(1)A	126.75(4)	C(23)-Si(2)-Si(1)	113.6(3)
Si(3)-Si(1)-Si(4)	107.75(5)	C(25)-Si(2)-Si(1)	109.8(4)
Si(3)-Si(1)-Si(2)	111.56(5)	C(21)-Si(2)-Si(1)	110.4(3)
Si(4)-Si(1)-Si(2)	107.56(5)	C(22)-Si(2)-Si(1)	112.3(3)
Si(3)-Si(1)-Sn	112.94(4)	C(24)-Si(2)-Si(1)	112.6(4)
Si(4)-Si(1)-Sn	105.06(5)	C(33)-Si(3)-C(32)	106.6(3)
Si(2)-Si(1)-Sn	111.53(5)	C(33)-Si(3)-C(31)	110.9(3)
C(26)-Si(2)-C(23)	132.3(6)	C(32)-Si(3)-C(31)	106.4(3)
C(26)-Si(2)-C(25)	111.0(10)	C(33)-Si(3)-Si(1)	110.68(16)
C(23)-Si(2)-C(25)	62.8(8)	C(32)-Si(3)-Si(1)	111.52(17)
C(26)-Si(2)-C(21)	42.8(9)	C(31)-Si(3)-Si(1)	110.62(17)
C(23)-Si(2)-C(21)	108.1(6)	C(43)-Si(4)-C(42)	105.7(3)
C(25)-Si(2)-C(21)	138.7(5)	C(43)-Si(4)-C(41)	109.3(3)
C(26)-Si(2)-C(22)	61.0(9)	C(42)-Si(4)-C(41)	105.5(3)
C(23)-Si(2)-C(22)	110.0(6)	C(43)-Si(4)-Si(1)	111.81(18)
C(25)-Si(2)-C(22)	53.4(8)	C(42)-Si(4)-Si(1)	112.70(16)
C(21)-Si(2)-C(22)	101.7(6)	C(41)-Si(4)-Si(1)	111.41(17)
C(26)-Si(2)-C(24)	108.5(10)		

Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	Ueq	Atom	X/a·10 ⁴	Y/b·10 ⁴	Z/c·10 ⁴	U _{eq}
H(01A)	4037	5161	7875	114	H(26C)	6451	3304	6193	280
H(01B)	3482	4374	7343	114	H(31A)	2262	458	6514	120
H(01C)	4023	5692	7271	114	H(31B)	2420	1865	6209	120
H(21A)	7251	1303	6820	118	H(31C)	2779	1718	6863	120
H(21B)	6734	1299	7255	118	H(32A)	2929	-1152	5666	119
H(21C)	6824	2723	6936	118	H(32B)	3806	-784	5611	119
H(22A)	6525	1683	5630	138	H(32C)	3091	340	5419	119
H(22B)	6125	3114	5764	138	H(33A)	3542	-1830	6863	139
H(22C)	5582	1954	5368	138	H(33B)	4118	-771	7291	139
H(23A)	6299	-1019	6163	141	H(33C)	4445	-1566	6838	139
H(23B)	5339	-973	5935	141	H(41A)	3663	4100	4868	121
H(23C)	5760	-1154	6582	141	H(41B)	3456	2584	5073	121
H(24A)	6714	-809	6663	196	H(41C)	4353	2929	5054	121
H(24B)	5819	-1206	6673	196	H(42A)	2984	5592	5682	117
H(24C)	6373	-237	7150	196	H(42B)	3236	5147	6319	117
H(25A)	6037	115	5517	233	H(42C)	2727	4081	5861	117
H(25B)	5333	1262	5334	233	H(43A)	4616	6284	5681	150
H(25C)	5151	-253	5554	233	H(43B)	5354	5208	5876	150
H(26A)	7098	2055	6351	280	H(43C)	4974	5912	6322	150
H(26B)	6784	2797	6821	280	. /				

9.2.8.5 Ortskoordinaten und U-Werte der Wasserstoffatome der asymmetrischen

Einheit
10 LISTE DER NUMERIERTEN VERBINDUNGEN

Verbindung	Summenformel	Nummer
(Me ₂ Al-Hsi) ₂	$Si_4C_{11}H_{33}Al$	1
(Et ₂ Al-Hsi) ₂	$Si_4C_{13}H_{37}Al$	2
(Me(Cl)Ga-Hsi) ₂	$Si_4C_{10}H_{30}GaCl$	3
Li[Me ₃ Ga-Hsi]	Si ₄ C ₁₂ H ₃₆ GaLi	4
Na[Me ₃ Ga-Hsi]·C ₇ H ₈	Si ₄ C ₁₉ H ₄₄ GaNa	5
K[Me ₃ Ga-Hsi]·C ₇ H ₈	Si ₄ C ₁₉ H ₄₄ GaK	6
Sn(Hsi) ₂	$Si_8C_{18}H_{54}Sn$	7
Me ₂ Sn(Hsi) ₂	$\mathrm{Si}_8\mathrm{C}_{20}\mathrm{H}_{60}\mathrm{Sn}$	8
Si ₃ (SiMe ₃) ₆	$Si_9C_{18}H_{54}$	9
Ga(Hsi) ₃	$Si_{12}C_{27}H_{81}Ga$	10
(Ga-Hsi) ₄	$Si_{16}C_{36}H_{108}Ga_4$	11
(Hsi) ₂ In-In(Hsi) ₂	$Si_{16}C_{36}H_{108}In_2$	12
$Si_2(SiMe_3)_6 \equiv (Hsi)_2$	$\mathrm{Si_8C_{18}H_{54}}$	13

11 LITERATUR

- [1] H. Gilman, C. L. Smith, J. Am. Chem. Soc. 1964, 86, 1454
- [2] H. Gilman, J. M. Holmes, C. L. Smith, Chem. Ind. (London) 1965, 15, 848
- [3] H. Gilman, R. L. Harrell, J. Organomet. Chem. 1966, 5, 199
- [4] H. Gilman, C. L. Smith, J. Organomet. Chem. 1967, 8, 245
- [5] H. Gilman, R. L. Harrell, J. Organomet. Chem. 1967, 9, 67
- [6] H. Gilman, C. L. Smith, J. Organomet. Chem. 1968, 14, 91
- [7] A. Heine, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *Inorg. Chem.* 1993, 32, 2694
- [8] G. Gutekunst, A. G. Brook, J. Organometal. Chem. 1982, 225, 1
- [9] G. Becker, H.-M. Hartmann, W. Schwarz, Z. Allg. Anorg. Chem. 1985, 530, 29
- [10] H.-M. Hartmann, *Dissertation*, Universität Stuttgart 1988
- [11] K. W. Klinkhammer, Chem. Eur. J. 1997, 3, 1418
- [12] K. W. Klinkhammer, G. Becker, W. Schwarz, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry II, Wiley-VCH, Weinheim 1996
- [13] K. W. Klinkhammer, W. Schwarz, Z. Allg. Anorg. Chem. 1993, 619, 1777
- [14] K. W. Klinkhammer, Habilitationsschrift, Universität Stuttgart 1998
- [15] P. D. Lickiss, C. M. Smith, Coord. Chem. Rev. 1995, 145, 75
- [16] E. Wiberg, O. Stecher, H.-J. Andrascheck, L. Kreuzbichler, E. Staude, Angew. Chem. 1963, 75, 516
- [17] L. Rösch, Angew. Chem. 1977, 89, 497, Angew. Chem. Int. Ed. Eng. 1977, 16, 480
- [18] L. Rösch, G. Altnau, Chem. Ber. 1979, 112, 3934

- [19] D. W. Goebel, L. Hencher, J. P. Oliver, Organometallics 1983, 2, 746
- [20] L. Rösch, G. Altnau, C. Kruger, Y. H. Tsay, Z. Naturforsch. 1983, 38b, 34
- [21] L. Rösch, G. Altnau, J. Organomet. Chem. 1980, 195, 47
- [22] M. L. Sierra, V. S. J. de Mel, J. P. Oliver, Organometallics 1989, 8, 2312
- [23] R. Laichinger, Dissertation, Universität Stuttgart 1995
- [24] C. Schnitter, H. W. Roesky, T. Albers, H.-G. Schmidt, C. Röpgen, E. Parisini,G. M. Sheldrick, *Chem. Eur. J.* 1997, *3*, 1783
- [25] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek I. Krossing, Z. Naturforsch. B 1998, 53b, 333
- [26] A. Heine, D. Stalke, Angew. Chem. 1993, 105, 90; Angew. Chem. Int. Ed. Eng.
 1993, 32, 121
- [27] A. Heine, L. Lahmeyer, D. Stahlke, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry III, Wiley-VCH, Weinheim 1998
- [28] W. Uhl, Z. Naturforsch. 1988, 43b, 1113
- [29] W. Uhl, Angew. Chem. 1993, 105, 1449, Angew. Chem. Int. Ed. Eng. 1993, 32, 1386
- [30] W. Uhl, M. Layh, T. Hildenbrand, J. Organomet. Chem. 1989, 364, 289
- [31] N. Wiberg, K. Amelunxen, T. Blank, H. Nöth, J. Knizek, Organometallics 1998, 17, 5431
- [32] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, Angew. Chem.
 1996, 108, 110, Angew. Chem. Int. Ed. Eng. 1996, 35, 65
- [33] N. Wiberg, K. Amelunxen, H. Nöth, A. Appel, M. Schmidt, K. Polborn, in N. Auner, J. Weis (Eds.) *Organosilicon Chemistry III*, Wiley-VCH, Weinheim
 1998

- [34] C. Klempp, C. Üffing, E. Baum, H. Schnöckel, Z. Anorg. Allg. Chem. 2000, 626, 1787
- [35] Gmelin, Handbook of Inorganic Chemistry, 8th Edition, Ga Organogallium Compounds Part I, Springer Verlag, Berlin, 1987
- [36] L. Rösch, H. Neumann, Angew. Chem. 1980, 92, 62, Angew. Chem. Int. Ed.
 Eng. 1980, 19, 55
- [37] A. M. Arif, A. H. Cowley, T. M. Elkins, R. A. Jones, J. Chem. Soc., Chem. Commun. 1986, 1776
- [38] G. Linti, R. Frey, W. Köstler, H. Urban, Chem. Ber. 1996, 129, 561
- [39] R. Frey, G. Linti, K. Polborn, H. Schwenk, in N. Auner, J. Weis (Eds.)Organosilicon Chemistry II, Wiley-VCH, Weinheim 1996
- [40] R. Frey, G. Linti, K. Polborn, Chem. Ber. 1994, 127, 101
- [41] G. Linti, W. Köstler, H. Piotrowski, A. Rodig, Angew. Chem. 1998, 110, 233,
 Angew. Chem. Int. Ed. Eng. 1998, 37, 2209
- [42] A. Rodig, W. Köstler, G. Linti, in N. Auner, J. Weis(Eds.), Organosilicon Chemistry IV, Wiley-VCH, Weinheim 2000
- [43] W. Köstler, G. Linti, Angew. Chem. 1997, 109, 2758, Angew. Chem. Int. Ed.
 Eng. 1997, 36, 2644
- [44] G. Linti, W. Köstler, Angew. Chem. 1996, 108, 593, Angew. Chem. Int. Ed. Eng.
 1996, 35, 550
- [45] W. Köstler, G. Linti, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry III, Wiley-VCH, Weinheim 1998
- [46] G. Linti, W. Köstler, A. Rodig, Eur. J. Inorg. Chem. 1998, 745

- [47] X.-W. Li, W. T. Pennington, G. H. Robinson, J. Am. Chem. Soc. 1995, 117, 7578
- [48] F. Schaller, W. Schwarz, H.-D. Hausen, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 1997, 623, 1455
- [49] R. J. Wehmschulte, P. P. Power, Angew. Chem. 1998, 110, 3344, Angew. Chem.
 Int. Ed. Engl. 1998, 37, 3152
- [50] G. H. Robinson, Acc. Chem. Res. 1999, 32, 773
- [51] G. Linti, W. Köstler, Chem. Eur. J. 1998, 4 No.5, 942
- [52] G. Linti, J. Organomet. Chem. 1996, 520, 107
- [53] W. Uhl, W. Hiller, M. Layh, W. Schwarz, Angew. Chem. 1992, 104, 1378,
 Angew. Chem. Int. Ed. Eng. 1992, 31, 1364
- [54] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, W. Ponikwar, H. Schwenk, J. Organomet. Chem. 1999, 574, 246
- [55] N. Wiberg, K. Amelunxen, H. Nöth, H. Schwenk, W. Kaim, A. Klein, T. Scheiring, Angew. Chem. 1997, 109, 1258, Angew. Chem. Int. Ed. Engl. 1997, 36, 1213
- [56] W. Uhl, M. Layh, W. Hiller, J. Organomet. Chem. 1989, 368, 139
- [57] N. L. Pickett, O. Just, X. Li, D. G. Vanderveer, W. S. Rees Jr., J. Organomet. Chem. 1999, 582, 119
- [58] W. Uhl, M. Layh, G. Becker, K. W. Klinkhammer, T. Hildenbrand, *Chem. Ber.* 1992, 125, 1547
- [59] F. Schaller, *Dissertation*, Universität Stuttgart 1998
- [60] D. K. Coggin, P. E. Fanwick, M. A. Green, J. Chem. Soc. Chem. Commun. 1993, 1127

- [61] H. Bürger, U. Goetze, Angew. Chem. 1969, 81, 122, Angew. Chem. Int. Ed. Eng.
 1969, 8, 140
- [62] M. Häußlein, *Dissertation*, Universität Stuttgart 1999; M. Häußlein, H.-D.
 Hausen, K. W. Klinkhammer, J. Weidlein, K. Merz, Z. Anorg. Allg. Chem.
 1999, 625, 1608
- [63] N. Wiberg, T. Blank, H. Nöth, W. Ponikwar, Angew. Chem. 1999, 111, 887,
 Angew. Chem. Int. Ed. 1999, 38, 839
- [64] B. E. Eichler, N. J. Hardman, P. P. Power, Angew. Chem. 2000, 112, 391,
 Angew. Chem. Int. Ed. Eng. 2000, 39, 383
- [65] A. Walz, *Dissertation*, Universität Stuttgart 2000
- [66] T. Viefhaus, Dissertation, Universität Stuttgart 2001
- [67] S. P. Mallela, R. A. Genangel, *Inorg. Chem.* **1990**, *29*, 3525
- [68] S. P. Mallela, R. A. Geanangel, *Inorg. Chem.* 1993, 32, 602
- [69] M. Gekeler, *Dissertation*, Universität Stuttgart 1992
- [70] St. Schwarz, F. Lissner, J. Weidlein, Z. Anorg. Allg. Chem. 1999, 625, 1807
- [71] St. Schwarz, *Dissertation*, Universität Stuttgart 2001
- [72] A. Arif, A. H. Cowley, T. M. Elkins, R. A. Jones , J. Organomet. Chem. 1987, 325, 11
- [73] K. W. Klinkhammer, W. Schwarz, Angew. Chem. 1995, 107, 1448, Angew.
 Chem. Int. Ed. Eng. 1995, 34, 1324
- [74] M. Stürmann, M. Weidenbruch, K. W. Klinkhammer, F. Lissner, H. Marsmann, Organometallics 1998, 17, 4425
- [75] K. Schenzel, K. Hassler, G. Bauer, Spectrochim. Acta 1997, 53 A, 2435
- [76] X. Helluy, J. Kümmerlen, A. Sebald, Organometallics 1998, 17, 5003

- [77] J. Dickhaut, B. Giese, Org. Synth. 1992, 70, 164
- [78] S. P. Mallela, I. Bernal, R. A. Geanangel, *Inorg. Chem.* 1992, 31, 1626
- [79] H. Bock, K. Ruppert, C. Näther, Z. Havlas, H. F. Herrmann, C. Arad, I. Göbel,
 A. John, J. Meuret, S. Nick, A. Rauschenbach, W. Seitz, T. Vaupel, B. Solouki,
 Angew. Chem. 1992, 104, 564, Angew. Chem. Int. Ed. Eng. 1992, 31, 550
- [80] H. Bock, J. Meuret, K. Ruppert, J. Organomet. Chem. 1993, 445, 19
- [81] H. Bock, J. Meuret, C. Näther, K. Ruppert, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry, Wiley-VCH, Weinheim 1994
- [82] F. Luderer, H. Reinke, H. Oehme, J. Organomet. Chem. 1996, 510, 181
- [83] H. Bürger, W. Kilian, J. Organomet. Chem. 1969, 18, 299
- [84] C. Chatgilialoglu, D. Griller, M. Lesagne, J. Org. Chem. 1988, 53, 3641
- [85] C. Chatgilialoglu, Acc. Chem. Res. 1992, 25, 188
- [86] H. Bürger, W. Kilian, K. Burczyk, J. Organomet. Chem. 1969, 21, 291
- [87] K. Schenzel, K. Hassler, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry II, Wiley-VCH, Weinheim 1996
- [88] T. Gross, H. Oehme, Organometallics 1999, 18, 1815
- [89] T. Gross, R. Kempe, H. Oehme, Chem. Ber. 1997, 130, 1709
- [90] E. Jeschke, T. Gross, H. Reinke, H. Oehme, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry III, Wiley-VCH, Weinheim 1998
- [91] S. Masamune, Y. Hanzawa, S. Murakami, T. Bally, J. F. Blount, J. Am. Chem. Soc. 1982, 104, 1150
- [92] N. Wiberg, C. M. M. Finger, K. Polborn, Angew. Chem. 1993, 105, 1140,
 Angew. Chem. Int. Ed. Eng. 1993, 32, 1054

- [93] M. Weidenbruch, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry, Wiley-VCH, Weinheim 1994
- [94] K. W. Klinkhammer, in N. Auner, J. Weis (Eds.) Organosilicon Chemistry III, Wiley-VCH, Weinheim 1998
- [95] W. Krumlacher, H. Siegl, K. Hassler, in N. Auner, J. Weis(Eds.), Organosilicon Chemistry IV, Wiley-VCH, Weinheim 2000
- [96] S. Masamune, Y. Hanzawa, J. Am. Chem. Soc. 1982, 104, 6136
- [97] J. T. Snow, S. Murakami, S. Masamune, D.J. Williams, *Tetrahedron Lett.* 1984, 25, 4191
- [98] S. Collins, S. Murakami, J. T. Snow, S. Masamune, *Tetrahedron Lett.* 1985, 26, 1281
- [99] K. M. Baines, J. A. Cooke, N. C. Payne, J. J. Vittal, Organometallics 1992, 11, 1408
- [100] S. P. Mallela, S. Hill, R. A. Geanangel, Inorg. Chem. 1997, 36, 6247
- [101] A. Schäfer, W. Saak, M. Weidenbruch, H. Marsmann, G. Henkel, *Chem. Ber.* 1997, 130, 1733
- [102] R. Wochele, *Diplomarbeit*, Universität Stuttgart 1998
- [103] Y.-S. Chen, P. P. Gaspar, Organometallics 1982, 1, 1410
- [104] D. B. Chambers, G.E. Coates, F. Glockling, M. J. Weston, J. Chem. Soc. A 1969, 1712
- [105] (a) W. P. Neumann, K. J. Reuter, J. Organomet. Chem. Libr. 1979, 7, 229; (b)
 R. Fields, R. N. Haszeldine, R. E. Hutton, J. Chem. Soc., Chem. Commun.
 1967, 2559; (c) F. Hoefler, Top. Curr. Chem. 1974, 50, 129
- [106] J. Arnold, T. D. Tilley, L. Rheingold, S. J. Geib, Inorg. Chem. 1987, 26, 2106

- [107] K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 1996, 622, 1209
- [108] S. Henkel, K. W. Klinkhammer, W. Schwarz, Angew. Chem. 1994, 106, 721,
 Angew. Chem. Int. Ed. Eng. 1994, 33, 681
- [109] J. Meyer, J. Willnecker, U. Schubert, Chem. Ber. 1989, 122, 223
- [110] W. Hiller, M. Layh, W. Uhl, Angew. Chem. 1991, 103, 339, Angew. Chem. Int.
 Ed. Eng. 1991, 30, 324
- [111] M. A. Cook, C. Eaborn, A. E. Jukes, D. R. M. Walton, J. Organomet. Chem.
 1970, 24, 529
- [112] Y. Apeloig, M. Yuzefovich, M. Bendikow, D. Bravo-Zhivotovskii, K. W. Klinkhammer, Organometallics 1997, 16, 1265
- [113] R. K. Harris, B. J. Kimber, J. Magn. Reson. 1975, 17, 174
- [114] D. Bergmann, J. Hinze, Angew. Chem. 1996, 108, 162, Angew. Chem. Int. Ed.
 Eng. 1996, 35, 150
- [115] J. Emsley (Ed.): The Elements, Clarendon Press, Oxford 1989
- [116] J. Karschin, Zulassungsarbeit zum Staatsexamen für das höhere Lehramt an Gymnasien, Universität Stuttgart 1979
- [117] J. W. Moore, D. A. Sanders, P. A. Scherr, M. D. Glick, J. P. Oliver, J. Am. Chem. Soc. 1971, 93, 1035
- [118] K. C. Molloy, P. C. Waterfield, M. F. Mahon, J. Organomet. Chem. 1989, 365,
 61
- [119] T. P. Lockhart, W. F. Manders, Inorg. Chem. 1986, 25, 892
- [120] T. P. Lockhart, W. F. Manders, J. J. Zuckermann, J. Am. Chem. Soc. 1985, 107, 4546
- [121] J. Holecek, A. Lycka, Inorg. Chim. Acta, 1986, 118, L15

- [122] C. Kober, H. Nöth, W. Storch, Chem. Ber. / Recueil 1997, 130, 765
- [123] S. Diemer, *Dissertation*, Universität München 1993
- [124] P. Jutzi, Adv. Organomet. Chem. 1986, 26, 217
- [125] R. K. Harris, B. K. Mann, "NMR an the Periodic Table", Academic Press, New York 1978
- [126] T. Ogawa, Spectrochim. Acta 1968, 24A, 15
- [127] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen I, Thieme,
 Stuttgart 1981; J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen II,
 Thieme, Stuttgart 1986
- [128] G. Tatzel, H. Schrem, J. Weidlein, Spectrochim. Acta 1978, 34A, 549
- [129] R. G. Vranka, E. L. Amma, J. Am. Chem. Soc. 1967, 89, 3121
- [130] A. Almenningen, S. Halvorsen, A. Haaland, Acta Chem. Scand. 1971, 25, 1937
- [131] F. A. Cotton, Inorg. Chem. 1970, 2, 2804
- [132] S. D. Waezsada, F.-Q. Liu, E. F. Murphy, H. W. Roesky, M. Teichert, I. Usón,
 H.-G. Schmidt, T. Albers, E. Parisini, M. Noltemeyer, *Organometallics* 1997,
 16, 1260
- [133] A. V. Belyakov, A. Haaland, H. P. Verne, J. Weidlein, Acta Chem. Scand. 1994, 48, 169
- [134] V. R. Magnuson, G. D. Stucky, J. Amer. Chem. Soc. 1969, 91, 2544
- [135] R. Blom, A. Haaland, J. Mol. Struct. 1985, 128, 21
- [136] S. K. Byram, J. K. Fawcett, S. C. Nyburg, R. J. O'Brien, J. Chem. Soc., Chem. Commun. 1970, 16
- [137] J. C. Huffmann, W. E. Streib, J. Chem. Soc. D. 1971, 911

- [138] D. Berthomieu, Y. Bacquet, L. Pedocchi, A. Goursot, J. Phys. Chem. 1998, 102, 7821
- [139] G. Y. Hong, X. Y. Cao, D. X. Wang, L. M. Li, G. X. Xu, Chin. J. Chem. 1998, 16, 209
- [140] G. S. McGrady, J. F. C. Turner, R. M. Ibberson, M. Prager, *Organometallics* 2000, 19, 4398
- [141] P. L. Baxter, A. J. Downs, M. J. Goode, D. W. H. Rankin, H. E. Robertson J. Chem. Soc., Dalton Trans. 1990, 2873
- [142] M. M. Akobiya, V. I. Bregadze, L. M. Golubinskaya, S. Gundersen, A. Haaland,
 H. V. Volden, V. S. Mastryukov, I. F. Shishkov, J. Organomet. Chem. 1994,
 467, 161
- [143] Q. Shen, *Ph. D. Thesis*, Oregon State University, Corvallis 1974 (Gas electron diffraction)
- [144] M. A. Petrie, P. P. Power, H. V. Rasika Dias, K. Ruhlandt-Senge, K. MWaggoner, R. J. Wehmschulte, *Organometallics* 1993, 12, 1086
- [145] B. Neumüller, F. Gahlmann, Chem. Ber. 1993, 126, 1579
- [146] D. A. Atwood, A. H. Cowley, R. A. Jones, M. A. Mardones, J. Coord. Chem.
 1992, 25, 233
- [147] O. T. Beachley Jr., R. B. Hallock, H. M Zhang, J. L. Atwood, Organometallics 1985, 4, 1675
- [148] R. D. Schluter, H. S. Isom, A. H. Cowley, D. A. Atwood, R. A. Jones, F.Olbrich, S. Corbelin, R. J. Lagow, *Organometallics* 1994, 13, 4058
- [149] R. C. Crittendon, X.-W. Li, J. Su, G. H. Robinson, Organometallics 1997, 16, 2443

- [150] J. Su, X.-W. Li, G. H. Robinson, J. Chem. Soc. Chem. Commun. 1998, 2015
- [151] G. M. Sheldrick, W.S. Sheldrick, J. Chem. Soc. A 1970, 28
- [152] T. Fjeldberg, A. Haaland, R.Seip, Q. Shen, J. Weidlein, Acta. Chem. Scand.1982, 36A, 495
- [153] J. Blümel, B. Werner, T. Kräuter, B. Neumüller, Z. Anorg. Allg. Chem. 1997, 623, 309
- [154] J. T. Lehman, A. R. Barron, Organometallics 1989, 8, 2214
- [155] K. J. L. Paciorek, J. H. Nakahara, L. Hoferkamp, C. George, J. L. Flippen-Anderson, R. Gilardi, W. R. Schmidt, *Chem. Mater.* 1991, 3, 82
- [156] G. M. Sheldrick, Programmsystem SHELXTL-PLUS 4.0, Siemens Analytical X-Ray Instruments, Madison/Wisconsin (USA) 1989
- [157] G. M. Sheldrick, Programm SHELXL-93, Göttingen 1997
- [158] D. T. Cromer, J. B. Mann, Acta Crystallogr. 1968, A24, 321
- [159] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175
- [160] G. Brauer, "Handbuch der präparativen anorganischen Chemie", Enke Verlag, Stuttgart, 1981, 3. Aufl., Bd. 1
- [161] H. Schmidbauer, W. Findeiss, Chem. Ber. 1966, 13, 61
- [162] GELEST-ABCR, Chemikalienkatalog 2000
- [163] ALDRICH, Chemikalienkatalog 1999-2000