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ABSTRACT 

Fundus photography is a common procedure in ophthalmology providing high resolution images 

of the i~ide back portion of the eye to diagnose diseases of the retina and the optic nerve, and to 

record their progress over time. In many instances, objective, quantitative, reproducible and reliable 

interpretation of fundus images requires their computerized analysis. A comprehensive system for digi­

tal analysis of high resolution fundus images has to adiJress vir1U£llly all engineering aspects of medical 

image processing: restoration, segmentation, pattern recognition, and registration. Based on the spe­

cific application of investigating the tapetal-like reflex, a retinal reflection uniquely present in carri­

ers of X-linked retinitis pigmentosa (XLRP), novel approaches to the various stages of image process­

ing are presented, and applications in other areas of medical diagnostics are outlined. 

The fim step in the analysis of fundus images is the search for a comprehensive mathematical 

. model for the relationship between the biological structure and its recorded 'image'. The multifarious 

transfer junction derived from this model enables the development of image restoration methods to 

compensate for the imperfections of the imaging system which includes the four components eye, 

camera, film, and scanner. A Zeiss fundus camera and color transparency film are used for the jun~ 

dus photography, and a slide scanner is used to digitize the color slides (6!Jm1pixel). A regularized 

linear restoratim method based on a simplified imaging system model serves to reduce the image noise 

and to recover the high frequency information. A multi-scale segmentation method is used to separate 

the tapelallik£ reflex patches from the retinal background. In order to analyze the reflex progression 

over time, a high precision registration method compensates for differences between images in terms 

of translation, rotation, and scaling. The technique is based on a global correlation analysis of log­

polar transformed images in a discrete parameter space followed by a refinement and optimization in 

the 4-dimensional continuous parameter space using the original images. 

Analysis of fundus photographs of XLRP carriers showed that the patches making up the tapetal­

lik£ reflex hove, on the average, 30% higher reflectance compared to non-reflex retina. Mathematical 

morphology methods applied to segmented images suggest that the reflex is made of elongated struc­

tures with a small dimension of less than I4J.lm (on the retina) and a preferred orientation towards 

the fovea. 
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.. INTRQIlQc.rIQN 

In the fi eld of ophthalmology, the term 'fundus ' 

refers to the inside back portion of the eye. Photography 

of the fundus has been used for decades as a non-inva­

sive technique to diagnose and document a number of 

eye diseases and their progression over time. The result­

ing color fundus photographs (slides) are usually ana­

lyzed by expert ophthalmologists, but computers are 

being used more and more to aid the experts, especially 

in quantitation. As computers can only deal with digital 

information, color fundus photographs must be sampled 

and digitized. Though digi tal cameras have become 

available, still existing shortcomings and the desire to 

use available data banks will make it necessary to work 

with the traditional photographs for many more years to 

come. 

The use of digi tal images in ophthalmology is not 

new. Many researchers have applied digital image proc­

essing methods to quantify abnormalities in fundus 

photographs. Some examples include: the enhancement 

of the retinal nerve fiber layer [1] ; deblurring of images 

taken through cataractous lenses [2], segmentation of 

hemorrhages [3], exudates [4,5], drusen [6] , and blood 

vessels [7]; and quantitative analysis of the optic nerve 

head cup [8,9,10] and fluorescein angiograms [1 1]. 

Interestingly, most of the literature has concentrated on 

choices of digital image processing methods, but ne­

glected the fundamental problem of the characterization 

of the imaging system that produces the digital image 

data. The relationship between the light intensity origi­

nating at the fundus and values of a corresponding pixel 

in a digital image is almost always assumed to be linear. 

Furthermore, the noise inevitatly contained in all images 

is usually considered to be signal-independent, additive 

and white Gaussian. These kinds of simplifying assump­

tions might very well be reasonable for a specific prob-
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lem at hand but they are not usually ver ified as such . 

Additionally, most of the li terature ha~ digitized fu ndus 

photographs at resolutions that are much lower than the 

resolution of the information available. 

Therefore, there is a need for an adequate mathe­

matical model that relates the values of pixels in a digi­

tal fundus image to the actual light intensity originating 

in the fundus, and accomplisres this at the limiting reso­

lution of the imaging system. Such fundamental infor­

mation is very useful in determining quantitatively the 

real inform ation content of a digital fundus image; spe­

cifically. a model allows the prediction of the resulting 

image of a biological structure. A model is not only 

llseful but absolutely necessary if the distorting or blur­

ring effects of the imaging system need to be removed 

from a given image, the socalled image restoration prob­

lem. A model of the imaging system can also be a very 

good starting poi nt for the consideration of improve­

ments to the imaging system; e.g. whether the use of a 

Figure 1. Digitized fundus photograph of the right eye 
of an X-inked RP carrier with tapeta l-like re­
flex; darker region at the right is the fovea (F). 
dark lines are retinal blood vessels, and the 
tapetal-like reflex shows as bright tiny reflec­
tions distributed throughout the fun dus, espe­
cially left of (temporal to) the fovea . The cali­
bration bar is approximately 1 mm, measured 
on the reti nal surface. 
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Figure 2: Left, schematic diagram of the major struc­
tures of the human eye: (1) cornea, (2) aqueous 
humor, (3) lens, (4) vitreous humor, (S ) retina, 
(6) choroid, (7) sclera, (8) optic nerve, (9) fo­
vea, (l0) optic disc. Right, schematic diagram 
of major retinal layers. 

image quality. 

Based on the model and the specific application of 

investigating X-linked retinitis pigmentosa, novel ap­

proaches to the various stages of image processing -

restoration, segmentation, pattern recognition, and regis­

tration - are presented, and applications in other areas of 

medical diagnostics, especially diagnosis and treatment 

of tumors and brain disorders, are outlined. 

Background 

Retinitis pigmentosa (RP) is the name given to a 

group of incurable, hereditary diseases that cause pro­

gressive degeneration of the retina, the sensory portion 

of the eye. The retinal degeneration primarily affects the 

photoreceptor and retinal pigment epithelial cells al­

though the precise molecular and cellular iocation of the 

defect is not known in all but a few fom1s of the dis­

ease. More than 100,000 people in the United States and 

more than 1.5 million people worldwide are estimated to 

be affected by RP. Patients with RP typically have night 

blindness, loss of peripheral and eventually central vi­

sion, pigmentation within the retina, and abnormal light­

evoked electrical responses in electroretinography 

[J 2,13]. 

One of the most severe forms of RP is transmitted 

on the X-chromosome. Most men with X-linked RP 

(XLRP) are almost totally blind by age 40 [14]. Women 

show an attenuated form of the disease, the extent of 

which is variable from one person to the next . This 

variabili ty is due to the fac t that females are heterozy­

gous with respect to the XLRP gene, i.e. they have one 

X-chromosome with the RP gene and one normal X­

chromosome. Furthermore, one of the two X-chromo­

somes in each cell of a female is randoroJy inactivated 

during early embryonic life (the Lyon hypothesis [15]), 

and the descendants of each cell contain the same 

inactivated X-chromosome [16]. Thus each female 

XLRP patient is a mosaic of two cell types; one type 

with the diseased X-chromosome being active and the 

other type with the normal X-chromosome beirlg active. 

The variability of the expression of the disease seen in 

females is considered to be consistent with the random­

ness of the inactivation process [16]. 

More than 50 years ago, it was noted that there 

was a golden particulate reflectim in the retinas of some 

women [17, p.l64]. Later it was observed that the 

women with this unusual reflection were also carriers of 

XLRP [18]. This reflection has been named 'tapetal-like 

reflex' because it appears similar to the 'tapetal reflex' 

which is a metallic reflection seen in the eyes of many 

animals [18-20]. It is believed tl-jat the tapetal-like ieflex 

is uniquely seen (and therefore diagnostic) in women 

who are carriers of XLRP [21]. Fig. 1 shows an ex­

ample of a tapetal-like reflex as seen in ophthal­

moscopy. 

Ophthalmoscopists have described the tapetal-like 

reflex as lying deep to the retinal blood vessels, at or 

near the retinal pigment epithelium cell Jayer [18] (see 

Fig. 2). Neither the origin nor the exact location of this 

reflection is known. Investigatirns of post-mcrtem donor 

eye tissue have not been helpful since the only report of 

the histopathology of a carrier of XLRP was in a 

woman without a tapetal-like reflex [22]. 

In summary, XLRP is a blinding disease with no 

known cause and cure. A unique feature of this disease, 

the tapetal-like refl ex seen in carriers, has not been 

systematically investigated Such a systematic investiga­

tion of the reflex might lead to a better understanding of 

the mechanism of XLRP. 

Specific Goals of this Study 
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In this study, a non-invasive approach is taken to 

analyze the tapetal-like reflex from digitized photo­

graphic transparencies with the goal of determining its 

radiometric and geometric properties, and whether it 

changes with time. This analysis is expected to help 

narrow down the origin of the reflex, as well as to of­

fer ophthalmologists the techniques which enable them 

to quantitate the progression of the tapetal-like reflex or 

.other tiny lesions over time. 

Some advantages of the non-invasive photographic 

approach are as follows: as much data as necessary can 

be collected; the appearance of the reflex can be as­

sessed with serial studies; many members of the same 

family can be examined; and, families possibly repre­

senting different genotypes can be compared. A major 

disadvantage of the photographic analysis of the tapetal­

like reflex is the limited image quality and resolution 

available in non-invasive imaging techniques. Therefore, 

in the first part of this paper, specific digital image 

processing methods will be developed in order to en­

hance the quality and information content of the digital 

fundus images. In the second part, these methoos will be 

used to analyze quantitatively the images of the tapetal­

like reflex. 

Although many researchers have investigated the 

properties of the components of the imaging system 

used to take fundus photographs, no information exists 

in the literature on the overall relationship between the 

light leaving the retina and its recorded 'image.' There­

fore, the first aim is to develop a comprehensive mathe­

matical model of this relationship. 

Once the effects of the imaging system are charac­

terized, digital methods may be very useful for the res­

toration of the images. Thus, the second aim is the 

development of a restoration method that uses the model 

of the imaging system to compensate for the imperfec­

tions of the imaging system. 

. Analysis of the tapetal~Iike reflex,characteristics . 

could be accomplished by using an expert to identify the 

reflexes. But this approach is usually considered to be 

subjective, time consuming and not· very reproducible. 

Furthermore, the human visual system is not used to 

deal with 'smooth' images'produced by most restoration 
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methods. Therefore, a third aim is to find an optimal 

method for the automated separation of the tapetal-like 

reflex from the retinal background. 

To be able to analyze the progression of the 

tapetal-like reflex over time, one has to be able to ex­

actly overlay two images taken at different times; this is 

the so-cal led registration problem. In addition, registra­

tion of images is absolutely necessary for validation 

studies, where multiple images of a scene are used to 

verify the repeatability of a processing method. Thus, 

another goal of this study is the development of a 

method that can accurately register images at very high 

resolutions. 

Once all the necessary methods are develq>ed, they 

can be applied to the analysis of the radiometric and 

geometric properties of the patches that make up the 

tapetal-like reflex. Radiometric properties refer to the 

intensity and contrast of the reflex, and geometric prop­

erties refer to the shape and orientation statistics of the 

reflex. The new methods will also permit to determine 

changes of the reflex properties with time. 

IMAGING MODEL 

A model will be developed in this sect ion for a 

high resolution digital fundus imaging system which 

consists of four major components: eye, fundus camera, 

film and scanner (Fig. 3). The models for each of these 

components are first derived separately and then the 

individual component models are combined to arrive at 

a single mathematical expression that relates the light 

intensity originating from the fundus to the value of a 

corresponding pixel in a digital image. The important 

aspects of the complete model are validated, and finally 

simulated (synthetic) retinal intensity functions are used 

to analyze and visualize the deteriorating effects of the 

imaging system. Unless otherwise specified, all distances 

and spatial frequencies will refer to the film plane. 

1. Eye Model 
A casual look at the schematic diagram of the 

imaging system in Fig. 3 might suggest that the eye is 
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simply the 'scene' or the 'source of image data', though 

actually, it is an important component of the imaging 

system. The illuminating light has to travel through the 

various layers of the eye before reaching the fundus. 

Similarly, the light that is reflected from the fundus (i.e. 

the 'data') has to travel through the same layers of the 

FUNDUS CAMERA 

~~~1)~. 'I ~='--IL3J 
If· . ~ -----lo.. DIGITAL 

~"""""""'I~IAGE 
SCANNER 

Figure 3. Schematic diagram of the high resolution digi ­
tal fundus imaging system. The image of the 
fundus is photographed on film, and the film 
is digitized in a scanner to produce a digital 
image. 

e~e before reaching the camera. Due to the optical char­

acteristics of the eye and the resulting influences on the 

image formation, the modeling of the eye as an integral 

part of the imaging system is very important, and it will 

be discussed first. 

Within the relatively small regions of interest, the 

illumination intensity is uniform. Therefore, the effect of 

the eye on illumination can be ignored and the light 

intensity reflecting from the fundus can be considered to 

originate from a selfluminous fundus. 

The effect of transmission of light through the 

various semi-transparent structures of the eye is approxi­

mated by the blurring of a linear system with a spa­

tially-invariant isotropic low-pass transfer function 

(abbreviated as LSn system). It is assumed that the 

modulation transfer function (MTF) that completely 

defines this LSII system may be based on an 'average' 

eye that will reasonably app·roximate most 'real' eyes. 

The model of the eye in symbolic form is: 

icy,(x,y) = j(x,y) * h<)./x,y) (1) 

where f(x,y) is the luminance of the fundus, h (x,y) is 
eye 

the point spread function (PSF) of the eye, f (x,y) is 
eye 
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the light intensity leaving the eye, and * represents a 

two-dimensional convolution operation. 

MTFs have been published by researchers inter­

ested in the optical properties of the human eye [23, 24, 

25]. Aerial images (virtual image of a lighted target 

reflecting back from the fundus) of slits [23] or points 

[24] have been used commonly to estimate the MTF. 

Among the many MTFs published for the human eye, 

the one determined for a 1.5 mm pupil diameter [25] 

will be used in this study. The choice of the pupil di­

ameter is based on the special construction of the fun­

dus camera which collects only that portion of the light 

falling within a 1.5 mm diameter area at the center of 
1.0,---------, 
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Figure 4. Radial section of the MTF for a human eye 
with a pupil diameter of 1.5mm (adapted 
from [25]). 

the pupil. The radial section of the eye MTF (shown in 

Fig. 4) suggests a biological limiting resolution of ap­

proximately 60 cyc/mm. This translates loosely to the 

ability to resolve 3 llm sized objects in ttie fundus with 

an ideal camera and recorder. 

2. Fundus Camera 

The human eye is a spheroidal organ that has rela­

tivdy opaque layers (sclera/choroid and iris) everywhere 

except for a small opening, the pupil, which permits the 

visual observation and the photographic documentation 

of the fundus with an appropriate optical instrument. 

Generally, a specialized telescopic system, termed a 

fundus camera, is preferred over the combination of a 

contact lens and a microscopic system [26]. The fundus 

camera is a rather complicated optical instrument be­

cause of three important design considerations: there is 

only one small opening for both illumination and obser-
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vation; the spherical fundus must be imaged onto planar 

photographic film with no appreciable distortion; and, 

III!iIIII OBSERVATION 

m:::/:;::J ILLUMINATION 

Figure 5. Separation of the illuminatbD and observation 
iight paths in the fundus camera (adapted 
from [26]). 

the depth of focus and the field of view should be as 

large as possible. Because of the complicated optics and 

wide field of view, some researchers have claimed that 

the fundus camera is the main resolution limiting com­

ponent in a fundus photography system [27]. 

\The fundus camera used in this study (FF4, Zeiss 

Corp.) is one of the more traditional and commonly 

available cameras. It separates the paths of ill umination 

and observation in order to avoid reflection from the 

cornea overpoweri ng the dim refl ectirn from the fundus. 

The central ] .5 mm diameter circular area of the pupil 

is used exclusively for observation whereas the periph­

ery is used for illumination (Fig. 5). The field of view 

of the fundus camera is 30° of visual angle (approxi­

mately 22.5 mm diameter circle on film, and 9 mm 

diameter circle on the retina). 

The camera has a resolution of 8 11m on the opti­

cal axis falling off to 15 11m at the periphery as meas­

ured on the retinal surface [personal communication 

from Zeiss Corp.]. The radius dependence of the resolu­

tion suggests that the overall transfer function of the 

camera is spatially variant. However, the very high reso­

lution required for the investigation of the tapetal -like 

reflex and the limitations in computer resources con­

strain the analysis to very small regions of a fu ndus 

image at any given time. Therefore, it is assumed that 

the fund us .. amera can be approximated as an LSlt · 
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system with a typical low-pass transfer function. Since 

in this investigation all regions of interest are close to 

the center, i.e. the optical axis, only a single transfer 

function is needed for the camera. 

The shape of the fundus camera's MTF is approxi­

mated by an analytical fu nction that is both reasonable 

and mathematically tractable. One such fu nction is the 

isotropic first order exponential decay function (some­

times called the 'first order low-pass Butterworth fil ter'). 

This function is defined in the space and spatial-fre­

quency domains as: 

- Irl 
1 ' =_e-r 

2 k 

1 

(2) 

where r=Cx2+y2)1 12 , w=(U2+V2j1I2, heam (r) is the PSF, 

Heam(w) is the MTF, k is a parameter to be determined. 

It is important to note that the area under the PSF fu nc­

tion (which is equal to Hearn CO») is unity according to the 

implied assumption that there is no loss of light in the 

camera. 

The parameter k can be detem1ined using the defi­

nition of resolution. 'Resolution' or 'maximum resolving 

power' is commonly assumed to be the spatial frequency 

val ue where the MTF drops to 0.1 [28]. In this study, 

most regions of interest for the analysis of the tapetal­

like reflex will be taken close to the optical axis of the 

fundus camera. Therefore, the 'worstcase' resolution is 

assumed to be 10 11m measured on the retina, which 

corresponds to approximately 25 11m measured on the 

film plane, and is equivalent to 40 cyc/mm. The value 
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Figure 6. MTF of the fundus camera. 
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of k can be calculated by replacing 0.1 for Hcam(40) in 

Eq. 2. The value of k is 0.01 mmlcyc and a graphical 

plot of Hcarn(w) versus w is shown in Fig. 6. 

The model of the fundus camera in symbolic form 

is: 

fca)X,y) = f(x,y) * h,am(x,y) (3) 

where f(x,y) is the light intensity entering the fun­

dus camera, heam, (x,y) is the PSF of the fundus camera, 

and fcam(x,y) is the light intensity reaching the fundus 

camera detector (i.e. film). 

3. Film 

The decision to use a specific film to take color 

fundus photographs is usually a compromise between 

several competing considerations; sensitivity, contrast, 

graininess and cost. All fundus images to be analyzed in 

this study will be Fujichrome 100 RD (Fuji Photo Film 

Co.). 

Photographic film is a detector of exposure which 

is defined as the integration of light intensity over the 

exposure time. In physical terms, exposure refers to the 

total energy of light falling on a unit area of the photo­

graphic film. Photographic film 'detects' exposure by 

changing its opacity (aner processing) in relation to the 

amount of exposure received during photography. The 

measure of the opacity of film is 'optical density' which 

is defined as: 

(4) 

where d is the optical density, Pi is the incident (meas­

uring) light intensity on one side of the film, and PI is 

the transmitted light intensity on the other side of film. 

The relation between the exposure and the .optical 

density of the film is nonlinear. It is caIled aD-logE 

curve (or a Hurter-Driffield curve) because this relation 

is usually specified as density vs. logarithm of exposure. 

The D-IogE curve traced from the manufacturer's dat~ 

sheet for Fujichrome film [29] is shown in Fig. 7 In this 

paper, a direct relationship between density and expo­

sure (DE curve) will be used; the DE curve includes the 

logarithmic transformation as well as the saturation at 
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both ends of the scale. The noise-free response of film 

to uniform illumination intensity (no blurring) is repre­

sented in symbolic form as: 

(5) 

where du is. the optical density of the film, f is t,he 

magnitude of the illumination intensity, t is the exposure 

time, and DE(e) is the DE curve of the film. 
:l.5.----------, 
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-2~ -2.0 -1.~ -1.0 -o.~ 0.0 0.5 

log (exposure. u.s) 

Figure 7. D-IogE curve for the Fujichrome 100 RD film 
(taken from [29]). 

When the intensity falling onto the film is not 

spatially uniform, the response of the film is modified 

by the input spatial-frequency distribution. Specifically, 

the photographic film causes a blurring at the higher 

frequencies in the input intensity function. This is due to 

the spread of the light intensity from the point of inci­

dence to the surrouriding area by reflection, refraction, 

diffractirn and scattering During the developnent of the 

film, additional blurring occurs due to the diffusion of 

reaction products. The two separate blurs before and 

aner the non-linear exposure-to-density conversion are 

difficult to handle mathematically. Therefore, the so­

called 'effective PSF' approximation has been used 

commonly [30] . The effective PSF approximation is 

valid for low-contrast photographic images for which the 

non-linear DE curve can be approximated by a linear 

function within a small range of an operating point. For 

a given film, only a single effective PSF is defined that 

acts in the light intensity domain; i.e. the effective PSF 

blurs the light intensity before it interacts with the pho­

tochemical process of the film. The noise-free response 

of the film to any input is represented in symbolic form 

as: 

d/x,y) = DE ( (f(x,y) * "f/m(x,y) ) e t r (6) 
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where do(x,y) is the gross (noise-free) optical density of 

the film, f(x,y) is the incoming light intensity distribu­

tion, t is the exposure time, and hnm(x,y) is the effective 

PSF of the film. 

A radial section of the MTF for Fujichrome film 

[29] is shown in Fig. 8. It is interesting to note that the 

MTF curve has modulation values above 1.0 for some 

frequencies. That is to say that at some spatial frequen­

cies, the resulting film density will correspond to higher 

contrast input than the contrast of the actual input. This 

effect is mainly due to developmel1 and it is commonly 

referred to as the 'adjacency effect' [31]. 

c: 
.2 .... 
~ 

"3 -c 
0 

:::!il 

1.2,.---------.., 
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o 20 -40 60 80 
Frequency (cye/mID) 

Figure 8. Radial section of the modulation transfer func­
. tion (MTF) for the Fujichrome film (adapted 
from [29]). 

Microscopically, developed film consists of dye 

particles on a transparent medium. Exact location, 

number and sensitivity of these particles are random, 

and thus cause the so-called 'filmgrain noise.' Film-grain 

noise is additive, Gaussian and dependent on the signal 

(i.e. exposure received by the film). A commonly used 

model [32] for the film-grain noise magnitude is: 

(7) 

where crfin is the standard deviation of the film-grain 

noise, klflm and k2nm are film-specific constants, and do 

is the gross (noisefree) density of film. 

The constant k2nm in Eq. 7 is commonly assumed 

to be 0.5 [33] and the constant klnm can be estimated 

from manufacturer supplied data on film 'granularity.' 

Granularity is defined as 1000 times the standard devia­

tion of the film density of a uniformly exposed area of 
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the film [28, p.67]. The granularity value for Fujichmme 

film measured at a gross film density of 1.0 using a 

48~m diameter aperture is 11 [29]. At a gross film den­

sity of 1.0, k I Cm is equal to the standard deviation of the 

film density (in Eq. 7: if do=I.O, then (J(~ =klcm>. There­

fore, klnm and the manufacturer supplied granularity 

values are directly related. This relationship, of course, 

has to take into account the different scanning apertures 

that are used. The constant klflm can be estimated as: 

0.65' GRjI ~ kl = m m 
jim 1000 If" 

(8) 

where GRflm is the specified granularity value of the 

film, Am is the area of the scanning aperture used to 

determine GRnm, and A is the area of the scanning ap~ 

erture to be used. 

As shown later, the value of A can be approxi­

mated with 36~m2 and the manufacturer's data sheet 

specifies Am as 181 O~m2 [29]. Therefore the value of 

klnm for Fujichrome film is 0.05 1. The factor 0.65 in Eq. 

8 is an empirical constant that compensates for the 

deviation from linearity both due to the low number of 

grains contained within the very small scanning area and 

also due to the Schwarzschild-Villiger effect [34]. The 

Schwarzschild-Villiger effect reduces the expected den­

sity fluctuations when the area of illumination is larger 

than the area of scanning. 

A further complication arises from the use of a 

relatively small scanning aperture which prevents that 

the filmgrain noise can be approximated with a 'white' 

Gaussian random field. The noise spectrum of the pho­

tographic film was determined experimentally, and a 

transfer function was.calculated that produces realistic 

film-grain noise by filtering computer-g~nerated white 

Gaussian noise. The noise properties of the filtered 

Gaussion noise reproduce the actual scanned filmgrain 

noise very well. A radial section of the isotropic MTF 

of this filter is shown in Fig. 9. 

The equation for the model of the photographic 

film in its entirety is: 
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Figure 9. Radial section of the filter that is applied to 
computer-generated white noise in order to 
generate realistic film-grain noise. 

d(x,y) = do(x,y) + ( kl JIm • do(x,y)
k2

fo. ) nJlm(x,y) 
(9) 

do(x,y) = DE ( (f(x,y) * "Jlm(x'y) ) • I ) 

where d(x,y) is the optical density of the film, do(x,y) is 

an intermediate variable that is equal to the gross (noise­

free) optical density of the film, k lnm' k2nm are constants 

specific to the film, nnm(x,y) is zero-mean, unit-variance 

non-white Gaussian noise source, DE(e) is the film­

specific DE curve, f(x,y) is the input intensity distribu­

tion, t is the exposure time, and hnm(x,y) is the effective 

PSF of the film. 

4. Digitizer 

Color fundus photographs were digitized with a 

very high resolution scanner (LS3500, Nikon Corp.). 

This scanner is capable of producing red, green and blue 

digital images by using respective filters in front of the 

white illumination light during digitization. The tapetal­

like reflex is a goldlyellow/light-brown colored reflec­

tion on a redlbrown background. Considering the three 

additive colors red, green and blue, it is the amount of 

added green that changes a color from reddish to yel­

lowish. Therefore, only the green components of digital 

images were used as they display the highest contrast 

between the tapetal-like reflex and the background. 

The scanner u~es a stationary, fixed-focus, fixed­

aperture light source and a stationary linear array of 

4096 CCD detectors [35]. The photographic slide to be 
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scanned is moved between the light source and the de­

tector array with a stepper motor (see Fig. 10). The size 

of the unit step of movement is exactly equal to the 

distance between centers of consecutive CCDs on the 

linear array. The resulting digital image has square pix­

els corresponding to an area of 6 11m x 6 11m measured 

on the film plane. 

CCDs respond linearly to the light exposure they 

receive. Unfortunately, each CCD may have a slightly 

different sensitivity as compared to other CCDs in the 

array. Especially at high signal levels, the variation in 

CCD sensitivities causes much more uncertainty than 

that caused by other sources of noise [36]. ·Fortunately, 

the CCD-to-CCD variatioJl) are stable and therefore they 

can be reduced to negligible levels by compensating 

(normalizing) the value each CCD produces according 

to a predetermined sensitivity map. Such a sensitivity 

compensation is not included in commercially supplied 

software, therefore custom software was written for this 

project that determines a sensitivity map (a gain and an 

offset for each pixel) and scans images using this sen­

sitivity map. 

The scanner digitizes a slide by measuring the 

transmitted proportion of the input light intensity over a 

fixed time (exposure time). The units of the numbers 

I~ ~il 
Figure IO.Schematic diagram of the scanner, (S) light 

source, (G) green filter, (L) lens, (F) film, 
(D) detector. The film moves into and out of 
the plane of the paper during scanning. 

produced by the scanner (Le. the value of each pixel in 

a transmittance domain digital image) will be called 

scanner-transmittance-units (stu). 

There are three aspects of the relation between the 

spatial distribution of optical density on a film and the 

resulting digital image. These can be termed the 'uni­

form-density response,' the 'spatial. frequency response' 

and the 'noise.' To determine the uniform-density re-
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Figure 1 1. The output of the scanner versus unifonn 
input densities for different values of rit. 

sponse, the output of the scanner was measured when 

various spatially uniform neutral-density filters were 

used as input. The scanner output was averaged over a 

1 OOx 1 00 pixel area to cancel the effects of noise. In ad­

dition, the neutral-density filters were located out of the 

plane of focus to assure uniformity throughout the 

scanned field. The exact optical density of the filters 

used in the experiment was detennired with a caliocated 

radiometer (United Detector Technologies) and the light 

source located within the scanner. The only user adjust­

able parameter of the scanner is the relative integration 

time (rit). The rit parameter, which is a rational number 

between 25/50 and 255/50 (i.e. 0.5 to 5.1), scales the 

factory-set integration time of each CCD [35]. During 

the experiments five rit values (0.5,1,2,4 and 5.1) were 

used with the different combinations of uniform-density 

filters. Fig. 11 shows the results of these experiments. 

Clearly. there is an exponential relation between the 

uniform input density and the output digital image in 

stu. Such an exponential behavior is characteristic of 

CCD devices because their output is linearly related to 

the transmitted light intensity for a given exposure time. 

Of course, transmitted light intensity, in turn, is related 

exponentially to the optical density of the transparent 

media (see definition of optical density, Eq. 4). The 

mathematical relation for the uniform-density response 

of the scanner can be written as: 

S = rit (kJ • JO.d + k2 ) 11 len sen (10) 

where Su is the noise-free output of the scanner in the 
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case of uniform density, rit is the relative integration 

time set by the user during scanning, k1scn and k2scD are 

scanner specific constants, and d is the uniform optical 

density of the object being scanned. 

To determine kIscD and k2scn ' Eq. 10 can be put 

into a linear fonn: 

S' = kJ • T + k2 sell. left 
(11) 

where s'=s/rit is the nonnalized scanner output, and 

T=I(Jd is the transminance of the transparent media with 

optical density d. 

The data shown in Fig. 11 was used to fit a least­

squares line to a plot of s' versus T. The slope of the 

line (kl ) was 492.92 and the y-axis intercept of the sc. 

line (k2scn) was -3.38. Fig. 12 shows the same data as in 

Fig. 11 but with the estimates of the model (Eq. 10) 

superimposed as solid lines on the experimental data. 

Clearly, the model approximates the scanner extremely 

well in case of uniform noiseless input. 

A scanner cannot respond to higher spatial-fre­

quency inputs the same way as the uniform inputs 

mentioned above. First of all, the inherent integration of 

the light intensity (signal) over the sensing area of each 

CCD limits the ideal frequency response to sinc(7tfw), 
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Figure 12.Comparison of model of the scanner with 
experimental data. 

where f is the input spatial frequency in cyc/mm and w 

is the width of a CCD in mm [36]. In addition, scattered 

light in collection optics, scattered light from neighbor­

ing areas of the transparency, mechanical jitter, and 

charge diffusion between CCDs cause further blurring of 

the input. The scanner is approximated as an LSII low-
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pass system. The spatial-frequency response of the scan­

ner can be estimated using a sharp edge as input and 

obtaining the 'edge-response,' the digitized image of the 

sharp edge. The derivative of the edge-response is the 

'line response' (also called 'line spread function' (LSF) ). 

This function is the output of an LSI system to an input 

that has infinitesimal width and infinite length. The 

Fourier transfonn of a section of the LSF perpendicular 

to the edge is equal to the section of the system MTF 

perpendicular to the edge [37]. A large number of LSFs 

in all possible directions are necessary to reconstruct the 

two-dimensional MTF, unless the system of interest can 

be assumed to have isotropic response. 

A razor blade glued onto a uniform neutral density 

filter was used to determine the LSF of the scanner in 

two orthogonal directions. Fig 13 shows sections of the 

scanner MTF in directions parallel and perpendicular to 

the CCD array. The fact that two sections are very 
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Figure 13.Sections of the scanner MTF in directions 
parallel and perpendicular to the detector ar­
ray, their average, and the sinc function cor­
responding to a scanner made of ideal detec­
tors. 

similar reaffirms the v'!lidity of the assumption that the 

scanner has an approximately isotropic response. The 

average of the two sections (also shown in Fig. 13) was 

used as the isotropic MTF of the scanner. The noise-free 

scanner response to any input can be written symboli­

cally as: 

six,y) = (rit (ki
ten 

• [(td(:c.y) + k2"n) ) * hs)x,y) (12) 

where so(x,y) is the noise-free output of the scanner, 
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kl sen and k2sCD are scanner-specific constants, rit is the 

relative integration time, hscD(x,y) is the PSF of the scan­

ner, and d(x,y) is the input film density. 

Once the CCD-to-CCD sensitivity changes are 

normalized, the scanner output has two remaining noise 

sources [36]. First, there are all the signal independent 

noise sources which include trapping-state noise, reset 

noise, background noise, charge transfer noise, output 

amplifier noise and analog to digital conversion noise 
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Figure 14.Least-squares fit of a line to a plot of noise 
variance versus mean scanner output. 

(truncation noise). All these noise sources are lumped 

together and it is assumed that they are approximately 

Gaussian and additive. Second, there is shot noise 

(photon noise) which is dependent on the square root of 

the signal, additive and approximately Gaussian for 

intermediate to high exposure levels. The sum of two 

independent Gaussian random variables with zero mean 

is anotrer Gaussian random variable with zero mean and 

a variance that is the sum of the individual variances. 

Therefore the total scanner noise magnitude can be 

written as: 

°,scn (13) 

where O"SCD is the standard deviation of the scanner 

noise, k3
sco 

and k4scD are scanner specific constants, and 

So is the noise-free output of the scanner. 

To calculate the values of k3 and k4 it is ob-
$.CD ~D 

served from Eq. 13, that the variance of the scanner 

noise (Le. standard deviation squared) is expected to be 

linearly related to the noise free scanner output. There­

fore, the noise-free scanner output is approximated with 
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a spatial average, and the variance and the mean of the 

digitized images of uniform density filters are experi­

mentally measured. Fig. 14 shows both the variance 

versus mean data as well as a !east-squares linear fit to 

the data. The values of k3.cn (y-axis intercept of the 

line) and k4.cn (slope of the line) were determined to be 

0.1903 and 0.0022, respectively (correlation coefficient 

was 0.966). 

According to the analysis in this section, the scan­

ner model in its entirety is: 

s(x,y) = so(x,y) + V k3scn + k4scn • so(x,y) nscn(x,y) 

= ( ril ( kl . lO-<I(r.)') + k? »)." (xv) sen - sen .sen 'J 

(14) 

where s(X,y)is the digital image produced by the scan­

ner, so(x,y) is an intermediate variable equal to the 

noise-free scanner output, kisco, k2scn' k3scn and k4SCQ are 

constants specific to the scanner, nscn(x,y) is zero-mean, 

unit-variance white Gaussian noise source, rit is the 

relative integration time set by the user during scanning, 

d(x,y) is the input optical density of the film, and 

hscn(x,y) is the PSF of the scanner. 

5. Complete Imaging Model 

In order to obtain and validate a single comprehen­

sive model of the imaging system that relates the values 

of the digital fundus image to the actual luminance of 

the fundus, the models of the individual components 

need to be combined. 

The combination of the individual component 

models (i.e., Eqs. 1,3,9, and 14) in a block diagram is 

o SUM~AnON 
o Mt.:'LnrUCATlON 

®~~~ . 
r=J (lJl\'VOUrtlON 

lRANSMrllA.-.:a; DOMAJS 

Figurc IS.Block diagram of the complete imaging 
system 
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shown in Fig. 15. Some properties of the imaging sys­

tem can be seen easier in the block diagram than in the 

equations. Especially, two nonlinear transforms are seen 

to separate the three domains. Also, the complicated 

nature of the two noise sources, being non-linearly sig­

nal-dependent, becomes obvious. A helpful observation 

is the existence of three consecutive convolutions with 

the transfer functims of the eye, the camera and the film 

in the intensity domain. Because of the associative prop­

erty of the convolution operation, a cascade of convolu­

tions with different PSFs can be replaced by a single 

convolution with an effective PSF: 

( ( j(x,y) *h,y/x,y) ) *h,a,'/x,y» *hpJTI(x,y)= 

=f{x,y) * ( h,y/x,y) * hcam(x,y) * hj1m(x,y) ) 

=j(x,y) *hjJx,y) 

(15) 

where hint(x,y) is the effective intensity domain 

PSF which is the convolution of the three individual 

PSFs. The equivalent MTF is shown in Fig. 16. 

The equations describing the input-output relation­

ship of the complete imaging model are: 

s(x,y) 

so(x,y) 

= so(x,y) + V k3scn + k4"n • so(x,y) nscn(x,y) 

= ( ril ( kl • lO-<I(r.)') + k2 » *" (x y) sen sen sen , 

12 
d(x,y) = dO(x,y) + ( kl JIm • dO(x,y) r- ) nJlm(x,y) 

dO(x,y) = DE ( (fi..x,y) * "inix,y) ) • t ) 

(16) 

where s(x,y) is the digital image, d(x,y) is the optical 

density of the film, f(x,y) is the luminance of the fun­

dus, t is the exposure time used during photography, 

so(x,y) and do(x,y) are intermediate variables represent­

ing the noiseless scanner output and the noiseless film 

density, respectively, n"Q(x,y) and nnm(x,y) are zero­

mean, unit-variance Gaussian noise sources, hscn(x,y) 

and hint(x,y) are the scanner PSF and the effective inten­

sity domain PSF, DE(e) is the DE curve of the film, rit 

is the re~.ative integration time set by the user during 

scanning, k1 sco ' k2scn' k3scn and k4sco are scanner specific 

constants equal to 492.92, -3.38, 0.1903, and 0.0022, 

respectively, and klflm and k2flm are film specific con­

stants equal to 0.051 and 0.5, respectively. 
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Verification 

The equations (Eq. 16) modeling the input-output 

relationship of the digital fundus imaging system were 

developed using a series of reasonable assumptions 

(e.g. LSil systems), a series of experiments (e.g. scan­

ner noise, scanner blur), some data taken from pub­

lished reports (e.g. MTF of the eye), and some data ex­

trapolated from published reports (e.g. film-grain noise). 

Naturally, the question arises, how closely the model 

approximates reality. If the human eye were not an in­

tegral part of the imaging system, such a question could 

be answered by imaging a perfect object (e.g. an edge) 

and comparing the actual image with the one that 

would be predicted by the model. Unfortunately, a 

perfect object does not exist in a biological structure 

• tanner 

10 20 30 ~o 50 60 70 80 
Frequency (eye/rom) 

Figurr 16.The effective intensity domain MTF of eye, 
camera and film as compared to the scanner 
MTF. 

like the eye. A good physical model of the eye that 

could be used for validation does not exist either. 

Therefore, only those parts of the imaging system 

model which do not include the eye will be verified. At 

the end of this section,.the assumed validity of the eye 

model will be commented on. 

As a first step to validate the model, the magnitude 

of the total noise in the system for a uniform input 

luminance was compared with the magnitude of the 

total noise predicted by the model. A uniform input to 

the system makes the output (and thus the noise meas­

urements) independent of blurring due to eye, camera, 

and film (see Fig. 15). Therefore, a total of 256 64x64 

pixel regions on 16 slides, each with a different uni-
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form optical density, were digitized. The mean and the 

standard deviation of the normalized scanner output in 

stu are plotted (small triangles) in Fig. 17. Each distinct 

cluster of points represents many areas digitized from 

the same slide. 

The response of the model to many uniform input 

luminance levels was determined using Eq. 16. Specifi­

cally, a uniform retinal luminance in the range 0.025 Ix. 

to 0.375 IX.,and an exposure time of 1 s was used. All 

other constants and nonlinear functions were according 

to the complete model. Pseudo-random number genera­

tors were used to generate the two white Gaussian noise 

sources using the Box-Mueller method [38, p.216]. One 

of the white Gaussian noise fields was filtered using the 

transfer function shown in Fig. 9, rescaled to have zero­

mean and unitvariance, and then used as simulated 

film-grain noise. The relationship between the means 

and the standard deviations of the resulting images is 

plotted as a solid line in Fig. 17. It can be seen that the 

total noise estimate of the model corresponds closely to 

the measured total noise of the imaging system . 

Probably the weakest assumption in the imaging 

model is the one about the blurring introduced by the 

fundus camera. A single -parameter analytical function 

was assumed to approximate the isotropic PSF of the 

fundus camera, and the parameter of this function was 

adjusted to force a certain definition of resolution. To 

verify the validery of the camera PSF, an edge image (a 

white paper glued onto a black cardboard) was photo­

graphed directly with the fundus camera. The edge was 

located about 3.5 m infrant of the camera to assure the 

image of a sharp reflective step. External flash lighting 

was used and the internal camera flash was disabled. 

Three 64x64 pixel regions were scanned from one of 

the resulting slides. These three 'step responses' include 

degradations due to all imaging components except the 

eye. To compare the actual degradations to degradations 

that would be predicted by the imaging model, three 

digital luminance edges were simulated. Next, the com~ 

plete imaging model (except the blurring due to the 

eye) was applied to the simulated edges. The slopes and 

shapes of the transition regions were compared. Just like 

the two representative profile plots shown Fig. 18, all. 
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Figure 17.Measured total system noise (triangles) and 
the predicted total noise (solid line) versus the 
normalized mean scanner output. 

o~~~~~--~--~--~~ 
100 110 120 130 110 150 

arbitrll'J di.w.ce (PiIw) 

Figure 18,Comparison of profiles through the edge re­
. sponse of the actual imaging system (solid 
line) to the edge response predicted by the 
model (dashed line). . 

the comparisons showed almost identical responses be­

tween the actual imaging system and its model. 

In summary, it may be stated that within the lim­

itedexperimental conditions the model has accurately 

predicted the output of the actual imaging system. As­

suming the unvalidated approximations about the blur­

ring.introduced by the eye are reasonable, the model is 

a very complete and realistic model of a digital fundus 

imaging system. 

6. Simulation 

The practical relevan:e of the model for the fundus 

imaging system .. - in addition to the possibility to per­

form an image restoration - is, that it provides answers 

to questions like: how sharp a change in retinal lumi­

nance will appear in a fundus photograph, how small a 

change in retinal luminance can be detected, and how 
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small a structure of a given luminance can be detected. 

In order to demonstrate the extent of the degradations 

caused by the digital fundus imaging system, retinal 

luminance functions have been simulated. The overall 

effects of signal depeooent noise, nonlinear re!.ponse and 

blurring of sharp transitions are shown with the use of 

a simulated multi-step luminance function. The steps are 

vertically oriented and the flat regions of the steps were 

0.05, 0.15, 0.25, 0.35, and 0.45 Ix. The simulated im­

age was degraded according to Eq. 16. Degradation was 

also performed with a modified imaging model where 

both noise sources (film and scanner) were set to zero. 

The simulated luminance functions (profile plots across 

the center of each image) are shown in Fig. 19. 

The nonlinearities introduced by the system are 

demonstrated by decreasing step sizes in the degraded 

images. The signal dependence of the noise is also 

clearly visible as the higher luminance steps have 

higher noise fluctuations as compared to low luminance 

areas. The blurring is apparent by the smoothed transi­

tions between steps. 

RESTORA TlON 

In order to analyze fundus photographs quantita­

tively at very high resolution, an image restoration 

method has to be developed that will invert the most 

NOISE- FREE COlLPLETE 
llODEl OUTPtrr WODEl otrrPtrr 

LUlllNANCE 

g ::lL: ~~:lL !::lL 8: 0.3 .e.l~ .frl:.o 
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Figure 19.5imulated multi-step reflectance function, and 
its noiseless and noisy degraded versions 
(top), graphs of pixel intensities across the 
center of each image (bottom). 
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objectionable information degradations caused by the 

imaging system. Over the past 20 years, many different 

image restoration methods for various applications have 

been published based on different assumptions for the 

degradations caused by the imaging system and the 

sources and magnitudes of noise. For example, Hunt 

[39] assumed a non-linear, space-invariant imaging sys­

tem with signal-independent noise to restore a nonsta-
" 

tionary mean, stationary variance scene model with 

maximum-a-posteriori (MAP) error criterion. Kuan et al. 

[40] assumed a blurless imaging system with signal­

dependent noise, a nonstationary mean, nonstationary 

variance scene model and attempted restoration using a 

local linear minimum mean square error (LLMMSE) 

criterion. On the other hand, most authors [e.g. 41-43] 

assumed a linear imaging system with additive signal­

independent Gaussian noise and a wide-sense stationary 

scene model with various error measures for their res­

toration attempts. The common use of the simpler im­

aging models is due to the immense increase in com­

plexity with nonlinear imaging and/or signal-dependent 

noise models. Interestingly, the increase in complexity 

does not usually result in a significantly better restora­

tion. Therefore, the imaging model developed in the 

previous section will be analyzed as to . whether it can 

be simplified to a generalized linear model with signal­

independent noise. 

1. Simplified Imaging Model 

A linear, spatially-invariant system with additive, 

signal-independent Gaussian noise can be represented in 

symbolic form as: 

g(x,y) = f(x,y) * hTx,y) + CJ n(x,y) (17) 

where g(x,y) is the output of the system, f(x,y) is the 

input, h(x,y) is the PSF, n(x,y) is zero-mean unit-vari­

ance Gaussian noise source, and (J is the standard devia­

tion of the noise. It is usually more realistic and more 

powerful to consider a 'generalized linear system' which 

includes some point nonlinearities: 
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g(x,y) = A( B( f(x,y) ) * h(x,y) + (J lI(x,y) ) (18) 

where A(e) and B(e) are arbitrary point nonlinearities, 

that are, at least numerically, invertible. A point nonlin­

earity is a nonlinear function applied to the value of 

each pixel independent of other pixels. 

The approximation of the complete imaging model 

(Eq. 16) with a generalized linear imaging model (Eq. 

18) is not a simple task because of two major difficul­

ties: first, the complete imaging model has two distinct 

convolutions (hint' h.,) in two domains separated by two 

nonlinear transforms; and second, the complete imaging 

model has two noise sources (nnm' n,en) that are signal­

dependent, and are separated by a nonlinear transform. 

As a first step in the simplification process, the 

influences of the two independent noise sources are 

compared to decide whether one of them might be 

negligible compared to the other. To compare the effects 

of the two noise sources, three sets of simulated digital 

images are generated: the first set contains just the total 

noise, the second set contains the film-grain noise only, 

and the third set contains the scanner noise only. In each 

set, 16 unifoon intensity images are synthesized with the 

intensity being set in the range of 0.025 Ix to 0.375 Ix. 

The 'total noise' images include all parameters according 

to the complete model in Eq. 16. The 'film-grain noise 

only' images have k3
scn 

and k4.cn set equal to zero, and 

the 'scanner noise only' images have k1nm equal to zero. 
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Figure 20.Comparison of film-grain noise (down tri­
angle) and scanner noise (up truangle) magni­
tudes with total noise (solid line) magnitude 
in simulated uniform intensity images. 
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The standard deviation and the mean of the three sets of 

simulated images are calculated, and shown in Fig. 20. 

Clearly, the major portion of the total noise is due to the 

film grain noise. The effect of the scanner noise can be 

neglected without introducing a major error into the 

model. 

As a second step in the simplification process, it is 

tested whether one of the two blurring functions may be 

neglected. According to the complete imaging model 

. there are two independent linear blurs in two separate 

domains: the effective intensity domain blurring (com­

bined effects of eye, camera, and film), and the scanner 

blurring acting in the transmittance domain. Fig. 16 

shows that the scanner acts almost like an ideal device 

with negligible blurring because the 'signa]' has already 

been low-pass filtered by the effective intensity domain 

MTF. Unfortunately, the blurring of the scanner does 

affect the imaging system output in a significant way 

that might not be obvious. In stark contrast to the 'sig­

nal,' the film-grain noise is broad band with significant 

high-frequency power. Therefore, the blurring of the 

scanner effectively reduces the total noise at the output 

of the imaging system. If the blurring due to the scan­

ner is going to be neglected, then the magnitude of the 

film-grain noise needs to be appropriately reduced so 

that the model remains valid. The optimal reduction in 

the value of k1nm was determined using simulated uni­

form intensity images (the reduced k1nm is 0.028). 

As a third step in the simplification process, the 

signal dependency of film-grain noise may be neglected. 

This can be done if the image is assumed to have low 

contrast, and therefore, the local density dependence of 

the film-grain noise is approximated by an average 

density dependence: 

(19) 

where do(x,y) is the gross film density, d is the average 

optical density of the low contrast film, and k2f1m is a 

film-grain noise constant defined earlier. 1l1is approxi­

mation makes the film grain noise dependent on the 

specific image under consideration, but independent of 

the spatial variations of the signal level within the im-
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age. 

.The progress of simplifications achieved up to this 

point can be summarized as: first, the scanner is an ideal 

device with no noise and no blurring; and second, the 

image has low contrast and therefore the film-grain 

noise statistics are stationary acoss a given image, al­

though they might differ from image to image. The 

imaging model incorporating these assumptions is: 

S(x,y) = rit ( kIscn 0 I(}d(x.y) + k2scn) 

d(x,y) = DE (f(x,y) * hin/x,y) ) + a n(x,y) 

a 
. -kl 

= klflm • d fLo 

(20) 

where the exposure time t has been omitted for clarity, 

d is the average optical density of the film, and all other 

symbols are the same as in Eq. 16. In order to show 

how the simplified model of Eq. 20 compares to the 

complete model of Eq. 16 the luminance image of a 

simulated tapetal-like reflex was used as input and the 

predicted digital fundus image was calculated using the 

two models. The difference between the two calculated 

images had a mean of -0.49 stu and a standard deviatioo 

of 3.62 stu. Two corresponding profiles and their differ­

ence are shown in Fig. 21. Considerable simplifications 

had a relatively small effect on the validity of the 

model. 

The imaging model has been simplified considera­

bly, but one more simplification step is necessary. The 

relation between s(x,y) and d(x,y) (first line in Eq. 20) 

is a memoryless deterministic one-te-one mapping with 

a trivial inverse, i.e., if s(x,y) is known then d(x,y) can 

be calculated, and vice versa. The reason why Eq. 20 is 

not a generalized linear imaging model is that the blur­

ring, hint(x,y), and the additive noise, n(x,y). are in two 

different domains (intensity and density, respectively) 

that are separated by a nonlinear transform, · DECo). 

There are two realistic simplification paths: either the 

additive noise in the density domain is replaced by ef­

fective additive noise in ·the intensity domain, or the 

blurring in the intensity domain is replaced with an 

effective blurring in the density domain. Both appro~i~ 
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Figure 21. Profile plots through the digital fundus 
images of the simulated tapetal-like reflex 
using complete (left) and simplified 
(middle) models. and a plot of the differ­
ence (right). 

mations result in generalized linear imaging models. 

Approximation #1: 

The fundus luminance has already been assumed to 

have low contrast. Now. it is further assumed that the 

noise term in Eq. 20 is much smaller than the signal 

term. Thus. the nonlinear DE curve is linearized about 

the mean density. and the second line of Eq. 20 is ap­

proximated with: 

d(x,y);:;; DE (f(x,y) * hj,Jx,y) + (J'i! n(x,y) ) 

(2 1) 

(J = I 'i! 
DE-I(d + (J) - DE-I{J - (J) 

2 

where II II is the absolute value operator. In Eq. 

21 (J is the standard deviation of the effective noise in • err 
the intensity domain and DE" (a) is the (numerical) in-

verse of the nonlinear DE curve. 

Approximation #2: 

In this case, the effect of blurring in the intensity 

domain is approximated with an effective blur in the 

density domain. Thus the second line of Eq. 20 be­

comes: 

d(x,y) :::: DE ( f(x,y) ) * h,j.x,y) + (J n(x,y) (22) 

.... 
where hcrr(x.y) is the effecti~e PSF in the density do-

main, and (J is the same as in Eq. 20. To calculate the 
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hcrr<x,y), simulated edge functions of differing mean and 

contrast (in the intensity domain) were used .. For each 

edge image, first the noiseless density domain image 

was determined. and then the effective PSF was calcu­

lated in the density domain. The resulting PSFs for dif­

ferent edge functions were very similar. and therefore, 

their average was used as hcrr<x.y) . 

To compare the two possibilities for simplification. 

a luminance image of the simulated tapetal-like reflex 

(the same that was used to obtain Fig. 21) was used as 

input to the complete model and to the two simplified 

models. The results are interesting. The difference im­

ages have means of 0.7 and 8.7 stu. and they have stan­

dard deviations of 13.2 and 7.0 stu, respectively for the 

simplifications #1 and #2. The difference image for sim­

plification #1 looks more like random noise with a large 

variance, suggesting that the change of the noise source 

,from density domain to intensity domain was not a valid 

simplifying approximation, The errors caused by simpli­

fication #2 are structured with a smaller variance but a 

larger bias. This can easily be explained by the use of 

the blurring function in the density domain, which is a 

compressed domain as compared to the original inten­

sity domain. Fig. 22 shows representative profile plots 

through the complete and simplified models as well as 

the difference graphs. 

For this study. simplification #2 is chosen as ap­

propriate because it shows a much sm'aller error variance 

and be~ause a bias in peak amplitudes is much more ac­

ceptable than a random error changing the noise proper­

ties. 

The simplified imaging model consists of a gener­

alized linear system with space-invariant blurring and 

additive signal-independent noise. The effective signal­

independent noise is a function of the average film 

density d, which needs to be estimated from the de­

graded image. With-reference to the previous section. 

the . following observations are made: first. both the 

scanner noise and the film grain noise have zero mean. 

therefore a spatial average of the image in any domain 

can be assumed not to be affected by noise sources . 

Second, both the scanner blurring and the optical blur­

ring are 'passive,' therefore they neither increase nor 
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Figure 22.Profile plots through the digital fundus im­
ages of a simulated tapetal-like reflex using 
the complete and the two simplified models, 
and plots of the differences. 

decrease the total (or average) signal power in any 

domain. Accordingly, with trivial manipulation it can 

be shown that the average optical density of the image 

is approximately related to the average value of the de­

graded digital image according to the following for­

mula: 

d"" 10g1O ( s kl
scn 1 

_ - k2 (23) 
rit sen 

where s is the average value of the digital image in the 

transmittance domain, d is the average value in the 

density domain, and kl ,k2 and rit are the same as sen SoCn 

in Eq. 16. 

The specific procedure to be used for the restora­

tion of fundus images can be summarized as follows. 

The mean, S. of the digital image, s(x,y), is calculated 

first. Next, the average optical density, d, is estimated 

using Eq. 23 and the noise standard deviation, 0" is cal­

culated using the approximation in Eq. 20. The degrackd 

density domain image, g(x,y), is calculated according to 

the inverse of the scanner nonlinearity which is: 

g(x,y) = 10gl0 ( kl sen 1 
s(x,y) _ k2 

rit sen 

(24) 

The estimation of the ideal density image, DE(f(x,y», 

from the degraded density image," g(x,y), assuming the 

transfer function htfl(x,y) and the noise (J are known, is 
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the classical linear restoration problem, and it is the 

subject of the next section. After the estimation of the 

ideal density image the light intensity radiating from the 

fundus, f(x,y), may be calculated using the numerical 

inverse of the DE curve. 

2. Regularized Linear Restoration 

Image restoration refers to the estimation of the 

original scene from its degraded image [44], Usually, 

an acceptable restoration cannot be accomplished with­

out knowledge of the image formation process with its 

characteristic blurring, the statistical properties of the 

noise, a measure of disparity between original scene and 

its estimate, and some generalized knowledge about the 

original scene. Given a degraded image, the validity of 

the (sometimes implicit) assumptions made about these 

four points dictates the success of restoration algo­

rithms. 

In the previous section, the complete imaging 

model was simpli fied to a generalized linear system 

with a linear, space-invariant blurring and additive, sig­

nal-independent Gaussian noise. In this section the so­

called 'regularized linear restoration' method, that is 

based on the simpli fied imaging model will be de­

scrib~d. The 'linear' restoration is discussed firs t, and 

then, the concept is expanded to 'regularized' linear 

restoration. 

Linear restoration refers to the determination of a 

linear filter to remove (or reduce) the degradations 

caused by the imaging system. The result is an estimate 

of the original (ideal) scene. Linear restoration is de­

fined as: 

i(x,y) = "L(x,y) * g(x,y) 
(25) 

where f(x,y) is the estimate of the original scene, hl.(x,y) 

is the linear restoration PSF, and g(x,y) is the degraded 

image. 

In the search for a restoration PSF, probably the first 

one that comes to mind is the convolutional inverse of 

the imaging system PSF, defined as: 

h-I(x,y) * h(x,y) = O(x,y) (26) 
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where h'!(x,y) is the convolutional inverse of h(x,y) (and 

vice versa), and b(X,y) is the discrete delta function (an 

impulse at coordinates 0,0). The so-called 'inverse filter' 

restoration is: 

Jinv(x,y) = Iz -I(x,y) * g(x,y) (27) 

Substituting the linear imaging equation (Eq. 17) for 

g(x,y): 

Jinv(x,y) = II -1 (X,y) * (j(x,y) * h(x,y) + 0 n(x,y) ) (28) 

and tiling advantage of the distributive and commuta­

tive properties of the convolution operation, it can be 

shown that the inverse filter estimate is equivalent to: 

J inv(x,y) = j(x,y) + II -I(x,y) * ( 0 n(x,y») (29) 

In other words, the inverse filtered image is equal to the 

original image plus inverse filtered noise. This suggests 

that if there is no noise, the inverse filter results in 

perfect restoration. Unfortunately, the inverse of the 

system PSF does not always exist. Even if it exists, it is 

rarely possible to calculate it accurately with finite pre­

cision computers. In addi1ion, usually noise is present 

and inverse filtering can rarely produce acceptable res­

torations. Actually, the shortcomings of inverse filters 

can be bener appreciated with the frequency domain 

equivalent of Eq. 28: 

F
' ( ) - H(II,v) F(II,v) + 0 N(II,v) 

, 1/, V - ---'--'_-'-:-:-;'-__ --'---'-
UlV H(II,v) (30) 

N(II v) = F(u,v) + 0 __ '_ 
H(II,v) 

Clearly, the filter is not defined at the zeros of H(u,v). 

Even if a pseudo-inverse filter is used, which forces the 

inverse filter to zero where H(u,v) is zero, the informa­

tion corresponding to the zeros of the H(u,v) is lost 

during imaging and cannot be recovered. Inaddition, at 

the values of H(u,v) which are much smaller than 

N(u,v), there will be magnification of noise that swamps 

the restored image. These are the reasons why restora­

tion is called an "ill-posed inverse problem with no 
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unique solution" [45]. 

Regularization [46,47,48] refers to a class of solu­

tion techniques which convert ill-IXJsed inverse problems 

to well-posed inverse problems and choose a physically 

acceptable and meaningful solution among a family of 

solutions. Regularization concepts are usually based on 

incorporating a priori knowledge about the true solution 

into the restoration algorithm. Next, the regularized lin­

ear restoration method will be defined, where some of 

the previous equations are repeated to aid the reader. 

Assuming a linear spatially-invariant imaging sys­

tem with signal-independent Gaussian additive noise, 

g(x,y) = f(x,y) * h(x,y) + (j lI(x,y) (31) 

the linear restoration estimate was defined as: 

J(x,y) = IIL(x,y) * g(x,y) (32) 

If the restoration were successful, then the estimate, 

f(x,y), should be approximately equal to the original 

image f(x,y). But, the original image is not known and 

therefore the merit of the estimate cannot be verified by 

comparing it to the original image. On the other hand, 

if the estimate is approximately equal to the original 

image, then the sum of squared differences between the 

degraded image, g(x,y), and the blurred estimate, 

f(x,y)*h(x,y), should be approximately equal to the sum 

of squared noise terms. That is: 

L L (g(x,y) - l(x,y) * Iz(x,y) )2 
x y (33) "" LL (0 n(x,y) )2 

x y 

which is equivalent to: 

L L (g(x,y) - f(x,y) * Iz(x,y) )2 "" 0 2 N 2 (34) 
x y 

where the images are assumed to be square with NxN 

pixels. There are many linear filters hl.(x,y) (including 

the inverse filter) that are solutio'ns to Eg. 34, but most 

of them produce estimates with extensive magnification 

of-high frequency noise. To enforce a physically accept­

able restoration, the concept of regularization is intro­

duced by choosing a solution that minimizes'the 'rough-
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ness' of the estimate [43]. The roughness is defined as 

the nonn of the high-pass filtered estimate: 

Q(h = :E E (c(x,y) * j(x,y) f (35) 
:r y 

where c(x,y) is the so-called regularizing operator that is 

a high-pass filter, and it is commonly chosen to be the 

discrete approximation to the Laplacian [41]. The mini­

mization of Eq. 35 subject to the constraint of Eq. 34 

can be accomplished with the method of Lagrange 

multipliers [49, p.220], and the problem reduces to the 

minimization of: 

¢(j) = a :E E (g(x,y) - j(x,y) * Iz(x,y) }2 
x y 

+ E E (j(x,y) * c(x,y) r (36) 

x y 

where u is chosen to satisfy Eq. 34. The minimization 

is straightforward [49, p.221] and the regularized linear 

restoration filter in the frequency domain is [44]: 

H ( ) H ·(II,\') 
R 11,1' = I/I(I/,\') 12 + y 1 qu,v) 12 (37) 

where HR(u,v) is the regularized linear restoration filter, 

H(u,v) is the transfer fu'nction of the imaging system, 

H*(u,v) is the complex conjugate of H(u,v), C(u,v) is 

the high-pass filter that regularizes the solution, and y 

is equal to lIu. 

In summary, the regularized linear restoration es­

timate of the original image is: 

j(x,y) = Frl [ H .(I/,\') . G(Il,v) ] (38) 
1 H(Il,\') 12 + y 1 qu,v) 12 

where FTI[o] is the inverse Fourier transfonn. Note that 

Eq. 38 and Eq. 34 are two simultaneous nonlinear equa­

tions where f(x,y) and yare the unknown variables. 

3. Implementation 

The solution to the regularized linear restoration 

(Eq. 38) requires a parameter y to be chosen to satisfy 

the constraint of Eq. 34. An iterative method. must be 
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used to solve the simultaneous equations. First, the 

approximate equality of the constraint equation is re­

written in terms of a tolerance: 

(39) 

where E is the tolerance and ¢(y)2 is defined as: 

tj>(y)2 = E E (g(x,y) - j(x,y) * "(x,y) y (40) 
x y 

The substitution of the solution of the estimate from Eq. 

38 into Eq. 40 results in: 

tj>(y)2 = 

E E (g(x,y) - FT -I[ 1 /I(I/,v) 12 • G(u,v) ])2 
x Y 1 /I(Il,v) 12 + y 1 qu,l) 12 

which explicitly shows the dependence of <l>(y)2 on y. 

Hunt [41] has shown that ~(y)2 is a monotonic function 

of y. Therefore, the nonlinear Eq. 39 can be solved for 

y with the following algorithm: 

I) Choose a tolerance value E 

2) Choose an initial value for y 

3) Compute ¢(y)2 using Eq. 41 

4) If ¢(y)2 <; (cr2N2_E) decrement y, goto (3) 

5) If ¢(y)2 > (a2W+E) increment y, go to (3) 

6) Else stop. 

A Newton-Raphson-like algorithm [38, p.270] was 

used to speed convergence by adjusting the step size of 

y according to the local gradient of ¢(y)2 . 

4. Results 

Restorations of simulated and actual tapetal-like 

reflex images will be used to test the restoration algo­

rithm. Simulated images, being based on known original 

images, will be used to show quantitatively the extent of 

restoration. Since the original (ideal) fundus luminance 

is not known, the restoration of actual tapetal-like reflex 

images can only be judged qualitatively. 

The 'quality' or the 'infonnation content' of simu­

lated images will be measured using a generalized sig­

nal to noise ratio (SNR), which is defined as: 
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SNR (42) 

Var
f 

is the variance of the original image f(x,y), and 

Var
f
.g is the variance of the difference between the 

degraded intensitj domain image, g(x,y), and the origi­

nal intensity domain image, f(x,y ). ]t is important to 

point out that the S1\TR is not just a function of noise, 

but also a function of blurring and nonlinearities. 

As a direct extension of the SNR definition, the 

improvement in signal to noise ratio (ISNR) is defined 

as a measure of restoration perfonnance. ISNR is based 

on the difference of the S"N"Rs of restored and degraded 

images, and is defined as: 

lSNR (43) 

where Var
l
.! is the variance of the difference between 

the restored image and the original image. 

Image information may be in one of three relevant 

domains: the intensity domain, the density domain, and 

the transmittance domain. The intensity domain is the 

representation of the light intensity originating from the 

retina, and therefore closely approximates the underl ying 

biology. All of the analysis of the tapetal-like refl ex will 

be based on intensity domain images; therefore, the 

results of the restoration will also be judged in this 

domain. The density domain is where the deconvolution 

part of the restoration will be accomplished, and the 

transmittance domain is the only data that is usually 

available in the case of actual fundus images. 

The restoration performance on simulated images 

was determined for four different simulations (A ,B,C 

and D) which used the exact same reflex and noise 

patterns only differing by reflex to background contrast 

(A,B and C) and the size of the image (A vs. D). Simu­

lations A and D had reflex to background contrast rep­

resentative of actual tapetal-like reflex, whereas simula­

tions Band C had less contrast at lower (B) and higher 

(e ) average exposure levels . Table 1 summarizes the 

I 
I 

665 

restoration results for the four simulations . 

In all four cases, restoration resulted!n improve­

ments in SNR. A region of the original, degraded and 

restored versions of simulation A is shown in Fig. 23. 

The profile plots show how the restoration process re-

.. 

Simulation Size avg. ,S NR ISNR 
exposure (dB) (dB) 

A 256x256 0.089 3,28 1.21 

B 256x256 0.081 3.S1 i 0.64 

C 256x256 0.142 2.81 0.37 

D 640x640 0.084 3,20 I 1.2'1 

Table 1. Summary of restorations perfolmed on simu­
lated tapetal-like reflex images. 

f: f~ORlGJNAL l 
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Figure 23.Simulated reflex luminance (top-left), de­
graded (top-middle) and restored (top-right) 
versions, and the corresponding profile plots 
(vertical cut through the image centers). 

duces the noise and increases the refiex- to-background 

contrast. 

In the case of simulations, it is possible to judge 

the results of the restoration process both quantitatively 

and qualitatively, considering the original image is ex­

actly known. ]n the case of actual fundus images the 

original fundus luminance is not known. Therefore, the 

only method to judge the perfonnance of the restoration 
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process is to use human intuition to determine whether 

the results of the restoration are 'reasonable.' 

Fig. 24 shows a small region of a real tapetal-like 

reflex image in the intensity domain, the result of the 

restoration, and profile plots through the centers of the 

respective images. This image is a representative 

sample among the images that were restored. In the 

restored image there is almost no noise in the tradi­

tional sense; i.e. high frequency variations of small 

amplitude. Furthermore, the high-intensity peaks corre­

sponding to the reflexes of interest have increased con­

trast and exhibit sharper edges. 

Analysis of the tapetal-like reflex involves accumu­

lation of statistics on the sizes and shapes of the individ­

ual reflexes, determination of several properties like the 

contrast against the retinal background, the geometric 

relationship of neighboring reflexes, and the change of 

the reflex properties over time. All of these analyses can 

only be accomplished if pixels belonging to the reflex 

can be differentiated from the pixels belonging to the 

background. Therefore, this section wiil give details of 

a novel method that is used to separate the pixels, i .e. to 

perform reliable image segmentation. 

Although anyone of the many known segmenta­

tion strategies (surveyed in [51]) could be adapted for 

the tapetal-like reflex analysis, a thresholding strategy is 

lO.20 
1i 0.20 [ 

~ 0.15 . 0.15 ~ 
<> 

" ~ 
Q 

fl 
.:! 

" u 

~ 
d 

0. 10 0.10 ] 

0.05 0 .05 

arbitrary dj.t ance (pixel.) 

Figure 24.An actual tapetal-like reflex image (top,left), 
the corresponding restored image (top,right), 
and horizontal profile plots through image 
centers. 
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probably the most obvious, straightfof'Nard and simple 

solution. Classic measures of segmentation performance 

like percentage of misclassified pixels, distance of miSe 

classified pixels or region uniformity [52] are not very 

useful in this application. Therefore, several figures of 

merit are defined that collectively specify the quality or 

reliability of segmentation results in the case where the 

ideal result is known. Both object and pixel based fig­

ures of merit will be used. The object based figures of 

merit are: 

Measure of true positives: 

(44) 

where nro is the number of objects that have been de­

tected falsely, and n
dO 

is the total number of detected 

objects. 

Measure of true negatives: 

(45) 

where nmo is the number of objects that were missed, 

and nao is the total number of actual objects. 

Measure of object clustering: 

Flv13 

The pixel based (classical) figures of merit are: 

Measure of true positives: 

Flv! 4 = n tIp - n,fp 

nap 

(46) 

(47) 

where ndp is the number of detected object pixels, nip is 

the number of falsely detected object pixels, and nap is 

the number of actual object pixels . 

Measure of true negatives: 

(48) 
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where n, ,n
f 

and n are as defined above and N is the 
op p ap 

total number of pixels in the image. 

All of the figures of merit are incorporated into a 

global measure as: 

FMG = FM/ FM2 • FMJ • FM4 • FMj 
(49) 

It can be seen by inspection that all figures of merit 

result in real numbers in the range from 0.0 to 1.0. In 

each case, 1.0 is the result of perfect segmentation, and 

a number close to 0.0 is 'bad' segmentation. 

Global Thresholding 

Global thresholding refers to the generation of a 

binary image g(x,y) from an input image f(x,y) using a 

threshold value T and the rule: 

1 if 
g(x,y) = {o if 

J(x,y»T 

J(x,y)sT (50) 

Assuming f(x,y) is the image of high-intensity objects 

on a low-intensity background, pixels belonging to ob­

jects will be labeled as I and pixels belonging to the 

background will be lal?eled O. 

Global thresholding used as a segmentation strat­

egy works well for images in which object and back­

ground pixels have intensities grouped into two domi­

nant modes. In that case, the threshold (T in Eq. 50) is 

chosen to separate the two modes. Unfortunately, most 

real images, including the tapetal-like reflex images, 

have objects with a range of intensities on a background 

which has a spatially varying intensity of its own. Im­

aging system degradations like blurring and noise cause 

further overlap between intensities of objects and the 

background. The resulting pixel intensity distributions 

(histograms) are not bimodal and it is impossible to 

fi~d a single threshold that separates objects from the 

background. Therefore, the threshold must be allowed . 

to vary across the image so that it can adjust to local 

image properties. 

Local Thresholding 
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For local thresholding, the threshold is a spatially vari­

ant function: 

1 if 
g(x,y) = {o if 

J(x,y»/(x,y) 

J(x,y) s I(x,y) 
(51) 

where f(x,y) is the image to be thresholded, g(x,y) is the 

binary image which is the result of the thresholding, 

and t(x,y) is the spatially-variant threshold image, also 

called the 'threshold surface'. 

Assuming there is a method of deterrniningthe 

threshold image, the advantages of local thresholding 

over global thresholding are clear. Unfortunately, there 

is no underlying theory of segmentation [51]; therefore, 

the literature is filled with ad hoc methods of threshold 

determination that seem to work well in their respective 

applications. 

Most of the methods mentioned in literature [54-

56] have in common that in the process of calculating a 

threshold for each pixel, the authors consider only a 

relatively small neighborhood around the pixel. The 

underlying hypothesis clearly is that it is much easier to 

distinguish between two classes of pixels within a small 

neighborhood as compared to the whole image. It ap­

pears that the result of local thresholding is considerably 

affected by the ~neighborhood size' that is either explic­

itly stated or implied. It is much less affected by the 

specific algorithm used to calculate the threshold. 

Therefore, a very simple property is chosen for the cal­

culation of the local threshold and efforts are concen­

trated in analyzing the effect of the neighborhood size. 

The local threshold t(x,y) is defined as the average 

value of the pixel intensities within a moving square 

window of size (2m+l) pixels, where the parameter 'm' 

is the 'neighborhood size.' Symbolically, the local 

threshold is: 

%+m y .. m 

tm(x,y) = 1 2 E Ef(x,y) (52) 
(2111+1) x-my-m 

where tm(x,y) is the spatially-variant threshold that de­

pends on the neighborhood size m. The threshold image 

is only defined for x and y greater than (m-I) and less 
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than (N-m) for an NxN pixel image. 

In Fig. 25 the local thresholding of a simulated 

tapetal-like reflex image (restored image of which a part 

is shown in Fig. 23) is shown with neighborhood sizes 

of 2, 10, 18, and 24 pixels, and in Table 2, the figures 

of merit are listed for a wider range of neighborhood 

sizes. 

Two important observations can be made both 

visually from Fig. 25 and quantitatively from Table 2. 

First, clustering of many objects occurs as the neighbor­

hood size is increased (FM3 decreases with larger neigh­

borhood sizes) which suggests that small neighborhoods 

are better. Second, the number of fal se objects detected 

decreases as the neighborhood size is increased (FMi 

and FM4 increase with larger neighborhood sizes), 

which suggests that large neighborhoods are better. 

Interestingly, FMG values show that there is no distinct 

'compromise' neighborhood size between the two ex­

tremes. 

It is concluded that, in order to have a reliable 

local thresholding method, a single neighborhood size 

cannot be used, instead the useful features of multiple 

neighborhood sizes should be combined. 

Multi-Scale Thresholding 

In the fi eld of image enhancement, some authors 

[57-61J use an arbitrary function to find the 'optimal' 

neighborhood size for each pixel in an image, and then 

they enhance the image contrast locally using the 'op­

timal' neighborhood of each pixel. In another example 

(62J, the authors determine a window size for each 

pixel according to the 'signal activity', and they smooth 

the noise without blurring the edges. In yet another ex­

ample [63J, the authors use a fuzzy logic approach to 

determine the size of the "contextual region" for each 

pixel. and they perform histogram equalization within 

these regions. Although all of these approaches are 

arbitrary and application-specific, there is a common 

underlying framework: scale-space theory. 

Simply stated, scale-space of an image refers to a 

family of images derived from the original by progres­

sively removing finer details [64]. Many authors have 

tried so-called 'multi-resolution segmentation' techniques 
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which attempt pixel groupings by e:r..amining members 

of the scale-space of an image. An interesting and recent 

example is given by Lifshitz and Pizer (65J, where each 

pixel in an image is associated with a local intensity 

extremum (maximum or minimum) at a given scale. The 

paths of the extremum pixels are followed while mov­

ing from fine to coarse scales. The amount of blurring 

necessary for an extremum point to disappear within an 

enclosing region is a measure of the scale of the extre­

ma] region. In simpler terms, the simultaneous consid­

eration of the image at multiple scales allows sensible 

segmentation at a given scale. The same idea is used to 

define a novel thresholding method based on considera­

tion of fine and coarse versions of an image. 

Multi-scale thresholding is based on two inherent 

properties of the scale-space. The first property is that 

at a coarse scale 'significant' struc tures of an image 

clearly stand out as compared to 'insignificant' struc~ 

tures like artifacts and noise. In contrast, the localiza­

tion of the structure edges (boundaries) and the separa­

tion of groups of small structures is not reliable. The 

second property is that at a fine scale successful local-

Figure 25.Demonstration of the effects of neighborhood 
size on local thresholding; m=2 (top,left), 
m=} 0 (top,right), m= 18 (bottom, left), and 
m=24 (bottom, right). The original reflexes 
are superimposed in black on the thresholding 
results which are white for pixels classified as 
reflexes and grey for the background. 
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m (pixe ls) FM J FM:; FM3 I R.14 0 M
5 

2 • 0.70 0.94 0.40 I 0.87 0.71 

4 0.72 0.94 0.39 I 0.89 0.70 

6 0.74 0.94 0.38 0.90 0.70 , 

S 0.72 0. 95 0.34 0.91 0.69 

10 • 0.73 0.'14 0.28 0.92 0.69 

12 0.79 0.93 0.28 I 0.92 0.69 

14 0.79 0.94 0.26 0.93 0.69 

16 0.84 0.95 0. 2.3 0.94 0.70 

18 • 0.85 0.96 0.22 0.94 0.70 

20 0.85 0.97 0.22 0.95 0.70 

22 0.88 0.97 0.23 0.95 0.70 

24 • 0.86 0.97 0.23 0.95 0.70 

I FMG 

0.16 

0.1 7 

0.16 

0. 15 

0.12 

0.13 

0. 12 

0.1 2 

0.12 

0.12 

0.13 

0.13 

Table 2. The six figures of merit as a function of the 
neighborhood size 'm' of local thresholding. 
The entlies marked with a '*' are shown in 
Fig. 25. 

ization of the structure edges and separation of groups 

of small structures is possible, but 'insignificant' struc­

tures might be difficult to distinguish from 'significant' 

structures. 

Based on the above two properties, a heuristic 

generalized segmentation approach is defi ned as "find 

the signifi cant structures in a coarse scale and then re­

fine them at a fine scale." The specific implementation 

of this approach is accomplished by thresholding the 

image first with a large neighborhood size, and then 

with a small neighborhood size. The two thresholding 

results are logically 'AND'-ed to give the final segmen­

tation resul t. In other words, a pixel is considered to 

belong to an object, if and only if, it belongs to an 

object in coarse and fine scales. It is straightforward to 

show that the logical 'AND' of the two thresholding 

results is equivalent to using a threshold image that is 

the maximum of the two threshold images: 

1m!. m2(X'Y) = MAX ( !"jx,y), ImiX,Y)} (53) 

Table 3. The figures of merit of segmentation with the 
multi- scale threshol ding shown in Fig. 26. 

, 
J 

I 
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Figure 26.Multi-scale thresholding of the restored image 
of the simulated tapetal-like re±1ex (ml=2, 
m2=22) 

where MAX {.} is an operator that is equal to the larger 

one of its arguments, t
m1

(x,y) and tm/ x,y) are two 

threshold images with the neighborhood sizes of m] and 

m2 respectively and t (x,y) is the threshold image , , ml,m2 

for the multi-scale thresholding method. 

Fig . 26 shows the graphical resul ts and Table 3 

specifJes the figures of merit for appJying the multi-scale 

thresholding (with ml=2, m2=22) to the restored, simu­

lated image of which a part is shown in Fig. 23. 

Both oualitatively and quantitatively, the results of 

multi-scale thresholding are a considerable improve­

ment over local thresholdi ng with ei ther one of the 

neighborhood sizes. The number of falsely detected 

objects and the number of mi ssed objects are reduced to 

negligible levels. There is still some cl us teri ng of tiny 

objects but that is expected because of the effects of 

restoration. Some readers might object to the extremely 

simplistic method of threshold determination (average 

value) that was used, and wonder if one could do bet­

ter with another thresholding method. Next, such a 

choice will be considered. It is important to point out 

that the multi-scale strategy is not changing, j ust a 

change in the method of determining the threshold value 

within a neighborhood size is being considered. 

Most of the popular threshOlding methods assume 

that the pixel values originate from two nom1ally distrib­

uted populations, and attempt to fit the sum of two 

Gaussian distributions to the' observed histogram [49, 

p.360]. Four parameters of the two Gaussians have to 

be estimated itemtively . In additim to the sometimes un-
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stable nonlinear minimization of error, the ass umed 

Gaussian distributions are usually not realistic. A much 

better approach is a method published by Otsu [66,67]. 

In this method, the 'between class variance' is calculated 

for every possible value of the threshold, and the one 

causing maximum separation between the resulting class 

of pixels is chosen. The 'between class variance' as a 

function of the threshold is defined as: 

(54) 

where (J'rx;2 is the between class variance, t is the thresh­

old, n
l 

is the number of pixels with intensity less than 

or equal to t, nz is the number of pixels with intensity 

greater than t, and f.ll and J..l
2 

are the means of the two 

classes generated by the threshold. 

The multi-scale thresholding method was imple­

mented using Otsu's method of threshold determination 

instead of the 'average value' threshold. Fig.27 shows 

the result of the segmentation and Table 4 shows the 

corresponding figures of merit. The same image was 

used as for the 'average value' method in Fig. 26 and 

Table 3. 

Comparing Figures 26 and 27, it is observed that 

Otsu's method produces segmentation that is more 'tight' 

(i.e., less clustering, higher value of FM). But, it also 

misses considerably more objects (lower value of PM). 

Overall, Otsu's method does not really result in a better 

segmentation than the simplistic 'average value' method. 

Considering the much increased computational require­

ments of Otsu's method, it is preferable to use the sim-

Figure 27.Multi-scale thresholding of the restored 
tapetal-like simulation using Otsu's method 
(ml =2, m2=22). 
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plistic 'average value' threshold. 

There is currently no means of independently vali­

dating the results of the multi-scale segmentation in real 

reflex images. Therefore, the segmentation results were 

judged by human intuition, as to their ability to reasona­

bly represent what seems to be the bright objects on a 

darker background. As the representative example in 

Fig. 28 shows, the segmentation results do correspond 

closely to that of human intuition. 

In order to test the repeatability of the image analy­

sis and to investigate whether the tapetal-like reflex is 

subject to changes over time, it would be desirable to 

analyze the exact same region of a fundus using di ffer-

ml, m2 FM l FM2 FM3 Flvl4 FM5 

2,22 0.B7 0.74 0.60 0.64 0.92 

Table 4. The fgures of meri t of segmentation for the 
multi-scale thresholding shown in Fig. 27. 

Figure 28.The restored version of an actual tapetal-like 
reflex image and the corresponding result of 
segmentation with multi-scale thresholding 
with ml=2 and m2=22. 

ent slides. Therefore, a highly accurate image registra­

tion method has been developed that allows a compari­

son of the same anatomical region from different source 

images. 

When the same area of the fu ndus is digitized 

from two different slides of the same patient, it is very 

likely that they will not exactly correspond to each 
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other. In general, the differences might be due to: a) 

changes in the underlying anatomy; b) changes in the 

characteristics of the photographic film used; c) changes 

in the distribution and/or the intensity of the illumina­

tion; and d) changes in the geometric relationship be­

tween the imaging system and the fundus. Since the 

goals of registration are to determine the differences 

due to analysis when there are no underlying anatomi­

cal changes, or to detennine changes due to the under­

lying anatomy, one must compensate for the other ef­

fects. Using the model of the imaging system, one can 

compensate for changes in film parameters. The slowly­

varying illumination component can usually be removed 

(if necessary) with simple filtering. Most important of 

all, a registration method is needed in order to deal with 

the effect of the location and orientation of the fundus 

camera with respect to the eye being photographed. 

This registration method should, effectively and accu­

rately, calculate the deformation parameters. 

Before detennining the extent of deformations, it 

must first be known what type of defonnations to ex­

pect. Fundus images to be registered might differ in 

relative rotation because small torsional rotations of the 

eye (<± 10°), depending on the location of the fixation 

point, are possible. Olobal scale (magnification) changes 

can result from the eye being at different distances from 

the camera and from changes in the refraction of the 

patient's eye between visits separated by long intervals. 

Of course, translation (shift) of the image is always 

present because the photographic geometry cannot be 

held constant for any length of time. 

Two simple assumptions are made: (I) nonunifonn 

scaling and (2) parallax effects are negligible. The first 

assumption is based on the fact that the high-resolution 

nature of the data combined with limited computational 

resources forces the consideration of relatively small 

regions of interest (640x640 pixels",5°x5°). Within a 

given small region of interest, the magnification of the 

fundus camera can be considered to be uniform to a 

good approximation, although it is not perfectly unifonn 

acra;s the whole field of view [68]. The second assump­

tion (no parallax) is based on the fact that regions of 

interest are specifically selected void of major retinal 
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blood vessels which appear to be at a different retinal 

depth than the tapetal-like reflex and the retinal back­

ground; the latter two appear to be approximately at the 

same depth. It is assumed therefore that translation, 

rotation and global scaling are sufficient to explain all 

the geometric mismatches to be encountered when reg­

istering fundus images. For methooological convenience, 

the center of each image is used as the center of rotatioo 

and scaling which does not affect the generality of the 

solution [69,appendix]. 

Registration can be fonnally defined as the trans­

fonnation of one image with respect to another so that 

the properties of any resolution element of the object 

being imaged is addressable by the same coordinate pair 

in either one of the images [69]. Accurate registration is 

a prerequisite to many image analysis applications, and 

therefore it has received much attention. In general, 

most registration approaches fall into one of two catego­

ries, local or global. Local, methods determine defonna­

tions locally at many points within the images, whereas 

global methods try to find a single deformation imposed 

upon the whole image. 

Local methods are based on the correspondence 

between a small subset of image pixels that are usually 

called landmark or control points. Of course, neither the 

determination of which pixels to consider as landmark 

points in each image, nor the detennination of the cor­

respondence between landmark points in two images 

are easy. A simple solution to both problems is the 

interactive approach, in which a human expert chooses 

corresponding landmark points in both images. In gen­

eral, the human involvement makes the registration 

process less accurate. Furthennore, in most registration 

applications, the subjectivity of a human expert (as well 

as time and economic considerations) is objectionable 

and a fully automated method is preferable. 

In this application, the objects of interest (patches 

of golden reflections) are relatively large (5 to 12 pix­

els wide) with no distinct boundaries, and noisy, thereby 

making accurate automated or manual landmark-choos­

ing very difficult. Therefore, a global registration 

method needs to be applied to the registration of fundus 

images. 
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In general, the aim of global registration methods 

is to find a single m-parameter transformation that op­

timally registers most of the pixels of the two images. 

For this purpose, a similarity criterion is defined that 

depends on the two images of interest and the m-pa­

rameter transformation. The solution to the registration 

problem is the point in the m-dimensional parameter 

space that achieves the highest value of the similarity 

criterion; in other words, registration is an optimization 

problem. Cross-correlation [70] has been the most com­

monly used similarity measure because of its proven 

discriminatory abilities in the presence of white noise, 

but other measures like phasec-orrelation [71], sum of 

absolute differences and sequential similarity detection 

[72] have also been used. 

The process of finding the highest similarity is not 

always easy. If the parameter space is discretized and 

can be constrained both in resolution and in number of 

dimensions, then exhaustive search of this space is 

possible. A good example is the simple translation-only 

problem, with its 2-dimensional parameter space. The 

classic approach is to calculate the correlation coeffi­

cient for each point in the parameter space (Le. the 

cross-correlation function) and determine the two trans­

lation parameters for which the correlation coefficient is 

maximum [70,73]. Higher dimensional parameter 

spaces can also be approached with an exhaustive 

search strategy, but with obvious penalties in speed. 

. In the case of even higher-dimensional parameter 

spaces, an exhaustive search is usually not practical with 

current-day computational resources. Therefore, so­

called "coarse-to-fine" (hierarchical) approaches have 

been used extensively. In the hierarchical search, the 

algorithms first sample the search space coarsely, find a 

coarse set of parameters, and then they do a full-reso­

lution local search in the neighborhood of the coarse 

parameter set. A hierarchical search is usually favorable 

from a computational point of view, but unfavorable in 

terms of the assurance of a global optimum. 

A two stage method has been developed in this 

study for the case of a translation, rotation and global 

scaling based registration: in the first stage, two 2-di­

mensional exhaustive searches (instead of a single 4-
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dimensional exhaustive search) are used to find a glob­

a~ly optimal registration in a discrete parameter space. In 

the second stage, a local search in the immediate neigh­

borhood of the globally optimal solution is used to de­

termine the optimal solution in a continuous parameter 

space, therefore achieving very high resolution registra­

tion with a reasonable computational effort [69]. 

Recently, Apicella et al. [74,75] have described a 

method called "fast correlation matching" and applied it 

to the registration of multi-modality (PET and MRI) 

. images of the brain. The underlying idea is the transfor­

mation of the images into a domain in which translation 

effects disappear, and rotation and global scaling be­

come simple shifts in two independent coordinate direc­

tions. This is accomplished by a log-polar mapping of 

the Fourier magnitude of the images. Once the rotation 

and scaling are determined (with a simple cross-corre­

lation), translation can be calculated readily from the 

appropriately rotated and scaled original images. 

In theory, the cross-correlation of the log-polar 

Fourier magnitudes can be made as accurate as the 

spatial domain resolution allows it, but, in-practice, the 

increased spacebandwidth requirements of the log-polar 

transform, coupled with limited computational re­

sources, allow only .a relatively coarse (and discr.ete) 

parameter space. However, a computationally feasible 

yet accurate registration can be achieved by a hybrid 

method that uses the correlation of the log-polar Fourier 

magnitude to determine the neighborhood of the global 

optimum in the 4-dimensional discrete parameter space, 

and then, in this neighborhood, uses an adaptive local 

search to refine the parameter values to any desired 

resolution. 

The local search amounts to the multidimensional 

maximization of a similarity measure with respect to 

the four registration parameters. The correlation coeffi­

cient is used as the similarity mea:;ure. The maximiza­

tion is achieved with the "simplex" method [38,p.305], 

which is straightforward, does not require derivative 

calculations, and is extremely robust. 

The accuracy of registration achieved with this new 

method for 640x640 pixel images has been shown to be 

better than 0.07 degrees, 0.1 %, and 0.3 pixels for rota-
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tion, scaling, and translation, respectively. A complete 

and detailed description of the technique, its implemen­

tation and validation have been published previously 

[69]. 

1. Selection of Fundus Images 

Color fundus photographs (slides) used in this 

study were from one eye each of 4 XLRP carriers, who 

are referred to as JR, NW, CR, and TIl The ages at the 

time of photography were 17 (JR), 42 (N'N) , 44 (CR), 

and 48 (TH) years. 

Two neigbboring 5° by 5° (640x640 pixels) re­

gions on the horizontal meridian were considered in 

each eye. The regions, labeled A and B, were centered 

on 7.So and 12.5° temporal to the fovea, respectively 

(Fig. 29). Before the digitization, all available fundus 

photographs imaging the region of interest (2 to 16, 

depending on the patient) were viewed under magnifica­

tion, and several photographs (2 to 4) which displayed 

the highest sharpness of the tapetal-like reflex structures 

were selected. The selected slides were digitized at a 

coarse resolution, printed, and the location of the fovea 

as well as the locations of If}e two regions to be scanned 

were marked. The location of the center of the fovea 

was defined as the geometric center of the darkJy pig­

mented foveal region. The two regions on each selected 

slide were digitized at high resolution and saved to disk. 

Multiple digital images of each region for each patient 

were ranked visually. Specifically, the digital images of 

the region were di splayed on a large (20") graphics 

monitor one after anot~er with a rapid cyclic sequence, 

and they were visually ranked according to the sharp­

ness of the tapetal-like reflex. For all of the following 

analysis and results, orJy the sharpest image of a region 

was used, except for the repeatability test, where the 

sharpest and the second-sharpest images were used for 

each reglon. 

2. Repeatability of Reflex Detection 

Noabsolute validation for the problem of detecting 

individual tapeta l- like reflex patches can be perfonned 

since, at this time, there is no possibility of independem 

confirmation with a different method. Tb ere fore , the 

repeatability of reflex detection among different images 

of the same region, which is a measure for the reliabil­

ity of the image analysis, is considered as a 'relati ve' 

validation method. 

Two images of region B digitized from different 

fundus photographs for each of the four patients were 

used for the repeatability analysis. Each image was re­

stored and segmented. One of the segmented images in 

each pair was transformed according to pl'edetel1TLined 

registration parameters, and after the geometric transfor-

Figure 29.Location of the two regions (A,B) considered. 
Fovea is marked with a bright dot (F), and 
the calibration bar is 1 IIL'1l measured on the 

mati on , both images were cropped to 512x512 pixel size 

to result in full -frame images. The relationship between 

registered pairs are shown in Fig.s 30 and 31. Each 

pixel in these figures is coded with one of four colors: 

white, black, light gray, and dark gray. The two grays 

represent a 'match' whereas the black and the white 

indicate a 'mismatch.' Specific ally, a pixel is light gray 

when in both images it was segmented as background, 

and a pixel is dark gray when in both images it was 
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se,grn.~ntecl as refl ex. J\ pixe l hi white m black when thm 

pixeJ ,\\ 'flS segrnented ctS fe J1 ex in one. irnage and as 

background in the other image, or v ice versa. 

The percentage ·Jf gr8.y p ixels (light and clark), i.e. 

same c:!assiflc Dtio n in both image :> , were 85.4%, 86.8%, 

85.6% a nd 82.:;% of the to tai number of pixels for the 

four image pairs, respectivdy. Differentiation betvveen 

'criticaJ ' mismatches and 'noncritical' mismatches shows 

that the ma'ority of the mismatching pixels can be con­

sidered noncritical b·ec aLlse they simply change the 

boundary of an object; i. e., they make an object a little 

'fatter' or 'thinner.' In contrast, 'critical' mismatches me,\T! 

that there is a com plete object in oneirnage, and the:re 

is no object in the other image. As a side note, figures 

30 and 31 also show the high accuracy of the registra­

ti on method, as tiny errors in registration parameters 

would show up very dist inctly in the 4-color codee! 

images as a bias in the mismatched pixels. 

As the results show, the segmentation of different 

images of the same region are highly repeatable. On the 

average, 85% Clf the tota l number of pixe ls are classi ­

fied equally in two independent images. The majori ty 

of the remaining 15% do not have common classifica­

tion, probably due to slight differences in image qual-

Figure 30.Cumparison of two independent segmenta­
tions of region .B in the ri ght eye of patien t 
TH. 

F igure 3 1.Comparison of two independent segmenta­
tions of region B in the right eye of patient 
t-fW. 

ity . 

3. Radiometric Properties of the Reflex 

The refl ectance of the tapetal-like reflex is a basic 

property that needs to be characterized. Using the meth­

ods descrited in th is study, an absolute refl ectance value 

for the tapetal-like reflex cann ot be determined, but 

instead, a relative refl ec tance can be calculated. The 

rela tive reflectance is defined as the local contrast of a 

patch of re flex in the intensity domain. That is. the 

av ~rage in tensi ty of a refl ex divided by the average 

intensity of the surrounding non-refl ex retina . This 

rne?sme of local contrast would be equal to the relative 

reflectance assuming the illumination is uniform within 

the small region surrounding each patch of reflex. 

Fig. 32 shows the distributions of local contrast of 

the tapetal-like reflex in region B of 4 patients. The 

vertical axis in this fi gure corresponds to the number of 

refi<;;xes detected with the segmentation method, and the 

horizontal axis is the local contrast. The reader is re­

minded that the segmentation process req uires a post­

proc'~ s si ng operation '""here the objects below a local 
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contrast threshold are discarded. This threshold was 

approximately US, therefore values below that are not 

shown in the figure. 

The mean and standard deviations of the distribu­

tions in Fig. 32 are 1.3±O.1 for each one of the four 

patients. This would suggest that the reflectance of the 

tapetal-like reflex is on the average 30% higher than the 

reflectance of the neighboring non-reflex retina. Since 

the linearization required for the restoration process was 

shown to reduce the intensity domain amplitudes of 

some peaks, the actual reflectance of the tapetal-like 

reflex might actually be even higher. 

4. Geometric Properties of the Reflex 

Reflex Size 

One of the important questions that may be raised 

about the tapetal-like reflex is: "Does the reflex consist 

of randomly sized patches, or is it based on multiples of 

a unit sized patch?" An accurate answer to this question 

might increase understanding of the origin of the reflex. 
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Figure 32.Local contrast distributions for region B of 
patients CR, TH, NW, and JR. 

One possible method of analyzing the distribution 

of particle size in segmented tapetal-like reflex images 

would be to simply calculate area statistics of the de­

tected reflex patches. However, such . a method would 

not be able to differentiate between large blobs, long 

thin straight objects, and long thin convoluted objects. 

To derive reflex patch size distributions, a method 

called 'granulometrics' was used, which is derived from 

mathematical morphology [81]. In this method, seg­

mented images are filtered morphologically with struc­

turing elements (stelts) of ever increasing size. The 

number of pixels remaining after the morphological 

filtering is recorded as a function of stelt size. When 
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the pixel counts are normalized by the number of origi­

nal object pixels, and subtracted from 1, a cumulative 

probability function results. The derivative of the cumu­

lative probability distribution is the probability density 

function (pdf) of particle size in a given segmented 

image. 

Fig. 33 shows the plots of pdf for the granulom­

etric analysis of region B in four patients. The horizon­

tal axis is the diameter (in pixels) of the disc-shaped 

stelt used for morphological filtering. The values plotted 

for each size give the probability of a pixel to belong to 

an object of no-less than that size, and less than the next 

larger size. The mean and the standard deviation values 

were 6.3±1.4, 5.9±1.4, 6.6±1.5, and 6.0±1.4 pixels for 

patients CR, TH, NW, and JR, respectively. 

Granul~metric analysis suggests that in region B of 

the fundi of 4 XLRP carriers, segmented tapetal-like 

reflex images result in objects with a basic 'size' of 

approximately 6 pixels which is equal to 14~m on the 

retina. It is important to note that the previous statement 

does not mean that the segmented structures are all 6 

pixel diameter discs. Instead, it suggests that the most 

likely dimension of an arbitrarily shaped object is 6 

pixels or an integer multiple of 6 pixels. For example, 

a 'worm-like' structure made from 6 pixel diameter 

discs put next to each other on an s-shaped line can be 

considered an object with a basic 'size' of 6 pixels. An-

, other example would be a 'y-shaped' structure with its 

linear segments having the width of 6 pixels. 

Reflex Directionality 

One of the first impressions when looking at a 

tapetal-like reflex is that it radiates from the fovea to-

0.6 
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Figure 33.Granulometric analysis of segmented images 
from region B of patients CR, TH, NW, and 
JR. 
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wards the periphery. This impression may be due to two 

possible reasons: either the reflex consists of small elon­

gated objects that have a preferred orientation towards 
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the fovea, or it consists of randomly oriented and shaped ;t~~~~:::::==~:~=~=====I=-
small objects that are located such that spaces in be- F 

tween reflexes (the retinal background) have a preferred 

orientation towards the fovea. Just as in the previous 

section, mathematical morphology is used to investigate 

the possible directionality of the tapetal-like reflex. 

For the directional analysis, the 'bounding angle' of 

a region in the fundus is defined as the angle between 

two lines that originate at the fovea and intersect the 

two most extreme pixels of the region being analyzed 

(Fig. 34). Three lines dividing the bounding angle 

equally are used to divide the region of interest into 

four subregions. Each one of the subregions is assigned 

a 'foveal orientation' as the direction along the line that 

bisects the angle between the two lines defining the 

subregion. Each subregion was morphologically filtered 

with a line-shaped structuring clement of 21 pixels 

length, 1 pixel width and a sequence of orientations. 

The orientations were chosen with 5 degree increments 

from -90 degrees to +90 degrees, where 0 degrees 

corresponded to the 'foveal orientation.' 

Fig.s 35 through 38 show the percent of object 

pixels left after the morphological filtering as a function 

of structuring element orientation in the case of four 

patients. In each graph, 4 line plots represent the results 

obtained from the four subregions. The results show a 

definite orientation preference of the objects making up 

the tapetal-like reflex: in region B of the four patients 

analyzed, elongated objects have a preferred orientation 

towards the fovea. 

6. Biological Implications 

A basic assumption in this study is that the tapetal­

like reflex results from the partial expression of the 

same gene defect that causes XLRP in men. A further 

assumption is that the tapetal-like reflex originates in or 

near the retinal pigment epithelium (RPE) and photore­

ceptors, because XLRP is known to cause the degenera­

tion of these cells. Support for the second assumption 

arises from clinical observations that place the reflex in 

Figure 34.Definition of bounding angle, and how it is 
used to divide up a region of interest. (F) is 
the location of the fovea. 

the 'deep retina' [18,20]. Although the exact basis of the 

tapetal-like reflex cannot be determined by the results 

presented in this paper, it is interesting to analyze 

whether these results can support any of the existing 

theories about the origin of this retinal reflection. 

The digital image analysis presented has led to the 

conclusions that the reflex can have a unit size of 6 

pixels or smaller (see below); it is made up of elongated 

clusters that are oriented toward the fovea; and in one of 
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the examined subjects, it did not undergo dramatic 

changes in appearance over at leat two decades [85]. 

Assuming the reflex is not of extracellular origin, then 

it must derive from RPE, rods or cones. The foveal ori­

entation of the reflex patches weighs against an RPE 

cell origin. In carriers of X-linked ocular albinism, the 

patches of hypopigmented RPE cells are oriented to­

wards the optic disc [86] and there is evidence that this 

orientation results from a pattern of embryological de­

velopment [86]. On the other hand, a unit size of 6 pix­

els (14 ~m) is consistent with the size of RPE cells in 

the retinal region studied [87]. When some of the sharp­

est tapetal-like reflexes are inspected visually, however, 

some tiny (2x2 pixel) bright reflections persist in mul­

tiple images of the same region. Because of their very 

small size, the restoration process smooths these struc­

tures out and therefore they do not show up in the 

analysis. Such small sized objects would not be consis­

tent with an RPE cell.hypothesis. 

A photoreceptor origin to the reflex may be more 

plausible. In the vicinity of region B (12 degrees tempo­

ral to the fovea), rod inner segments have approximate 

diameters of 2 11m and cone inner segments are ap­

proximately 5 11m in diameter. In this region, rods are 

close to their highest con.centration (\20,000 rods/mm2) 

whereas cone densities are much lower (7000 cones! 

mm2
) [88]. In terms of the digitized fundus images used 

in thi s study, the rods correspond to less than 1 pixel 

sized structures distributed almost I rod per pixel. 

Cones would correspond to approximately 2x2 pixel 

structures distributed with a center-to-center distance of 

about 5 pixels. A cone hypothesis is favored because 

we recently found that the earliest detectabl functional 

abnormality in affected family members (men and car­

riers) of a large XLRP pedigree is in the cone photore­

ceptor system [89]. Furthermore, most of the carriers in 

this family had a tapetal-like reflex. It is not known 

(and would be interesting to evaluate) whether cone 

function of carriers deteriorates over time in regions 

where the reflex appears to be stable over decades. 

CONCLUSIONS 
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In this study, a noninvasive imaging approach was 

taken to systematically investigate the tapetal-like reflex 

seen in carriers of XLRP. Digital image processing 

methods were developed and applied to the analysis and 

understanding of this reflex. Several previously un­

known properties of the reflex were quantified, and 

based on these properties a preliminary hypothesis was 

suggested about its origin. The methods developed in 

this study are general in nature and therefore can be 

applied to a broad range of image analysis problems. 

The first aims of this study was the determination 

of a mathematical model for the relationship between 

the light intensity leaving the fundus and its recorded 

image, including all four components of the imaging 

system: eye, camera film, and scanner. The model, 

which combines linear blurs, nonlinear point processes, 

and signal-dependent noise sources, is accurate, as vali­

dated with several experiments, and it showed that the 

eye and the fundus camera are the imaging system 

components causing most of the blurring, whereas the 

film is responsible for most of the image noise and the 

nonlinearities . Although the parameter values and func­

tional relationships of the model were developed 'for a 

specific imaging system, the equations for the model 

remain valid for most other film-based imaging systems. 

The current trend towards direct digital imaging does 

not change the fact that film-based imaging is still the 

most common mode both in ophthalmology and in radi­

ology. Furthermore, in medical and non-medical fields a 

major fractim of the photographic recOlds collected over 

the past century might not be reproducible. Therefore 

good models of film-based imaging systems are very 

useful in understanding and analyzing the full informa­

tion content of these records. The concept presented in 

this study is, however, not limited to photographs. 

Replacing the photographic film properties with the 

characteristics of other image detectors and electronic 

screens, the approach remains valid and clearly shows, 

how establishing the mathematical relationship between 

pixels in the image and the originating biological struc­

tures can improve upon medical image' analysis by per­

mining adequate image restoration. 

A major aim of this study was the development of 
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a digital image restoration method which would reduce 

the image noise, recover the diminished high-frequency 

information, and invert the nonlinearities. The restora­

tion method is based on the simplification of the com­

plete nonlinear imaging system model to a generalized 

linear model. Restoration results showed the expected 

suppression of noise, recovery of high-frequency infor­

mation, and inversion of nonlinearities. The assump­

tions made in simplifying the imaging system model 

were application-specific but the methodology of the 

simplification was very general and should be appli­

cable to most image restoration problems considering a 

simplified model is usually necessary because of com­

putational limitations. Furthermore, in optical imaging, 

the properties of biological structures of interest are re­

lated to the intensity of light originating from them. 

Therefore, analysis based on the estimates of the origi­

nal scene intensity, as done in this work, is a consider­

able improvement over the usual approach of simply 

smoothing a digitized image. 

In order to automate the detection of the tapetal­

like reflex pafches, a novel object-background segmen­

tation method, called multi-scale segmentation, was 

developed. The method is based on local thresholding of 

images using two differently sized neighborhoods 

around each pixel; a pixel was considered to be part of 

an object only if it was above the thresholds calculated 

within both of the neighborhoods. This segmentation 

method allows good separation of distinct objects as 

well as a low rate of falsely detected objects. Its per­

formance was quantified using simulated images and 

several object-based figures-of-merit which were more 

informative than classical pixel-based measures. The 

results of the segmentation were shown to be highly 

repeatable when applied to different images of the same 

region of the fundus. The multi-scale segmentation 

method is simple, fast, reliable, and general. It can be 

adapted to the segmentation of other images where there 

are many variable intensity objects distributed on a 

variable intensity background. For example cell number, 

shape and size analysis in histological specimens is an 

application where multi-scale segmentation may be 

applied. 
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One of the important aims of this study was the 

development of a method that achieves high accuracy 

registration of fundus images. The registration is based 

on the combination of two optimizations: a global op­

timization that determines the best registration parame~ 

ters in a 4-dimensional discrete parameter space fol ­

lowed by a local optimization that refines the registra­

tion parameters within a 4-dimensional continuous 

parameter space. The registration method was shown to 

achieve an accuracy of better than 0.07 degrees in ro­

tation, 0.1 % in scaling, and 0.3 pixels in translation for 

real fundus images, and it was shown to be efficient 

enough to be used on IDMcompatible personal comput­

ers for the case of 640x640 pixel images. Similar to the 

segmentation method, the registration method was very 

general in nature, and is applicable to the registration of 

any medical and nonmedical images where the defor­

mations can be approximated with the three assumed 

transformations translation, rotation, and scaling. 

The methods developed in this study were applied 

to fundus photographs in order to perform an analysis 

of the tapetal-like reflexes seen in XLRP and to inves­

tigate their origin. The results showed that the reflec­

tance of the patches that make up the tapetal-like reflex 

were on the average 30% higher than the reflectance of . 

the neighboring non-reflex retina. Mathematical mor­

phology methods applied to segmented images sug­

gested that the reflexes origin from elongated structures 

with a dimension of approximately 14J.1m and a pre­

ferred orientation towards the fovea. Based on these 

results and other known facts about the tapetal-like 

reflex and XLRP, a cone photoreceptor origin is fa­

vored as the source of the reflex. 

This is the first study, known to the authors, ana­

lyzing features seen in high resolution digital fundus 

images. The methods developed for automatic, repro­

ducible detection of tiny patches of the tapetal-like 

reflex from fundus photographs has an immediate clini­

cal application: the quantification of the progression of 

the tapetal-like reflex as well as many other fundus le­

sions that result from systemic or ocular diseases. 

The presented techniques for image segmentation, 

registration, and morphological analysis can also readily 
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be adapted to other areas of medical imaging. Some 

examples of possible applications in the medical field 

include images from multiple modalities (e.g. MRI vs. 

PET) to correlate metabolic activity to anatomic struc­

ture and images of cancerous lesions (e.g. dermatologi­

cal) for quantitation of growth or regression. 

In diagnosis and treatment of cancer, automated 

segmentation and multimodality image registration are 

critical research topics that have not yet found adequate 

solutions. For the multi modality detection and deline­

ation of neoplasms - important e.g. for adequate ap­

proaches to serial evaluation 01 tumor response to treat­

ment - reliable automatic image processing (in contrast 

to currently used manual delineation of tumor margins) 

would facilitate the process of volume measurement, 

minimize errors, and would make available the com­

bined diagnostic power of computerized tomography, 

positron emission tomography, conventional and meta­

bolic chemical shift magnetic resonance imaging, and 

immunoimaging. 
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