
PRAGMATIC TECHNIQUES FOR PROGRAM ANALYSIS AND VERIFICATION*

Erhard Ploed e r e d e r

Harvard University

Cambridge, Mass. 02138 USA

Abstract

The Program Development System (PDS) is a
collection of programming tools created as an
extension of the ECL programming system23. It
contains components that assist the progr~r~er
in the definition and modular structuring of
large programs at different levels of
algorithmic abstraction. These components are
supplemented by a program analysis package that
produces an information pool to be used for such
tasks as source-to-source optimization,
semi-automated progrmn documentation, fault
detection and program verification.

This paper describes the core of the
analyzing package, the Symbolic Evaluator. In
its implementation we have incorporated
pragmatic methods for handling data sharing
patterns, and for characterizing and reasoning
about the behaviour of loops and procedures.

The impact of these methods upon program
verification techniques is briefly discussed.

I. Introduction

Despite major advances in the science of
software engineering, the process of developing
reliable, efficient, and transparent software is
still very frustrating and often of rather limited
success. We consider the absence of software
t~ols assisting the programming process beyond a
very elementary level to be the major cause for
this situation. Lacking these tools, we are all
too frequently inclined to undisciplined
progr~ing style.

In recent years various techniques have
evolved to combat these problems. Proposals range
from the educational level of programming
disciplines (Bauer 2, Dah112, Dijkstra13, Wirth32)
to the development of linguistic constructs in

programming languages. These constructs support
the progra~ner in an improved specification of his
intentions and force him to comply with certain
restrictions el iminating language features
considered harmful to program reliability.
Examples include work on specification languages
(e.g., Balzerl), modules and module interfaces
(e.g., Parnas 24, Wirth33), abstract data types
(e.g., Guttag 16, Wulf34, Liskov22), elimination of
aliasing (e.g., Homing 18), restricted access to
global variables (e.g., Shaw 26) and so on.

Although these constructs and constraints can
contribute significantly to the reliability of
programs and facilitate the development of more
sophisticated programming tools, there are
limitations to this approach.

First, only so many restrictions can be
imposed before a language becomes clumsy to use.
Second, not all the proposed constraints can be
enforced by purely syntactic means. For example
the banning of sharing among reference parameters
cannot be enforced syntactically whenever sharing
depends on program values. Third, there are few
language features that are not detrimental to
program reliability, if used in undisciplined
ways. Even the elementary concept of variables
has been considered harmful (Bauer3).

While we believe in the importance of
modularly structured and encapsulated software, as
sup~x~rted! by o u r Program Development System
(PDS)9, we have adopted the viewpoint that, if
applied cautiously and properly documented, a much
wider range of language features than generally
assumed can be used safely for the development of
reliable and transparent software.

Therefore in our research we have emphasized
pragmatic techniques for a powerful program
analyzer permitting a wide spectrum of language
features some of which have previously created
substantial problems for practical program
analysis.

*Research reported herein was supported in part by
Naval Electronics System Command
Under Contract NOOO39-78-G-OO20

Usually the notion of program analysis has
been directly linked to methods of program
verification. We have chosen to separate these

Reprinted from PROCEEDINGS OF 4th SOFTWARE
ENGINEERING, September, 1979

63

CH1479-5/79/0000-0063500.75 O 1979 IEEE

tasks. We scan the input program and attenpt to
derive a precise characterization of the values
computed and side-effects created by the
individual instructions of the program. Symbolic
expressions represent the values of data-objects
and computations occurring in the program.

We use the phrase "symbolic evaluation" to
describe this process. The results of the
analysis are collected in a program data base,
which can be shared by the various tools that
assist the program development. ~mong these tools
are, or will be, the derivation and interactive
validation of simple program specifications (e.g.,
lists of free variables in procedures), fault
detection, program verification, interactive
debugging, source-to-source optimization and
static performance analysis.

The notion of symbolic evaluation of programs
is not a novelty to the software engineering
field. Various groups have proposed related
approaches to derive and reason about symbolic
expressions that describe program values occurring
during an arbitrary evaluation of the program
(Bayer 4, Clarke I0, ~bwden19, King21).

Our efforts (CheathamS), however, differ
substantially from earlier work on symbolic
evaluation :
I) We perform a static program analysis. Each

instruction in the program is examined only
once. Conditionalities that arise from control
branches are absorbed in conditional symbolic
expressions representing program values in join
contexts.

2) Our work has focused on progr&as written in
ELI, the base language of the ECL-system23.
This language has compound data structures,
pointers, facilities for data type abstraction
and syntax extension, generic modes, procedure
variables and a number of ways to exploit
storage sharing (through reference parameters,
pointers, identity declarations, and through
"locative" results of procedure and function
calls, blocks and other expressions in the
language). The interesting semantic features
of most higher-level languages are contained in
ELI. Therefore our analyzing techniques are
conceptually applicable to such languages as
well.

3) We attempt to analyze the behaviour of loops
((~eatham6).

4) We derive templates that characterize the
result and side-effects of user-defined
procedures and we can thereby assess the
effects of individual calls efficiently
(Ploedereder25). This ability is of crucial
importance for the applicability of our methods
to large program systems.

The next section contains a brief introduction
to the Symbolic Evaluator we have implemented for
a subset of ELI. We then focus on the analysis of
procedures.

A more detailed description of the Symbolic
Evaluator and its c~nponents is provided by
CheathamT, 8, Ploedereder 25 and Townley28, 31.

II. The Program Analysis Package

II.1. The Progr&a Data Base

The program data base contains the results of
the symbolic evaluation. It has four basic parts,
called the context grapO, the store, the shadow,
and the set of templates.

A context is a basic block of the program, a
sequence of computations with no control branching
in or out. Loops and procedure calls are treated
as concurrent assignments to all affected
variables and heap-objects. The context graph
encodes all possible sequences of contexts; the
analysis of loops and procedure bodies produces
separate context graphs. Nodes in these acyclic
graphs created for ccntexts after a branch
operation contain the branch-enabling predicate.
Edges in the graphs link cbntexts to their
immediate predecessor contexts.

In order to distinguish among program points
within a single context, we use a second
coordinate called "time". It is incremented
whenever an assignment or a variable declaration
is evaluated.

We model the store by a scoped environment and
a heap each consisting of a set of locations. For
each variable we postulate a location in the
scoped environment. Its representation contains
the name of the variable, its mode and dimensions
described by symbolic expressions, and a
scope-label. The latter is used in conjunction
with a scope-tree to resolve name-conflicts a~ong
declared variables. The scope-tree encodes the
block structure of the program or procedure.

In addition, a location contains a list of
value cells. Each value cell holds a symbolic
expression for a value assighed to the location at
some point in the program and a context tag (i.e.,
context and tim e) which identifies this point.

Locations in the heap are allocated for newly
created heap-objects; the names in these locations
are internal tokens, which can be assigned to
pointer-variables of appropriate mode. Heap
locations also contain mode and dimensions as well
as a list of value-cells.

64

Snaring among locations (as induced by
reference parameters or identity declarations) is
represented by share-links. These links may be
augmented with context tags or predicates to
reflect conditional sharing. ~I also permits
sharing of a variable with components of a
compound object; such partial sharing is recorded
by associating symbolic selectors with the
appropriate share-links.

The value of a component of an object is
always recorded as part of the value of the entire
object rather than in a separate location.
Special symbolic expressions provide the basis for
the correct representation of ca.pound values and
their components.

The context graph, the context tags in value
cells and the share-links among locations provide
the basis for the correct derivation of the
possibly conditional value for a variable or
heap-object at any point in the program.

The shadow is a computation tree
representation of the input program in which
implicit computations (e.g., dereferencing of
pointers, type conversion, etc.) are made
explicit; each program expresslon in the shadow is
tagged with shadow information that describes the
locative result ("L-value") of the expression and
relates it to the context graph and the store.
For expressions that return results on the stack
not accessible via variables (e.g., arithmetic
expressions) the shadow information also contains
an R-value. Thus, there is no need to create
locations in the store for intermediate results of
nested expressions.

The set of templates will be discussed in more
detail below. A tsnplate esseatially is a
separate program data base for a procedtme, plus
information about the applicability of the
template with respect to different call
environments.

II.2. The Symbolic Evaluator

The Symbolic Evaluator has four major components:

A) The Symbolic Interpreter is the controlling
component of the package, It scans the input
program sequentially and builds the program
data base. It consists of a set of handlers
each of which models a built-in instruction or
group of instructions of the language, such as

arithmetic and boolean functions, declarations,
selections on compound objects as well as
control functions (branches, blocks,
conditional statements, etc.). These handlers
also detect certain potential program
exceptions (e.g., selectors out of range, mode
incompatibilities, dereferenced null-pointers)
(Townley30). Special analyzers are called
whenever loops or user. defined procedures are
encountered.

B) The Simplifier reduces and normalizes the
symbolic expressions generated by the Symbolic
£valuator. It assumes the properties of
operators in their idealized domains, e.g.,
associativity, commutativity, transitivity etc.

C) The Loop Analyzer replaces the values in all
locations referenced but not declared within
the loop by tokens, thus reflecting our
ignorance about the values in these locations
at the beginning of any but the first cycle of
the loop; it then symbolically evaluates the
loop statements, retrieves the final values in
all these referenced locations and calls on
Solvers to determine a closed-form represen-
tation for the actual value to be stored in
these locations after the loop is exited.
The values before the loop, the tokens at the
beginning of the loop and the corresponding
symbolic expressions after the interpretation
of the loop statements represent an
n-dimensional first-order recurrence relation
with a boundary condition described by the
ex it-enabl ing predicate.
Surprisingly many recurrence relations, even
those involving conditionals, can be solved in
closed form by our methods ((~leatham7). If
solutions are found, they are assigned to the
respective locations ; otherwise the values in
the affected locations are represented by a
recursively defined symbolic expression (using
a l&~bda-function8). To a limited degree, we
are able to manipulate and reason about these
recursive definitions as well.
As a side-product important for verification,
the solvers determine symbolic expressions for
the values at the beginning of the k-th cycle,
where k is a token created by the Loop
Analyzer. We denote this set of values, which
are functions of the token k, as the general
solution-set of the loop. We also obtain a
symbolic expression for the total number of
cycles taken by the loop.

D) The Procedure and Call Analyzer derives and
applies templates that characterize the
behaviour of user-defined procedures. Since
this component is of crucial importance for the

65

practicability of the Symbolic Evaluator for
large program systems, we will discuss its
underlying principles in the following section.

11.3. The Procedure and Call Analyzer

There are two basic methods for analyzing
user-defined procedures, commonly kno~q as the
"copy rule" and the "adaptation rule".

The copy rule corresponds to a textual
expansion of each call by the respective procedure
body augmented with instructions simulating the
par&meter passing. Although easy to implement,
this rule is expensive in practice, since each
call requires a re-analysis of the procedure.
Also, it is restricted to non-recursive
procedures.

The adaptation rule analyzes the procedure
only once at declaration time and produces (or
verifies) a complete characterization of the
result and side-effects of the procedure
applicable to any call. This characterization
(henceforth called a template (Hantler17)) has to
be indeterminate with respect to influences
exerted by the call-environments. At call time
the template is retrieved and instantiated (i.e.,
the indeterminacies of the tamplate are resolved
up to indeterminacies in the call envirorL~ent).

An analysis based on abstractions over all
possible call-enviromnents requires considerable
effort. In particular, if tokens are not
sufficient to represent the missing information
(e.g., values of free procedure variables,
aliasing) case-distinctions over all possibilities
have to be made; the latter tend to make this type
of analysis too costly to be practical.

In order to prevent the devastating ,effects of
worst-case assLLaptions, one can impose
restrictions on the language and require
additional specifications for procedures.

We felt, however, that the required
restrictions would be too stringent to be
acceptable. Furthermore, in the spirit of
interactive program development we prefer not to
be dependent upon additional specifications during
the process of symbolic evaluation. We rather
consider them as voluntarily provided and possibly
incomplete information, which is to be verified
and completed in interaction with the programmer.

Hence, we have devised a strategy that strikes
a balance between the generality and the
complexity of the produced template. While we
derive some information from a particular

call-enviror~ent, we produce a template that is
general enough to be applicable to subsequent
similar environments. For substantially different
call-environments we may have multiple templates.

We therefore distinguish the processes of
a) Procedure Analysis, which produces templates,
b) Tamplate Matching, which determines whether an

existing template is applicable to a given
call-envirom~ent, and

c) Call Analysis, which applies the retrieved or
newly generated template.

In order to demonstrate our methods, we define
a m~all example in EL1-1ike notation:

BEGIN
DECL PAIR:MODE LIKE VECTOR(2, IHT);
DECL SWAP:ROUTINE LIKE

EXPR(LEFT:INT SHARED, RIGHT:INT SHARED)
BEGIN

DECL SAVE:INT BYVAL RIGHT;
RIGHT := LEFT;
LEFT := SAVE;
IF LEFT # RIGHT THEN

TRACE[I] := CONST(PAIR OF LEFT, RIGHT);
I :=I+I

FI
END;
. . o . .

DECL TRACE:SEQ(PAIR) SIZE 10;
DECL I:INT BYVAL I;

o . . . t

calls on SNAP

END

This exemple introduces a mode-valued variable
PAIR and a procedLre ~AP, which exchanges two
integers and keeps track of all relevant swaps on
a free variable TRACE. Parameters are passed by
reference.

The Symbolic Evaluator notes the existence of
these variables and of the procedure constant.
Upon encountering a call, it evokes the programs
for Procedure and Call Analysis. At this point
the information required about the call-
environment is readily available. Nevertheless we
analyze the procedure as if the call-environment
were unknown. Only those facts that, when
general ized, create undue complexi ty, are
re t r ieved and used in generating a template o f
restricted applicability.

bb

II.3. I. ,Procedure Analysis

The procedure analysis achieves relatively
inexpensive generality in the produced templates
by the following techniques:

a) Pseudo-locations represent the store-locations
of free variables, formal parameters and
accessible heap-objects. The symbolic
evaluation of the procedure body treats these
pseudo-locations as locations created in an
imaginary block enclosing the body. In order
to assess the effects of individual calls they
are (conceptually) super-imposed on the
corresponding locations in the call-
environment.
In our example pseudo-locations are created for
the parameters LEFT and RIGHT, and for the free
variables TRACE, I and PAIR.
Pseudo-locations make the template independent
of the locations associated with actual
parameters and free variables in the
call-environment. Thus a template generated
for a call ~4AP(A,B) may be applicable to a
call SWAP(C,D) or S~AP(E[j],F[J,K]) or even
SNAP(findpartner(B),B), where the procedure
"findpartner" returns some locative result. If
the pseudo-location covers only part of the
call-environment location (i.e., for selections
as actual parameters), the derived side-effects
are recorded during call-analysis as
assignments to components of the call-
enviro~nent location.

b) Tokens are created to represent the initial
values stored in pseudo-locations. These
tokens are the sine-qua-non of general
templates. They are instantiated during call
analysis with their actual values, unless the
actual value has been required during procedure
analysis in order to produce meaningful results
(e.g., the values of sub-called procedure
variables). The latter situation is referred
to as "forced instantiation"; the applicability
of the template becomes dependent upon this
instantiated value.
In our example five value-tokens, say LEFT*,
RIGHT*, TRACE*, I* and PAIR*, are generated and
allocated as the values of the five
pseudo-locations in the initial context of the
procedure body (i.e., value-cells are added to
these locations). During procedure analysis
the token PAIR* will be forcibly instantiated,
since we do not wish to abstract from modes.

c) Tokens are created to represent the dimensions
of free variables, parameters and heap-objects.
Appropriate procedure entry-conditions are
generated to prevent illegal component

selections within the procedure body.
In our example only the free variable TRACE is
of compound type. Its dimensions are
represented in the pseudo-location by tokens,
say DTI* and DT2*. A procedure entry-condition
"I* GT 0 AND I* LE DTI*" is generated to
validate the selection TRACE[I] in the
procedure body.
These tokens make the template independent of
the size of arrays. .They a r e especially
important for multi-dimensional parameters,
e.g., the template for a procedure that
exchanges two rows of a matrix will be
independent of the size of the matrix.

d) The predicates and selectors for conditional
and partial sharing among pseudo-locations are
also represented by tokens. Since the actual
values of these tokens are functions of values
in the call-environment, these abstractions
rarely prevent simplifications during procedure
analysis.
If a template were generated for a call
SNAP(A[M],A[N]) with a call-environment in
which "M=N" symbolically evaluates to neither
'true' nor 'false', conditional sharing takes
place between the pseudo-locations of the
formal parameters LEFT and RIGHT. This
condition is represented in the share-link by a
token, say SP*.
The resulting template is also applicable to
the calls S~;AP(A[K],A[J]), SWAP(A,A) or to
SWAP(A,B) with unrelated A and B, since the
token SP* can be instantiated with the symbolic
result of "K=J", 'true' , or 'false',
respect ively.
If a template is generated for a call
.~4AP(TRACE[4,1],TRACE[5,2]), the formals LEFT
and RIGHT are partially shared with the free
variable TRACE. We abstract from the actual
values '4', 'I', '5' and '2', and obtain a
template equally applicable to
SWAP(TRACE [7, 2], TRACE [4, I]).

The modes of free variables ++ (and of actual
parameters whose corresponding formals have
generic modes), the existence of sharing relations
among free variables and parameters passed by
reference, and forcibly instantiated values are
taken from the particular call-environment. The
names of free variables are collected during the
symbolic evaluation of the procedure body.

++ We are dealing with a dynamically scoped
langdage; static scoping rules could be
acccmmcxlated with some minor modifications to the
Symtx>lic Evaluator.

67

Since this information tends to be unchanged
in subsequent call-environments, expensive
generality is avoided, while the resulting
template is still applicable to a large set of
different call-environments.

We call the set of pseudo-locations a
"pseudo-environment". It provides sufficient
information for the symbolic evaluation of the
procedure body, generating a separate program data
base for the procedure.

Side-effects of the procedure are determined
by comparing the initial and final values in
pseudo-locations for free variables, parameters
passed by reference and accessible heap-objects.

The produced template contains the collection
of applicability constraints, the program data
base and a description of the derived side-effects
(the returned result is given in the shadow of the
body).

In our example the relevant contents of a
template produced for a call S~AP(A[J],A[K]) can
be described as follows:

TB~PLATE FOR (the value of) ~AP:

Applicability constraints:

I) The free variable TRACE must have type
SEQ(VECTOR(2, INT))

2) The free variable I must have type INT
3) The free variable PAIR must have type MODE and

value VECTOR(2, INT)
4) The actual parameters for LEFT and RIGHT must

be shared under the condition SP*
5) No other sharing relations are permitted

Side-effects in pseudo-locations:

LEFT : initial value: L* , final value: R*
RIGHT: initial value: R*

final value: cond(SP*, R*, L*)
I : initial value: I*

final value: cond(SP* OR R*=L*, I*, I*+I)
TRACE: initial value: T*

final value: con4(SP* OR R*=L*, T*,
store(T*, I*, vector(R*, L*)))

Result: NOTHING

Entry-condition to be verified:

SP* OR R*:L* OR I* GT 0 AND I* LE DTI*,
where DTI* is the extent of the free
TRACE in its first dimension.

variable

END OF TB~PLATE

To encourage the hierarchical development of
programs, we permit the user to specify procedures
with bodies omitted. In these settings, we expect
the user to provide a complete list of affected
free variables. A call on a defaulted procedure
is simulated by the introduction of tokens for the
values in all affected locations of the
call-environment. If the user wishes his program
to be verified, he has to supply specifications
about the result and side-effects of the defaulted
procedure sufficient for deriving the correctness
proof in all call-environments. The proof of
these specifications is performed when a full
definition replaces the defaulted procedure body,
and is symbolically evaluated.

For example, a defaulted version of the
SWAP-procedure could be

EXPR(LEFT:INT SHARED, RIGHT:INT SHARED)
DEFAULT

CHANGES(TRACE, I) ;
USES(PAIR)

END

The symSolic evaluation of the defaulted
procedure body adds pseudo-locations for the
specified free variables to the pseudo-
environment. The final values in locations for
parameters and for affected free variables are
represented by new tokens unrelated to the tokens
for the corresponding initial values.

The defaulted template for .~4AP produced by
the procedure analysis, is the previously
displayed template without the derived
entry-condition, and with the final values in
pseudo-locations replaced by new tokens.

II.3.2. Template Retrieval and Call Analysis

The retrieval of a template for a
call-analysis has to ensure the validity of its
application :

Forcibly instantiated values, modes and the
existence of sharing relations, on which the
template is based, have to match the current
call-environment, unless it can be shown that
certain discrepancies do not influence the
validity of the template. A typical irrelevant
mismatch we detect arises from differences in
sharing relations among pseudo-locations that are
referenced but never assigned to in the procedure
body. For tokens, arbitrary symbolic expressions
can be substituted.

68

If a match is successful, the symbolic
expressions representing the actual values for
tokens in the template are determined. Some
tokens may have no corresponding value, e.g.,
tokens for final values in defaulted tenplates, or
tokens for the results of input operations within
the procedure body; their actual value is a new
token. The template tokens are then instantiated
in tne descriptions of the result of the procedure
and of the final values in pseudo-locations. The
Call Analyzer takes these instantiated values to
model a concurrent assignment to the affected
(components of) locations in the call-environment,
and to describe the result returned by the call.

If no matching template exists, a new tenplate
is created by performing a procedure analysis,
unless we are dealing with a recursive sub-call.
In the latter situation the application of a
defaulted template is simulated.

The tokens introduced by the application of a
defaulted template for a recursive subcall,
combined with the respective tokens generated for
the still pending procedure analysis, the final
values in the corresponding pseudo-locations, the
values at the time of the subcall and the enabling
predicate pf the subcall provide the basis for
reasoning about the results of recursive
procedures. At the present time we have no
general solvers for recursive procedures; however,
for regular recursion many of the loop solving
techniques are applicable.

While our method of analyzing procedures has
been motivated by the desire to Rave no
restrictions on storage sharing and to proceed
with minimal a-priori specifications about the
program, it allows us to model such language
features as generic modes, procedLre variables,
parameters of type procedure, a simulated call-
by-name parameter mechanism and a user-accessible
evaluating function.

In addition, the presented techniques are
immediately transferable to the analysis of
rewriting rules ++ (Conrad 11) as provided by the
PDS. This would not be the case, if we had
sharing restrictions and specification
requirements.

++ Rewriting rules provide a very flexible system
for textual macros.

III. An Application: Program Verification

The principles of symbolic evaluation have
far-reaching consequences for the methods of
program verification.

We have implemented a small program verifier
based on the results provided by the Symbolic
Evaluator. In this section we discuss the
differences between our approach and other, more
conventional verifiers (e.g., Elspas 14, Good 15,
Igarashi 20, Suzuki27).

Asserted predicates are symbolically evaluated
by special handlers in the Symbolic Interpreter.
The resulting symbolic expressions are derived
from the program data base at the point where the
assertion is given, but once established, they are
invariant with respect to assignments in the
program, since assignments affect only the
location-value binding, but never symbolic
expressions.

Hence the asserted symbolic expressions can be
propagated forward and backward across program
expressions without being changed.

The propagation out of and into branches of
conditional expressions has to establish the usual
logical connection with the branch-enabling
predicate as provided by the context graph.

The tokens appearing in symbolic expressions
asserted within loops represent program values at
the beginning of an arbitrary but fixed cycle of
the loop. A replacement of these tokens by the
general solution-set of the loop will provide
additional information. The forward or backward
propagation out of the loop is accomplished by a
replacement of the cycle-token k in the
solution-set by the derived symbolic expression
for the total nunber of cycles taken or by the
constant "I", respectively. The propagation to
the previous cycle, as required for the proof of
invariance, is made by a replacement of the token
k by the symbolic expression "k+1".

Likewise the entry- and exit-assertions of
procedures have to be instantiated by substituting
call-environment values for tokens of the template
used in analyzing the call.

The ease with which knowledge can be
propagated permits us to perform a backward
directed generation of verification conditions
with minimal effort. It allows us to search for
additional premises from beyond delimiting
assertions without transformations of the existing
verification condition. Hence the frame problem
is solved up to the heuristic decision of
determining the relevancy of the readily available
knowledge.

69

This has led us to a new approach towards
VC-generation. We have abandoned the idea of
single path verification. Instead we use
incremental program segment verification. A
progra~ segment is the set of all paths leading
fran one assertion to the assertion currently
under investigation; an EP-segment is a program
segment delimited by the assertion to be proved
and any unconditional ("essential") predecessor
assertion.

Our method starts with the smallest ~P-segment
and derives premises for the verification
condition from assertions within this segment. If
these premises are not strong enough to carry the
proof, the next larger EP-segment is consulted,
and so on until no more premises are available or
the search is terminated. Within EP-segments a
sub-division in program segments lends structure
to the retrieval of knowledge.

A rich set of assertive functions is provided
in the specification language to allow a-priori
guidance of these search algorithms. In addition
we intend to create a user-interface permitting
the user to interact with the search for relevant
assertions.

Hence we produce and gradually strengthen only
one verification condition per assertion. The
proving component consisting of the Simplifier and
a theorem prover (To~ley29), lends itself to this
incremental approach.

Unsuccessful attempts to prove assertions
within loops based on their EP-segments inside the
loop, cause an inductive proof. The respective
theorems are obtained from the original
verification condition by the cycle-index
substitutions described earlier. For the
induction step additional premises are collected
from all assertions in the loop.

1he generated verification conditions are
usually more complicated than those produced by
path verification, since all conditionalities are
absorbed in the symbolic expressions. However,
the proving component tries to obtain immediate
success by resolving unconditional unit-clauses;
only if this fails, it distributes the
conditionalites in remaining clauses and tries to
prove each case in turn. the conditions relevant
to the assertion are rederived, while irrelevant
conditionalities in the program do not cause any
proving effort.

A further benefit of the solving capabilities
of the Symbolic Evaluator is the fact that for
those loops whose recurrence relations have been
solved in closed form, trivial inductive
assertions are nob required.

The assertion language we currently support
consists of the ELl-functions accepted by the
Symbolic Evaluator, augmented by quantifiers and
some convenient logical connectives (e.g.,
"implies") not in ELI. A facility for the
non-recursive definition of predicates is provided
by the rewriting rules and the use of user-defined
procedures with boolean results. In the future we
intend to allow the axiomatic introduction of
user-defined predicates and symbolic functions.
lhese axiomatic definitions will be subjected to
symbolic evaluation, producing an algebraic
characterization of transformations of the
predicates by (groups of) program instructions.
The resulting predicate behaviour patterns are
independent of their external representations
(choice of names for variables and of sequences of
program instructions causing the same results);
they will be applied not by pattern matching with
the program text or with symbolic expressions, but
rather as algebraic axioms in the proofs of
theorems. Thus, this approach may provide the
basis for "expert" predicate libraries very much
like today's program libraries.

IV. Conclusions

An often cited disadvantage of symbolic
evaluation is the potential combinatorial
explosion of symbolic expressions caused by
unresolved conditionalities in large programs.

Therefore special care is taken within the
Symbolic Interpreter to resolve or reduce
conditionalities as often as possible by context
tag comparison rather than at the boolean level of
path predicates.

In addition the Symbolic Evaluator gives up
gracefully producing only partial analysis with
weak results, when given a computation that is too
intricate to solve in closed form within a
reasonable amount of time, or when specifically
instructed to do so.

The success of our approach depends on the
fact that most computations in most programs are
not pathologically complicated and that even
partial analysis is often valuable (Cheatham8).

Furthermore we expect large programs to be
divided into modules containing hierarchically
structured control entities (procedures, rewriting
rules) of relatively low complexity, each of which
can be subjected to symbolic evaluation and
analysis in as much isolation as feasible.

7O

If, in spite of this division of concerns, a
combinatorial explosion occurs, the analyzed
control entity may Oe dealing with an abnormally
intricate algorithm or the program may be badly
structured.

In this case the user has to be content with a
partial analysis. He has to provide sufficient
assertive specifications to justify his program;
these assertions should be validated By a prograu
verifier. Should undisciplined programming be the
major cause for the combinatorial explosion, the
user is implicitly penalized for his programming
style; ~opefully he will rewrite his program to be
more amenable to symbolic evaluation and its
peripheral progra.maing aids.

Thus the objective of understandable, well
structured programs with good specifications in
critical areas is attained without resorting to
inflexible syntactic restrictions. At the same
time, symbolic evaluation permits a wide range of
language features and relieves the programmer of
the tedious necessity to provide trivial program
specifications. The results of the program
analysis can be used by a number of tools
assisting the process of program generation.
These facts convince us that Symbolic Evaluation
is well worth~ile, although it may be more
expensive in its unit operations than conventional
program analysis methods for more restricted
languages.

With the fully implemented program design and
analysis tools of the Program Development System
we hope to achieve a large step towards more
reliable and easily maintainable software.

AcknowledGements

The basic Symbolic Evaluator was originally
designed and implemented by Prof. Thomas E.
Cheatham, Jr. and Dr. Judy Townley, with
assistance from Glenn Holloway. The author
contributed subsequent minor modifications, the
Procedure Analysis Package and the Verifier.

The author wishes to express his gratitude to
Prof. Thomas E. Q1eatham, Jr., Dr. Judy To~ley
and Glenn Holloway for numerous discussions
related to these subjects and for commenting on
this paper.

(I)

(2)

(3)

(4)

C5)

(6)

(7)

(8)

(9)

(10)

REFERENCES

Balzer, Robert and Nell Goldman, "Principles
of good software specification and their
implications for specification languages",
USC/Information Sciences Institute, undated.

Bauer, F.L., "Programming as an evolutionary
process", Proc. of the Second Conference on
Software Engineering, San Francisco, 1976.

Bauer, F.L., "'Variables considered harmful'
und andere Bemerkungen zur PrograTm~ierung",
Technische Universitaet Muenchen, Report Nr.
7519, Munich, undated.

Royer, R.S., B. Elspas, and K.N. Levitt,
"SELECT - A formal system for testing and
debugging programs by symbolic execution",
Proc. of the Int. Conference on Reliable
Software, Los Angeles, Calif., April 1975.

Cart wright, Robert, and Derek Oppen,
"Unrestricted procedure calls in Hoare's
logic", Proc. of the Fifth Annual ACM
Symposium on Principles of Programming
Languages, Tucson, January 1978.

Cheatham, T.E., Jr., and Judy A. Townley,
"Symbolic evaluation of progr&as -- A look at
loop analysis", Proc. of the ACM Symposium
on Symbolic and Algebraic Computation, August
1976.

Oneatham, T.E., Jr., and Deborah B.
Washington, "Program loop analysis by solving
first order recurrence relations", Center for
Research in Computing Technology, Harvard
University, TR-13-78, May 1978.

Cheathan, T.E., Jr., G.H. Holloway, and Judy
A. To~ley, "Symbolic evaluation and the
analysis of programs", Center for Research in
Computing Technology, Harvard University,
TR-19-78, November 1978; to appear in IEEE
Transactions on Software Engineering.

Cheatham, T.E., Jr., Glenn H. Holloway and
Judy A. Tovmley, "A system for program
refinement", Proc. of the Forth International
Conference on Scftware Engineering, Munich,
Germany, September 17-19, 1979.

Clarke, L., "A system to generate test data
and symbolically execute programs", Dept. of
Computer Science, University of Colorado,
Boulder, Colo., Technical Report,
CU-CS-O60-75, February 1975.

71

411) Conrad, ~.R., "Rewrite user's guide", Center
for Research in Computing Technology, Harvard
University, Memo, August 1976.

(12) Dahl, O.J., E. Dijkstra, and C.A.R. Hoare,
"Structured Programming", Academic Press, New
York, 1972.

(13) Dijkstra, E.W., "A Discipline of
Programming", Prentice Hall, Englewood
Cliffs, 1976.

(14) Elspas, B., "The semiautomatic generation of
inductive assertions for proving program
correctness", Research Report, SRI, Menlo
Park, California, July 1974.

(15) Good, D.I., R.L. London, and W.W. Bladsoe,
"An interactive program verification system",
IEEE Transactions on Software Engineering,
Vol. SE-I, No. I, March 1975.

(16) Guttag, J.V., E. Horowitz, and D.R. Musser,
"Abstract data types and software
validation", CACM, Vol. 21, No. 12,
December 1978.

(17) Hantler, S.L., and King, J.C., "An
introduction to proving the correctness of
programs", Ccxnputing Surveys, Vol. 8, No.
3, September 1976.

(18) Horning, J.J., "A case study in language
design: Euclid", International Summer School
on Program Construction, Munich-Marktoberdorf
Germany, July 26 - August 6, 1978.

(19) Howden, W.E., "Symbolic testing and the
DISSECT symbolic evaluation systam", IEEE
Transactions on Software EngineerinG, Vol.
SE-3, No. 4, July 1977.

(20) Igarashi, S., R.L. London, and D.C.
Luckham, "Automatic progr&~ verification I: '
A logical basis and its implementation", Acta
Informatica, Vol. 4, No. 2, 1975.

(21) King, J.C., "Symbolic execution and program
testing", CACM, Vol. 19, No. 7, July 1976.

(22) Liskov, B. and S. Zilles, "Programming with
abstract data types", Proc. of the ACM
SIGPLAN Conference on Very High Level
Languages, SIGPiAN Notices, Vol. 9, No. 4,
April 1974.

(23) "ECL progranmler ' s manual", Center for
Research in Computing Technology, Harvard
University, TR-23-74, December 1974.

(24) Parnas, D.L., "A technique for software
module specification with exanples", CACM,
Vol. 15, No. 5, May 1972.

(25]) Ploedereder, Erhard O.J., "Symbolic
evaluation of user-defined procedures in
ELI", Center for Research in Computing
Technology, Harvard University, TR-01-79,
February 1979.

(26) ~aw, M., and Wulf, W.A., "Global variables
considered harmful", SIGPLAN Notices, Vol.
8, No. 2, February 1973.

(27) Suzuki, N. , "Automatic verification of
programs with complex data structures", Fn.D.
thesis, STAN-CS-76-552, Computer Science
Department, Stanford University, February
1976.

(28) Townley, Judy A., "A symbolic interpreter for
ELI", Center for Research in Computing
Technology, Harvard University, Memo,
November 1976.

(29) Townley, Judy A., "An incremental approach to
resolution-based theorem proving", Center for
Research in Computing Technology, Harvard
University, TR-15-78, August 1978.

(30) Townley, Judy A., "Program analysis
techniques for software reliability", Proc.
of the ACM Workshop on Reliable Software,
Bonn University, September 1978.

(31) Townley, Judy A., "~he analysis of pointers
in programs", Center for Research in
Computing Technology, Harvard University,
Memo, in preparation.

(32) Wirth, N., "Systematisohes Programmieren",
Teubner, Stuttgart, 1975.

(33) Wirth, N., "Modula: A language for modular
multiprogra~ning", Software -- Practice and
Engineering, 7, 1977.

(34) Wulf, W.A., "ALPHARD: Toward a language to
suplx~rt structured programs", Computer
Science Department, Carnegie-Mellon
University, April 1974.

72

