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Abstract 

The Program Development System (PDS) is a 
collection of programming tools created as an 
extension of the ECL programming system23. It 
contains components that assist the progr~r~er 
in the definition and modular structuring of 
large programs at different levels of 
algorithmic abstraction. These components are 
supplemented by a program analysis package that 
produces an information pool to be used for such 
tasks as source-to-source optimization, 
semi-automated progrmn documentation, fault 
detection and program verification. 

This paper describes the core of the 
analyzing package, the Symbolic Evaluator. In 
its implementation we have incorporated 
pragmatic methods for handling data sharing 
patterns, and for characterizing and reasoning 
about the behaviour of loops and procedures. 

The impact of these methods upon program 
verification techniques is briefly discussed. 

I. Introduction 

Despite major advances in the science of 
software engineering, the process of developing 
reliable, efficient, and transparent software is 
still very frustrating and often of rather limited 
success. We consider the absence of software 
t~ols assisting the programming process beyond a 
very elementary level to be the major cause for 
this situation. Lacking these tools, we are all 
too frequently inclined to undisciplined 
progr~ing style. 

In recent years various techniques have 
evolved to combat these problems. Proposals range 
from the educational level of programming 
disciplines (Bauer 2, Dah112, Dijkstra13, Wirth32) 
to the development of linguistic constructs in 

programming languages. These constructs support 
the progra~ner in an improved specification of his 
intentions and force him to comply with certain 
restrictions el iminating language features 
considered harmful to program reliability. 
Examples include work on specification languages 
(e.g., Balzerl), modules and module interfaces 
(e.g., Parnas 24, Wirth33), abstract data types 
(e.g., Guttag 16, Wulf34, Liskov22), elimination of 
aliasing (e.g., Homing 18), restricted access to 
global variables (e.g., Shaw 26) and so on. 

Although these constructs and constraints can 
contribute significantly to the reliability of 
programs and facilitate the development of more 
sophisticated programming tools, there are 
limitations to this approach. 

First, only so many restrictions can be 
imposed before a language becomes clumsy to use. 
Second, not all the proposed constraints can be 
enforced by purely syntactic means. For example 
the banning of sharing among reference parameters 
cannot be enforced syntactically whenever sharing 
depends on program values. Third, there are few 
language features that are not detrimental to 
program reliability, if used in undisciplined 
ways. Even the elementary concept of variables 
has been considered harmful (Bauer3). 

While we believe in the importance of 
modularly structured and encapsulated software, as 
sup~x~rted! by o u r  Program Development System 
(PDS)9, we have adopted the viewpoint that, if 
applied cautiously and properly documented, a much 
wider range of language features than generally 
assumed can be used safely for the development of 
reliable and transparent software. 

Therefore in our research we have emphasized 
pragmatic techniques for a powerful program 
analyzer permitting a wide spectrum of language 
features some of which have previously created 
substantial problems for practical program 
analysis. 

*Research reported herein was supported in part by 
Naval Electronics System Command 
Under Contract NOOO39-78-G-OO20 

Usually the notion of program analysis has 
been directly linked to methods of program 
verification. We have chosen to separate these 
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tasks. We scan the input program and attenpt to 
derive a precise characterization of the values 
computed and side-effects created by the 
individual instructions of the program. Symbolic 
expressions represent the values of data-objects 
and computations occurring in the program. 

We use the phrase "symbolic evaluation" to 
describe this process. The results of the 
analysis are collected in a program data base, 
which can be shared by the various tools that 
assist the program development. ~mong these tools 
are, or will be, the derivation and interactive 
validation of simple program specifications (e.g., 
lists of free variables in procedures), fault 
detection, program verification, interactive 
debugging, source-to-source optimization and 
static performance analysis. 

The notion of symbolic evaluation of programs 
is not a novelty to the software engineering 
field. Various groups have proposed related 
approaches to derive and reason about symbolic 
expressions that describe program values occurring 
during an arbitrary evaluation of the program 
(Bayer 4, Clarke I0, ~bwden19, King21). 

Our efforts (CheathamS), however, differ 
substantially from earlier work on symbolic 
evaluation : 
I) We perform a static program analysis. Each 

instruction in the program is examined only 
once. Conditionalities that arise from control 
branches are absorbed in conditional symbolic 
expressions representing program values in join 
contexts. 

2) Our work has focused on progr&as written in 
ELI, the base language of the ECL-system23. 
This language has compound data structures, 
pointers, facilities for data type abstraction 
and syntax extension, generic modes, procedure 
variables and a number of ways to exploit 
storage sharing (through reference parameters, 
pointers, identity declarations, and through 
"locative" results of procedure and function 
calls, blocks and other expressions in the 
language). The interesting semantic features 
of most higher-level languages are contained in 
ELI. Therefore our analyzing techniques are 
conceptually applicable to such languages as 
well. 

3) We attempt to analyze the behaviour of loops 
((~eatham6). 

4) We derive templates that characterize the 
result and side-effects of user-defined 
procedures and we can thereby assess the 
effects of individual calls efficiently 
(Ploedereder25). This ability is of crucial 
importance for the applicability of our methods 
to large program systems. 

The next section contains a brief introduction 
to the Symbolic Evaluator we have implemented for 
a subset of ELI. We then focus on the analysis of 
procedures. 

A more detailed description of the Symbolic 
Evaluator and its c~nponents is provided by 
CheathamT, 8, Ploedereder 25 and Townley28, 31. 

II. The Program Analysis Package 

II.1. The Progr&a Data Base 

The program data base contains the results of 
the symbolic evaluation. It has four basic parts, 
called the context grapO, the store, the shadow, 
and the set of templates. 

A context is a basic block of the program, a 
sequence of computations with no control branching 
in or out. Loops and procedure calls are treated 
as concurrent assignments to all affected 
variables and heap-objects. The context graph 
encodes all possible sequences of contexts; the 
analysis of loops and procedure bodies produces 
separate context graphs. Nodes in these acyclic 
graphs created for ccntexts after a branch 
operation contain the branch-enabling predicate. 
Edges in the graphs link cbntexts to their 
immediate predecessor contexts. 

In order to distinguish among program points 
within a single context, we use a second 
coordinate called "time". It is incremented 
whenever an assignment or a variable declaration 
is evaluated. 

We model the store by a scoped environment and 
a heap each consisting of a set of locations. For 
each variable we postulate a location in the 
scoped environment. Its representation contains 
the name of the variable, its mode and dimensions 
described by symbolic expressions, and a 
scope-label. The latter is used in conjunction 
with a scope-tree to resolve name-conflicts a~ong 
declared variables. The scope-tree encodes the 
block structure of the program or procedure. 

In addition, a location contains a list of 
value cells. Each value cell holds a symbolic 
expression for a value assighed to the location at 
some point in the program and a context tag (i.e., 
context and tim e ) which identifies this point. 

Locations in the heap are allocated for newly 
created heap-objects; the names in these locations 
are internal tokens, which can be assigned to 
pointer-variables of appropriate mode. Heap 
locations also contain mode and dimensions as well 
as a list of value-cells. 
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Snaring among locations (as induced by 
reference parameters or identity declarations) is 
represented by share-links. These links may be 
augmented with context tags or predicates to 
reflect conditional sharing. ~I also permits 
sharing of a variable with components of a 
compound object; such partial sharing is recorded 
by associating symbolic selectors with the 
appropriate share-links. 

The value of a component of an object is 
always recorded as part of the value of the entire 
object rather than in a separate location. 
Special symbolic expressions provide the basis for 
the correct representation of ca.pound values and 
their components. 

The context graph, the context tags in value 
cells and the share-links among locations provide 
the basis for the correct derivation of the 
possibly conditional value for a variable or 
heap-object at any point in the program. 

The shadow is a computation tree 
representation of the input program in which 
implicit computations (e.g., dereferencing of 
pointers, type conversion, etc.) are made 
explicit; each program expresslon in the shadow is 
tagged with shadow information that describes the 
locative result ("L-value") of the expression and 
relates it to the context graph and the store. 
For expressions that return results on the stack 
not accessible via variables (e.g., arithmetic 
expressions) the shadow information also contains 
an R-value. Thus, there is no need to create 
locations in the store for intermediate results of 
nested expressions. 

The set of templates will be discussed in more 
detail below. A tsnplate esseatially is a 
separate program data base for a procedtme, plus 
information about the applicability of the 
template with respect to different call 
environments. 

II.2. The Symbolic Evaluator 

The Symbolic Evaluator has four major components: 

A) The Symbolic Interpreter is the controlling 
component of the package, It scans the input 
program sequentially and builds the program 
data base. It consists of a set of handlers 
each of which models a built-in instruction or 
group of instructions of the language, such as 

arithmetic and boolean functions, declarations, 
selections on compound objects as well as 
control functions (branches, blocks, 
conditional statements, etc.). These handlers 
also detect certain potential program 
exceptions (e.g., selectors out of range, mode 
incompatibilities, dereferenced null-pointers) 
(Townley30). Special analyzers are called 
whenever loops or user. defined procedures are 
encountered. 

B) The Simplifier reduces and normalizes the 
symbolic expressions generated by the Symbolic 
£valuator. It assumes the properties of 
operators in their idealized domains, e.g., 
associativity, commutativity, transitivity etc. 

C) The Loop Analyzer replaces the values in all 
locations referenced but not declared within 
the loop by tokens, thus reflecting our 
ignorance about the values in these locations 
at the beginning of any but the first cycle of 
the loop; it then symbolically evaluates the 
loop statements, retrieves the final values in 
all these referenced locations and calls on 
Solvers to determine a closed-form represen- 
tation for the actual value to be stored in 
these locations after the loop is exited. 
The values before the loop, the tokens at the 
beginning of the loop and the corresponding 
symbolic expressions after the interpretation 
of the loop statements represent an 
n-dimensional first-order recurrence relation 
with a boundary condition described by the 
ex it-enabl ing predicate. 
Surprisingly many recurrence relations, even 
those involving conditionals, can be solved in 
closed form by our methods ((~leatham7). If 
solutions are found, they are assigned to the 
respective locations ; otherwise the values in 
the affected locations are represented by a 
recursively defined symbolic expression (using 
a l&~bda-function8). To a limited degree, we 
are able to manipulate and reason about these 
recursive definitions as well. 
As a side-product important for verification, 
the solvers determine symbolic expressions for 
the values at the beginning of the k-th cycle, 
where k is a token created by the Loop 
Analyzer. We denote this set of values, which 
are functions of the token k, as the general 
solution-set of the loop. We also obtain a 
symbolic expression for the total number of 
cycles taken by the loop. 

D) The Procedure and Call Analyzer derives and 
applies templates that characterize the 
behaviour of user-defined procedures. Since 
this component is of crucial importance for the 
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practicability of the Symbolic Evaluator for 
large program systems, we will discuss its 
underlying principles in the following section. 

11.3. The Procedure and Call Analyzer 

There are two basic methods for analyzing 
user-defined procedures, commonly kno~q as the 
"copy rule" and the "adaptation rule". 

The copy rule corresponds to a textual 
expansion of each call by the respective procedure 
body augmented with instructions simulating the 
par&meter passing. Although easy to implement, 
this rule is expensive in practice, since each 
call requires a re-analysis of the procedure. 
Also, it is restricted to non-recursive 
procedures. 

The adaptation rule analyzes the procedure 
only once at declaration time and produces (or 
verifies) a complete characterization of the 
result and side-effects of the procedure 
applicable to any call. This characterization 
(henceforth called a template (Hantler17)) has to 
be indeterminate with respect to influences 
exerted by the call-environments. At call time 
the template is retrieved and instantiated (i.e., 
the indeterminacies of the tamplate are resolved 
up to indeterminacies in the call envirorL~ent). 

An analysis based on abstractions over all 
possible call-enviromnents requires considerable 
effort. In particular, if tokens are not 
sufficient to represent the missing information 
(e.g., values of free procedure variables, 
aliasing) case-distinctions over all possibilities 
have to be made; the latter tend to make this type 
of analysis too costly to be practical. 

In order to prevent the devastating ,effects of 
worst-case assLLaptions, one can impose 
restrictions on the language and require 
additional specifications for procedures. 

We felt, however, that the required 
restrictions would be too stringent to be 
acceptable. Furthermore, in the spirit of 
interactive program development we prefer not to 
be dependent upon additional specifications during 
the process of symbolic evaluation. We rather 
consider them as voluntarily provided and possibly 
incomplete information, which is to be verified 
and completed in interaction with the programmer. 

Hence, we have devised a strategy that strikes 
a balance between the generality and the 
complexity of the produced template. While we 
derive some information from a particular 

call-enviror~ent, we produce a template that is 
general enough to be applicable to subsequent 
similar environments. For substantially different 
call-environments we may have multiple templates. 

We therefore distinguish the processes of 
a) Procedure Analysis, which produces templates, 
b) Tamplate Matching, which determines whether an 

existing template is applicable to a given 
call-envirom~ent, and 

c) Call Analysis, which applies the retrieved or 
newly generated template. 

In order to demonstrate our methods, we define 
a m~all example in EL1-1ike notation: 

BEGIN 
DECL PAIR:MODE LIKE VECTOR(2, IHT); 
DECL SWAP:ROUTINE LIKE 

EXPR(LEFT:INT SHARED, RIGHT:INT SHARED) 
BEGIN 

DECL SAVE:INT BYVAL RIGHT; 
RIGHT := LEFT; 
LEFT := SAVE; 
IF LEFT # RIGHT THEN 

TRACE[I] := CONST(PAIR OF LEFT, RIGHT); 
I :=I+I 

FI 
END; 
. . o . .  

DECL TRACE:SEQ(PAIR) SIZE 10; 
DECL I:INT BYVAL I; 

o . . . t  

calls on SNAP 

END 

This exemple introduces a mode-valued variable 
PAIR and a procedLre ~AP, which exchanges two 
integers and keeps track of all relevant swaps on 
a free variable TRACE. Parameters are passed by 
reference. 

The Symbolic Evaluator notes the existence of 
these variables and of the procedure constant. 
Upon encountering a call, it evokes the programs 
for Procedure and Call Analysis. At this point 
the information required about the call- 
environment is readily available. Nevertheless we 
analyze the procedure as if the call-environment 
were unknown. Only those facts that, when 
general ized,  create undue complexi ty,  are 
re t r ieved and used in generating a template o f  
restricted applicability. 
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II.3. I. ,Procedure Analysis 

The procedure analysis achieves relatively 
inexpensive generality in the produced templates 
by the following techniques: 

a) Pseudo-locations represent the store-locations 
of free variables, formal parameters and 
accessible heap-objects. The symbolic 
evaluation of the procedure body treats these 
pseudo-locations as locations created in an 
imaginary block enclosing the body. In order 
to assess the effects of individual calls they 
are (conceptually) super-imposed on the 
corresponding locations in the call- 
environment. 
In our example pseudo-locations are created for 
the parameters LEFT and RIGHT, and for the free 
variables TRACE, I and PAIR. 
Pseudo-locations make the template independent 
of the locations associated with actual 
parameters and free variables in the 
call-environment. Thus a template generated 
for a call ~4AP(A,B) may be applicable to a 
call SWAP(C,D) or S~AP(E[j],F[J,K]) or even 
SNAP(findpartner(B),B), where the procedure 
"findpartner" returns some locative result. If 
the pseudo-location covers only part of the 
call-environment location (i.e., for selections 
as actual parameters), the derived side-effects 
are recorded during call-analysis as 
assignments to components of the call- 
enviro~nent location. 

b) Tokens are created to represent the initial 
values stored in pseudo-locations. These 
tokens are the sine-qua-non of general 
templates. They are instantiated during call 
analysis with their actual values, unless the 
actual value has been required during procedure 
analysis in order to produce meaningful results 
(e.g., the values of sub-called procedure 
variables). The latter situation is referred 
to as "forced instantiation"; the applicability 
of the template becomes dependent upon this 
instantiated value. 
In our example five value-tokens, say LEFT*, 
RIGHT*, TRACE*, I* and PAIR*, are generated and 
allocated as the values of the five 
pseudo-locations in the initial context of the 
procedure body (i.e., value-cells are added to 
these locations). During procedure analysis 
the token PAIR* will be forcibly instantiated, 
since we do not wish to abstract from modes. 

c) Tokens are created to represent the dimensions 
of free variables, parameters and heap-objects. 
Appropriate procedure entry-conditions are 
generated to prevent illegal component 

selections within the procedure body. 
In our example only the free variable TRACE is 
of compound type. Its dimensions are 
represented in the pseudo-location by tokens, 
say DTI* and DT2*. A procedure entry-condition 
"I* GT 0 AND I* LE DTI*" is generated to 
validate the selection TRACE[I] in the 
procedure body. 
These tokens make the template independent of 
the size of arrays. .They a r e  especially 
important for multi-dimensional parameters, 
e.g., the template for a procedure that 
exchanges two rows of a matrix will be 
independent of the size of the matrix. 

d) The predicates and selectors for conditional 
and partial sharing among pseudo-locations are 
also represented by tokens. Since the actual 
values of these tokens are functions of values 
in the call-environment, these abstractions 
rarely prevent simplifications during procedure 
analysis. 
If a template were generated for a call 
SNAP(A[M],A[N]) with a call-environment in 
which "M=N" symbolically evaluates to neither 
'true' nor 'false', conditional sharing takes 
place between the pseudo-locations of the 
formal parameters LEFT and RIGHT. This 
condition is represented in the share-link by a 
token, say SP*. 
The resulting template is also applicable to 
the calls S~;AP(A[K],A[J]), SWAP(A,A) or to 
SWAP(A,B) with unrelated A and B, since the 
token SP* can be instantiated with the symbolic 
result of "K=J", 'true' , or 'false', 
respect ively. 
If a template is generated for a call 
.~4AP(TRACE[4,1],TRACE[5,2]), the formals LEFT 
and RIGHT are partially shared with the free 
variable TRACE. We abstract from the actual 
values '4', 'I', '5' and '2', and obtain a 
template equally applicable to 
SWAP(TRACE [7, 2], TRACE [4, I ] ). 

The modes of free variables ++ (and of actual 
parameters whose corresponding formals have 
generic modes), the existence of sharing relations 
among free variables and parameters passed by 
reference, and forcibly instantiated values are 
taken from the particular call-environment. The 
names of free variables are collected during the 
symbolic evaluation of the procedure body. 

++ We are dealing with a dynamically scoped 
langdage; static scoping rules could be 
acccmmcxlated with some minor modifications to the 
Symtx>lic Evaluator. 
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Since this information tends to be unchanged 
in subsequent call-environments, expensive 
generality is avoided, while the resulting 
template is still applicable to a large set of 
different call-environments. 

We call the set of pseudo-locations a 
"pseudo-environment". It provides sufficient 
information for the symbolic evaluation of the 
procedure body, generating a separate program data 
base for the procedure. 

Side-effects of the procedure are determined 
by comparing the initial and final values in 
pseudo-locations for free variables, parameters 
passed by reference and accessible heap-objects. 

The produced template contains the collection 
of applicability constraints, the program data 
base and a description of the derived side-effects 
(the returned result is given in the shadow of the 
body). 

In our example the relevant contents of a 
template produced for a call S~AP(A[J],A[K]) can 
be described as follows: 

TB~PLATE FOR (the value of) ~AP: 

Applicability constraints: 

I) The free variable TRACE must have type 
SEQ(VECTOR(2, INT)) 

2) The free variable I must have type INT 
3) The free variable PAIR must have type MODE and 

value VECTOR(2, INT) 
4) The actual parameters for LEFT and RIGHT must 

be shared under the condition SP* 
5) No other sharing relations are permitted 

Side-effects in pseudo-locations: 

LEFT : initial value: L* , final value: R* 
RIGHT: initial value: R* 

final value: cond(SP*, R*, L*) 
I : initial value: I* 

final value: cond(SP* OR R*=L*, I*, I*+I) 
TRACE: initial value: T* 

final value: con4(SP* OR R*=L*, T*, 
store(T*, I*, vector(R*, L*))) 

Result: NOTHING 

Entry-condition to be verified: 

SP* OR R*:L* OR I* GT 0 AND I* LE DTI*, 
where DTI* is the extent of the free 
TRACE in its first dimension. 

variable 

END OF TB~PLATE 

To encourage the hierarchical development of 
programs, we permit the user to specify procedures 
with bodies omitted. In these settings, we expect 
the user to provide a complete list of affected 
free variables. A call on a defaulted procedure 
is simulated by the introduction of tokens for the 
values in all affected locations of the 
call-environment. If the user wishes his program 
to be verified, he has to supply specifications 
about the result and side-effects of the defaulted 
procedure sufficient for deriving the correctness 
proof in all call-environments. The proof of 
these specifications is performed when a full 
definition replaces the defaulted procedure body, 
and is symbolically evaluated. 

For example, a defaulted version of the 
SWAP-procedure could be 

EXPR(LEFT:INT SHARED, RIGHT:INT SHARED) 
DEFAULT 

CHANGES(TRACE, I) ; 
USES(PAIR) 

END 

The symSolic evaluation of the defaulted 
procedure body adds pseudo-locations for the 
specified free variables to the pseudo- 
environment. The final values in locations for 
parameters and for affected free variables are 
represented by new tokens unrelated to the tokens 
for the corresponding initial values. 

The defaulted template for .~4AP produced by 
the procedure analysis, is the previously 
displayed template without the derived 
entry-condition, and with the final values in 
pseudo-locations replaced by new tokens. 

II.3.2. Template Retrieval and Call Analysis 

The retrieval of a template for a 
call-analysis has to ensure the validity of its 
application : 

Forcibly instantiated values, modes and the 
existence of sharing relations, on which the 
template is based, have to match the current 
call-environment, unless it can be shown that 
certain discrepancies do not influence the 
validity of the template. A typical irrelevant 
mismatch we detect arises from differences in 
sharing relations among pseudo-locations that are 
referenced but never assigned to in the procedure 
body. For tokens, arbitrary symbolic expressions 
can be substituted. 
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If a match is successful, the symbolic 
expressions representing the actual values for 
tokens in the template are determined. Some 
tokens may have no corresponding value, e.g., 
tokens for final values in defaulted tenplates, or 
tokens for the results of input operations within 
the procedure body; their actual value is a new 
token. The template tokens are then instantiated 
in tne descriptions of the result of the procedure 
and of the final values in pseudo-locations. The 
Call Analyzer takes these instantiated values to 
model a concurrent assignment to the affected 
(components of) locations in the call-environment, 
and to describe the result returned by the call. 

If no matching template exists, a new tenplate 
is created by performing a procedure analysis, 
unless we are dealing with a recursive sub-call. 
In the latter situation the application of a 
defaulted template is simulated. 

The tokens introduced by the application of a 
defaulted template for a recursive subcall, 
combined with the respective tokens generated for 
the still pending procedure analysis, the final 
values in the corresponding pseudo-locations, the 
values at the time of the subcall and the enabling 
predicate pf the subcall provide the basis for 
reasoning about the results of recursive 
procedures. At the present time we have no 
general solvers for recursive procedures; however, 
for regular recursion many of the loop solving 
techniques are applicable. 

While our method of analyzing procedures has 
been motivated by the desire to Rave no 
restrictions on storage sharing and to proceed 
with minimal a-priori specifications about the 
program, it allows us to model such language 
features as generic modes, procedLre variables, 
parameters of type procedure, a simulated call- 
by-name parameter mechanism and a user-accessible 
evaluating function. 

In addition, the presented techniques are 
immediately transferable to the analysis of 
rewriting rules ++ (Conrad 11) as provided by the 
PDS. This would not be the case, if we had 
sharing restrictions and specification 
requirements. 

++ Rewriting rules provide a very flexible system 
for textual macros. 

III. An Application: Program Verification 

The principles of symbolic evaluation have 
far-reaching consequences for the methods of 
program verification. 

We have implemented a small program verifier 
based on the results provided by the Symbolic 
Evaluator. In this section we discuss the 
differences between our approach and other, more 
conventional verifiers (e.g., Elspas 14, Good 15, 
Igarashi 20, Suzuki27). 

Asserted predicates are symbolically evaluated 
by special handlers in the Symbolic Interpreter. 
The resulting symbolic expressions are derived 
from the program data base at the point where the 
assertion is given, but once established, they are 
invariant with respect to assignments in the 
program, since assignments affect only the 
location-value binding, but never symbolic 
expressions. 

Hence the asserted symbolic expressions can be 
propagated forward and backward across program 
expressions without being changed. 

The propagation out of and into branches of 
conditional expressions has to establish the usual 
logical connection with the branch-enabling 
predicate as provided by the context graph. 

The tokens appearing in symbolic expressions 
asserted within loops represent program values at 
the beginning of an arbitrary but fixed cycle of 
the loop. A replacement of these tokens by the 
general solution-set of the loop will provide 
additional information. The forward or backward 
propagation out of the loop is accomplished by a 
replacement of the cycle-token k in the 
solution-set by the derived symbolic expression 
for the total nunber of cycles taken or by the 
constant "I", respectively. The propagation to 
the previous cycle, as required for the proof of 
invariance, is made by a replacement of the token 
k by the symbolic expression "k+1". 

Likewise the entry- and exit-assertions of 
procedures have to be instantiated by substituting 
call-environment values for tokens of the template 
used in analyzing the call. 

The ease with which knowledge can be 
propagated permits us to perform a backward 
directed generation of verification conditions 
with minimal effort. It allows us to search for 
additional premises from beyond delimiting 
assertions without transformations of the existing 
verification condition. Hence the frame problem 
is solved up to the heuristic decision of 
determining the relevancy of the readily available 
knowledge. 
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This has led us to a new approach towards 
VC-generation. We have abandoned the idea of 
single path verification. Instead we use 
incremental program segment verification. A 
progra~ segment is the set of all paths leading 
fran one assertion to the assertion currently 
under investigation; an EP-segment is a program 
segment delimited by the assertion to be proved 
and any unconditional ("essential") predecessor 
assertion. 

Our method starts with the smallest ~P-segment 
and derives premises for the verification 
condition from assertions within this segment. If 
these premises are not strong enough to carry the 
proof, the next larger EP-segment is consulted, 
and so on until no more premises are available or 
the search is terminated. Within EP-segments a 
sub-division in program segments lends structure 
to the retrieval of knowledge. 

A rich set of assertive functions is provided 
in the specification language to allow a-priori 
guidance of these search algorithms. In addition 
we intend to create a user-interface permitting 
the user to interact with the search for relevant 
assertions. 

Hence we produce and gradually strengthen only 
one verification condition per assertion. The 
proving component consisting of the Simplifier and 
a theorem prover (To~ley29), lends itself to this 
incremental approach. 

Unsuccessful attempts to prove assertions 
within loops based on their EP-segments inside the 
loop, cause an inductive proof. The respective 
theorems are obtained from the original 
verification condition by the cycle-index 
substitutions described earlier. For the 
induction step additional premises are collected 
from all assertions in the loop. 

1he generated verification conditions are 
usually more complicated than those produced by 
path verification, since all conditionalities are 
absorbed in the symbolic expressions. However, 
the proving component tries to obtain immediate 
success by resolving unconditional unit-clauses; 
only if this fails, it distributes the 
conditionalites in remaining clauses and tries to 
prove each case in turn. the conditions relevant 
to the assertion are rederived, while irrelevant 
conditionalities in the program do not cause any 
proving effort. 

A further benefit of the solving capabilities 
of the Symbolic Evaluator is the fact that for 
those loops whose recurrence relations have been 
solved in closed form, trivial inductive 
assertions are nob required. 

The assertion language we currently support 
consists of the ELl-functions accepted by the 
Symbolic Evaluator, augmented by quantifiers and 
some convenient logical connectives (e.g., 
"implies") not in ELI. A facility for the 
non-recursive definition of predicates is provided 
by the rewriting rules and the use of user-defined 
procedures with boolean results. In the future we 
intend to allow the axiomatic introduction of 
user-defined predicates and symbolic functions. 
lhese axiomatic definitions will be subjected to 
symbolic evaluation, producing an algebraic 
characterization of transformations of the 
predicates by (groups of) program instructions. 
The resulting predicate behaviour patterns are 
independent of their external representations 
(choice of names for variables and of sequences of 
program instructions causing the same results); 
they will be applied not by pattern matching with 
the program text or with symbolic expressions, but 
rather as algebraic axioms in the proofs of 
theorems. Thus, this approach may provide the 
basis for "expert" predicate libraries very much 
like today's program libraries. 

IV. Conclusions 

An often cited disadvantage of symbolic 
evaluation is the potential combinatorial 
explosion of symbolic expressions caused by 
unresolved conditionalities in large programs. 

Therefore special care is taken within the 
Symbolic Interpreter to resolve or reduce 
conditionalities as often as possible by context 
tag comparison rather than at the boolean level of 
path predicates. 

In addition the Symbolic Evaluator gives up 
gracefully producing only partial analysis with 
weak results, when given a computation that is too 
intricate to solve in closed form within a 
reasonable amount of time, or when specifically 
instructed to do so. 

The success of our approach depends on the 
fact that most computations in most programs are 
not pathologically complicated and that even 
partial analysis is often valuable (Cheatham8). 

Furthermore we expect large programs to be 
divided into modules containing hierarchically 
structured control entities (procedures, rewriting 
rules) of relatively low complexity, each of which 
can be subjected to symbolic evaluation and 
analysis in as much isolation as feasible. 
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If, in spite of this division of concerns, a 
combinatorial explosion occurs, the analyzed 
control entity may Oe dealing with an abnormally 
intricate algorithm or the program may be badly 
structured. 

In this case the user has to be content with a 
partial analysis. He has to provide sufficient 
assertive specifications to justify his program; 
these assertions should be validated By a prograu 
verifier. Should undisciplined programming be the 
major cause for the combinatorial explosion, the 
user is implicitly penalized for his programming 
style; ~opefully he will rewrite his program to be 
more amenable to symbolic evaluation and its 
peripheral progra.maing aids. 

Thus the objective of understandable, well 
structured programs with good specifications in 
critical areas is attained without resorting to 
inflexible syntactic restrictions. At the same 
time, symbolic evaluation permits a wide range of 
language features and relieves the programmer of 
the tedious necessity to provide trivial program 
specifications. The results of the program 
analysis can be used by a number of tools 
assisting the process of program generation. 
These facts convince us that Symbolic Evaluation 
is well worth~ile, although it may be more 
expensive in its unit operations than conventional 
program analysis methods for more restricted 
languages. 

With the fully implemented program design and 
analysis tools of the Program Development System 
we hope to achieve a large step towards more 
reliable and easily maintainable software. 
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