
Abstract

PROJECT SPERBER

Erhard Ploedereder. Ph. D.

Industrieanlagen-Betriebsgesellschalt mbH (IABG)

Ottobrunn. Fed. Rep. 01 Germany

Project SPERBER is concerned with the development of a high-quality software

environment facilltallng the development of software written in Ada or BasiC Pearl.

It is to be used lor the design. implementation. maintenance and enhancement

01 emtledded system software. This presentation elaborates on the background

that led to project SPERBER. presents its current status. and outlines future

::: plans, It also provides an overview of the system structure from the viewpoint of
H
I a UStlt,

"'" 1.0
I\)

1. Introduction

In the early seventies. the US Department of Defense (000) became con­

cerned with Its growing software expenditures. two thirds of which were spent on

maintaining and enhancing exlsllng software. It Identified the proliferation of more

than 100 programming languages and dialects In use as a major reason for this

cost explosion. In 197~. It therefore created the High Order language Working

Group (HOlWGI and tasked it with the project of designating a single language

to become the Common HOl for Embedded Systems. This project led to the the
2

development 01 a new language (1) and later became known as the Ada -project.

1Work reported herein wa. linanced by the Bundes&mt luer Wehrtechnik und aeachalfung (eWe) under
cont,act no. E/F61C/6()129/9S031.

2 Ad~ is a t,adomatk 01 the US Department 01 Delen.. (AJPO).

2. Background for SPERBER

2. 1. The German Involvement in the Ada Effort

In recognition 01 similar problems in the German armament sector. the

Germ'an Bundesministerium der Verteidigung (BMVg) 3 decided in 1977 to join the

US effort for a standard HOl and contracted with IABG to act as Its technical

representative. It appointed a voting member to HOlWG. participated In the

early lunguage evaluations and the Test and Evaluation Phase lor Preliminary Ada

(the first publicly available version of Ada). and provided a member of the Initial

group 01 Distinguished Reviewers for Ada. a small experts group advising the

designers of Ada in the final stages of the lanGuaGo definition. Furthermore. it

contracted with the University of Karlsruhe to produce a pilot Implementation of a

compiler Iront-end lor Preliminary Ada.

Apart from the language development. the Ada eHort is also. and more

importantly. concerned with the creation of sophisticated software development

environments into which the language is to be embedded.

The German MoD has been involved jn the environment-related efforts from

their very beginnings by providing substantial contribution::; to early versions 01

PEBBlEMAN [21. one of the requirement cataloguos for Ada environments.

Probably the most important German contribution to the Ada effort was made

In early 1981. when the then on-gOing desiGns for Ada Programming Support

Environments (APSE) threatenod to diverge on one 01 the most Important tool

interfaces. the Intermediate language used to represent Ada programs internally

aftor syntactic and semantic analysis. The two candidate languages were

TCOL/Ada. produced at Carnegie Mellon University In Pittsburgh. USA. and

AIDA. produced at the University of Karlsruhe. West-Germany. Upon IABG's and

subsequently AJPO':; urging. the designers of these languages combined their

efforts and defined a common sibling language. DIANA [31. Today. DII\NA Is

usod In all military and many commercial developments of Ada compliers.

DIANA was first presented to the public at the IIrst Murnau Workshop in

March I!lH I. _ rhe Murnau Workshops. sponsored by the German MoD and hosted

30 .,ma" Ministry 01 Delen ..

by IABG. have. since then. become an annual lorum lor an exchange 01 ideas

on tool Interlaces among the designers at Ada environments.

In its concern for slanl1ard Interlaces In APSEs. IABG has delegated a

member to the KAPSE Interlace Team - Industry and Academia (KITIAl. This

effort Is headed by the US Navy under charter by the Ada Joint Program Ottlce

(AJPOl of the US 000 and tasked to define a standard KAPSE (Kernel APSE.

c. f. STONEMAN [4]) to enhance portability and Interoperability of APSE tools.

2.2. Germany's Commitment to Ada

In February 19a2. the vice-president 01 the Bundesamt luer Wehrtechnik und

BAschaftung (BWB, 4 Issued a directive stating that. for future Implementations of

embedded systems. only the languages Ada and Basic Pearl are approved. with

exceptions granted to certain special purpose applications using ATLAS. CMS-2

or JOVIAL as implementation languages.

~ Since usage ot Ada requires the availability of an

I(environment soHware. the BWB has Initiated

010> (~tandardisiertes Erogramm-!;.rstollungssysl~m luer den
~

Ada compiler and suitable

the project SPERBER

fiuestungSweich
5

, .

w
SPERBER is intended to provide II sophisticated software development environ­

ment supporting the lull software life-cycle lor the languages Ada and Basic

Pearl.

SPERBER is designed to be an Integrated environment. In which individual

tools communicate with each other via a central data base. SPERBER subscribes

to the STONEMAN principles. such as modularity. granularity. open-endedness.

and so on.

Individual components 01 SPERBER are produced by different software com­

panies in Germany under contract with BWB. thus ensuring the minlmallty and

precise documentiltion of 1001 interfaces. IABG Is tasked to provide the global

system design. coordinate the development of. the components. and provide

4Feder&1 O"I~ lor Procurement and Military Technology

5Stand&rdized Program Development Sy.tem lor the Armament Sac\o'

technical advice to the implementors. as well as to perform acceptance testing

and integration of components as they are delivered by the contractors.

SPERBER does not yet contain a KAPSE. A KAPSE will be integrated Into the

system when international agreements on a KAPSE standlud have been reached.

3. Status of SPERBER

Work on SPERBER started in 1979 as an extension ot the original pilot Ada

compiler project. Today. a variety 01 components is already available or under

contract to be produced.

The host system of SPERBER are the Siemens computers ot the 7. xxx series

under the operating system B52000. Targets are Initially the host systems and a

small process control system. The architecture of SPERBER guarantees minimal

eUort in retargeting the system.

Components currently available or under contract are:

'1. A complier front-end for Ada-80 has been completed In February 82.

2. An extended I/O-Package. embedding PearH/O and COBOL-liD concepts.
has been completed.

3. Uevelopment of two back-ends for Ada-80 is currently in its final stages.

4. A symbolic debug system. designed to be highly code generation inde­
pendent. Is being developed. This system. which allows both interpretive
and compiled execution of the tested program. is scheduled for delivery in
late 1984.

5. The upgrade of the compiler to ANSI-Ada is being made: the availability
of validated compilers is expected by mid-84.

6. Programs for compiler validation have been developed at IA8G.

In 1983. tenders for bids are planned for the Implementation of the central

data base and its interfaces. as weJl as for a version. conllguration and project

management system.

H

1 he near term goal of the SPERBER development Is to obtain a minimal

language environment (I. e.. a STONEMAN MAPS E) .

As a medium term goal. SPERBER is envisaged to provide a systematic

framework for a comprehensive environment In support of the full software IIfe­

cycle. Individual methods and tools can then be embedded Into this framework.

The long-term goal Is a comprehensive. Integrated environment (I. e.. a

STONEMAN APSE) supporting many of the activities In the various phases of the

software development.

4. The Minimal Language Environment

The minimal language environment is primarily targeted to support the Im­

plementation and testing phase of producing Ada software.

This section provides a brief overview of the minimal language environment as

~ lin educated user may view the Internal structure of the system. This view takes

.k. a very global approach. omitting many of .the possibilities for technical gr.anularity

\.0 at the system. It follows activity trails that typically must be traversed In order
~

to obtain executable code and Identifies the most Important tools and Intermediate

products along these trails. Activity trails are shown as horizontal arcs linking

tools to major input lind output products. Secondary Inputs to tools are in­

dicated In the figures by vertical arcs.

Figure shows an overall view and identifies three main activity trails.

leading to compiled code. Interpretive execution. and debugging sessions.

respectively. The five tool areas along these lines will be detailed In the

subsections below.

The user communicates with the system through a command language Inter­

preter which invokes the requested (sequence of) tools. A single user command

(e. g •• "compile") may Involve the Invocation of a string of Individual tools along

the respective activity trail.

All tools communicate with each other by storing and retrieving Intermediate

products in the Central Data Base. Access to the Central Data Base Is

controlled by the domain manager. responsible tor acces:;. version. and con-

Command language Interpreter

~ ~ ~ ~ ~
Program /
Developm'V Preparation

/ for
/ Execution

/
/ Program

/ Analysis

t t t
Domain Manager (Version" and configuration -Control)

t ___ compile line

Central Data Base
-- debuqllne
--- interpretative

line

Figure 1: The Mlntmal Language Environment

figuration control.

4.1. Program Development and Analysis

Figure 2 shows the overall structure of the activity area "Program Development

and Anatysls".

Programs are entered Into the system by means of a Text Editor (ED). They

are syntactically analy"ed by a Parser (PA). producing an Abstract Syntax Tree

(ASn. I he A::i r is submitted to the Semantic Analyzer (SA) fur slatic semantics

analysis. resulting In the DIANA representation of the program, (For separate

compilation. the Semantic Analyzer requires as secondary Input the DIANA

representation of previously complied units.) Parser and Semantic Analyzer con­

stitute the compiler front-end. Incorrect programs are rejected by these analyzing

components. The Intermediate representations are produced only for correct

programs.

The tools AST-Regenerator (ASR) and Pretty-Printer (PP) reproduce the AST and

a nicely formatted textual version of the program. respectivety.

H
H
H
I
~

1.0
U1

® __ ~SED
~!

f""PAl _~ DIANA
~ AST

~ ---@ "'----
Texl

S
6

Figure 2: Program Development and Analysis

The tools mentioned above are available in SPERBER today.

extensions. additional tools can be considered. sucli as

As further

• a Syntall-oriented Editor (SEQ) that optirattis on the AST and helps
In. as well as guarantees. entering only syntactically correct
programs;

• a Syntax- and Semantics-oriented Editor (SSED) operating on DIANA
and helping the user In entering only syntactically and semantically
correct programs;

• a DIANA-Editor (OED) for debugsing SPERBER implementations:

• support for potentially compllable program design languages or wide
spectrum languagos (BV) with tools operating on an appropriately
extended AST; and

• a variety of tools (SpeCial Analyzers (SSA» performing semantic
analysis deriving Information beyond what Is needed for code genera­
tion but extremely useful for the programmer (e. Q •• cross references.
set-use lists. flow-graphs. partial verification. etc.). The results of
such analysis. which may be very expensive to perform. can be
recorded In non-standard attributes added to DIANA (AUGM. DIANA)
for later use to prevent the excessive cost of rederlvatlon.

4.2. Instrumentation

Figure 3 displays the activity area of "Instrumentation". Instrumentation is

done to change the execution characteristics of the program for debugging or

statistics gathering purposes.

~
!

I

L

DIANA

DIANAi

Debug­
Tabtl!s

Figure 3: Instrumentation

rhe Debug-Instrumenter (DINSn uuus debug-related Instructions to the

DIANA-representation of the program. The Statlstlcs-Instrumenter (SINSn adds

Instructions for gathering run-time statistics during subsequent executions. The

Stub-Generator (SG) provides defaulted bodies fur prU!Jram units whose

specifications are referenced but whose bodies have not been provided yet by the

programmer.

The DIANA-representation produced by these instrumenting tools Is legal

DIANA In the sense that It Is re-translatable to legal Ada and therefore must be

accepted by any code generator conforming to the DIANA standard.

These instrumenting tools are expected to he available in SPERBER by the

end of 1984.

4.3. Code Generation

Figure 4 shows the activity area 'Code Generation'.

H
H
H
I
~

~
0'1

AUGM.
DIANA

8- Low Level IL

~TC:Gl Object-
Code­
Modules

,L r C,,",'­~ITables
Figure 4: Code Generalion

DIANA is tranalated by an Optimizing Code Generator (OPCG). also referred

to as Compiler Middle-End. to a representation In a low level Intermediate

languaga common for a large class of targel machines. This tpol Is still largely

target-independent and is primarily concerned wl\h an analysis of the dynamic

semantics of the program.

Heavy target-depen~ency sets in with the translation of the low level intermediate

language to the object code of the respeclive lurllill ~y:;tllm by means of

Optimizing Target-Code Generators (OTCG).

The cholcp. of the program representation on which optimization Is performed

by the OPCG is a design decision (II. g.. on DIANA. Low Level IL. or some

hidden level between these two representations); Figure 4 nevertheless Identifies

tho tool DIANA-Optimizer (DOP) as a sepilr ult! component. While. Initially. this

tool is 01 restricled usefulness due to very limited optimization possibilities at the

DIANA-level. it may gain In Importance when programs are not entirely hand-

written but partially generated by other tools. producing trivially optlmizable Ada

code.

1 he code generators for SPERBER are under contract. It i.s expected that by

early 1984 these tools will be available.

4.4. Preparation for Execution

Figure [, showr. TI1~ aClivily urea 'Preparation for Execution'. more commonly

known as linkilgp. phase. Suppurl lor Adu. huwever. requires special modifica-

tions of this area.

Debugger­
Object
Code

Interpreter­
Obiect
Code

Object
Code
Modules

Figure 5:

DL ,
...l-

DIANI\'
DOMAIN

(5!ruclure

""T
I ,

AL

Preparation for F:xocution

linked
Objecl
Programs

rhe Ada Unker (AU i:; rtl:;pon!libltl lur dillermining the correct elaboration

order (i. e.. linkagp. f.p.qlJtlnctl) ul the object modules prescribed by the etabora­

tion rules of Ada. It uses thtl structure of the DIANA domain to derive this

information. It is also responsible for recognizing the naed for racompllations of

program units in accordance with the deptlndtlncy rultl:; prescribed by Ada. It

then delegates the linkage process to the Target-Unker (LNK) of the target

system.

The Debug Unker (DU Is a special application of the Ada Unker: in accord­

ance with user instructions. the debug system and/or the Interpreter code are

linked Into the object program and appropriate Interfaces are generated.

These cempenents 101 SPERBER are currently under centract.

". 5. Execution ef Programs

H
H
H
1

ol'>

Figure 6 shews the activity area ef ·Execution ef Programs·.

linKed
Object
Programs

DIANA

DIANAi

Interpretati~e execution
1
I ---------....,

(. \r---~ f----\ LOADI EXEC I
'-.. / ------,-,

/ \
/ \ I ,

/"-----...., ~---

Debug Statistics
Tables Tables

Listings

Test-Docu­
mentation

etc.

ill
-...l CG Debug

Tables

Figure 6: Executien ef Pregrams

The linked ebject pregram is leaded inte the targel system by the

Target-loader (LOADl. Pregram executien is initiated either explicitly by an

Executer (EXEC) lOr im plicitly by the Leader.

If the executed ebject pregram Is the interpreter cede. it takes the DIANA­

representatien ef the pregram te be Interpreted as data Input: If the executed

ebject pregram centains debug directives. apprepriate user Interactien with the

debug system is expected. Depending en the previeusly perfermed Instrumen­

tatien. debug and statistics tables are read and updated. Pregram eutput listings

and pessibly infermatien te a test harness are delivered.

The teels ef the executien phase are usually the standa"rd teels available en

the target system.

5. The Framewerk ef the L1le-Cycle Suppert

The suppert by SPERBER Is Intended te extend beyend the Implementatlen

phase te ClOver the full life-cycle ef the seftware de\lelepment precess.

It is. hewever. unlikely that a single methedelegy can be Impesed and supperted

by SPERBER fit te be used fer the develepment ef a wide variety ef embedded

system types. ranging frem precess centrel pregrams to cemplex cemmand and

central Infermatien systems. Te suppert a variety ef Individual metheds used in

th'J~e develepments and te acceunt fer the pessible Inclusien ef existing teels. a

framewerk needs te be established inte .which these Individual teels can be

Integrated.

An examinatien ef the seftware life-cycle actil!ities rel!eals that certain ac­

tivities are life-cycle embracing. while ethers are restricted te individual life-cycle

phases.

These emoracing activities are of central impertance te a weH-erganized

sehware develepment precess. They can be categerized as belenging te lOne ef

five areas.

o PreJect Management

o Dala Adminlstratien

o Quality Assurance

o Cenfiguratien Management

o Decumentatien

The framewerk supperts these life-cycle embracing activities by the Vertical

Suppert Methodelogy ef SPERSER. while being largely indiscriminate with respect

te specific purpese metheds In the Individual phases as leng as these fit Inte the

life-cycle medel supperted by the vertical methedelegy.

It is 101 ceurse eften the case that Indl\lldual phase-dependent metheds include

activities Interfacing te lOne lOr mere of the life-cycle embracing areas. As part 01

the Integratlen ef phase-dependent teels. this interface must be matched te the

requirements Impesed by the Vertical Suppert Methedelegy. as shown by the

Intersection area In Figure 7.

As the medium term geal ef the SPERBER del/elepment. teels will be

H
H
H
I

"'"
ID
Q)

Pro/ecl Manaqement

Data Administration

Quality Assurance

Configuration Management

I r Documentation I /'

li~-t-t---+-T I ~F-1- ·=_1

I

SPERBER

vertical support methodoloqy

- LC embracing

- ~ependenl .

- problem depen

__ proble~enled

dent. LC oriented

- proolem depen

'--------- -
I

>------1

SPERBER

specitic purpose methods

dent

LI FE

CYCLE

Figure 7: Framework ot: the Life-Cycle Support

aeveloped that implement the Vertical Support Methodology and provide the ap­

propriate interfaces to which special purpose tools in the individual life-cycle

phases can connect. Common denominator to .these tools is the cenlral dala

base through which all tool communication is \0 be accomplished.

Initialty. il Is expected that users of SPERBER will Integrate available phase­

dependent tools suitable for their needs Into the standard framework 01 SPERBER.

As our knowledge about the suitability and versatliity of Individual requirement

analysis and software design 100ls Increases. It Is hoped that many of these

tools will migrate Into the standard configuraUon of SPERBER. thus creating an

Integrated. standard but neyertheless fle)(ible. highly sophisticated sottware

production environment supporting all phases of the software life-cycle.

[11 Reference Manua! for the Ada Programming language.
United States Department 01 Defense. January 198:5

l2J PESBLEMAN revised - Requirements for the Programming
Environment for the Common High Order Language.
United States Department 01 Defense. January 1979

[31 DIANA Reference Manual. Revision 3
Technical Report TL-83-4. Tartan Laboratories Inc ..
February 1983

[41 STONEMAN - Requirements for Ada Programming S;;pport
Environments
United States Department ot Defense. February 1980

