26" v-1I1I1

Prosect SPERBER

BACKGROUND, STATUS, FUTURE PLAMSl

Erhard Ploedereder. Ph.D.
Industrieaniagen-Betriebsgeselischaft mbH (IABG)

Ottobrunn. Fed. Rep. of Germany

Abstract

Project SPERBER is concerned with the development of a high-quality software
environment facilitating the development of software written in Ada or Basic Pearl.
it is to be used for the design. implementation. maintenance and enhancement
of embedded system soflware.
that leo to project SPERBER, presents its current status., and outlines future

This presentation elaborates on the background

pians. W ailso provides an overview of the system structure from the viewpoint of

a user.

1. Introduction

In the early seventies. the US Department of Defense (DoD) became con-
cerned with its growing software expenditures. two thirds of which were spent on
malintaining and enhancing existing software. It Identitied the proliferation of more
than 100 programming languages and dialects In use as a major reason for this
cost explosion. In 1975, it therefore created the High Order Language Working
Group (HOLWG) and tasked it with the project of designating a single language
10 become the Common HOL for Embadded Systems. This project led to the the
development of a new language {1] and later became known as the Adaz-prolecl.

IWovk reported herein was financed by the Bundesamt !uer Wehrtechnik und Baeschattung (BWB) under
contract no. E/F61C/B129/85031,

2Ad'- is a tradomark of the US Department ol Defense (AJPO},

2. Background for SPERBER

2.1. The German Involvement in the Ada Effort

In recognition of similar problems in the German armament sector. the
German Bundesministerium der Verteidigung (BMVg)a decided in 1977 to join the
US effort for a standard HOL and contracted with |IABG to act as its technical
representative. It appointed a votling member to HOLWG. participated in the
early lunguage evaluations and the Test and Evaluation Phase for Preliminary Ada
(the first publicly available version of Ada). and grovided a membar of the initial
group of Distinguished Reviewars for Ada. a small experts group advising the
designers of Ada in the final stages of thc lanquago definition. Furthermore. it
contracted with the University of Karisruhe to produce a plliot impiementation of a
compiler front-end for Preliminary Ada.

Apart from the language deveiopment. the Ada effort is also. and more
importantly, concerned with the creation of sophisticated software development
environments into which the language is to be embedded.

The German MoD has been involved jn the environment-related efforts from
their very beginnings by providing substantlal contributions lo early versions of
PEBBLEMAN (2], one of the requirement catalogues for Ada environments.

Probably the most important German contribution to the Ada effort was made
in early 1981, when the then on-going designs for Ada Programming Support
Environments (APSE) threatenod to diverge on one of the most important tool
interfaces. the intermediate language used to represent Ada programs internaily
aftar syntactic and semantic analysis. The Iwo candidate languages were
TCOL/Ada. produced at Carnegie Mellon University in Pittsburgh. USA, and
AIDA. produced at the University of Karlsruhe. Wast-Germany. Upon IABG's and
subsequently AJPO’s urging. the designers of these languages combined their
efforts and defined a common sibling languaga. DIANA (3]. Today. DIANA is
used in ail military and many commerclal developments of Ada compllers.

DIANA was first presented to the public at the first Murnau Workshop in
March 1981, The Murnau Workshops. sponsored by the German MoD and hosted

3Ciormlrl Ministry ot Defense

€6°7-1I1I

by |IABG. have. since then., become an annual forum for an exchange of ideas
on tool interfaces among the designers of Ada environments.

In its concern for slandard interfaces in APSEs. IABG has delegated a
member to the KAPSE Interface Team - industry and Academia (KITIA), This
eflort is headed by the US Navy under charter by the Ada Joint Program Office
(AJPQ) of the US DoD and tasked to define a standard KAPSE (Kernel APSE,
c.f. STONEMAN [4]) 1o enhance portability and Interoperabliity of APSE tools.

2.2. Germany’s Commitment to Ada

In February 1932, the vice-president of the Bundesamt fuer Wehrtechnik und
Baschatfung (Bws)* issued a directive stating that. for future implementations of
embedded systems, only the languages Ada and Basic Pear! are approved. with
exceptions granted to certain special purpose applications using ATLAS., CMS-2
or JOVIAL as impiementation languages.

Since usage of Ada requires the availability of an Ada compiler and suitabie
environment software, the BwB has initiated the project SPERBER
(Standardisiertes Programm-Erstoliungssystam fuer den B_uestungsng_ceichs).

SPERBER is intended to provide a sophisticated sofiware development environ-

ment supporting the full software lite-cycle for the languages Ada and Basic
Pearl.

SPERBER is designed to be an Integrated environment, In which individual
tools communicate with each other via a central data base. SPERBER subscribes
to the STONEMAN principies. such as modularity, granularity, open-endedness.
and so on.

Individua! components of SPERBER are produced by different soflware com-
panies in Germany under contract with BWB, thus ensuring the minimality and
precise documentalion ol tool interfaces. IABG is tasked to provide the global
system design. coordinate the development of the components. angd provide

4
Federal Office tor Procurement and Military Technology

S
Standardized Program Development System lor the Armament Sector

technical advice to the implementors. as welli as to perform acceptance tesling
and integration of components as they are delivered by the contractors.

SPERBER does nol yet conlain a KAPSE. A KAPSE will be integraled into the
system when international agreements on a KAPSE standard have been reached.

3. Status of SPERBER

Work on SPERBER started in 1979 as an exiension of the original pilot Ada
compiler project. Today. a variety of components is already available or under
contract to be produced.

The host system of SPERBER are the Slemens computers of the 7.xxx series
under the operaling system BS2000. Targeils are initially the host systems and a
small process coniroi sysitem. The architecture of SPERBER guarantees minimal
eftort in retargeting the system.

Components currently available or under contract are:
1. A complier front-end for Ada-80 has been compieted in February 82.

2. An exiended I/0O-Package, embedding Pearl-1/0 and COBOL-1/O concepts.
has been completed.

w

Development of two back-ends for Ada-80 is currently in its final stages.

4. A symbolic debug syslem. designed 10 be highly code generation inde-
pendent, is being developed. This system, which aiiows bolh interpretive
and compiled execution of the tested program. is scheduled for delivery in
lale 1984.

5. The upgrade of the compiler toc ANSI-Ada is being made: the availability
of validated compilers is expected by mid—84.

6. Programs for compiler validation have been developed at IABG.
In 1983, tenders for bids are planned for the Implementation of the central

dala base and its interfaces. as well as for a version, configuration and project
management system.

b6 "H-II1

The near term goal of the SPERBER development Is to obtain a minimal
language eavironment (/.e., a STONEMAN MAPSE).

As a medium term goal. SPERBER is envisaged to provide a systematic
framework for a comprehensive environment in support of the full software llfe-
cycie. Individual methods and toois can then be embedded into this framework.

The long-term goal is a comprehensive. Integrated environment (/.e.. a
STONEMAN APSE) supporting many of the activities in the various phases of the

software development.

4. The Minimal Language Environment

The minimal language environment is primarily targeted to support the im-
plementation and testing phase of producing Ada software.

This section provides a brief overview of the minimal language environment as
an educaled user may view the Internal structure of the system. This view takes
a very globai approach. omitting many of the possibilities for technical granularity
ot the system. it follows activity tralls that typically must be traversed in order
1o obtain executable code and identifies the most important tools and intermediate
products along these trails. Activity trails are shown as horizontal arcs linking
tools to major input and output products. Secondary inputs to tools are in-

dicaled in the figures by vertical arcs.

Figure 1 shows an overall view and identifies three main activity traiis,
ieading 1o compiled code. Iinterpretive execution, and debugging sessions.
respectively. The five tool areas along these llnes will be detailed in the
subsections below.

The user communicates with the system through a command language inter—
preter which invokes the requested (sequence of) tools. A single user command
(e.g.. "compile®) may involve the Invocation of a string of individual tools aiong
the respective activity trall.

All tools communicate with each other by storing and retrieving intermediate
products in the Central Data Base. Access o lhe Central Data Base is

controlled by the domain manager. responsible for access. verslon., and con-

I Command Lanquage Interpreter J
Code
Program e e e = -
De:EI m' // ‘—: Generation [
opm’} | L. Preparation
: for F 72t Execution
O iy | ====="="" 2 execution |-+
// Program [~ Instrumeny- !
H - 1]
/s Analysis L
[Domain Manager (Version- and Configuration - Control) J
i — = compile line
—— gebug line
Central Data Base ——— Interpretative
line

Figure 1: The Minimal Language Environment

figuration control.

4.1. Program Development and Analysis

Figure 2 shows the overall structure of the activity area "Program Development
and Analysis”,

Programs are entered into the syslem by means of a Text Editor (ED). They
are syntaclically analyced by a Parser (PA). producing an Abstract Syntax Trce
(AST). Iho AST is submitted to the Semantic Analyzer (SA) for slatic semantics
analysis, resulting In the DIANA representation of the program. (For separate
compllation. the Semantic Analyzer requires as secondary Input the DIANA
representation of previously compiled units.) Parser and Semantic Analyzer con-
stitute the compiler front-end. Incorrect programs are rejected by these analyzing
components. The Intermediate representations are produced only for correct
programs.

The tools AST-Regenerator (ASR) and Pretty-Printer (PP) reproduce the AST and
a nlcely formatted textual version of the program, respectively.

S6°P-I1I1

4.2, Instrumentation

Figure 3 displays the activity area of “Instrumentation”. Instrumentation is
done 10 change the execution characteristics of the program for debugging or
statistics gathering purposes.

2] [

P

Text

i

Figure 2: Program Development and Analysis

i

|

!
The tools mentioned above are available in SPERBER today. As further Table
ables

extensions. additional tools can be considered. sucti as
- a Syntax—oriented Editor (SED) that operales on the AST and helps ‘
in, as well as guarantees. entering only syntactically correct

programs:
Statistic-
e a Syntax- and Semantics-oriented Editor (SSED) operating on DIANA Tables
and helping the user In entering only syntactically and semantically

correct programs:

« a DIANA-Editor (DED) for debugging SPERBER implementations: Figure 3: Instrumentation
« support for potentially compilable program design languages or wide fhe Debug-instrumenter (DINST) udds debug-related Instructions to the
:plect;u: A‘;;_‘g“:s:s (BV) with tools operating on an appropriately DIANA-reprasantation of the program. The Statistics-instrumenter (SINST) adds
xiende :
Instructions for gathering run-time statistics during subsequent executions. The
= a varlety of tools (Special Analyzers (SSA)) performing semantic Stub-Generator (SG) provides defauited bodies for prugram units whose

analysis deriving Information beyond what |s needed for code genera-

specifications are referenced but whose bodles have not been provided yet by the
tion but extremely useful for the programmer (e.g.. cross references.

set-use lists, flow-graphs. partial verification. etc.). The resuits of programmer.
such analysis, which may be very expensive o perform. can be
recorded in non-standard attributes added to DIANA (AUGM. DIANA) The DIANA-representation produced by these Instrumenting 1tools Is legal

for later use 1o prevent the excessive cost of rederivation. DIANA in the sense that It Is re-translatable to legal Ada and therefore must be

accepted by any code generator conforming to the DIANA standard.

These instrumenting tocls are expected to he available in SPERBER by the
end of 1984,

4.3. Code Generation

Figure 4 shows the activity area "Code Generation®.

AUGM,
DIANA

Object-
Code-
Modules

CG Debug-
Tables

96°v-I1I

Figure 4: Code Genceration

DIANA is transiated by an Optimizing Code Generator (OPCQB). aiso referred
to as Compiler Middle~End. to a representation in a low level Intermediate
language common for a large class of targel machines. This tool Is still largely
target-independent and is primarily concerned with an analysis of the dynamic
semantics of the program.

Heavy targel-depengency sets in with the translation of the low level intermediate
language 1o the object code of the respeclive largel syslem by means of
Optimizing Target-Code Generators (OTCG).

The choice of the program representation on which optimization Is performed
by the OPCG is a design decision (e.g.. on DIANA, Low Level IL. or some
hidden level between these two representations):. Flgure 4 nevertheless identifies
tho tool DIANA-Optimizer (DOP) as a separuale component. While. initially, this
tool is of restricled usefulness due to very limited optimization possibilities at the
DIANA-level., it may gain In Importance when programs are not entirely hand-

written but partially generated by other tools, producing trivially optimizable Ada
code.

1he code generators for SPERBER are under contract. It is expecled that by
early 1984 these tools will be available,

4.4. Preparation for Execution

Figure 5 shows the aclivily area “Preparation for Execution®, more commonly
known as linkage phase. Support lor Ada, however. requires special modifica-
tions of this area.

3

Debugger-
Object

Code
M

Interpreter-
Object
Code

{Inked
Object

Programs

N—
Object

Code
Modules

Figure 5: Preparation for Exccution

fhe Ada Linker (AL is responsible for delermining the correct elaboration
order (i.e.. linkage sequence) ol the object modules prescribed by the elabora-
tion rules of Ada. It uses lhe siructure of the DIANA domain to derive this
information. It is also responsible for rccognizing the need for recompilations of
program units in accordance with the dependency rules prescribed by Ada. it
then delegates the linkage process to the Target-Linker (LNK) of the target
systam.

The Debug Linker (DL is a special application of the Ada Uinker: in accord-
ance with user instructions, the debug system and/or the interpreter code are
linked Into the object program and appropriate Interfaces are generated.

These components of SPERBER are currently under contract.

4.5. Execution of Programs

Figure 6 shows the activity area of “"Execution of Programs®.

Listings

linked ——
Object Test-Docu-
Programs mentation

Statistics
Tables

Debug
Tables

L6 °%-11T

CG Debug
Tables

Figure 6: Execution of Programs

The linked object program is loaded into the target system by the
Target-loader (LOAD). Program execution is initiated either explicitly by an
Executor (EXEC) or implicitly by the Loader.

it the executed object program is the interpreter code., it takes the DIANA-
representation of the program to be Interpreted as data input; if the executed
object program contains debug direclives. appropriate user interaction with the
debug system is expected. Depending on the previously performed instrumen-
tation. debug and stalistics tables are read and updated. Program output listings
and possibly information 1o a test harness are desliverad.

The 1ools of the execution phase are usually the standard tools avaliable on
the target system.

5. The Framework of the Life—Cycle Support

The support by SPERBER Is Intended to extend beyond the Implementation
phase to cover the full life-cycle of the software development process.
It is. however. unlikely that a single methodology can be imposed and supporied
by SPERBER fit to be usad for the development of a wide variety of embedded
system types. ranging from process conirol programs to complex command and
control information systems. To support a variety of individual methods used in
these developments and 1o account for the possible inclusion of existing tools. a

framework needs o be established into which these Individual toocls can be
integrated.

An examination ot the software lite-cycle activities reveals that certain ac-
tivities are life-cycle embracing. while others are restricted to individual life-cycle
phases.

These empbracing activities are of central importance to a waelil-organized

sofiware development process. They can be categorized as belonging to one of
five areas:

» Project Management

» Data Administration

= Quality Assurance

» Configuration Management

« Documentation

The framework supports these life-cycle embracing activitles by the Vertical
Support Meathodology of SPERBER. while being largely indiscriminate with respect

1o speclfic purpose methads In the Individual phases as long as those f{it Into the
lite-—cycle modet supported by the vertical methodology.

it is of course often the case that ingividual phase-dependent methods include
activities interfacing 10 one or more of the life-cycle embracing arsas. As part of
the Integration of phase-dependent 1oois. this interface must be matched to the

requirements imposed by the Verticai Support Methodology. as shown by the
Intersection area In Figure 7.

As the megdlum term goal! of the SPERBER development, tools wili be

- LC embracin
Project Management 9

Data Adminlistration

] - LC dependent , problem oriented
Quality Assurance - T

- problem dependent, LC oriented

Configuration Management

Documentation

- probiem dependent

H

—

N

e ! SPERBER SPERBER

. !

gg | vertical support methodology specific purpose methods
Figure 7: Framewark of: the Life-Cycle Support

cevcioped 1hat implement the Vertical Support Methadology and provide the ap-
propriate interfaces 1o which special purpose tools in the individual life—cycle
phases can connect. Common denominator to these tools is the central data

base through which all tool communication is to be accomplished.

Initially. it is expected that users of SPERBER will Integrate available phase-
dependent toots suitable for their needs into the standard framework of SPERBER.
As our knowledge about the suitability and versatility of individual requirement
analysis and software design 1oois increases. It is hoped that many of thess
tools will migrate Into the standard configuration of SPERBER, thus creating an
Integrated. standard but nevertheless flexible. highly sophisticated software
productign environment supporting all phases of the software life-cycle.

BELIOGRAPHY

(11 Reference Manual for the Ada Programming tan uage.
United States Department of Defense. January 198

{2] PESBLEMAN revised — Requirements for the Programming
Environment for the Common Bigh Order Language.
United States Department of Defense. January 1978

[31 DIANA Reference Manuai. Revision 3)
Technical Report TL-83-4. Tartan tLaboratories Inc..
February 1983

4] STONEMAN - Requirements for Ada Programming Support
Environments
United States Department of Defense. February 1880

