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Abstract 

Symbolic Evaluation derives Information about the static and dynamic 
semantiCS of programs by means of a static and global program analysis 
This Information Is then deposited In a program data base to be used by 
various tools supporting program development and validation 

The theOretical foundations of Symbolic Evaluation were developed al Har
vard University. The Harvard Program Development System (PDSl in
cluded as a component for semantic analysis a prototype Implementation 
of a Symbolic Evaluator. 

This paper presents the model underlying Symbolic Evaluation ~nd dis
cusses Its Impact on tools for program development and validation 

1. Introduction 

The need for more sophisticated programming tools to assist the process of 

developing and validating reliable. efficient and well documented software Is 

widely recognized. A prerequisite for many of these tools Is the ability to reason 

about the semantic meaning of programs. 

In state-of-the-art Implementations the derivation of such semantic Information 

Is specially adapted and Inseparably linked to Its use within the respective tool 

performing a particular task. such as exception detection. program verification. 

program debugging. validation or Interactive derivation of program specifications. 

static performance analysis. test-case generation and so on In an Integrated 

system of many such tools. however. It would be desirable to have a central 

analyzer producing the required semantic Information for all these tools In a 

common program data base. This approach not only avoids the repeated deriva

tion of the same Information for different purposes. but also provides for an 

Improved Interaction of the different tools by means of the common program data 

IR_rch reported her.ln wu performed at Harvard Unoverarty and In part aupported toy \he Adva _ 
_ ch ProjecU Agency under contract no ~78-G-OOZO 
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base. As a further benefit. the tools using the data base can be easily adapted 

to be applied to programs written In a variety of languages If the representation 

01 Inlormatlon In the program data base Is largely Independent 01 the program

ming language used. 

In our research we. therelore. have taken a significantly different approach 

by separating the task 01 deriving knowledge about programs from the utilization 

01 this knowledge. We perlorm a static. global program analysis that examines 

each expression 01 the Input program only once and attempts to derive a precise 

characterization 01 the values computed and the Side-effects caused. Symbolic 

expressions are used to represent the values 01 data-objects and computations 

occurring In the program. The results of this analysis. called Symbolic Evelual/on 

(3). are collected In a program data base to be used by various tools that assist 

program development and validation. 

The notion 01 symbolic expressions Is not a novelty In the software engineer

Ing area. Various researchers have proposed approaches that use symbolic ex

pressions as descriptions 01 program values occurring during an arbitrary evalua

tion 01 the program [1.6.15.17.201. However. these approaches usually provide 

only for a symbolic execution 01 a single path through the program at a given 

time. rather than for a symbolic evaluation 01 the complete program In a single 

analysis. SymboliC Evaluation also provides a basis lor analyzlng the behaviour 01 

loops [261 and lor deriving templates characterizing the results and side-effects 01 

user-defined subprograms (21). The latter ability allows us to assess the effects 

01 Individual calls efficiently. 

Symbolic execution can be viewed as a special case 01 Symbolic Evaluation; 

It can be trivially Implemented as a tool based on the results 01 Symbolic Evalua

tion. 

2. Local and Global Program Analysis 

The typical analyzlng methods Incorporated In verification systems. compliers 

and many other semantic analyzers truncate the flow 01 computation prescribed 

by a program Into small segments (e.g .. paths between assertions [10.121. 

basic blocks and regions (11) and analyze the dynamic semantics 01 these parts 

In Isolation. Facts that cannot be derived Irom these Isolated parts. but may 

Inlluence their actual evaluation. have to be described by a suitably weak 

representation correct for any Instance. II loops and recursions are contained In 

the analyzed segments. the derivation 01 their effects Is usually limited to the 

determination 01 guaranteed Invarlances; the propagation 01 less trivial knowledge 

across these constructs Is usually left entirely to the verification 01 the analyzed 

program. Furthermore several leatures often found In higher-level programming 



Symbolic Evaluation as a Basis for Integrated Validation 169 

languages create substantial problems for a localized analysis of programs. Ex

amples Include storage sharing (allaslng). pointer semantics. procedure and typo 

variables. and the locatlve use of non-trivial program expressions. e. rI.. function 

calls. The predominant theoretical basis for a localized analysis of dynamic 

semantics of programs for the purposes of verification Is the Inductive asSertion 

method due to Floyd 1101. and the deductive logical systems subsequently 

developed by Hoare (12.13.14) and others (e. rI .• (2.8.16.13)). 

Such an approach Is not particularly suited for a central analyzer. since the 

truncation parameterlzes the obtained results. and thus has to be observed by all 

peripheral tools using these results The Integration of results obtained by dif

ferently focused analyses Is often difficult or Impossible without a re-analysis of 

the program. Also. the exclusive dependency on verification to derive knowledge 

about the effects of loops and procedure calls Is not very attractive. since. In 

many sltullllons. facts about the behaviour of these constructs can be derived 

from the program text without resorting to user-provided assertive specifications 

There Is. however. a seemingly convincing argument In favor of a local 

analysis: due to unknown Input or parameter values. many condltlonalltles ariSIng 

during the evaluation of the program cannot be decided by the analysis: the 

cumulative effect of unresolved conditions may cause a combinatorial explosion In 

the description of values obtained by the analysis In a local analysis. the 

number of such condltlonalltles Is substantially smaller. 

While the basic truth of this argument cannot be refuted. some amendments 

have to be made: 

First. given the appropriate program structure. the analysis of Isolated paths 

replaces the potentially exponential complexity In result descriptions by a 

guaranteed exponential number of paths to be explored 

Second. for all but the most restricted languages. the Indiscriminate use of 

weak representations of knowledge can be a contrlbullng cause for an ac

celerated combinatorial explosion. and may weaken the results obtained to a 

degree In which they are virtually useless for any reasoning about the program. 

(Some examples. relating In particular to usage of pointers can be found In 

(22». The required worst-case assumptions consider many cases a more global 

analysis can eliminate knowing that they cannot occur during any actual evalua

tion of the program. 

Finally. the exponential explosion of value-descriptions Is caused by keeping 

the strongest possible representation of values In a string-like form. This explo

sion of the representation can be almost entirely avoided. If a context-
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Independent. graph-oriented representation Is chosen. Hence. a global analysis 

can be performed with reasonable space- and time-requirements. producing sub

stantially stronger results than a series of local analyses. The tools reasoning 

about the Information thus represented have to cope with the problem of deciding 

whether a value representation (/. e.. a sub-tree) should be treated as a weak 

symboliC token or dealt with at higher levels of strength. Combinatorial explosion 

of the complexity of the reasoning can be controlled at this point by heuristics of 

the Individual tool. deciding not to use the full strength of the Information 

available. If. on the other hand. the Information obtained by the global analysis 

has a representation simple enough to be used by a tool without substantial 

cost. the tool can proceed with considerably Improved efficiency. Hence. the 

tools are not Impeded by consequences of the limitations of a local analysis. The 

weakening of Information does not take place during analysis. but rather during 

the reasoning about the results of the analysis. At this point It Is controlled 

heurlstlcally based on the complexity of the Information and the Importance of the 

task to be accomplished rather than during analysis based on some global 

criterion of program structure that may be unrelated to complexity. 

3. The Model 

The formal model for Symbolic Evaluation [221 was originally developed for the 

language Ell [l8J. a very flexible locatlve expression language Including as a 

subset the majority of data and control structure concepts - with the exception of 

"goto" - present In modern higher-level programming languages for sequential 

programming Ce. g .. ALGOL60. ALGOL68. PASCAL. EUCLID. ALP HARD) Instead 

of unrestricted "gotO"s. Ell supports "exlt"s from loops and blocks and "return"s 

from subprogram expressions and marked expressions. 

The model was developed after a preliminary Implementation of a SymboliC 

Evaluator had already been In existence. This Implementation provided valuable 

Inslghts Into the requirements of a program analysis with respect to a semantic 

model; In return. the model allowed substantial Improvements to be made to the 

Implementation. 

The model Is described as a set of semantic equations. It bears strong 

resemblances to denotatlonal semantics. but Is adapted to the needs of a static 

program analysis. Most Importantly. a distinction Is made between functions 

whose Interpretation Is statlcally decldable and Important for an effiCient analysis. 

and functions whose Interpretation cannot or should not be decided during the 

static analysis and. Instead. Is left to the reasoning processes In peripheral 

tools. We refer to the latter category as the pragmatics of the language. Typical 

examples of pragmatic functions are functions that represent the application of a 
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built-In operator to Its arguments. I. e .. ·plus( 1. O. 2. g). which represents the 

computed result of a program expression ·1.0 + 2. g.. Tools can apply different 

Interpretations to such pragmatic functions. e. Q •• as operations over Idealized or 

machine-dependent domains. 

Our model distinguishes only two semantic domains: 

1. the set of L-value descriptions (·places·) which represent the locstlve 
results of program expressions: the Interpretation of this semantic domain 
Is fixed and decided as part 01 the analysis. 

2. the set of A-value descriptions (·symbollc expressions·) which represent 
computed data values: the Interpretation of this domain Is generally lelt to 
the reasoning tools. 

Given a fixed Interpretation of symbolic expressions. this structured approach 

can be dl~regarded: our model can then be viewed as a mathematical. denota

tlonal semantics. 

Another major distinction from denotatlonal semantics as described In (24) Is 

a quite different approach towards continuations: 

applications (for loops and subprogram calls) 

they are modelled by template 

and parameterlzatlon of the 

semantic equations Inhibiting state transformations by program expressions follow

Ing any form 01 unconditional control transfer The effects of synchronous run

time faults are also Included In the model. 

In the following sections we give a brief and slightly simplified overview 01 the 

model by Introducing the underlying concepts and providing some examples. 

3. 1. Symbolic Expressions 

Symbolic expressions are an algebraic denotation representing A-values. A 

symbolic expression Is one of the following: 

o a constant token representing a literal In the program or an address value 
returned by the allocation 01 a heap object: 

o a variable token representing an unknown Input value: 

o a constrained variable token representing a set 01 values denoted by other 
symbolic expressions. e. Q.. symbolic expressions In loops and subprogram 
calls: 

o a token representing a bound variable In a quantified symbolic expression: 

o a symbolic function applied to the appropriate number of symbolic expres
sions: 

o an equality applied to symbolic expressions: or 

o a quantified symbolic expression 

Each built-In operator In the language has a corresponding symbolic function. 
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Some additional symbolic functions and their Interpretation are predeflned as part 

01 the model. These are structural functions that allow the denotation of struc

tured A-values (arrays and records) and of components thereof. and conditional 

functions that allow the denotation 01 conditional symbolic expressions. Con

strained variable tokens are used In template generation for loops and sub

programs Such a token can also be viewed as a decldable function 

parameterlzed by a loop cycle or subprogram call Index. yielding (a possibly 

undecidable) symbolic expression. 

In order to reason about symbolic expressions. an appropriate model consist

Ing 01 an axiom system and an Interpretation Is needed The Interpretation maps 

constant tokens Into elements 01 the corresponding domains and symbolic func

tions Into functions over these domains. Variable tokens are considered univer

sally quantified over any predicate formed from symbolic expressions. The 

choice 01 an appropriate model Is lell to the reasoning tool with the exceptions 

noted above with regard to structural and conditional symbolic functions. 

3.2. Places 

Places are a generalized nollon of locations. Locations characterize a storage 

area for A-values. Place denotallons are used to describe the locatlve results of 

program expressions. 

A place Is one 01 the following alternatives: 

o a "pure value place". typically the L-value 01 an Intermediate result not 
accessible by variables or pointers: 

o a "Iocallon place". typically the L-value 01 the evaluallon 01 an Identifier: 

o a "selected place". typically the L-value of the evaluation of a selection 
such as "AecordObJect Component": or 

o a "conditional place". typically the L-value 01 a conditional expression or Of 
derelerenclng a union-pointer with conditional A-value 

The denotallon 01 places has a predeflned Interpretation up to the Inter

pretallon of symbolic expressions Involved In selected and conditional places 

Predicates Involving places can always be reduced to predicates Involving only 

symbolic expressions. 

3.3. Store. Environment and Memory-State 

The store Is a set of locations. Each location In the store has an address. 

which Is associated with the name of a declared variable or a pointer A-value or 

set of such values. These associations are specified In descrlptors. The set of 

descrlptors forms the environment. Since our model allows partial and conditional 



Symbolic Evaluation as a Basis for Integrated Validation 173 

allaslng. descrlptors associate variable names with the denotation 01 a place 

rather than a location. 

The pair (environment. store) Is referred to as the memory-stale. 

The connecllon between L-values and R-values Is established by the ·value·

function which Is decided as part 01 the analysis. It yields the denotation of the 

R-value stored In the given place for a given memory-state 

value: {Place} x {Uemory-state} -) (SymbolIC Expr) 

The memory-state Is altered as described by the semantic equations for 

declarative constructs and assignments The assignment semantics use the 

·wrlte·-functlon to alter the A-value denotation of a given place In a given 

memory-state: this function which yields a new memory-state Is decided as part 

of the analysis. 

wnte: (Uamory-stata) x {Place} x {SymbolIC Expr} -) {Uemory-State} 

The place associated with an Identifier within the program Is established by 

the ·plc·-Iunctlon which Is decided as part 01 the analysis. It yieldS the denota

tion of the place for the given name in a given memory-state. The Interpretation 

of the ·plc·-functlon Is decided as part of the analysis: It is language-dependent 

to the extent of accommodating different scoplng rules 

plc: {identifier} x {Uamory-stata} -) {PI_} 

3.4. The Symbolic Evaluator Function SE 

The function ·SE· describes the semantics of the various expressions 01 the 

programming language In terms of the semantics 01 their sub-expressions and of 

functions operallng on the semantic domains of the model. It maps the respec

tive program expression and a given memory-state In which the expression Is to 

be evaluated Into the denotation 01 Its locatlve result and 01 the resulting 

memory-state. The latter reflects potential side-effects of the expression. 

SE . ( .. pra .. fOn) x (Uemory-State) (Place) x (Uamory-State) 

The SE-function is constructive in nature Given an efficient Implementation 

for the representation of memory-states and operations on this representation. 

the majority of SE-equations can be directly transliterated Into an efficient im

plementation 01 a semantic program analyzer (the exceptions being loop and 

subprogram analysis for which some less obvious strategies must be chosen for 

obtaining an efficient Implementation). 

Although the SE-function Is oriented towards locatlve expression languages. It 

Is equally applicable to statement-oriented languages The syntactic constraints 
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Imposed by the latter languages will cause cenaln combinations of semantic 

equations never to appear. while the equations In Isolallon are sllll valid for the 

purposes of program analysis. 

Symbolic Evaluallon assumes a strict order In the evaluation of expressions. 

thus overspeclfylng the language semantics. This Is unavoidable to prevent a 

totally uncontrolled and often unnecessary explosion In the complexity of R-value 

descriptions. In an Implementation of a Symbolic Evaluator 11 Is fairly easy to 

ascertain whether this assumption had any effects on the results obtained and. If 

so. Issue warnings to the user or accomodate the non-determinism by adjusting 

value descriptions retroactively. 

3. 5. Examples 01 the SE Equalloll8 

In the following. the notations ·SE(X. MS). PLC· and ·SE(X. MS). MSr are 

used to denote the place and memory-state obtained by applying SE to an 

expression X and a memory-state MS. ·value(SE(X. MS»· will be used as ab

breviation for ·value(SE(X. MS) PLC. SE(X. MS). MSn·. The equations given are 

slJghtly simplified: fully detailed equations are given In (22). 

A) Non-Repetitive Constructs: 

Identlllers: 

SE 110, MS) = (pie 110, MS) , MS) 
WIlere ID I. the na"'" 01 a declared entity 

Selections: 

SE(E[I), MS) = ( (SE(E,MS).PlC, (valu.(SEII,MS1)))), MS2 ) 
WIler. MS 1 = SE (E, MS) . MST 

MS2 = SEll, MS1) .MST 

Assignments: 

sE(El : = E2, MS) = 
( SE(El,MS).PlC, writ.(t.IS2, SE(El,MS).PlC, value(SE(E2,MS1))) ) 
WIler. MSl = SE(El,MS) .MSl 

t.IS2 = SE(E2, MSl). MSl 

Statements within expressions: 

SEI IE1; E2), MS) = SEIE2, SEIE1,MS).t.lST) 

Condlllonal expressions: 

SE(lF a THEN El ELSE E2 FI, MS) = 
I loond qv, plel, pcI2), combtne_cond,tlonaJly(qv, MSl, t.IS2, MS3) ) -. qv = valu. (SE (a, MS)) 

MSl = SE(a,MS)'MST 
(plel, t.IS2) = SE(El, MS!) 
(pIc2, MS3) = SE(E2, MS!) 

·comblne-condltlonally· Is an auxiliary function of the model which returns 8 
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memory state In which all R-value descriptions that differ In any two 01 the given 

memory states are replaced by conditional symbolic expressions based on the 

value 01 the branch predicate and the original values. (In an efficient Implemen

tation the memory-state Is augmented by a flow-graph. The lunctlon extends the 

flow-graph without modifying R-value denotations. The "value"-Iunctlon then uses 

the flow-graph to derive the condltlonalltles caused by the branch.) 

SE Equations for loops: 

The semantic equations lor loops are template-oriented A loop template Is 

created by means 01 symbolically evaluating the loop In an "Inductive memory

state" (IMS) The environment 01 the IMS contains entries lor all non-local 

variables relerenced In the loop; Its store contains corresponding locations whose 

R-values are represented by constrained variable tokens. The IMS Is sufficiently 

general to represent the memory-state at the beginning 01 each cycle 01 the 

loop. The SE-Iunctlon establishes two memory-states. the state at the end 01 

the loop body (IMSA). and the state alter exiting the loop (IMSF) The R-values 

In locations 01 IMS. and the corresponding values In MS and IMSA describe a 

first-order recurrence relation of symbolic expressions. constrained by the nega

tion of the loop-controlling predicate. 

The semantics 01 the WHILE-loop are modelled as a concurrent assignment 01 

the symbolic representation 01 the solutions lor this recurrence relation A 

special tool [261 can later attempt to find closed-Iorm symbolic solutions lor 

these relations. The WHilE-loop has an empty l-value 

SE(WHILE 0 REPEAT E END. MS) = ( (W. nothlng).none) MSF) 
where 

IMS = tha Induct_ memory-state 
IMSA = SE( (0; BEGIN REND). IMS).MST 
IMSF = SE (0. IMS). MST 
< XI •...• Xn) 11 • lost of the place. (for non-local variable. 

referenced In 0 and E) In IMS 
< Xl'.. .• Xn'> la the hat 0' corr •• ponchng place. In US 

INITIAL = < value(XI·. MS), ..• valua(Xn·. MS) ) 
BEGIN = < v.lua(XI.IMS) •..• v.lue(Xn.IMS) ) 
AGAIN = < valua(XI.IMSA) •...• v.lua(Xn.IMSA) ) 
FINAL = < v.lu.(XI.IIoISF) •...• v.lu.(Xn.IMSF) ) 
EXIT = not"( value(SE(O.IMS») 
FINAL" = lubat(FINAL, BEGIN. oolva*(BEGIN, INITIAL, AGAIN, EXIT» 
MSF = wrotel. .. Wflte(MS, XI', FINAL"I) .. , Xn', FINAL"n) 

(An efficient Implementation will not require establishing special Inductive 

memory states. They can be overlaid with the memory-state In which the loop Is 

evaluated by simply Installing a constrained variable token In the respective loca

tions retroactively whenever such locations are first relerenced within the loop. 

The token acts as a representation for the solved recurrence relation ) 
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3.6. The Algorithmic Semanllcs Funcllons WSP and SSP 

The SE-lUnctlon explains the semanllcs 01 the language constructs. but does 

not allow relating these semantics to assertive specifications. The lunctlons WSP 

and SSP accomplish thIs connection They arc variants of Dljkstra's ·predlcale 

translormers" (9) for the derivation of weakest preconditions IWSP> and strongest 

postcondltlons ISSP>. transposed Into the setting of denotatlonal semantics and 

augmenled to allow the generation of practical verification conditions based on 

Inducllve assertions lor partial correctness. 

WSP: (axpra .. lOn) x {Memory-Slata} x {SymbolIC Expr} -) {SymbolIC Expr} 
SSP: {axpr8aaton} x {Memory-Stata} x {Symbolic Expr} -) {SymbolIC Expr} 

WSPI PROG. MS. P> yields a symbolic expression representing a pre-condltlon 

that guarantees both the correctness 01 the program Iragment PROG wilt, respect 

to assertions contained In PAOG. when PROG Is evaluated In MS. and the truth 

01 the post-condition P aller this evaluation 

SSPIPROG. MS. Q> Is a symbolic expressIon representing a post-condition that 

can be Inlerred Irom the validity 01 Q prior to the evaluation 01 PAOG In MS and 

the correctness 01 this evaluation with respect to assertions contained In PROG. 

In order to provide uselul Inlormatlon to a verifier. we Induce some structure 

upon symbolic expressions In the Image domains of the WSP and SSP functions 

by means 01 the lollowlng symbolic functions 01 fixed Interpretation: 

1. vcb·IP.Q> Indicates the necessity of proving Q Irom a premise equal to. 
or stronger than P. 

2. vcf"1 P. Q> Indicates the necessity 01 proving Q from a premise equal to. 
or weaker than P. 

3. ax" I P> Indicates a restriction on the applicability of the program to states 
satisfying P; this restriction may be assumed on faith. 

4 ,-ax" I PI kll > Indicates a restriction to slates satisfyIng "exIsts kl: PI kll"; 
this restriction guarantees termination. 

vcb" I P. Q> corresponds to a verification condition I P -) Q) generated by back

ward analysis. vcl" I P. Q) corresponds to a verification condition C P -) Q> 

generated by lorward analysis. ax" I P) Is the trivially successlul verification con

dition P for an assumed predicate. and t_ax"CPCkll> Is either treated as a 

verification condition or an axiom. depending on whether an attempt Is made to 

prove total or partial correctness. respectively. 

A program Is correct under some model for symbolic expressions 11 lor all 

vcb· or vcl" lunctlons In WSPIPROG.O. true) or SSPIPROG. O. true). respec

tively. Ihe trulh 01 the correspondIng verifIcation conditIon can be deduced In the 

model. The model provides a basis for attempting to prove total correctness. 
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3. 7. ElCamples of the WSP Equations 

The following examples are simplified by neglecting the possibility of Implicit 

assertions generated by the evaluation of expressions. such as assertions that 

guarantee array Indices to be within the prescribed bounds. We omit examples 

for SSP equations since they are quite analogous. 

A) Identifiers. Selection and Assignment 

WSP(lO, MS, PI = P 

WSP(E[I), MS, PI = WSP(E, MS, WSPII,I.IS1,PII 
where MSl = SE(E,MSI.I.I5T 

WSP(El := E2, MS, PI = WSP(El, 1.15, WSP(E2, I.IS1, PII 
where MSl = SE(El, I.ISI. I.I5T 

The equation for assignment Is surprising at first glance. since It Implies 

WSP( "0: :3". MS. PI : P. I. 8 .. the assignment has no effect on the predicate 

Its Justification lies In the fact that an assignment Influences the memory-state In 

Its location-value bindings. but never an existing symbolic expression 

B) Conditional Expressions: 

WSP(lF Q THEN El ELSE E2 FI, MS, PI = 
WSP( a, 1.15, and"( value(SE(Q,I.ISI1 -) WSP(El, MS 1 , PI , 

not" (value (SE (a, MS)) -) WSP (E2, MS I, PI I I 
where I.IS1 = SE(a, 1.151. I.I5T 

A normalizing transformation causes the Implying symbolic predicates to be

come premises of vcb"-appllcatlons within the weakest symbolic pre-condltlons of 

sub-expressions, I. 8. the branches. 

C) Assertions: 

WSP(ASSERT(VI, MS, PI = 
and*( vcb*(trua, value(SE(V,I.ISIII, value(SE(V,I.ISI1 -) P I 

WSP (ASSUME (VI , MS, PI = 
and*( .. "(valua(SE(V,I.ISII, valua(SE(V,I.ISI1 -) P I 

3.8. Properties of the WSP and SSP Functions 

The following properties can be proved for the WSP and SSP functions. The 

notallon "El == E2" Is used for semanllc equivalence of the symbolic expressions 

El and E2 under any Interpretation that maps boolean symbolic functions to the 

respective boolean functions. 
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Theorem 1: (Invariance) 

If the expression E contains no lOops. procedure calls. and Implicit or explicit 

asserlions. then 

WSPIE, MS, P) == P 

SSPIE, MS, P) == P 

This theorem guarantees the capability of propagating predicates across many 

types of expressions without requiring a reanalysls of the expression. 

Theorem 2: (Separation of Concerns) 

For all expressions E: 

a) WSP(E,MS,P) == and*(SI(SSP(E,MS,true)) -) P, WSPIE, MS, true» 

b) SIISSP(E,MS,O)) == and*ISI(O), SI(SSP(E,MS,true))) 

c) SSP(E,MS,O) == and*(O, SI(O) -) SSPIE,MS,true» 

where SI maps all occurrences of vCb". vcf". ax". and t_ax" Into the 

respective verification conditions. It thereby determines the strongest symbolic 

post-condition without the structure Induced by the symbolic functions ISOlating 

verification conditions. 

This theorem guarantees the capability of analyzlng each language expression 

In Isolation by means of the WSP and SSP functions. and of Integrating the 

results of this analysis Into verification conditions for expressions enclOsing the 

expression. It also guarantees that all strongest post-conditions. and by corollary 

post-conditions In general. can be propagated across following expreSSions wlth-

out alterations. Post-conditions propagated out of branches receive the branch 

predicate as an Implying premise. 

Theorem 3: (Equivalence) 

For all expressions E: 

tlWSP(E, MS, true)) == t(SSP(E, MS, true» 

where t Is the normalizing transformation and replaces vcb" and vcf" by vc". 

ThiS theorem guarantees that forward or backward directed generation of 

verification conditions will yield Identical verification conditions for all assertions 

contained In E. 

It Is a consequence of these theorems that 

l. an Implementation of a verifier can collect premises for a verification con
dition from all preceding program expressions without modifying them ex
cept by adding branch enabling predicates leading to the respective ex
pression: 
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2. there are as many verification conditions as there are assertions: some 01 
the verification conditions contaIning constrained variable tokens may re
quire Inductive prools: 

3. an Implementation can allow assertIons to be Inserted at any place In the 
program without a re-analysis 01 the program. except lor determIning the 
symbolic value 01 the predIcate In the context In whIch It Is asserted 

... The Implementation of the Symbolic Evaluator 

The Implementation 01 the Symbolic Evaluator withIn the Harvard PDS [51 Is 

described In detail In (3.21. 221. This section provides a brlel overview 01 the 

underlying prinCiples 01 an elllclent Implementation. 

An Implementation 01 the SE-function must optlmlze the representation 01 

memory-states with appropriate trade-OilS In the complexity of the functions 

operating on memory-states. as well as opllmlze the representation 01 symbolic 

expressions representing computed A-values. 

In our Implementation we have chosen to represent the memory-state sparsely 

by adding lists 01 so-called value cells to thll locations 01 the store. These value 

cells contain a context characterization and the symbolic expression representing 

the R-value of the locallon In this context. The context relates to an acyclic 

flow-graph. the context graph. whose branching nodes are labelled with the 

respective symbolic branch predicate. This graph Is acyclic because loops and 

function calls are modelled as multiple assignments to the allected enlltles. as 

determined by the loop or subprogram templates. The context graphs for the loop 

and subprogram bodies are Isolated sub-graphs with specIal root and leaf nodes 

IdentifyIng these contexts as the respecllve specIal start. end. recursion or 

repetitiOn contexts used In establishing the loop or subprogram templates. 

Value cells are created by the "wrlte"-funcllon modelling assIgnments and by 

the procedure call and lOOP analyzlng parts 01 the Implementallon The cost of a 

sIngle appllcallon of the "wrlte"-funcllon Is essenllally conslant In lime and 

space: condlllonal places. whIch rarely occur In programs. Increase this com

plexity. 

The "value"-funcllon establishes the symbolic expression represenllng the value 

of a given location In a gIven context by an Intersecllng traversal of the context 

graph and the value cells found In the locallon The algorithm employed Is 

reminIscent 01 path compressIon as described by Tarlan [251. The algorithm 

termInates when for each path leadIng to the context a value has been found. 

The applicable values are combined In a conditional symboliC expressIon reflect-

Ing the respecllve path predicates. The algorithm we use Is opllmal In the 
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sense that It produces the minimal representation 01 the R-value 01 a location up 

to attempting to prove the lalsehood 01 path-enabling predicates. It Is 

guaranteed that the algorithm never needs to search beyond the root nodes 01 an 

Isolated context graph 01 a loop or subprogram. The complexity 01 the algorithm 

Is linearly bounded by the number 01 value cells and squared bounded by the 

number 01 preceding branches In the context graph. The constant lactor Is very 

small. This worst-case complexity can only arises lor programs In which the 

number 01 paths Is linear In the number 01 branches. For programs with an 

exponential number 01 paths the worst-case complexity Is linear In both the 

number 01 value cells and branches. Due to the locality 01 variable usage. most 

Invocations 01 the ·value·-Iunctlon require substantially less time and space than 

under worst-case assumptions. 

An efficient representation 01 symbolic expressions Is accomplished by u&lng a 

graph-oriented representation whose nodes represent the R-values computed by 

program expressions. Each expression In the program whose R-value Is needed 

causes the generation 01 such a node. It can be shown that the total space 

requirement lor symbolic expressions Is bounded by the number 01 expressions 

and assignments In the program. II the ·value·-Iunctlon Is not decided by the 

Symbolic Evaluator but left to reasoning tools. II It Is decided. then nodes lor 

R-values 01 Identifiers require non-constant space which Is sub-linearly propor

tional to the complexity 01 the corresponding value-retrieval. 

An added benefit 01 the chosen representation Is that It lacllltates the detec

tion 01 all common subexpresslons In the program regardless 01 Intervening 

branches. Furthermore. It allows minor modlllcatlons 01 the program and a cor

responding Incremental adjustment 01 the program data base to be made without 

a re-analysis 01 the program: the adjustment Is trivial lor the alteration 01 ex

preSSions that have no side-effects on the memory-state. Only alterations to the 

control structure 01 the program Invalidate the results 01 the symbolic evaluation. 

In preliminary tests 01 the pilot Implementation. experience has consistently 

shown that the size 01 the program had virtually unnoticeable Influence on the 

cost 01 Individual value relrlevals which consumed about 10% 01 total analysis 

time. This Is attributed to the locality 01 variable usage. The same holds for 

overall performance In the absence of procedures: the tlme- and space

requirements are approximately linear In the size of the program. The presence 

01 many subprogram calls degrades performance. since the template generation. 

storage. retrieval and Instantiation Is of non-trivial cost (although more efficient 

than a re-analysis 01 the subprogram body. except for trivial subprograms). 
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5. The Implementation of the Verlller 

For a detailed description of the Implementation. we refer the reader to [221. 

In this section. we discuss only the most salient properties of the verifier. 

The proven Invariance of symbolic predicates when propagated across excep

tions has far-reaching consequences for the verifier. Its Implementation never 

reanalyses the program. The task of establishing verification conditions consists 

of traversing the list of asserted predicates and of collecting premises from 

contexts preceding an assertion under Inclusion of enabling branch predicates. 

The Implementation traverses a list of ·assertlon cells·. each containing the 

symbolic value of the asserted predicate and the context In which It Is asserted. 

This task Is virtually Identical to the task the ·value·-functlon performs' the 

·value·-functlon traverses the list of value cells for a given location and combines 

the applicable contents In conditional symbolic expressions reflecting branch 

predicates. Verification condition generation uses precisely the same algorithm 

to obtain all premises provided by the contextually closest preceding assertions 

for each path leading to the assertion to be proved. It can. however, go beyond 

these delimiting assertions and retrieve Information from assertions larther back 

In the program. With an appropriate set of heuristics. the choice 01 premises 

collected can be controlled to avoid an abundance 01 premises unrelated to the 

assertion under examination. The efficiency 01 the algorithm Is substantially 

Increased by the fact that branches not containing any assertions can be skipped 

In collecting premises without suffering any loss of Information. 

Furthermore. the program analysis which preceded the verification Implicitly 

propagated value Invarlances across loops and procedures. so that many asser

tions required In other verification methods are not needed. 

lastiy. If an assertion cannot be proved from the premises given, the user 

can Insert additional assertions at arbitrary points In the program without causing 

a re-analysis 01 the program. The only action to be taken by the verifier Is to 

symbolically evaluate the assertion In the context of Its Insertion to obtain Its 

symbolic value. This value Is then added to the assertion list. verified and used 

as premise for subsequent assertions. 

For verification conditions that contain tokens Introduced by loops, the proving 

component 01 the verifier has two options. If a straightforward attempt falls to 

prove the verlllcatlon condition on the basis of preceding premises. First. It can 

call on recurrence relation solving tools which attempt to find closed form sym

bolic solutions for the tokens and then re-attempt a proof [7. l161. Second, It 

can attempt an Induction proof by generating two verification conditions for the 

first and the (n+ 1) -th cycle of the loop These verification conditions arel 



182 E. Ploedereder 

obtained by collecting the Inductive premises and by replacing the tokens with the 

appropriate symbolic expressions recorded In the loop template. For assertions 

within procedure bodies that cannot be proved. the proving component can - In 

Interaction with the user - establish derived entry-conditions for the procedure If 

the proof Indeed falllld because of a missing entry-condition. In the case of 

entry-conditions for recursive procedures. a recursion Induction can be per

formed (191. 

If an attempt Is to be made to verify an assertion only with respect to a 

single path leading to It. the respective verification condition can be obtained by 

a trivial simplification of the general verification condition for the assertion after 

the appropriate branch predicates are replaced by 'true'. Generally, this 

strategy will be used by the proving component for splitting complicated verifica

tion conditions Into Isolated clauses. 

8. Symbolic Evaluation as a Basis for other Tools 

While verification Is one of the most challenging applications for the results of 

a program analysis. a full-scale verflcatlon based on predicative assertions Is 

beyond the capablJltles of tools for practical program validation. However. many 

other tools used In program development and validation can also be substantially 

assisted by the Information contained In the program data base developed by the 

symbolic evaluatlon ot the program. Some 01 these tools can be Implemented by 

simply providing a user-Interface Into this data base. As an added pragmatic 

advantage. utilization of the Information produced by the symbolic evaluation of 

the program guarantees that all tools assign the same (correct) semantics to the 

programming language - all to often this Is not the case If tools Independently 

analyze the original program text. 

Some examples of such tools ara: 

• Set/use lists: The lists of value cells for locations provide a record of all 
aSSignments to variables. For reasons having to do with non-deterministic 
evaluation order. the Symbolic Evaluator also has to keep track of usages 
01 the values 01 variables. This record provides the necessary Information 
about variable usage. The respective context relales the setting or usage of 
values back to the program text. 

• Dynamic Ulellme Analysis: Based on the sel/use analysis. It Is trivial to 
determIne the maximum life-time of variables within their scope. 

• Description of all side-effects of a subprogram: Part of the template 
created for a subprogram Is the record of all non-local variables referenced 
or modified by Its body or any of Its sub-called subprograms. Having a 
record of all such references and mOdifications regardless of the call stack 
depth at which they occur Is a valuable asset In program validation. 

• Cross-Reference Lists: Based on the Information above. cross-reference 
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listings can be produced. 

o Analysis of Allaslng: The environment component and the subprogram 
templates 01 the program data base produced by the Symbolic Evaluator 
contain a record 01 all declared aliases and 01 all potential aliases created 
by parameters In procedure calls 

o Exception Detection: Part 01 the Symbolic Evaluation Is the creation 01 Im
plicit assertions whose truth guarantees the absence 01 run-time exceptions. 
The context 01 such symbolic assertion values Identllles the pOints In the 
program at which exceptions may occur. A moderate amount 01 verlllcatlon 
effort can discover the truth 01 many such assertions (161. The user can be 
made aware 01 any assertion that cannot be proved. Indicating the potential 
exlsltence 01 a run-time error. 

o Semi-Automated Derivation 01 Entry-Conditions: Any assertion In a proce
dure that cannot be proved correct can be easily propagated back to the 
Initial context 01 the procedure body where It can be Installed as an entry 
condition to be proved lor each call situation. This propagation can be 
lully automated: the user only has to state whether the unproven verlllcatlon 
condition Indeed represents a restriction on the applicability 01 the sub
program or the failure of proving It was caused only by the restricted 
capabilities of the proving component 

o Symbolic Execution: The results 01 a symbolic execution can ba obtained 
Irom the program data base by Instantiating branch predicates as desired. 
A certain amount of slmpllllcatlon Is required lor symbolic expressions that 
Involve conditions depending on such branch predicates. 

o Test Case Generation based on Symbolic Execution: Given the results 01 a 
symbolic execution as explained above. the same methods as known Irom 
symbolic execution can be applied. 

o Executable Specifications: The Symbolic Evaluator has been designed to 
allow the extension of symbolic evaluation to executable speclllcatlons ex
pressed In a style equal or similar to the REWRITE laclllty 01 the Harvard 
PDS (4). While this extension has not been Implemented. Its Implications 
are believed to be sulllclently understood. 

7. Summary 

Symbolic Evaluation perlorms a global semantic program analysis. Any part of 

the program Is analyzed but once The results 01 the analysis are deposited In a 

program data base. An appropriate representation 01 this Inlormatlon prevents 

combinatorial explosion 01 the analysis. Despite the global analysis performed 

and the lact that the derived Information Is not weakened for a reduction In 

complexity. Symbolic Evaluation Is believed to be Implementable as a practical 

tool. Peripheral tools use the Information In the data base to reason about the 

program without having to reanalyzlng It. They control combinatorial explosion of 

the reasoning processes by heuristics. The Interaction among peripheral tools Is 

slgnlllcantly Improved by means of the shared program data base. since any 

Information deduced by any tool can be stored In the data base lor the benefit 
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of all other tools. A large variety of tools Important for program development. 

debugging and valldallon can be easily Implemented on the basis of Symbolic 

Evaluation. To a varying extent. these tools can be Implemented language

Independenlly. The use of Symbolic Evaluation guarantees a conSistent Inter

pretallon of the language semanllcs among all tools. 
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