
SOFTWARE VALIDATION, H.L Hausen (editor)
E lse .. er ScIence Publishers B. V. (North-Holland)
©GMD,1984

167

SVMBOUC EVALUATION AS A BASIS FOR I NTEGRATED V AUDATION

Erhard Ploedereder. Ph. D.

Tartan laboratories

Pittsburgh. PA. USA

Abstract

Symbolic Evaluation derives Information about the static and dynamic
semantiCS of programs by means of a static and global program analysis
This Information Is then deposited In a program data base to be used by
various tools supporting program development and validation

The theOretical foundations of Symbolic Evaluation were developed al Har
vard University. The Harvard Program Development System (PDSl in
cluded as a component for semantic analysis a prototype Implementation
of a Symbolic Evaluator.

This paper presents the model underlying Symbolic Evaluation ~nd dis
cusses Its Impact on tools for program development and validation

1. Introduction

The need for more sophisticated programming tools to assist the process of

developing and validating reliable. efficient and well documented software Is

widely recognized. A prerequisite for many of these tools Is the ability to reason

about the semantic meaning of programs.

In state-of-the-art Implementations the derivation of such semantic Information

Is specially adapted and Inseparably linked to Its use within the respective tool

performing a particular task. such as exception detection. program verification.

program debugging. validation or Interactive derivation of program specifications.

static performance analysis. test-case generation and so on In an Integrated

system of many such tools. however. It would be desirable to have a central

analyzer producing the required semantic Information for all these tools In a

common program data base. This approach not only avoids the repeated deriva

tion of the same Information for different purposes. but also provides for an

Improved Interaction of the different tools by means of the common program data

IR_rch reported her.ln wu performed at Harvard Unoverarty and In part aupported toy \he Adva _
_ ch ProjecU Agency under contract no ~78-G-OOZO

168 E. Ploedereder

base. As a further benefit. the tools using the data base can be easily adapted

to be applied to programs written In a variety of languages If the representation

01 Inlormatlon In the program data base Is largely Independent 01 the program

ming language used.

In our research we. therelore. have taken a significantly different approach

by separating the task 01 deriving knowledge about programs from the utilization

01 this knowledge. We perlorm a static. global program analysis that examines

each expression 01 the Input program only once and attempts to derive a precise

characterization 01 the values computed and the Side-effects caused. Symbolic

expressions are used to represent the values 01 data-objects and computations

occurring In the program. The results of this analysis. called Symbolic Evelual/on

(3). are collected In a program data base to be used by various tools that assist

program development and validation.

The notion 01 symbolic expressions Is not a novelty In the software engineer

Ing area. Various researchers have proposed approaches that use symbolic ex

pressions as descriptions 01 program values occurring during an arbitrary evalua

tion 01 the program [1.6.15.17.201. However. these approaches usually provide

only for a symbolic execution 01 a single path through the program at a given

time. rather than for a symbolic evaluation 01 the complete program In a single

analysis. SymboliC Evaluation also provides a basis lor analyzlng the behaviour 01

loops [261 and lor deriving templates characterizing the results and side-effects 01

user-defined subprograms (21). The latter ability allows us to assess the effects

01 Individual calls efficiently.

Symbolic execution can be viewed as a special case 01 Symbolic Evaluation;

It can be trivially Implemented as a tool based on the results 01 Symbolic Evalua

tion.

2. Local and Global Program Analysis

The typical analyzlng methods Incorporated In verification systems. compliers

and many other semantic analyzers truncate the flow 01 computation prescribed

by a program Into small segments (e.g .. paths between assertions [10.121.

basic blocks and regions (11) and analyze the dynamic semantics 01 these parts

In Isolation. Facts that cannot be derived Irom these Isolated parts. but may

Inlluence their actual evaluation. have to be described by a suitably weak

representation correct for any Instance. II loops and recursions are contained In

the analyzed segments. the derivation 01 their effects Is usually limited to the

determination 01 guaranteed Invarlances; the propagation 01 less trivial knowledge

across these constructs Is usually left entirely to the verification 01 the analyzed

program. Furthermore several leatures often found In higher-level programming

Symbolic Evaluation as a Basis for Integrated Validation 169

languages create substantial problems for a localized analysis of programs. Ex

amples Include storage sharing (allaslng). pointer semantics. procedure and typo

variables. and the locatlve use of non-trivial program expressions. e. rI.. function

calls. The predominant theoretical basis for a localized analysis of dynamic

semantics of programs for the purposes of verification Is the Inductive asSertion

method due to Floyd 1101. and the deductive logical systems subsequently

developed by Hoare (12.13.14) and others (e. rI .• (2.8.16.13)).

Such an approach Is not particularly suited for a central analyzer. since the

truncation parameterlzes the obtained results. and thus has to be observed by all

peripheral tools using these results The Integration of results obtained by dif

ferently focused analyses Is often difficult or Impossible without a re-analysis of

the program. Also. the exclusive dependency on verification to derive knowledge

about the effects of loops and procedure calls Is not very attractive. since. In

many sltullllons. facts about the behaviour of these constructs can be derived

from the program text without resorting to user-provided assertive specifications

There Is. however. a seemingly convincing argument In favor of a local

analysis: due to unknown Input or parameter values. many condltlonalltles ariSIng

during the evaluation of the program cannot be decided by the analysis: the

cumulative effect of unresolved conditions may cause a combinatorial explosion In

the description of values obtained by the analysis In a local analysis. the

number of such condltlonalltles Is substantially smaller.

While the basic truth of this argument cannot be refuted. some amendments

have to be made:

First. given the appropriate program structure. the analysis of Isolated paths

replaces the potentially exponential complexity In result descriptions by a

guaranteed exponential number of paths to be explored

Second. for all but the most restricted languages. the Indiscriminate use of

weak representations of knowledge can be a contrlbullng cause for an ac

celerated combinatorial explosion. and may weaken the results obtained to a

degree In which they are virtually useless for any reasoning about the program.

(Some examples. relating In particular to usage of pointers can be found In

(22». The required worst-case assumptions consider many cases a more global

analysis can eliminate knowing that they cannot occur during any actual evalua

tion of the program.

Finally. the exponential explosion of value-descriptions Is caused by keeping

the strongest possible representation of values In a string-like form. This explo

sion of the representation can be almost entirely avoided. If a context-

170 E. Ploedereder

Independent. graph-oriented representation Is chosen. Hence. a global analysis

can be performed with reasonable space- and time-requirements. producing sub

stantially stronger results than a series of local analyses. The tools reasoning

about the Information thus represented have to cope with the problem of deciding

whether a value representation (/. e.. a sub-tree) should be treated as a weak

symboliC token or dealt with at higher levels of strength. Combinatorial explosion

of the complexity of the reasoning can be controlled at this point by heuristics of

the Individual tool. deciding not to use the full strength of the Information

available. If. on the other hand. the Information obtained by the global analysis

has a representation simple enough to be used by a tool without substantial

cost. the tool can proceed with considerably Improved efficiency. Hence. the

tools are not Impeded by consequences of the limitations of a local analysis. The

weakening of Information does not take place during analysis. but rather during

the reasoning about the results of the analysis. At this point It Is controlled

heurlstlcally based on the complexity of the Information and the Importance of the

task to be accomplished rather than during analysis based on some global

criterion of program structure that may be unrelated to complexity.

3. The Model

The formal model for Symbolic Evaluation [221 was originally developed for the

language Ell [l8J. a very flexible locatlve expression language Including as a

subset the majority of data and control structure concepts - with the exception of

"goto" - present In modern higher-level programming languages for sequential

programming Ce. g .. ALGOL60. ALGOL68. PASCAL. EUCLID. ALP HARD) Instead

of unrestricted "gotO"s. Ell supports "exlt"s from loops and blocks and "return"s

from subprogram expressions and marked expressions.

The model was developed after a preliminary Implementation of a SymboliC

Evaluator had already been In existence. This Implementation provided valuable

Inslghts Into the requirements of a program analysis with respect to a semantic

model; In return. the model allowed substantial Improvements to be made to the

Implementation.

The model Is described as a set of semantic equations. It bears strong

resemblances to denotatlonal semantics. but Is adapted to the needs of a static

program analysis. Most Importantly. a distinction Is made between functions

whose Interpretation Is statlcally decldable and Important for an effiCient analysis.

and functions whose Interpretation cannot or should not be decided during the

static analysis and. Instead. Is left to the reasoning processes In peripheral

tools. We refer to the latter category as the pragmatics of the language. Typical

examples of pragmatic functions are functions that represent the application of a

Symbolic Evaluation as a Basis for Integrated ValidatIon 171

built-In operator to Its arguments. I. e .. ·plus(1. O. 2. g). which represents the

computed result of a program expression ·1.0 + 2. g.. Tools can apply different

Interpretations to such pragmatic functions. e. Q •• as operations over Idealized or

machine-dependent domains.

Our model distinguishes only two semantic domains:

1. the set of L-value descriptions (·places·) which represent the locstlve
results of program expressions: the Interpretation of this semantic domain
Is fixed and decided as part 01 the analysis.

2. the set of A-value descriptions (·symbollc expressions·) which represent
computed data values: the Interpretation of this domain Is generally lelt to
the reasoning tools.

Given a fixed Interpretation of symbolic expressions. this structured approach

can be dl~regarded: our model can then be viewed as a mathematical. denota

tlonal semantics.

Another major distinction from denotatlonal semantics as described In (24) Is

a quite different approach towards continuations:

applications (for loops and subprogram calls)

they are modelled by template

and parameterlzatlon of the

semantic equations Inhibiting state transformations by program expressions follow

Ing any form 01 unconditional control transfer The effects of synchronous run

time faults are also Included In the model.

In the following sections we give a brief and slightly simplified overview 01 the

model by Introducing the underlying concepts and providing some examples.

3. 1. Symbolic Expressions

Symbolic expressions are an algebraic denotation representing A-values. A

symbolic expression Is one of the following:

o a constant token representing a literal In the program or an address value
returned by the allocation 01 a heap object:

o a variable token representing an unknown Input value:

o a constrained variable token representing a set 01 values denoted by other
symbolic expressions. e. Q.. symbolic expressions In loops and subprogram
calls:

o a token representing a bound variable In a quantified symbolic expression:

o a symbolic function applied to the appropriate number of symbolic expres
sions:

o an equality applied to symbolic expressions: or

o a quantified symbolic expression

Each built-In operator In the language has a corresponding symbolic function.

172 E. Ploedereder

Some additional symbolic functions and their Interpretation are predeflned as part

01 the model. These are structural functions that allow the denotation of struc

tured A-values (arrays and records) and of components thereof. and conditional

functions that allow the denotation 01 conditional symbolic expressions. Con

strained variable tokens are used In template generation for loops and sub

programs Such a token can also be viewed as a decldable function

parameterlzed by a loop cycle or subprogram call Index. yielding (a possibly

undecidable) symbolic expression.

In order to reason about symbolic expressions. an appropriate model consist

Ing 01 an axiom system and an Interpretation Is needed The Interpretation maps

constant tokens Into elements 01 the corresponding domains and symbolic func

tions Into functions over these domains. Variable tokens are considered univer

sally quantified over any predicate formed from symbolic expressions. The

choice 01 an appropriate model Is lell to the reasoning tool with the exceptions

noted above with regard to structural and conditional symbolic functions.

3.2. Places

Places are a generalized nollon of locations. Locations characterize a storage

area for A-values. Place denotallons are used to describe the locatlve results of

program expressions.

A place Is one 01 the following alternatives:

o a "pure value place". typically the L-value 01 an Intermediate result not
accessible by variables or pointers:

o a "Iocallon place". typically the L-value 01 the evaluallon 01 an Identifier:

o a "selected place". typically the L-value of the evaluation of a selection
such as "AecordObJect Component": or

o a "conditional place". typically the L-value 01 a conditional expression or Of
derelerenclng a union-pointer with conditional A-value

The denotallon 01 places has a predeflned Interpretation up to the Inter

pretallon of symbolic expressions Involved In selected and conditional places

Predicates Involving places can always be reduced to predicates Involving only

symbolic expressions.

3.3. Store. Environment and Memory-State

The store Is a set of locations. Each location In the store has an address.

which Is associated with the name of a declared variable or a pointer A-value or

set of such values. These associations are specified In descrlptors. The set of

descrlptors forms the environment. Since our model allows partial and conditional

Symbolic Evaluation as a Basis for Integrated Validation 173

allaslng. descrlptors associate variable names with the denotation 01 a place

rather than a location.

The pair (environment. store) Is referred to as the memory-stale.

The connecllon between L-values and R-values Is established by the ·value·

function which Is decided as part 01 the analysis. It yields the denotation of the

R-value stored In the given place for a given memory-state

value: {Place} x {Uemory-state} -) (SymbolIC Expr)

The memory-state Is altered as described by the semantic equations for

declarative constructs and assignments The assignment semantics use the

·wrlte·-functlon to alter the A-value denotation of a given place In a given

memory-state: this function which yields a new memory-state Is decided as part

of the analysis.

wnte: (Uamory-stata) x {Place} x {SymbolIC Expr} -) {Uemory-State}

The place associated with an Identifier within the program Is established by

the ·plc·-Iunctlon which Is decided as part 01 the analysis. It yieldS the denota

tion of the place for the given name in a given memory-state. The Interpretation

of the ·plc·-functlon Is decided as part of the analysis: It is language-dependent

to the extent of accommodating different scoplng rules

plc: {identifier} x {Uamory-stata} -) {PI_}

3.4. The Symbolic Evaluator Function SE

The function ·SE· describes the semantics of the various expressions 01 the

programming language In terms of the semantics 01 their sub-expressions and of

functions operallng on the semantic domains of the model. It maps the respec

tive program expression and a given memory-state In which the expression Is to

be evaluated Into the denotation 01 Its locatlve result and 01 the resulting

memory-state. The latter reflects potential side-effects of the expression.

SE . (.. pra .. fOn) x (Uemory-State) (Place) x (Uamory-State)

The SE-function is constructive in nature Given an efficient Implementation

for the representation of memory-states and operations on this representation.

the majority of SE-equations can be directly transliterated Into an efficient im

plementation 01 a semantic program analyzer (the exceptions being loop and

subprogram analysis for which some less obvious strategies must be chosen for

obtaining an efficient Implementation).

Although the SE-function Is oriented towards locatlve expression languages. It

Is equally applicable to statement-oriented languages The syntactic constraints

174 E. Ploedereder

Imposed by the latter languages will cause cenaln combinations of semantic

equations never to appear. while the equations In Isolallon are sllll valid for the

purposes of program analysis.

Symbolic Evaluallon assumes a strict order In the evaluation of expressions.

thus overspeclfylng the language semantics. This Is unavoidable to prevent a

totally uncontrolled and often unnecessary explosion In the complexity of R-value

descriptions. In an Implementation of a Symbolic Evaluator 11 Is fairly easy to

ascertain whether this assumption had any effects on the results obtained and. If

so. Issue warnings to the user or accomodate the non-determinism by adjusting

value descriptions retroactively.

3. 5. Examples 01 the SE Equalloll8

In the following. the notations ·SE(X. MS). PLC· and ·SE(X. MS). MSr are

used to denote the place and memory-state obtained by applying SE to an

expression X and a memory-state MS. ·value(SE(X. MS»· will be used as ab

breviation for ·value(SE(X. MS) PLC. SE(X. MS). MSn·. The equations given are

slJghtly simplified: fully detailed equations are given In (22).

A) Non-Repetitive Constructs:

Identlllers:

SE 110, MS) = (pie 110, MS) , MS)
WIlere ID I. the na"'" 01 a declared entity

Selections:

SE(E[I), MS) = ((SE(E,MS).PlC, (valu.(SEII,MS1)))), MS2)
WIler. MS 1 = SE (E, MS) . MST

MS2 = SEll, MS1) .MST

Assignments:

sE(El : = E2, MS) =
(SE(El,MS).PlC, writ.(t.IS2, SE(El,MS).PlC, value(SE(E2,MS1))))
WIler. MSl = SE(El,MS) .MSl

t.IS2 = SE(E2, MSl). MSl

Statements within expressions:

SEI IE1; E2), MS) = SEIE2, SEIE1,MS).t.lST)

Condlllonal expressions:

SE(lF a THEN El ELSE E2 FI, MS) =
I loond qv, plel, pcI2), combtne_cond,tlonaJly(qv, MSl, t.IS2, MS3)) -. qv = valu. (SE (a, MS))

MSl = SE(a,MS)'MST
(plel, t.IS2) = SE(El, MS!)
(pIc2, MS3) = SE(E2, MS!)

·comblne-condltlonally· Is an auxiliary function of the model which returns 8

Symbolic Evaluation as a Basis far Integrated Validation 175

memory state In which all R-value descriptions that differ In any two 01 the given

memory states are replaced by conditional symbolic expressions based on the

value 01 the branch predicate and the original values. (In an efficient Implemen

tation the memory-state Is augmented by a flow-graph. The lunctlon extends the

flow-graph without modifying R-value denotations. The "value"-Iunctlon then uses

the flow-graph to derive the condltlonalltles caused by the branch.)

SE Equations for loops:

The semantic equations lor loops are template-oriented A loop template Is

created by means 01 symbolically evaluating the loop In an "Inductive memory

state" (IMS) The environment 01 the IMS contains entries lor all non-local

variables relerenced In the loop; Its store contains corresponding locations whose

R-values are represented by constrained variable tokens. The IMS Is sufficiently

general to represent the memory-state at the beginning 01 each cycle 01 the

loop. The SE-Iunctlon establishes two memory-states. the state at the end 01

the loop body (IMSA). and the state alter exiting the loop (IMSF) The R-values

In locations 01 IMS. and the corresponding values In MS and IMSA describe a

first-order recurrence relation of symbolic expressions. constrained by the nega

tion of the loop-controlling predicate.

The semantics 01 the WHILE-loop are modelled as a concurrent assignment 01

the symbolic representation 01 the solutions lor this recurrence relation A

special tool [261 can later attempt to find closed-Iorm symbolic solutions lor

these relations. The WHilE-loop has an empty l-value

SE(WHILE 0 REPEAT E END. MS) = ((W. nothlng).none) MSF)
where

IMS = tha Induct_ memory-state
IMSA = SE((0; BEGIN REND). IMS).MST
IMSF = SE (0. IMS). MST
< XI •...• Xn) 11 • lost of the place. (for non-local variable.

referenced In 0 and E) In IMS
< Xl'.. .• Xn'> la the hat 0' corr •• ponchng place. In US

INITIAL = < value(XI·. MS), ..• valua(Xn·. MS))
BEGIN = < v.lua(XI.IMS) •..• v.lue(Xn.IMS))
AGAIN = < valua(XI.IMSA) •...• v.lua(Xn.IMSA))
FINAL = < v.lu.(XI.IIoISF) •...• v.lu.(Xn.IMSF))
EXIT = not"(value(SE(O.IMS»)
FINAL" = lubat(FINAL, BEGIN. oolva*(BEGIN, INITIAL, AGAIN, EXIT»
MSF = wrotel. .. Wflte(MS, XI', FINAL"I) .. , Xn', FINAL"n)

(An efficient Implementation will not require establishing special Inductive

memory states. They can be overlaid with the memory-state In which the loop Is

evaluated by simply Installing a constrained variable token In the respective loca

tions retroactively whenever such locations are first relerenced within the loop.

The token acts as a representation for the solved recurrence relation)

176 E. Ploedereder

3.6. The Algorithmic Semanllcs Funcllons WSP and SSP

The SE-lUnctlon explains the semanllcs 01 the language constructs. but does

not allow relating these semantics to assertive specifications. The lunctlons WSP

and SSP accomplish thIs connection They arc variants of Dljkstra's ·predlcale

translormers" (9) for the derivation of weakest preconditions IWSP> and strongest

postcondltlons ISSP>. transposed Into the setting of denotatlonal semantics and

augmenled to allow the generation of practical verification conditions based on

Inducllve assertions lor partial correctness.

WSP: (axpra .. lOn) x {Memory-Slata} x {SymbolIC Expr} -) {SymbolIC Expr}
SSP: {axpr8aaton} x {Memory-Stata} x {Symbolic Expr} -) {SymbolIC Expr}

WSPI PROG. MS. P> yields a symbolic expression representing a pre-condltlon

that guarantees both the correctness 01 the program Iragment PROG wilt, respect

to assertions contained In PAOG. when PROG Is evaluated In MS. and the truth

01 the post-condition P aller this evaluation

SSPIPROG. MS. Q> Is a symbolic expressIon representing a post-condition that

can be Inlerred Irom the validity 01 Q prior to the evaluation 01 PAOG In MS and

the correctness 01 this evaluation with respect to assertions contained In PROG.

In order to provide uselul Inlormatlon to a verifier. we Induce some structure

upon symbolic expressions In the Image domains of the WSP and SSP functions

by means 01 the lollowlng symbolic functions 01 fixed Interpretation:

1. vcb·IP.Q> Indicates the necessity of proving Q Irom a premise equal to.
or stronger than P.

2. vcf"1 P. Q> Indicates the necessity 01 proving Q from a premise equal to.
or weaker than P.

3. ax" I P> Indicates a restriction on the applicability of the program to states
satisfying P; this restriction may be assumed on faith.

4 ,-ax" I PI kll > Indicates a restriction to slates satisfyIng "exIsts kl: PI kll";
this restriction guarantees termination.

vcb" I P. Q> corresponds to a verification condition I P -) Q) generated by back

ward analysis. vcl" I P. Q) corresponds to a verification condition C P -) Q>

generated by lorward analysis. ax" I P) Is the trivially successlul verification con

dition P for an assumed predicate. and t_ax"CPCkll> Is either treated as a

verification condition or an axiom. depending on whether an attempt Is made to

prove total or partial correctness. respectively.

A program Is correct under some model for symbolic expressions 11 lor all

vcb· or vcl" lunctlons In WSPIPROG.O. true) or SSPIPROG. O. true). respec

tively. Ihe trulh 01 the correspondIng verifIcation conditIon can be deduced In the

model. The model provides a basis for attempting to prove total correctness.

Symbolic Evaluation as a Basis for Integrated Validation 177

3. 7. ElCamples of the WSP Equations

The following examples are simplified by neglecting the possibility of Implicit

assertions generated by the evaluation of expressions. such as assertions that

guarantee array Indices to be within the prescribed bounds. We omit examples

for SSP equations since they are quite analogous.

A) Identifiers. Selection and Assignment

WSP(lO, MS, PI = P

WSP(E[I), MS, PI = WSP(E, MS, WSPII,I.IS1,PII
where MSl = SE(E,MSI.I.I5T

WSP(El := E2, MS, PI = WSP(El, 1.15, WSP(E2, I.IS1, PII
where MSl = SE(El, I.ISI. I.I5T

The equation for assignment Is surprising at first glance. since It Implies

WSP("0: :3". MS. PI : P. I. 8 .. the assignment has no effect on the predicate

Its Justification lies In the fact that an assignment Influences the memory-state In

Its location-value bindings. but never an existing symbolic expression

B) Conditional Expressions:

WSP(lF Q THEN El ELSE E2 FI, MS, PI =
WSP(a, 1.15, and"(value(SE(Q,I.ISI1 -) WSP(El, MS 1 , PI ,

not" (value (SE (a, MS)) -) WSP (E2, MS I, PI I I
where I.IS1 = SE(a, 1.151. I.I5T

A normalizing transformation causes the Implying symbolic predicates to be

come premises of vcb"-appllcatlons within the weakest symbolic pre-condltlons of

sub-expressions, I. 8. the branches.

C) Assertions:

WSP(ASSERT(VI, MS, PI =
and*(vcb*(trua, value(SE(V,I.ISIII, value(SE(V,I.ISI1 -) P I

WSP (ASSUME (VI , MS, PI =
and*(.. "(valua(SE(V,I.ISII, valua(SE(V,I.ISI1 -) P I

3.8. Properties of the WSP and SSP Functions

The following properties can be proved for the WSP and SSP functions. The

notallon "El == E2" Is used for semanllc equivalence of the symbolic expressions

El and E2 under any Interpretation that maps boolean symbolic functions to the

respective boolean functions.

178 E. Ploedereder

Theorem 1: (Invariance)

If the expression E contains no lOops. procedure calls. and Implicit or explicit

asserlions. then

WSPIE, MS, P) == P

SSPIE, MS, P) == P

This theorem guarantees the capability of propagating predicates across many

types of expressions without requiring a reanalysls of the expression.

Theorem 2: (Separation of Concerns)

For all expressions E:

a) WSP(E,MS,P) == and*(SI(SSP(E,MS,true)) -) P, WSPIE, MS, true»

b) SIISSP(E,MS,O)) == and*ISI(O), SI(SSP(E,MS,true)))

c) SSP(E,MS,O) == and*(O, SI(O) -) SSPIE,MS,true»

where SI maps all occurrences of vCb". vcf". ax". and t_ax" Into the

respective verification conditions. It thereby determines the strongest symbolic

post-condition without the structure Induced by the symbolic functions ISOlating

verification conditions.

This theorem guarantees the capability of analyzlng each language expression

In Isolation by means of the WSP and SSP functions. and of Integrating the

results of this analysis Into verification conditions for expressions enclOsing the

expression. It also guarantees that all strongest post-conditions. and by corollary

post-conditions In general. can be propagated across following expreSSions wlth-

out alterations. Post-conditions propagated out of branches receive the branch

predicate as an Implying premise.

Theorem 3: (Equivalence)

For all expressions E:

tlWSP(E, MS, true)) == t(SSP(E, MS, true»

where t Is the normalizing transformation and replaces vcb" and vcf" by vc".

ThiS theorem guarantees that forward or backward directed generation of

verification conditions will yield Identical verification conditions for all assertions

contained In E.

It Is a consequence of these theorems that

l. an Implementation of a verifier can collect premises for a verification con
dition from all preceding program expressions without modifying them ex
cept by adding branch enabling predicates leading to the respective ex
pression:

Symbolic Evaluation as a Basis for Integrated Validation 179

2. there are as many verification conditions as there are assertions: some 01
the verification conditions contaIning constrained variable tokens may re
quire Inductive prools:

3. an Implementation can allow assertIons to be Inserted at any place In the
program without a re-analysis 01 the program. except lor determIning the
symbolic value 01 the predIcate In the context In whIch It Is asserted

... The Implementation of the Symbolic Evaluator

The Implementation 01 the Symbolic Evaluator withIn the Harvard PDS [51 Is

described In detail In (3.21. 221. This section provides a brlel overview 01 the

underlying prinCiples 01 an elllclent Implementation.

An Implementation 01 the SE-function must optlmlze the representation 01

memory-states with appropriate trade-OilS In the complexity of the functions

operating on memory-states. as well as opllmlze the representation 01 symbolic

expressions representing computed A-values.

In our Implementation we have chosen to represent the memory-state sparsely

by adding lists 01 so-called value cells to thll locations 01 the store. These value

cells contain a context characterization and the symbolic expression representing

the R-value of the locallon In this context. The context relates to an acyclic

flow-graph. the context graph. whose branching nodes are labelled with the

respective symbolic branch predicate. This graph Is acyclic because loops and

function calls are modelled as multiple assignments to the allected enlltles. as

determined by the loop or subprogram templates. The context graphs for the loop

and subprogram bodies are Isolated sub-graphs with specIal root and leaf nodes

IdentifyIng these contexts as the respecllve specIal start. end. recursion or

repetitiOn contexts used In establishing the loop or subprogram templates.

Value cells are created by the "wrlte"-funcllon modelling assIgnments and by

the procedure call and lOOP analyzlng parts 01 the Implementallon The cost of a

sIngle appllcallon of the "wrlte"-funcllon Is essenllally conslant In lime and

space: condlllonal places. whIch rarely occur In programs. Increase this com

plexity.

The "value"-funcllon establishes the symbolic expression represenllng the value

of a given location In a gIven context by an Intersecllng traversal of the context

graph and the value cells found In the locallon The algorithm employed Is

reminIscent 01 path compressIon as described by Tarlan [251. The algorithm

termInates when for each path leadIng to the context a value has been found.

The applicable values are combined In a conditional symboliC expressIon reflect-

Ing the respecllve path predicates. The algorithm we use Is opllmal In the

180 E. Ploedereder

sense that It produces the minimal representation 01 the R-value 01 a location up

to attempting to prove the lalsehood 01 path-enabling predicates. It Is

guaranteed that the algorithm never needs to search beyond the root nodes 01 an

Isolated context graph 01 a loop or subprogram. The complexity 01 the algorithm

Is linearly bounded by the number 01 value cells and squared bounded by the

number 01 preceding branches In the context graph. The constant lactor Is very

small. This worst-case complexity can only arises lor programs In which the

number 01 paths Is linear In the number 01 branches. For programs with an

exponential number 01 paths the worst-case complexity Is linear In both the

number 01 value cells and branches. Due to the locality 01 variable usage. most

Invocations 01 the ·value·-Iunctlon require substantially less time and space than

under worst-case assumptions.

An efficient representation 01 symbolic expressions Is accomplished by u&lng a

graph-oriented representation whose nodes represent the R-values computed by

program expressions. Each expression In the program whose R-value Is needed

causes the generation 01 such a node. It can be shown that the total space

requirement lor symbolic expressions Is bounded by the number 01 expressions

and assignments In the program. II the ·value·-Iunctlon Is not decided by the

Symbolic Evaluator but left to reasoning tools. II It Is decided. then nodes lor

R-values 01 Identifiers require non-constant space which Is sub-linearly propor

tional to the complexity 01 the corresponding value-retrieval.

An added benefit 01 the chosen representation Is that It lacllltates the detec

tion 01 all common subexpresslons In the program regardless 01 Intervening

branches. Furthermore. It allows minor modlllcatlons 01 the program and a cor

responding Incremental adjustment 01 the program data base to be made without

a re-analysis 01 the program: the adjustment Is trivial lor the alteration 01 ex

preSSions that have no side-effects on the memory-state. Only alterations to the

control structure 01 the program Invalidate the results 01 the symbolic evaluation.

In preliminary tests 01 the pilot Implementation. experience has consistently

shown that the size 01 the program had virtually unnoticeable Influence on the

cost 01 Individual value relrlevals which consumed about 10% 01 total analysis

time. This Is attributed to the locality 01 variable usage. The same holds for

overall performance In the absence of procedures: the tlme- and space

requirements are approximately linear In the size of the program. The presence

01 many subprogram calls degrades performance. since the template generation.

storage. retrieval and Instantiation Is of non-trivial cost (although more efficient

than a re-analysis 01 the subprogram body. except for trivial subprograms).

Symbolic Evaluation as a Basis for Integrated Validation 181

5. The Implementation of the Verlller

For a detailed description of the Implementation. we refer the reader to [221.

In this section. we discuss only the most salient properties of the verifier.

The proven Invariance of symbolic predicates when propagated across excep

tions has far-reaching consequences for the verifier. Its Implementation never

reanalyses the program. The task of establishing verification conditions consists

of traversing the list of asserted predicates and of collecting premises from

contexts preceding an assertion under Inclusion of enabling branch predicates.

The Implementation traverses a list of ·assertlon cells·. each containing the

symbolic value of the asserted predicate and the context In which It Is asserted.

This task Is virtually Identical to the task the ·value·-functlon performs' the

·value·-functlon traverses the list of value cells for a given location and combines

the applicable contents In conditional symbolic expressions reflecting branch

predicates. Verification condition generation uses precisely the same algorithm

to obtain all premises provided by the contextually closest preceding assertions

for each path leading to the assertion to be proved. It can. however, go beyond

these delimiting assertions and retrieve Information from assertions larther back

In the program. With an appropriate set of heuristics. the choice 01 premises

collected can be controlled to avoid an abundance 01 premises unrelated to the

assertion under examination. The efficiency 01 the algorithm Is substantially

Increased by the fact that branches not containing any assertions can be skipped

In collecting premises without suffering any loss of Information.

Furthermore. the program analysis which preceded the verification Implicitly

propagated value Invarlances across loops and procedures. so that many asser

tions required In other verification methods are not needed.

lastiy. If an assertion cannot be proved from the premises given, the user

can Insert additional assertions at arbitrary points In the program without causing

a re-analysis 01 the program. The only action to be taken by the verifier Is to

symbolically evaluate the assertion In the context of Its Insertion to obtain Its

symbolic value. This value Is then added to the assertion list. verified and used

as premise for subsequent assertions.

For verification conditions that contain tokens Introduced by loops, the proving

component 01 the verifier has two options. If a straightforward attempt falls to

prove the verlllcatlon condition on the basis of preceding premises. First. It can

call on recurrence relation solving tools which attempt to find closed form sym

bolic solutions for the tokens and then re-attempt a proof [7. l161. Second, It

can attempt an Induction proof by generating two verification conditions for the

first and the (n+ 1) -th cycle of the loop These verification conditions arel

182 E. Ploedereder

obtained by collecting the Inductive premises and by replacing the tokens with the

appropriate symbolic expressions recorded In the loop template. For assertions

within procedure bodies that cannot be proved. the proving component can - In

Interaction with the user - establish derived entry-conditions for the procedure If

the proof Indeed falllld because of a missing entry-condition. In the case of

entry-conditions for recursive procedures. a recursion Induction can be per

formed (191.

If an attempt Is to be made to verify an assertion only with respect to a

single path leading to It. the respective verification condition can be obtained by

a trivial simplification of the general verification condition for the assertion after

the appropriate branch predicates are replaced by 'true'. Generally, this

strategy will be used by the proving component for splitting complicated verifica

tion conditions Into Isolated clauses.

8. Symbolic Evaluation as a Basis for other Tools

While verification Is one of the most challenging applications for the results of

a program analysis. a full-scale verflcatlon based on predicative assertions Is

beyond the capablJltles of tools for practical program validation. However. many

other tools used In program development and validation can also be substantially

assisted by the Information contained In the program data base developed by the

symbolic evaluatlon ot the program. Some 01 these tools can be Implemented by

simply providing a user-Interface Into this data base. As an added pragmatic

advantage. utilization of the Information produced by the symbolic evaluation of

the program guarantees that all tools assign the same (correct) semantics to the

programming language - all to often this Is not the case If tools Independently

analyze the original program text.

Some examples of such tools ara:

• Set/use lists: The lists of value cells for locations provide a record of all
aSSignments to variables. For reasons having to do with non-deterministic
evaluation order. the Symbolic Evaluator also has to keep track of usages
01 the values 01 variables. This record provides the necessary Information
about variable usage. The respective context relales the setting or usage of
values back to the program text.

• Dynamic Ulellme Analysis: Based on the sel/use analysis. It Is trivial to
determIne the maximum life-time of variables within their scope.

• Description of all side-effects of a subprogram: Part of the template
created for a subprogram Is the record of all non-local variables referenced
or modified by Its body or any of Its sub-called subprograms. Having a
record of all such references and mOdifications regardless of the call stack
depth at which they occur Is a valuable asset In program validation.

• Cross-Reference Lists: Based on the Information above. cross-reference

Symbolic Evaluation as a Basis for Integrated Validation 183

listings can be produced.

o Analysis of Allaslng: The environment component and the subprogram
templates 01 the program data base produced by the Symbolic Evaluator
contain a record 01 all declared aliases and 01 all potential aliases created
by parameters In procedure calls

o Exception Detection: Part 01 the Symbolic Evaluation Is the creation 01 Im
plicit assertions whose truth guarantees the absence 01 run-time exceptions.
The context 01 such symbolic assertion values Identllles the pOints In the
program at which exceptions may occur. A moderate amount 01 verlllcatlon
effort can discover the truth 01 many such assertions (161. The user can be
made aware 01 any assertion that cannot be proved. Indicating the potential
exlsltence 01 a run-time error.

o Semi-Automated Derivation 01 Entry-Conditions: Any assertion In a proce
dure that cannot be proved correct can be easily propagated back to the
Initial context 01 the procedure body where It can be Installed as an entry
condition to be proved lor each call situation. This propagation can be
lully automated: the user only has to state whether the unproven verlllcatlon
condition Indeed represents a restriction on the applicability 01 the sub
program or the failure of proving It was caused only by the restricted
capabilities of the proving component

o Symbolic Execution: The results 01 a symbolic execution can ba obtained
Irom the program data base by Instantiating branch predicates as desired.
A certain amount of slmpllllcatlon Is required lor symbolic expressions that
Involve conditions depending on such branch predicates.

o Test Case Generation based on Symbolic Execution: Given the results 01 a
symbolic execution as explained above. the same methods as known Irom
symbolic execution can be applied.

o Executable Specifications: The Symbolic Evaluator has been designed to
allow the extension of symbolic evaluation to executable speclllcatlons ex
pressed In a style equal or similar to the REWRITE laclllty 01 the Harvard
PDS (4). While this extension has not been Implemented. Its Implications
are believed to be sulllclently understood.

7. Summary

Symbolic Evaluation perlorms a global semantic program analysis. Any part of

the program Is analyzed but once The results 01 the analysis are deposited In a

program data base. An appropriate representation 01 this Inlormatlon prevents

combinatorial explosion 01 the analysis. Despite the global analysis performed

and the lact that the derived Information Is not weakened for a reduction In

complexity. Symbolic Evaluation Is believed to be Implementable as a practical

tool. Peripheral tools use the Information In the data base to reason about the

program without having to reanalyzlng It. They control combinatorial explosion of

the reasoning processes by heuristics. The Interaction among peripheral tools Is

slgnlllcantly Improved by means of the shared program data base. since any

Information deduced by any tool can be stored In the data base lor the benefit

184 E. Ploedereder

of all other tools. A large variety of tools Important for program development.

debugging and valldallon can be easily Implemented on the basis of Symbolic

Evaluation. To a varying extent. these tools can be Implemented language

Independenlly. The use of Symbolic Evaluation guarantees a conSistent Inter

pretallon of the language semanllcs among all tools.

References

[1] 1Ioyer. R.S .• B. EI_. and K.N. L_. SElECT - A form. &'I_em for '._"'11
MId debUl1!1IfIlI prOfIT"'" by rtmbdic •• ecutHKI. In: Proc. 01 the International
Conler_ on Rehable Software. Loa Ange Cahl .• pp. 234 - 245. April 1975.

[2] Cartwrlght.~. and o.rek Oppen. Unreetrlded procedure calla ,n Hoare'a logic.
In: Proc. 01 the Fifth Annual ACIoI SympoSIum on Prl/lClpla 01 PrOflrarnming
L&ngU&fl", Tucaon. pp. 131 - 140. January 1978.

[3] OhMtham. T. E.. Jr.. and Judy A. Townley. SymbolIC evalUalIOn 01 prOflT- --A
/001< aI loop analyaJa. In: Proc. 01 the ACM Symposium on SymbolIC and AlgebraIC
Comput&tJon. pp. 90 - 96. August 1976.

[4] Che&th&rn. T.E .• Jr .• Glenn H. HoIloWay. and Judy A. Townley. Profll'am R.f.,..,
",.", by TransformalHKI. Center for R_ch ComputIng TechnoloflY. Harvvd
Umverorty. TR-llrllO. June 19110.

[5] OhMtham. T.E .• Jr .• Ovwv_ 01 lhe Hervard PrOflTam Deva/opmwll Sy_em. on:
SotIwar. Engi_1II1I Etrllironmwols. Huenke H. lEd.). North-Holland PublIshIng
Co .• 1981.

[6] CIarke. L .• Art_em 10 general. leet dala MId rt-ty •• ecuta prOflT-.
Dept. 01 Computer SCIence. Un_rarty 01 Colorado. Boulder. Colo.. lechnocal
Report. CU-CS-OSO-75. February 1975.

[7] Cohen. Norman Howard. Source-Io-Source Impr_ 01 Recur_. PrOflT_.
PII.D. _. DMaton of Apphed Sclerocea. H&rvard UniYerSlty. May 19110.

[8] Cook. S .• __ IC MId In/wpralNa SemantICS for an Algol Fraflll*ll. Dept. of
Computer ScIence, Un orty of Toronto, Tech. Report 79, February 1975.

[9] Dijkltta, E.W., A Dlaciplma 01 PrOflTaJMllnll. PrentlCe Hall. Englewood Cllffa. 1976.

[10] FIo)'d, R., Aaalgn/nll _11 10 prOflTama. In: Proc. 01 the SympoSIum 01 Applied
t.l&thematlca, J. T ScIIwartz led.). t.lathematIcaJ Aapecta of Computer ScIence. Vo!.
19. pp. 19 - 32. American t.l&thematJcal Socoety. Pr_, Rhode 1&Iand, 1967.

[11] GrIea, Davld, Compiler Conl1lruct __ for DlflllaI Computwa. John WIIey and Sons.
lroe.. New YorIc. 1971.

[12] _e, C.A.R., An NdotrNt/C Ba-. for Computet PrOfIT_nil. CACM. Vol. 12,
No. 10, pp. 576-583. October 19611.

[13] __ , C.A.R .• Pr-.lwM _ P.,_a: An NdotrNt/C Appr_. In: Synt

",...,. on ~ 01 AlfIOI'lfM* LMlIIMfIN. E. Engler led.). Springer Verlag,
.... Yorlc, pp. 102 - 106. 1971.

Symbolic Evaluation as a Basis for Integrated Validation

(14) Hoare. C.A.R .• and N. Wirth. An _atlC dellflil._ 01 the P'ogrWMIIIIQ l"'fIU~
PASCAL. Acta Infomabca. Vol. 2. pp. 33S - 355. 1973.

[15) Howden. W.E .• SymbolIC ,eatlnQ and ,he DISSECT aymboIic ..,a/uat_ qat_. IEEE
Tran_na on Sof\ware Engi_,ng. Vo!. SE-3. No. 4. PP. 266-278. July 1977.

[16] Igarashl. S .• R.L. London. and D.C. Luckham. Automa'IC P'ogrMl _illCal_ t A
IOQicM /HI ... and Ifa 'm~atlOll. Acta Informabca. Vo!. 4. pp. 145-182. 1971i.

[17] King. J.C .• SymbolIC .ucut_ and P'ogrMl ,eatlnQ. CACM. Vo!. 19. No. 7. pp.
385-J904. July 1976.

[18] ECL P'ogr"""""'. manual. Cantar for R ch In Computlng Technology. Harvard
UnIVerSIty. TR-23-74. Dac:ambar 1974.

[19] t.l<:Carthy. John. A /HI ... 'or a mathemallCaltheoryo.computatlOll.ln: Slud_ In
Logic and the FoundatlOll 0' MathematIC.. Computer Progr"""""Q and ForrNI
Syat_. P. Braflord and D. Hlrlchbarg IEda.). North Holland Publlahlng Co .•
Amaterclam. pp. 33-70. 1963.

[20] Data,,",l. Leon. U_Q Data F/cfw Tool. In SoI/w.,a Enll''-'''Q. Dept. of
Computer ScIence Un_ratty of Colorado. Boulder. Colorado. TechnICal Report.
ClJ-CS-I53-79. t.\arch 1979.

[21] I'Ioederadar. Erhard D.J .• PragmatIC Tach~ 'or ProgrMl AnaIy ... and Verihca
tlon . In: Proc. of the Fourth International Conferance on Sof\wara EnglnMnng.
MunICh. Germany. pp. 63-72. September 17-19. 1979.

[22] Ptoaderader. Erhard D.J .• A SemantIC Model ,'" the Anelyala and V.",ICaI-. 0'
Ptogr_ In _al. HIgtter-I.-vel IAnflUaQN. Ph.D. thaaIa. 0Mat0n of Applied
_. Harvard Unlworatty. January 1980.

AIao: Cantar for Ra_ch In Computong Technology. Harvard Unovaralty. Technical
Report. TR-02-80. January 1980.

[23] Schwartz. RIChard. An AJt/omatIC S_IC o.'inlt_ 01 ALGOl. 611. Ph.D. thaaIa.
Computer _ Department. UniYaralty of California at Loa AngaIaa. UClA-34-

P214-7li. Auguat 1978.

[24] Scott. Dane. and Chroatophar Str&chay. T_ard a MathematICal S_1Ca 'or
Computar IAnflUaQN. Oxford Un_rSlty Computlng laboratory. T &chn"",1 Monograph
PRG-6. OIdord. Auguat 1971.

[25] Tarjan. R.E .• ApplICat/Ofl. 01 Pat" Comp'_ on BaI_ Tt JACIoI. Vol. 26.
No. 4. pp. 690-715. October 1979.

[26] Washington Brown. Daborah. The SoIuIlOII 0' D<fferance Equat_a DaacrlblnQ Array
Manipulation In ProgrMl u.op.. Ph.D. theala. DMaton of Applied ScIancaa. Harvatd
UnovarSlty. February 1981.

185

