
An Overview of DOD-STD- 1838A (proposed),
The Common APSE Interface Set,

Revision A

Robert Munck
The MITRE Corporation

Patricia Obemdorf
Naval Ocean Systems Center

Erhard Ploedereder, Ph.D.
Tartan Laboratories

Richard Thai1
SofTech

Abstract
A five-year effort under the Ada Joint Program Office has
developed a proposed standard for a host system inter-
face as seen by tools running in an Ada Programming
Support Environment (APSE). Standardization of this
interface as DOD-STD-1838A will have a number of desir-
able effects for the Department of Defense, including tool
portability, tool integration, data transportability,
encouragement of a market in portable tools, and better
programmer productivity.

As the capability of tools to communicate with each other
is a central requirement in APSES, the Common APSE
Interface Set (CATS) has paid particular attention to facili-
tate such communication in a host-independent fashion.
CAIS incorporates a well-integrated set of concepts tuned
to the needs of writers and users of integrated tool sets.

This paper covers several of these concepts:
the entity management system used in place of a tradi-
tional filing system,

object typing with inheritance,

process control including atomic transactions,

access control and security,

input/output methods,

support for distributed resource control, and

facilities for inter-system data transport.

Background
Early in the development of the Ada language, it was
recognized that a computer-based programming support
environment was a practical necessity for Ada program-

Permission to copy without fee all or pan of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish. requires a fee and/

or specific permission.

01988 ACM 0-89791-290-X/88/001 l/O235 $1.50

mers. It is now clear that many of the promised advan-
tages of Ada, including reusability of code and ease of
maintenance, would require a level of commonality in the
programming environment similar to that provided by
the language. This results from the fact that the product
of a programming project is not a single executable-form
module, but a large, inter-related set of source files,
design documents, test plans, and many other kinds of
information that must also be present as part of the final
product; some of these sets will be drawn from libraries
of reusable components. Moreover, the tools that the
original programmers use to store and manipulate these
files and relationships among files must also be available
to their successors who wish to reuse or maintain the
product.

The concept of an Ada Programming Support Environ-
ment was well developed in the “Stoneman” document
[STONEMANgO]. It specifies an architecture containing
an identifiable interface between code having local host
or operating system dependencies and code that would be
portable from one host to another. The code implement-
ing this interface is called the Kernel APSE or KAPSE.
The following text from the CAIS Reader’s Guide
fCAIS871 describes the DOD effort to develop a standard
for that interface:

“When DOD started procuring tools for the Ada pro-
gram, it did not restrict itself to procuring individual
tools. Rather, the DOD embarked upon the procure-
ment of APSES. Two procurements were started: one
by the Army, called the Ada Language System CALS),
and the other by the Air Force, called the Ada Inte-
grated Environment (AIE). Unfortunately, the inter-
faces provided (by) the KAPSE . . . were different in
these two APSES. Because of divergent approaches at
the KAPSE interface level by the ALS and AIE contrac-
tors, a team was formed . . . to define more specific
KAPSE interface requirements. This team is the
KAPSE Interface Team (KIT) and is chaired by the
Naval Ocean Systems Center (NOSC), a Navy labora-
tory. Added to the KITwas the KAPSE Interface Team
from Industry and Academia (KITIA). The KIT/KITIA
(produced) DOD-STD-1838, the Military Standard Com-
mon Ada Programming Support Environment (APSE)
Interface Set.” [CAIS86]

235

In parallel with the development of the prototype stan-
dard DOD-STD-1838, the KIT/KITIA developed the
Requirements and Design Criteria document (RAC)
[RX861 and a Rationale discussing its contents lRAT871.
A contractor was then competitively chosen to evolve the
CAIS as indicated by the RAC, experience with the origi-
nal CAIS and other APSES, and advances in the state of
the art of Software Development Environments (SDEs)
since the work was begun. That revision, sometimes
called CAIS-A, is in the formal process needed to update
DOD-STD1838 to DOD-STDl838A; after the review pro-
cedure, it will become the official standard, probably
sometime in 1989. The term CAIS is used throughout this
document to refer to that proposed revision of the
standard.

As with Ada, the CAIS must be backed by a thorough test
for adherence of an implementation to the standard. The
mechanics of validation (an evolving validation suite, vali-
dation centers, derived validations on similar hosts, etc.)
will be much the same as Ada compiler validation. As
with the ACVC, CAIS validation will show compliance
with the specification, but will not reveal the usability
(response, capacity, etc.) of the implementation.

Introduction
The CAIS design represents well in excess of 100 man-
years of work by experts in software development envi-
ronments, operating system, data base systems, and

programming languages from industry, academia, and
government in the US and Europe. These experts are
generally the most senior technical people from their
organizations, active in research and development of
SDEs. The expertise brought to bear was extraordinary;
the arguments were epic.

The technical and institutional requirements that the
CAIS attempts to meet (fairly successfully) are quite wide-
ranging; the resulting design is large and complex. An
attempt to summarize it within the constraints of a tech-
nical paper made necessary a number of short-cuts. The
paper presents a cursory overview of the major features
of the CAIS. A more detailed rationale of the design
choices and a discussion of their interactions is beyond
the scope of this paper, The reader is referred to the
Rationales for DOD-STD-1838 [RAT881 and the FL4C for
many of the basic decisions of the CAIS model.

The interrelation of the features of the CAIS, its integra-
tion, was one of the driving topics of the majority of the
design work. Long, hard discussions took place on inter-
action of the process model with transactions, of strong
data typing with the naming mechanism, and so forth.
The result, summarized below, is in fact very tightly inte-
grated: conflicts between features have been ruthlessly
searched for, discussed, and solved, often by clever and
insightful design ideas.

The Basic Structure

RELATIONSHIP

NAME = VALUE

NAME = VALUE

ATTRIBUTE

RELATIONSHIP
ATTRIBUTE

CONTEMS

The CAIS is based on an Entity-Relationship-Attribute
(ERA) model in which nodes (entities) are connected by
relationships (edges) forming a general graph. Both
nodes and relationships may have attributes which are
name-value pairs. In this and the following figures, nodes
are represented by trapezoids, relationships by arrows
between them, and attributes by triangles attached to the
node or relationship.

the form of strings, and they generally are not in the CARS.
We shall return to the naming issues in a later section.
Relationships may be grouped together under a single
name; the group is called a relation. All relationships in a
relation are of the same type (discussed later), all have the
same set of attributes but with possibly different values.
A particular variety of relationship attributes, called
keys, is used to disambiguate among the many relation-

When we refer to “names” in this description of the CAIS, ships of a relation that may emanate from a node. The
we mean a concept that allows the user the identification relationships of a relation may have more than one key
of some entity. Such “names” need not be identifiers in attribute. For selecting a relationship emanating from a

236

node, the relation and a set of disambiguating key attri-
butes and their value ranges are specified. The value of a
key attribute is a string with the syntax of an Ada identi-
fier. Since each key attribute is identified as part of the
selection, the&values need not be disjoint for different
attributes.

Relationships may be one-way, pointing from a source
node to a target node, or two-way. Twoway relationships
are effectively two one-way relationships pointing both
ways, except that they cannot be created or deleted sepa-
rately; both must exist if either does.

Relationships between nodes are the primary means of
identifying nodes. Once a relationship emanating from a
given node is selected, the target node of that relationship
is uniquely identified. The process of “walking the graph”
to identify nodes is called “navigation”. Once a node is
identified, a handle can be obtained which will continue
to refer to the node until explicitly released.

Nodes and relationships may form a general graph or
“bowl of spaghetti.” However, this raises various practi-
cal problems of deletion and garbage collection, long-
term naming, and unconnected sub-graphs. CAIS
therefore designates certain relationships as primary
(and all others as secondary) and requires that all nodes
and primary relationships in the data base form a single
tree structure. This means that every node other than the
root is pointed to by one and only one primary relation-

ship, allowing the further definition that a node is deleted
when the primary relationship pointing to it is deleted.
Secondary relationships pointing to a deleted node
become unusable for accessing the target node.

Primary relationships are required to be twoway. A node
may have many outgoing primary relationships in differ-
ent relations. The effect is that a “directory” node can
have several sets of nodes identified by different primary
relations, not just one.

Attribute values may be INTEGER, FLOAT, STRING,
IDENTIFIER, and composites of those types. Composites
may be all of a single primitive type, similar to an array, or
mixed types, similar to an Ada record. As with Ada, vari-
ant components within a record are possible.

Nodes may have “contents,” data of unknown format (to
the CAB) that can be read and written by use of CAIS I/O
facilities.

It is intended that nodes be used to represent “things,”
relationships represent the associations between those
things, and attributes the additional qualities of nodes
and relationships. This intent is obviously not enforceable
in any way by the CAIS, and it is anticipated that different
people will choose different models for similar applica-
tions. The structure is sufficiently flexible that many
alternative representations may be tried until a “best”one
is found.

Ubiquity of the Node Model

AEIKXE WIS

The CAIS node model is unique in that everything in the
computer system of concern to tools is represented in
terms of the node model. Not only stored data and struc-
ture (files and directories), but users, processes, I/O
devices, processors, data paths, network connections,
and type definitions are all nodes in the data structure,

with appropriate attributes and relationships to other
nodes.

There is therefore a single name space in the CAIS, if the
idea of a “name” is stretched to include pathnames
(sequences of relation names, key names, and key values

237

that trace a path through the structure). However, each
node is generally reachable via many pathnames. Access
control considerations make identification by such
pathnames a relatively expensive operation. For this and
other reasons of efficiency and functionality, the primary
paradigm of identification in CAIS uses handles into the
graph structure which were obtained by graph naviga-
tion. Attribute “names” are in reality handles to the attri-
bute definitions, relation “names” are handles to the
relation definitions, and so forth. This is shown in detail
below.

Interestingly, though, the need for character-string
names and pathnames becomes less important in a gen-
eral structure of this nature. It is obviously bad practice
to store a name or pathname in the data structure (i.e., in
the contents of a node or as the value of an attribute); a
relationship is much preferred for the great majority of

circumstances. Also, programmers are more likely to be
using graphical displays that show a representation of the
data structure, in which they can “name” entities by
pointing with the mouse.

The figure shows a user with two processes running, one
communicating with him through a keyboard and display
and with a remote CAIS through a network gateway, and
the other manipulating two of his files and printing. As
suggested above, the part of the figure inside the large box
could actually be displayed in a window on his screen by a
command handler tool. Of course, more meaningful icons
for the various kinds of nodes could be devised.

(Note: the figure is simplified somewhat in its depiction of
I/O connections; see the description of “Channel nodes”
below.)

Type Definitions for Data Structure Components

The proposed update of DOD-STD-1838 to -1838A adds
the concept of typing. Individual nodes, relations, and
attributes are said to be instances of a type and must
conform to a type definition. The type definition of a
node states what attributes and relations it has and
whether or not it has Contents. The type definition of a
relation states what nodes it may originate from and
point to, what attributes and keys it has, whether it is one-
or twoway, how many relationships it may contain, and
other-constraints. The type definition of an attribute
states what primitive types it is made up of, what values it
may assume, default or initial values, and whether or not
it may be changed by a user.

As with everything else, type definitions are represented
by nodes in the data structure. It may be a bit confusing at
first that relation and attribute type definitions are repre-
sented by nodes, but a little thought will show why this is
desirable.

The figure shows a piece of “instance” structure and the

corresponding “type definition” structure of the large
node and its attributes and relationships. As shown,
nodes in the example that are instances of that type have
two attributes; their definitions are pointed to by the
Attribute relation. They have one incoming relationship
(at the top), the definition of which is found via the Termi-
nates relation. They have two outgoing relations, defini-
tions of which are found through the Emanates relation
from the node type definition node. Finally, one of the
outgoing relations has one key attribute.

Note that most of the relations in the type definition
structure are twoway; for example, relation type defini-
tions have EMANATES-FROM and TERMINATES-AT
relations to the node types that they may connect. These
are the “other direction” of the Emanates and Terminates
relations on the node type definitions.

The figure is misleading in that it distinguishes between
“instance” and “type definition” structure; in fact, both
are part of the same structure. Moreover, the relation-

238

ships, attributes, and nodes in the definition structure
are, of course, instances of some type definitions not
shown in the figure. For example, there must be a defini-
tion node that defines node type definitions, which is an
instance of itself and describes the type of all node type
definition nodes.

Most tools meant to run on the CAIS will be written to
operate on particular types of data base items. They will,
in effect, say to the CAIS “I want to access *this* node and
expect it to be of *that* type.” The CAIS will allow the
access if the requested type and the actual type of the
node are the same or compatible (discussed below) and
signal an error if not. Many user errors that would have

undesirable results on conventional untyped systems will
be prevented in this way.

SDE data bases normally have a complex set of rules
governing their manipulation. These rules are in the form
of canned procedures, pre-defined structure and access
rights, naming conventions, and programmer directives.
Most of them can be broken or bypassed by user error or
intent. CAIS allows most of these rules to be expressed
explicitly as type definitions and made as unbreakable as
management desires for project data or as forgiving as
the individual programmer desires for private data.

A more complete discussion of the need for and advan-
tages of typing can be found in [MUNCK88].

. I
AllRlBUTE

The major difference between the concept of “type” in
programming languages and its use in the CAIS is that
(typed) objects in the CAIS “last forever” or are persis-
tent; they survive between executions of the programs
that create and manipulate them. The resulting problem
is that definitions need to change in the course of a
project. Circumstances change, people make mistakes
and correct them, the project moves from phase to phase,
and people learn how to do things better. It is usually
infeasible for all tools and data using a single type defini-
tion to change at one time, especially if the tools and data
are spread over many installations.

If a definition is changed while instances of it exist, there
may be an inconsistency between the (new) definition and
the (old) objects. One solution to this problem, used in the
CAIS, is that definitions are not generally changed, but
rather new versions of them are created and co-exist with
the old. If the changes that can be made to a type defini-
tion to produce a new version are properly restricted,
tools compiled to access objects of the old type will work
correctly on instances of the new type definition version.
In the CAIS, such a new version is called a specialization
of the old. A Specialization-Of relationship connects the
new definition to the old one.

The figure shows a simple example of Specialization, in

which the old node type definition specified a FLOAT
attribute and an INTEGER attribute with a range of 1.. 10.
The new version restricts the INTEGER attribute’s range
to 1..9 and adds a STRING attribute. Note that the new
version implicitly inherits the FLOAT attribute; the rela-
tionship indicated by the dotted line does not actually
exist.

Tools coded to operate on instances of the old definition
will continue to work on instances of the new; they are
unaware of the additional STRING attribute. However,
an attempt to set the INTEGER atribute to 10 will cause
an exception. This exception is probably what the person
who created the new definition wants to have happen.
Some circumstance caused him to reduce the range, and
that same circumstance almost certainly makes the
exception desirable. Old tools that only read the INTE-
GER attribute and new tools that do not reference the
STRING attribute will work on instances of both the old
and new definitions.

The inverse relation to Specialization-Of is the relation
Generalization-Of. Types can be created as generaliza-
tion of already existing more specialized type definitions.
Thus it becomes possible to develop tools operating on
common properties of objects whose types hitherto were
unrelated.

Specialization from More than One Definition

/ / CONSTRAINTS
(UPPER-BOUND = > 6)

t -- “J 2

A
CONSTRAINTS
(UPPER-BOUND 3 > 10)

CONSTRAINTS
(LOWER-BOUND = z 2,
UPPER-BOUND : > 7)

---- ----

CONSTRAINTS
(LOWER~6OUND = > 2,
UPPER-BOUND = z 6)

Specialization adds components to or tightens the con-
straints on a definition. It is therefore possible to form the
specialization of two or more definitions if their compo-
nents add together without conflict and a “tightest com-
mon constraint” can be found for all constraints.

The figure shows Node Definition 4 as the specialization
of Definitions 2 and 3. The attribute added by Definition 2
(Y) is inherited by 4 and the constraints on 4’s attribute (X)
are the “sum” of those defined by 1, 2, and 3.

The Naming Mechanism

NODE NAME(W)

RELATION-NAME (2)

Tools running on an SDE need to name the items in the
data base that they want to access. The host system must
have some way of associating names with the items so
that these names can be embedded in tool code that uses
them. Obviously, this can be a source of problems when
moving a tool from one system to another, as the naming
mechanisms or conventions of the two systems may be
different.

UNIX has managed to achieve a fair portability of tools,
but the ways the naming problem is usually solved when
moving a tool from one UNIX to another do not meet
CAIS requirements. Most porting of small, self-contained
UNIX tools is achieved by providing source code of the
tool to the new system. The embedded names are manu-
ally changed as appropriate and the tool (re-)compiled.

240

This approach makes it difficult or impossible for ven- stripped off. Each node in the view structure has a DEFI-
dors to create and sell tools profitably, because distribu- NITION relationship to the type structure node to which
tion of source makes pirating of the software or of its it corresponds. The figure shows a “Node View” and a
design too easy. An active market in tools cannot exist if “Relation View” (center) and the corresponding “Node
source code must be distributed, and indeed no signifi- Type Definition” and “Relation Type Definition.” There is
cant commercial market in small tools exists for UNIX. no need for “Attribute View Nodes;” Node View and
Such a market for CAIS is a very important goal of the Relation View nodes have relationships directly to the
DOD. corresponding Attribute Type Definition.

Note that there is an active market in tools for MS-DOS
and Apple systems. Both of these are so small and simple
that very few names need to be used, and tools can be
written to accept them as parameters. A market also
exists in large tools or tool sets for UNIX, in which the
tools are sufficiently self-contained that most of the
names they use are defined by the tool. The relatively few
local names that they need are specified during an instal-
lation process, passed as the values of environment vari-
ables, or passed as parameters.

The names used by a tool are specified as key values on
the relationships in the view structure. For example, the
process in the figure (upper left) can refer to the two
attributes on the node (lower left) as “X” and “Y” and to
the relation as “Z”. These are the values of the Attribute-
Name and Relation-Name keys on the relations from the
Node view to the Relation View and two Attribute Type
Definitions.

It is therefore necessary that the CAIS have a naming
mechanism that does not necessitate recompilation of
tools when name changes are necessary and that allows
each tool to have private, non-standard names for items in
the data base. This is accomplished by the data structur-
ing facilities and as shown in the figure with what are
called views or interpretations.

The view structure is essentially a parallel copy of the
type definition structure with the type definition data

The CAIS allows multiple names for items by allowing
multiple views covering any particular section of the type
definition structure. Views can omit items, giving tools
no way to name them; for example, a view can make a
relation “invisible” by not having a DEFINITION relation-
ship to the Relation Type Definition. Because the ability of
tools to use particular views can be restricted through the
access rights mechanism (see below), the creators of the
view structure have a great deal of control over data
structure access.

Process Nodes and Jobs

DOT (EXECUTASLES)

A CAIS Process is approximately a running Ada Main
Program (“approximately” because there is no require-
ment that it be written in Ada). Processes have one or
more internal threads of control, i.e., Ada tasks. For the
CAIS to be a portability platform, it is impossible for it to
say very much about the internal functioning of a process;
compiler and operating system vendors cannot be overly

restricted. The strongest statement made, and a very
controversial one, is that other tasks in a process must
continue to run when one is blocked awaiting fulfillment
of a CAIS request. For example, having one task wait for
the next keyboard value entered must not stop the other
tasks until a key is hit.

241

Processes may request that other (dependent) processes
be started; they thus form a hierarchical tree of parents
and children. Such trees are called “Jobs” and are rooted
at the User Node of the person for whom the processes are
running. Similarly, processes may start independent pro-
cesses. The figure shows a four-process job and a one-
process job.

Processes may be suspended, resumed and aborted by
request of other processes within access control con-
straints. Termination of a process will wait for dependent
processes to terminate. The process nodes remain after
termination of the process and allow recordings of the

execution results and statistics. They can subsequently be
deleted explicitly.

A process represents the execution of a code file. That file
is also a node represented in the node model. The process
node is connected to the code file by an Executable-
Image relationship. The figure shows two processes run-
ning one code file and omits the other process’s code.

Amechanism calledA?tribtlte Monitors will “watch”one
or more attributes anywhere in the data structure and
trigger execution of a user process when the value of one
of them is changed.

Channel Nodes

CAIS processes may perform I/O to files, devices, gate-
ways (discussed below), and other processes; it is not
generally necessary for a process to know which of these
is “on the other end.” Channel nodes represent the I/O
connection explicitly in the data structure.

The figure shows a process (left) doing I/O to another
process, a work station, and a file. The work station is
accepting or producing three I/O streams, from a key-
board, to a display and from/to a disk. These three
streams could alternatively go to three separate device
nodes. At least one of the nodes connected to a Channel
must be a process; direct device-tedevice or file-to-file I/O
(and the other combinations) are not supported.

The relationships from processes, files, devices, and gate-
ways have attributes (not shown) that specify how the I/O

operations are to be effected. Channels can be used to
create arbitrarily-complex data paths among processes,
or “data-flow diagrams,” in the data structure, a powerful
generalization of UNIX’s pipes. The communications
structure among tools may be set up by other tools (third
parties).

The representation of channels may be used in conjunc-
tion with the type definition capability to differentiate the
semantic content of data streams at various levels. For
example, type definitions could be created that allow a
print tool to read and print any text file, but restrict an
Ada compiler to reading those text files which contain
Ada source code.

242

+I CHANNEL - - CHANNEL PAIR .-j-tip;‘, - CHANNEL PAIR

J ~ cl
OPPOStTE CHANNEL NODES OPPOStTE CHANNEL NODES

CLIENT

OPPOSITE CAIS INSTANCES

Remote Interprocess Communication

CAIS lNSTANCE A CAIS INSTANCE B

DATA FLOW
I

As the figure shows, II0 between processes in different
CAIS’s is accomplished by gateway nodes in each CAIS.
The internal workings of gateways and the manner in
which they are connected to each other is left to the CAIS
implementor. Gateway nodes are passive nodes to which
only process nodes can establish channels. This model
ensures that cross-CAIS communication can authenticate
access rights for data requests across gateways.

Note that gateways bridge separate CAIS implementa-
tions, not separate processors running a single distrib-
uted CAIS. A CAIS implementation is defined as an
instance of the node model with a single root. It may be
resident on several processors, in which case the CAIS
implementation bears responsibility for the distribution
made visible to the user and tools by means of resource
maps represented in the node model.

Mandatory Security

(TOP SECRET)

LOWS,- CLASSWAT,ON a
(SECRET)

ITOP SECRET, XX, VV,

OBJECT- CLASSIFICATION s
f?OP SECRET)

SUBJECT- CUSSFlCATlON x
(SECRET. XX)

(SECRET, XX)

OBJECT- ClASSKlCATlON s
(CONFIDENTIAL, n))

One of the more difficult DoD requirements of the CAIS

puter Base (TCB) as a Multi-Level Secure (MIS) system
that meets the B3 certification criteria as defined in DoD-

was that it be imnlementable on (or “as”) a Trusted Com-

5200.28.STD. In more common terms, it must be possible
to assign security levels like “Confidential” and “Top
Secret” to data in the system and prevent people from
accessing data that they are not cleared to access. Multi-

level mandatory security is optional in CAIS implementa-

A secure CAIS must support security categories in addi-

tions; they can pass validation without it.

tion to security levels. Categories are used for a number
of things, of which a good example is “need to know”
access control. A particular file may be Top Secret on a
“need to know” basis; this means that users with Top

243

Secret clearances cannot access it unless they also have
been given “need to know” for that particular data or
class of data. The security level of the data would be (Top
Secret, XYZatk) (where “XYZntk” is an arbitrary label
that means “need to know this class”) and the user would
have to have “XYZ-ntk” in his clearance.

As the figure shows, User nodes have an attribute Sub-
ject-Classification containing the user’s clearance level
and categories. These can be set only by a designated
Security Officer and should be the actual clearance level
of the user (or lower).

When a user starts a process, that process is said to be an
agent of the user, and so it also has a Subject-Classifica-
tion. The user can choose to give the process a lower
clearance, meaning a lower clearance level or a subset of
his categories, but not a higher one. The figure shows a
User with (Top Secret,XX,YY) who has started a process
with (Secret,XX).

The rules of mandatory security say that a process can
read data at security levels less than or equal to the
process’s and can write data at security levels greater
than or equal to the process’s. The effect is as shown; the
process can read but not write the Confidential file, can
read and write the Secret file (and optionally assign it
category XX), and can write but not read the Top Secret
file. In practical terms, the latter rule means the process
can create, over-write, or append data to the file.

Devices are said to have a range of security levels that
they can handle. The range is determined by the physical
characteristics, location, and I/O path of the device; the
printer shown in the figure is probably in a locked and
guarded room and, if the processor is elsewhere, con-
nected to the processor by an armored and encrypted
cable. The process shown can write Secret or Top Secret
data to the printer.

Discretionary Access

USER (JONES) GROUP (WIZARD) GROUP (MAILTOOLS) USER (SMITH) GROUP (SMITH)

ER I I LACCESS I I-

ROCESS)-ADOPTED-ROLE () + GROUP) WNI IiULJJl

The CAIS discretionary access mechanism is based on
familiar constructs, expressed explicitly in the node
model. Its basic concept can be summarized like this:

GRANT:
[ACCESS MODES]

The process on the right is allowed to access the object on
the left in the ways specified in the GRANT attribute.

The mechanism allows groupings of users, so that access
rights can be granted on a “wholesale” basis, i.e., to a
specific group, irrespective of its members, rather than to
each member individually. Groups can be hierarchically
composed from subgroups, which then are “permanent
members” of the enclosing group. As the figure shows,
Group nodes can also have Potential-Member relation-
ships to other group nodes. “Potential” is used because
users belonging to a potential member subgroup can
choose at any point in time whether or not they are to be
considered members of the group.

As shown, users have a Default-Role relationship to a
group of which they are normally considered members.
These default roles are implicitly assumed at login; a

244

corresponding Adopted-Role relationship is created and
is inherited by processes that the user starts. Processes
may also be given Adopted-Role relationships to groups
of which the user is a Potential-Member or to groups of
which the executable code file is a member. The latter
allows imposing restrictions that certain files can only be
accessed through the services of a specific (group of)
tools.

All nodes in the data base (not only file nodes, as shown in
the figure) have access relationships to Group nodes. The
Grant attribute on these relationships defines the kind of
access allowed processes with Adopted-Role relation-
ships to the Group or any Group that is a permanent
member of the respective Group. The granularity of
access rights lets the user specify different rights regard-

ing attributes, relationships and contents; such rights
distinguish reading, writing, appending, executing, and
changing access rights. Access rights may also be user-
defined and conditional: it may take a certain user-
defined access right for a real access right to be granted.
Since access rights are derived from the combination of
all applicable access relationships, these conditional
rights can ensure that only specific tools, or users in
specific groups can perform certain operations on a node.
The NEWMAIL and READMAIL rights in the figure are
examples of user-defined rights, which ensure that users
can append to mail files of other users via the mailer
program, without otherwise being given any real access
rights to those mail files.

Transactions

I
I -

I

\
\

1 \

63 5 1’

i

’ \ FKE

\\
\

\ /

I”-\ I

/I

//
/

‘.-/’
/

’ ,
\

------ _--- /-
//

_-__c-

The CAIS support t runsactions at two levels of granular-
ity: an entire process can be run as a transaction, so that
all nodes modified by the process are included in the
transactions, and processes can start transactions in
which nodes are explicitly included. A transaction can be
either committed or aborted. If aborted, the effects of all
eligible operations that modified the included nodes or
their contents are as if they never took place (note that not
all operations are eligible: for example, writing to a
printer cannot be undone.) In the figure, process A has
started a transaction and included the nodes for Files 1
and 2.

The explicit selection of nodes to be included in transac-
tions, as contrasted to an implicit inclusion of all nodes
modified between a “begin transaction” and an “end
transaction” primitive, is a necessity when a process can
have multiple execution threads (i.e., tasks) calling upon
these primitives.

A process may run any number of transactions concur-
rently on different execution threads and even on a single
execution thread. Nodes included in a transaction are
properly locked against access from outside the respec-
tive transaction.

Also, transactions may be specified as being nested within
other transactions. In this case, the effects on nodes
included in the subtransaction are not available to the
enclosing transaction until the subtransaction is commit-
ted. Upon such commitment, the effects are made avail-
able to the enclosing transaction, but the affected nodes
remain included in the enclosing transaction. If an enclos-
ing transaction is aborted, all on-going subtransactions
are aborted and the effects of committed subtransactions
are undone.

245

The transaction mechanism, the type structure, attribute
monitors, and discretionary access control are expected
to work together to support any desired level of strictness
and integrity in the data structure. A large project with
very tight time and budget constraints and a relatively
junior programming staff might define an extremely

rigid structure that restricts the things the programmers
can do to a very narrow range. On the other hand, an
experienced programmer working on a CAIS workstation
entirely under his own control will be able to tailor the
environment to any desired degree.

Movement of Data Between CAIS Systems

OLD SYSTEM -1

One of the main DOD requirements is to be able to move
entire projects and parts thereof from one CAIS system to
another, even when the two are implemented on different
processors and different host operating systems. The
common approach to requirements of this kind is to
define an ASCII stream Common External Form (CEF)
into which the data to be moved can be translated and
from which it can be recreated.

The fact that almost everything in the system has an
associated type definition makes it possible to translate
the data structure into CEF. The user designates an arbi-
trary piece of the data structure for translation. The
included items are translated into a stream of ASCII
characters, transmitted to the other system, and used to
recreate the structure.

Of course, the type definitions that apply to the data to be
moved must be used to translate into CEF. They must also
be used to translate from CEF on the new system and to

NEW SYSTEM
/-

access the moved data forever after. Therefore it is neces-
sary to determine the relevant parts of the type definition
structure, convert it to CEF, and transmit it before the
designated data in the ASCII stream.

The one part of the data structure that the system cannot
translate into CEF is the contents of File nodes. The
person who defines a new node type with contents must
also define transvnitter and receiver programs (if the
contents of the nodes are to be movable). The transmitter
is invoked during translation to CEF to produce an ASCII
stream of the contents, as shown in the left center of the
figure. The receiver is invoked on the new machine to re-
create the contents in the internal form of the new proces-
sor. Note that the receiver program, probably written in
portable Ada, must be available for execution on the new
machine; this could involve moving its source code, com-
piling, and linking it prior to moving any nodes.

246

Conclusion
The CAIS draws on the current state-of-the-art in SDEs. It
may be unique in combining so many mechanisms (the
ERA model, transactions, object typing, access control
and security, a separate naming mechanism, a common
external form, etc.) smoothly into an integrated whole.
The closest equivalent of which the authors are aware is
the PCTE + , and related work going on in Europe. The
two projects have several contributors in common and
have both used the RAC as a requirements source. Indeed,
discussions between the two groups are underway and
may well lead to a “merger” of some kind.

The CAIS is a large and complex system; much work
remains to be done to determine if it can be implemented
with sufficient performance on a variety of machines,
including those with host operating systems and as an
operating system in its own right, on “bare machines.” We
need to implement a great many tools and toolsets to
make sure that CAIS provides all necessary facilities.
(There is a bit of a “chicken-and-egg” problem here.)
Beyond implementation, we need to accumulate a great
deal of experience in using the system to do projects from
the very small to the very large. It may be that the CAIS
becomes most valuable over the full life-cycle of very
large projects, meaning that a proper judgment of its
worth will not be possible for many years.

References
[CAISSS] Military Standard Common

APSE Interface Set, United States
Department of Defense, DOD-
STD-1838, 9 Ott 1986

[CAB871 CAIS Reader2 Guide for DOD-
S TD-1838, Institute for Defense
Analyses, 14 Aug 1987

[MUNCK88] Munck, Robert, Why Strong Typ-
ing was added to DOD-STD-1838,
The Common APSE Interface Set,
Proceedings of the Sixth Annual
Conference on Ada Technology,
Washington, 15 March 1988

[RACW DOD Requirements and Design
Criteria for the Common APSE
Interface Set (CAZS), KAPSE Inter-
face Team, Ada Joint Program
Office, 4 Ott 1986

[RAT871 Rationale for the DOD Require-
ments and Design Criteria for the
Common APSE Interface Set
(CAIS), KAPSE Interface Team,
Ada Joint Program Office, 18 Nov
1987

MT881

[STONEMAN

Rationale for DOD-STD-1838
(CAIS), Draft Version, Institute for
Defense Analyses, 14 July 1988

DOD Requirements for Ada Pro-
gramming Support Environ-
ments, “STONEMAN,” Feb 1980

247

