PROGRAMMING WITH ADA' — THE ADA ENVIRONMENT

by
Erhard Ploedereder, Ph.D.
Tartan Laboratories
477 Meiwood Avo.
Pitsburgh, PA 15221
U.S.A.

Summary

This paper examines two aspects of using Ada for the Implementation of large program syslems. Firsi,
those elements of the Ada ianguage that are particularly targeted al programming In the large are dis—
cussed. Conclusions about appropriate design methodologles thal malch these language fealures are
presented along with an explanation ol some potentlal problems. Second, an overview of efforis 1o develop
programming support environments for Ada beyond the Ada compllation syslem s glven. The ratlonale and

the scope of on-going standardization work In the area of Ada Programming Support Environmenis (APSE)
Is presented.

Preface

A necessary prerequisite for using Ada as the implementation language In a projecl Is the availabilily of Ada
compilers. At the end of 1985 more than 15 Ada compllers had been validated on a varlety of host and
target systems (1). Hence, at present, there Is a significant number of Ada compilers available Lo
pPrfospective users of Ada. The focus for satisfying prerequisites for the successful applicalion of Ada Is
@radualily shifting to the software environments around the Ada compller.

Given a high-quality compiler, the productivity of sofiware designers and programmers depends o a very
large degree on the properties of the software developmenl environmenl. While this Is true for any lan-
guage, It has been specifically acknowledged In the Ada program: considerable elforis are spenl lo address
the Issues and improve the quality of software environmenis.

In this paper, we concentrate on two aspects of the software environmentl for Ada: firsi, we discuss some
Properties of Ada that impact environment issues and programming in the large. Then we presenl
U.8. Department of Defense (DoD) and Industry efforts towards evolving sofiware environmenis in support of
Projecta using Ada.

1. Program Structure in Ada

Historically, programming languages and their compilers supported the programmers by translaling individual
modules, but falled to enforce Interface conventions across module boundaries. Violations of these conven—
tions were discovered In part at link-time and In part during tesling by exploring the causes of Incorreclt
program execution. In some languages, e.g.. Pascal, C, and Pearl, the missing facllily for consislency
checking across module boundaries was added In subsequent language revisions or by language exiensions
of Individual compliers or by tools of the programming environmenl thal analyze the inlerdependent modules
for possible Inconsistencies.

The Ada language design has been gulded by established principlea thal facililalte programming In the large
(2,3). It supports the structuring of program systems Inlo unils, each of which can be complled separalely
from other unita with which it Interfaces. The mechanisms for enforcing the consislency among separalely
compiled units are an integral part of the language. The rules of the Ada language for consisiency checks
across compliation unit boundaries are as If all units Involved were iranslated In one monolithic compllation)
unit boundaries have no Influence on the strength and nature of the checks. Thus, dividing large program

‘muawmdhmmm. Ada Joint Program Office



8-2

systoms Into many units according to some structure Induced by the applled design methodology carries no
penalty In torms of the complier support for the early detection of errors In the program,

In the Ada language, scparately compilable units come In two flavors: A unil can be a speciiication unit,
which describos only the programatic interface presented to users of the unit, or it can be a "body", which
implements the detalls of an associated specification. Separately compliable speciiicalion unilis are called
*library units* and their bodies are referred to as “sccondary unils®, as they require the existence of primary
specifications that describe their Interface presented to other uniis.

Library units are Individual packages, subprograms and tasks; such packages and subprograms may bo
generic, l.e., they describe an entire family of closely relaled packages and subprograms. Secondary unils
are the corresponding package bodies, subprogram bodies and task bodies. Packages are used lo group
logically related specifications, deolinitions and declarations. Specificalions of packages, subprograms and
tasks can also be nested within other units, and their bodies can be segregaled inlo so~called “subuniis®
that can be separately complled as secondary units.

Any specification unit can be viewed as a contract betweon the provider and lthe user of the services oflered
by the unit. The rules of the language guarantoe thal neither the user (l.e., anolher unil) nor the Im=
plementor (l.e., the body for the specification) of such services can violale the programatic interlace
described by their specification. Moreover, the detalls of the Implemeniation are hidden from the user of
the service, thus guaranteeing that the implomentation can be changed withoul affecting the validily of the
programatic Interface presented to the user. In more technical lerms, Iinlerfacing Is allowed only lo
specification units, which contain all the Information required for checking the consislency of references that
cross unit boundaries. Additional features of the Ada language, such as privale types, permil the hiding of
data representation defined In the specification of a unit, so thal users of the service cannol inappropriately
take cognizance of representational detalls that are o be considered Implemenialion-dependent (bul
generaily are needed by the compller in translaling dependent units) .

The described elements of the Ada language, which provide global siruclure In Ada programs, allow a
variety of development sirategies. Bottom-up development Is supporied In the sense lhal already implemenied
library units can be used to provide the bullding stones to consiruct additional library unils and their bodles.
Top—down development and slepwise refinement Is supported In a dual fashion: firsl, lhe separation of
specification and body for each library unit makes It possible to posipone the Implementation of a unil and
base all compilations of dependent units on the specification alone. Second, within secondary unilts, the Im-
plementation of locaily declared packages, subprograms and tasks can be separaled Inlo subuniis wilhoul
Impacting the capabllity to compile any units dependent on the units whose Implemeniation Is lhus delayed.
it becomes possible to code and compile programs whose underpinnings have been specified bul nol yel
Iimpiemented.

Generally, the compliation of a unit cannot depend on a secondary unil. Exceplions to this rule are sub-
units, which depend on the secondary units within which their specification is provided, and complier-
Introduced dependencies on secondary units. The latter may arise for the Instantiation of generic units, |f

their bodles are expanded In place, for calls on Inline subprograms, and for oplimization-relaled reasons
among units that are submitted In a single compilation.

Within the limitations of these exceptions, the clean separation of the Implementalion from the specification
permits arbitrary replacements of secondary units o be made wilhoul affecting any dependeni unils, since
such replacements must be in conformance with their respeclive specificalions, This freedom has significant
advaniages for a top-down development, since defaulted bodies can be provided for unils nol yel Imple-
mented. With such defaults, the program can be brought lo execulion as long as lhe defsulled enlilles are
not referenced In a way relevant for the results of the execullon. Laler, the defaulled bodies can be
gradually replaced by their true Implementation with a minimum of recompilalion effort.

in practice, software development is often a mixture of top-down design and subsequent bollom-up Im-
plementation combined with corrections to the original design. The decribed fealures ol the Ada language
are ideally sulted to support bottom-up and top-down strategies as well as a mixiure of lhe two approaches.



8-3
2. The Ada Program Library

In order to achleve consistency checking across compllation boundarles, the compllier must retlain Infor—
mation about the soparately complled units. This capability Is provided by the use of the “program library”
which contains the required information about compiled units.

The language rules require that each unit begins with a indication of all units on which it depends. This
specification Is called a “context clause®. Based on the conlexit clause, the compller relrleves the stlored
Information about the referenced specification units, uses this Informalion for the compilalion at hand, and,

for each reference to an entity in such a unit, performs the required consisiency checks the ensure the
legality of the reference.

The concept of separale compllation requires that all unils on which a given unil depends have been com-
piled prior to the compilation of that unit. Consequently, mutual dependencles of compllalion units cannot
be accommodated. Since dependencles generally exist only with respect lo speciiication units, it Is
neveortheless possible that the Implementation bodles of two units depend on the specificalion of the respec-
tive other unit. For example, It Is not permissible that two speciiicallon unils, A and B, reference each
other; It Is however possible that the body for A references the speciiicalion of B and vice versa. In terms
of a design meothodology, this restriction Iimplies that mutually dependent definitions must be provided within
a single package. It applies In particular to type definitions In package specifications, since eslablishing
the representational detalls of types cannot be postponed to the compllatlion of the package body for reasons
of compller Implemontation constraints.

During software development, compilation units will be subject to changes, which may affect the validity of
other compiiation units that depend on the altered unit. Mosl programming languages leave lhis aspecl ol
the software development process entirely up to the user or 1o lools provided by the language environmenl.
The Ada language, In contrast, requires that the compilalion sysliem recognizes this polentlal danger and
prevents the occurrence of Inconsistencies introduced by a change. The mechanism for doing so is also
ombedded In the program library. It records the dependencies belween compilation unils and, upon recom-
pllation of a unit, recognizes the fact that dependent unils are now polentially Inconsislenl and may have lo
be recomplied.

A further application of the recording of dependency information Is thal the Implemenialions of the program
library are capable of retrieving the exact set of units needed to bring a given main program 1o execution.
By transitively accumulating the units and their bodles on which the main program depends, any superfluous
units contained In the library will be omitted from the linked Image of the program.

With the requirement for the existence ol a program library that tracks dependencles and the efiecls of
changes, the Ada language goes beyond the nature of a mere Implementialion language. Il allempis o ad-
dress some of the problems that historically have been in the realm of sofiware environmenl lools, l.e.,
version and configuration management tools. There can be no doubt thal these rules of the Ada language
will provide a maximum of saleguards against Inadvertent errors in mainlaining syslem consisiency in the
presence of changes.,

The requirements posed by the language standard on the capablliies ol the program library in this area
are, however, rather rudimentary. They merely require thal, afler compllation of a unil, any previously
complied unit that is affected by the change to this unit musl be trealed as Il il were as yel uncompiled.

An Implementation of the Ada program library that satisfles only the minimal requiremenis Imposed by the
language standard Is llkely to create some difficuities for the users, unless a very rigorous programming
discipline Is enforced. The reason for such difficuities lies In the above rule which, In a unsophisiicated
Implementation of the Ada llbrary, will cause all compiliations to obliterale Lhe resulls of previous compila-
tlons of dependent units, Hence, a minimai change to and recompilalion of a specificalion unilt can cause
many hours of additional recompilations for units that depend on the changed unil, even lhough the change
may have had no real effect on them., The most pathological example of such a change Is the addilion of a
comment to a specification unit. A compliation system that Is not capable of recognizing the irrelevancy of
this or other changes on the consistency of the compilation results for dependent unila will have 1o require
a recompilation of all dependent units. The undenlable advantage of sirict enforcement of consislency by the

recompliation rules can be quickly negated by the loss of productivily due 1o delays caused by such un-
necessary recompilations.



84

As many Ada compliation systems will not possess the sophisiication of analyzing changes with regard lo
their effects on dependent units, the methodology employed In the ulllization of these systems for lhe
development of Ada software must compensate for this lack. Il must ensure thal changes lo speciiicallon
units on which many other units transitively depend are minimized. The same holds, lo a lesser exieni, for
changes to units that have subunits. Fortunately, this consiraint Is consisienl with good soliware design
and development practice that stabllizes central Interfaces as soon as possible and performs a rigorous
change control on these Interfaces. Generally, bottom—up Implemenlalion siralegies, following a delalled
top-down design, will provide the best match with the properties of unsophisticaled Implementalions of the
Ada program library mechanisms.

The requirements on the Ada program library do not address the problem of paraliel versions of unils in
muitiple configurations of an encompassing program system. The solution to this problem, as Il may be
provided by environment tools, |s somewhat constrained by the necessily to co—exist with the rules of the
Ada program library. A typical scenario during software development is thal new versions ol some compila-
tion units are Installed for experimentation purposes. If these new versions have led lo recompllations of de-
pendent units, then reverling to the Initial state after completion of the experimenl s nol possible without
another recompllation of these dependent units. Short of an Ada program library that Is {ully integraled Inlo
a version and configuration control system, the only alternative for preserving the Iniilal slale consisis in the
creation of a new program library for each such experimeni. Il Is therelore cruclal u_ul such creation ol
program libraries be possible with a minimum of effort and resources and a maximum ol sharing with exisl-
ing libraries, Again, the minimal requirements Imposed by the Ada language slandard do nol address this
lssue.

Finally, It should be noted that the Ada language rules regarding the program Ilibrary refer only to the
results of compilations, but not to the input to these compilations. Thal is, the program library need nol
administrate the Ada source files. It is merely concerned with the inlernal representation of the compilation
units as required by the separate compilation capabllity, and with the generaled object code. Il is nol
necessarlly a source control system, nor Is It required to support dependencies olher than compilation
dependencles, such as for example the interrelation between source code and documeniation files.

it is entirely possible that the productivity of Ada software implementors will be Influenced by the qualily and
functionality of the Ada program library at least as much as by lhe quality and speed of lhe Ada compller
iItself, It Is therelore of utmost Importance that the software design and development melhodology and the
strategles for version and configuration control be In unison with the capablliies of the employed Ada
program |library, and that the program library mechanisms inlegrale well with sofiware environment lools
beyond the Ada compller.

Despite all the caveats oxpressed In the preceding paragraphs, a reasonably sophislicaled Implementalion of
the Ada program library that supports functionaiity beyond the minimal requirements imposed by lhe Ada lan-
guage standard can be an extremely powerful tool. In large applicalion sysiems, errors thal are caused by
minor Interface Inconsistencies are very difficult to locale. The required capablliies of the program library
prevent the occurrence of this class of errors. With only a moderale addilion ol funclionalily lo the Ada
program library, tedious and traditionally error-prone lasks, such as the recompilation of changed sources
and ensuing recompliation of dependent but unchanged sources, can be tolally auiomaled and performed
without errors, since the required information is directly derived by the compller from dependency infor=
mation In the program library.

3. Programming Support Environments

For software engineers and programmers to be effective, the provision of an Ada compllation syslem alone
Is clearly not sufficlent. They roquire additional tools, such as edllors, debuggers, version and configuration
management lools, network flle-transfer tools, project managemeni tools, and so on. The colleclion of
these tools Is generally referred to as a "Programming Support Environment (PSE)".

Bome of the tools In a PSE are heavily language~dependent, for example the compllers, synlax-direcled
editors, program analyzers, symbolic debuggers, performance monitoring tools, etc. These lools need lo be
developed for any Implementation language. Other lools are language-independeni, such as flle-transfier
mechanisms, project administration tools, documenlalion sysiems, flesl harnesses, elc. Where avallable,
these tools can be applied In a project regardiess of the ch Impl talion language.

imp




8-5

8Since the early stages of the Ada efiort, considerable attention has been focused on the FSE for Ada and,
in the process, on Issues of language-dependent and =-independenl environment supporl In general, be—
cause the state of the art In this area Is in Its Infancy despite lls recognized Importance. Unforiunately,
this attention has led some observers to the misconception that Ada requires subslantially more environment

support than other languages or, worse, cannot be used al all without a complele environment speciiically
developed for Ada.

In reality, Ada has been used as a focal point of plans for Improvements in software engineering and PSE
technology, which are direly needed regardiess of the choice of Implementation language. It could even be
argued that Ada may require less environment support than other languages, due 1o ils high degree of
complle-time error checking, its enforcement of implementation discipline, and the environmenlal aspecis of
the program library. There Is certainly little reason to belleve thal Ada could nol be supporied in more
traditional environment settings. Currently, the majority of commercially avallable Ada compilalion sysiems
are not embedded In an Ada-specific PSE, but are Integraled Into lhe standard PSE available on the
respective host systems.

3.1. The DoD Requirement Catalogues

in early 1978, first efforts were made within U.S. DoD to arrive al a concepl for the development of the
environment support for Ada. A set of Initial ideas were firsl collecied In whal became known as the
SANDMAN catalogue, which was never published. By late 1978, it was consolidaled Inlo a requirement
catalogue, named PEBBLEMAN, In which the desired functionality and cooperation of various lools were
described. A revised version of PEBBLEMAN was published In 1979 (4). In February 1980, a further docu-

ment, STONEMAN, was produced; It became one of the most cited references regarding Ada environments
(5.

In addition to posing requirements for the desired tools In a PSE, STONEMAN introduced a model for "Ada
Programming Support Environments (APSE)", which addressed both the issues of tool inlegralion and of
portabliity of the entire APSE as well as of Individual tools or tool-sets. The term "APSE" has since become
a synonym for the concept of Integrated toolsets for Ada, as opposed lo the so—called “lool-box" approach
in which a set of Independent tools Is provided to the user.

Part of the motivation behind the STONEMAN model was the recognilion that the general immaturily of cur-
rent PSE Implementations Is not caused so much by the non-existence of powerful toois as by the missing
capability to bring existing tools together on a single host syslem and integrale them wilh each other lo
form a coherent and efficient PSE. Consequenily, the development of a PSE becomes unnecessarily expen-—
sive, as many tools are reimplemented although simllar and, qulle possibly, beller iools are already avall-
able In other environments.

One might surmise that the enhanced portability of tools written in Ada would soive the portabliily problem.
However, while the Ada language standard provides portability advaniages in many areas, il musl be recog-
nized that most toois require a significant amount of interfacing with the host operaling sysiem. The Ada
standard, which is primarily Intended for the generation of applicalion code for arbiirary largel syslems,
could not justifiably prescribe the details of those language features that are inlimaiely linked (o operaling
system Interfaces. Moreover, the requirements of application code on operaling sysiem services have been
recognized to be quite different from those of PSE. This Is due partially to the different problem domains

and partially to the dynamic nature of evolving PSE as opposed to the relatively static nalure of operatlonal
application systems.

Consequently, some standard Interfaces suitable for spplication programming might be qulie Inappropriate for
PSE development. QGiven that the Ada language leaves the details of operating sysiem Inlerfaces, such as
calls on the file management or on terminal I0 services, largely Implemeniation-dependent, the porling of

tools written In Ada will nevertheless have to contend with modifications of these hosi-dependent portlons of
the software.

The STONEMAN model postulates a system architecture In which the hosl dependencies and the tool Inter—
communication are encapsulatod in a Kernel APSE (KAPSE). The Individual tools of the APSE are bulll on
top of the KAPSE services. Since the Interfaces offered by the KAPSE are conceived 1o be hosi-
independent, and since the Ada language goes to great length In facilitating the portabllity of Ada sofiware,
tools could be written in Ada to be portable among different hosts offering the same KAPSE services. Pori—



8-6

ing of an entire APSE to a new host consists of re-impiementing the KAPSE on the new hosi. Further-
more, Individual APSE tools could be transferred to another APSE as long as the tool Inlercommunication
interfaces needed by these tools were provided by this APSE. Some tools are 8o heavily dependent on In-
terfaces with other tools that It is unreasonable to expect that all such Inlerfaces are provided on each
KAPSE. These tools cannot be ported Individually; they form an tightly integrated tool-set. By relying only
on the common mechanisms for tool communication provided by the KAPSE, bul not on the specliic delalls
ol the communicated Information, such combined tool-sets could equally be poried lo a new APSE.

STONEMAN established a set of requirements for the services thal must be provided by lhe KAPSE In order
to reach the described goals. These requirements relate In particular to the dala adminisiralion and com-
munication Interfaces needed by tools, and to the run-time syslem thal enables lhe execulion of Ada
programs. STONEMAN adopls the paradigm of distinguishing host and targel sysiems. I posiulaies that
software development, In particular for embedded targets, needs lo lake place on a hosl syslem sulficiently
powerful to accommodate the various tools required for supporting the development and maintenance ol
software throughout its life—cycle.

Among the many concelvable tools of an APSE, S8TONEMAN Identifies a minimal set percelved lo be neces-
sary to make an APSE an effeclive tool for software developers and maintainers. This sel was designaled as
the Minimal APSE (MAPSE). It comprises the Ada compilers, linkers and loaders, simple sialic program
analyzers and debuggers, text editors and pretly-printers, a file and configuration management sysiem, and
the command interpreter.

The STONEMAN principles were readily accepted by the majority ol efforts concerned with the development
ol a PSE for Ada. In particular, the emphasis of STONEMAN on the provision of better data adminisiration
capabllities than offered by the file management of traditional operating systema has been reflected in almost
all major PSE developments. While some of the detalls of the STONEMAN requirement catalogue may re-
quire revisions In the light of experience gained since 1980, the fundamental principles are sull valld con-
tributions to the area of PSE design.

3.2. APSE implementations

Within U.8. DoD, two major developments of Ada Programming Support Environmenis were procured: In
1980, the U.S. Army Initisted the development of the Ada Language Syslem (ALS) wilth 8SofTech, Inc., as
the lead contractor (8); In 1981/82 the U.8. Air Force contracted with Inlermetrica, Inc., for the develop~
ment of the Ada Integrated Environment (AIE) (7,8). Initlal plans called for the ALS 1o be an Inlerim lool-
set for the Introduction of Ada, while the AIE was Intended to be a STONEMAN-conforming Integrated en-
vironment and to eventually become a standard DoD Ada environment.

The developers of the ALS adopted many of the STONEMAN principles in their Implementation siratlegy, such
as utilization of a KAPSE-ilke kernel to facllitate the porting of the ALS, which has been developed on a
VAX/VMS host system. In December 1983, the first version of the ALS was made available lo prospeclive
users. The self-hosted Ada compiler of the ALS was validated In December 1984. The ALS comprises a sel
of about 75 tools to be used In sofiware development and maintenance. The developmeni ol the AIE, whose
Initial design promised a superior integrated environment, encountered serious funding problems; al present,
It Is extremely doubtful that a comprehensive AIE will become available in the foreseeable fulure.

The U.S. Navy decided In early 1985 to base thelr Ada environment efforts on the ALS and lo enhance this
environment by additional tools and by code generation capabllities for the prevalent instruclion sel archilec—
tures In use by the Navy. This extended ALS has been named "ALS/N" and is expected to become avallable
In early 1989.

The German Ministry of Defense, Bundesamt fuer Wehrtechnik und Beschaflung, began the procuremeni of
components of an Ada sofiware environment, named SPERBER (Slandardisieries Programm—Ersieliungssysiem
fuer den Ruestungsbereich) in 1979 (9). Major efforts have been direcled al developing Ada compliers,
debuggers, and a program development data base system. The firsl iwo compliers were valldaled In Novem-—
ber 1984. The British Ministry of Defense In cooperatllion with Britsh Indusiry co-financed several design
efforts towards the development of software environments for Ada (10, 11). The Commission of European
Communities, under its multi~annual program to advance the European sofiware technology In the commer—
clal sector as well as under the ESPRIT program, has co-financed several mulli~nalional projecis developing
Ada programming support environments, most notably the PAPS project (11).



8-7

Commerclal suppllers have been somewhat reluctant to embark on a course of providing Inlegrated Ada Pro-
gramming Support Environments, recognizing that such Integrated solutions, while desirable In principle,
constitute a truly major capital Investment. Moreover, customers who have bulll a considerable weallh of
software to support their in—house software development are concerned with preserving lhe usefulness of this
software for future development projects using Ada as the Implementallon language. The challenge 0 com-
mercial suppliers is to provide Intograted environments that nevertheless allow the Inclusion or easy Iran-
sitioning of existing tools.

Apart from ALS, which Is also commercially marketed by SofTech, inc., only the Ada Developmenl Environ-
ment (ADE), marketed by ROLM Corporation (12), and the Rational Environment, markeled by Rational, can
be regarded as largely integrated Ada Programming Support Environmenis. The Rational Environmeni lakes a
quite unique approach: Its host system has been specifically designed for lhe developmenl and execulion of
Ada programs. The entire environment Is exclusively centered around Ada. Many of the language concepls
are immediately reflected in the concepts of the environment whose command language Is Ada. Other com-
mercial suppllers of Ada compliation systems have taken the path of embedding their sysiems Inlo the en-
vironments offered by existing operating systems, so that users could continue 1o ulllize the lools which
which they are most famillar.

4. Environment Standardization Efforts

The more the software development process is assisted by tools of a programming environment, the more
difficult It becomes to transition software developed In one environment to a different environment. The cur—
rent practice in military procurement of mission—critical software is that this sofiware Is developed by con-
tractors but maintained In military maintenance centers. Just as a proliferation of implementation languages
raises the cost of such maintenance considerably, so does a proliferation of soflware environments needed
to maintain the software even In a single language. It Is therefore In the Interest of DoD 1o minimize the
proliferation of environments In its maintenance centers.

Here, DoD Is facod with a dilomma: whilo language research was advanced enough lo embark on the
standardization of a singie language, Ada, today’'s slate of the arl in environmenis Is much less malure.
Therefore rigorous standardization on a single environment may be Ill advised, as considerable advances in
the environment technology can be oxpected to occur In the next decades.

A compromise can be found within the framework of the STONEMAN model. If commonalily of KAPSE Im-
plementations were advanced by standardization at this much lower and less ambilious level, lools used in
application development could be transitioned Into existing maintenance environmentis, thus reducing the
number of necessary environments while, at the same time, continuously enhancing the support provided of
these environments.

4.1. The Kapse Interface Team (KIT)

When it became apparent that there would be two compeling designs of KAPSE Interfaces for the ALS and
the AIE respectively, a Memorandum of Agreement was signed In January 1982 beitween the U.S. Army, Air
Force, and Navy to work towards establishing commonality of the KAPSE Interfaces in DoD environments
(13). Under the lead of the U.S. Navy, the KAPSE Interface Team (KIT) was crealed and chariered wilh
this task, The KIT Is assisted by an advisory group of software environmenl experis from Indusiry and
academia with International representation, the KITIA (KIT - Industry and Academla). The objeclive of
KIT/KITIA was set to establish requirements for the interoperability and transporiabilily of lools among APSE
and to subsequently develop guldeiines and conventions for achleving th requl ts wilh the ullimato
goal of evolving standards in this area (14).

KIT/KITIA has been meeting quarterly since 1982. The results of ils deliberations are contalnod In poriodi=
cally published reports (14). Among Its most relevant products are the "Requirements and Design Crileria
for the Common APSE Interface Set (CAIS)" (15), and the proposed "Military Standard Common APSE Inler-
face Set” (168), which Is an initial set of KAPSE-llke interfaces for the encapsulalion of host dopondoncios.
At this time, the later document is being reviewed by the DoD services for adoption as a milltary standard
within DoD.

While the Initial motivation of achleving commonality between ALS and AIE has decresased, due lo the los—
sening Importance of the AIE, the KIT/KITIA effort has been recognized as an Important coniribution o ad-



8-8

vance the knowledge In the area of KAPSE-llke Interfaces and of lssues of tool portabliity and Intor-
operability. It aiso creates a forum for Information exchange between DoD and Indusirial efforts, theroby
preserving the opportunity to prevent a complete divergence of these efforts.

4.2. The Common APSE Interiace Set (CAIB)

In late 1982, a KIT working group began examining the ALS and AIE KAPSE Inlerfaces for arcas of com-
monality and of divergence in order to establish a common set ol Interfaces thal could be supporiod by both
KAPSE designs. In March 1983, this group was joined by several KITIA members o form a group thal lalor
becama known as the CAISWGA (CAIS working group). With the participation of the ALS and AIE dosignors,
this group began developing the specification for a set of common Interfaces doemed Important for the por—
tability of tools. A cruclal design decision was made In mid-1983 to pursue an Inlerface sel thal was nol
constrained by the current environment efforis of ALS and AIE, although much of the praclical exporicnco of
these and other similar efforts Influenced the choice of Interfaces.

The main goals of the CAISWG were to develop Interfaces based on a simple, yel poweriul and exiendible,
model, to apply uniform concepts throughout the design of the Interfaces, and to cover those Interfaces that
are most crucial for the portability ol many tools. A first public review of the concepls of the CAIS took
place In September 1983. Varlous revisions were produced and publicly reviewed untll, In January 1985, lhe
final document was delivered to AJPO as a proposed military standard.

The CAIS In its present form contains interfaces for the administration of files, their interrelations and al-
tributes, for process administration, and for terminal |0 targeted al three slandard kinds of lerminals. Some
other utilties frequently used by tools are also present. The CAIS design for the flle adminisiration has
departed from the traditional view of hlerarchical file systems and inslead adminisiers files by their inlerrela—
tions. In this regard, the CAIS cautiously joins a trend thal has been apparent In aimost all recenl designs
of PSE. Spoclal attention has been paid to security aspecls, so thal the CAIS would nol be in conflicl with
requirements posed by DoD (17). The concepis and the sel ol interfaces provided by the CAIS are open—
ended. It Is expected that additional Interfaces will be added to the CAIS and thal the exisling global con-
cepts are sufficiently flexible to accommodate a large variely of such exiensiona.

it was realized that the work of the CAISWG could be only a first step In defining a basic set of uniform in-
teriaces. The U.S. Nayy contracted with SofTech, Inc., In 1986 for theo further enhancement of the CAIS
beyond this Initial set and for a pilot-implomentation of the CAIS to validate Its usefulness and efficlency.
Other plliot-implementations of major portlons of the CAIS have been undertaken by TRW, Inc., wunder
government contract, and by Gould, Inc. and MITRE Corporation, as Internally financed projects.

6. Fwture Benefits of APSE

As various studies have shown, the demand for applicalion sofiware Is rising exponentlally over lime, while
the workforce engaged In producing this software Is growing at a siow linear rale. Already the demand la
far beyond the production capability. In addition, the complexity of the software has Increased considerably,
making the production of quality software more and more difficuit and time—-consuming. Wilthout substanilal
Improvements in the software development process, industry will nol be capable to meel the Increasing
demand nor will it master the growing complexity of this process In the fulure.

Four factors can have a major Impact on ameliorating the currenl situatlion:

Application of better methodologles: Ada is a first slep to Improve the methodological basis al
the Implementation level. Cilearly, better methodologies or Increased application of already avall-
able methodical approaches for requirement analysis and specifiication are necessary as well. Al-
most certainly, these approaches will be supported by software tool-sels. APSE can provide the
vehicle for a wider penetration of these tool-sets and associated methodologies.

Provision of better tools: Today the portability and Integration problems of tools lead 1o a dead-
lock situation. For lack of portablility, the development of truly sophisticaled tools is expensive
and commercially riskyy it therefore remains largely In the realm of prolo-types developed In
academla. For lack of commerclally avallable tools, software developers are forced lo expend
their resources In the duplicating development of tool support, which, because of the resulling
financial constraints, continues to be of low quality. Improvemenits in portabllily and Inlegratlion,
as possibly provided among APSE, can release resources for the development of more advanced



8-9
and better tools as well as widen the commercial market for such tools.

Use of standard components: simlilar to the hardware manufacturers, software producers will in-
creasingly have to rely on reusing pre—fabricaled components in order 10 meel the rapidly ex-
panding volume of the software demand. Within the framework of an applicalion-orienied Im-
plementation language, whose major goal Is the enhancement of sofiware poriabilily, Ada is an
almost ideal breeding ground for such standard componenis.

-

: Automated generation of customized componentsi a leading edge In hardware research Is con-
centrating on the development of systems for the fast production of cusiomized componenis. A
similar approach can be expected to emerge in the software field as well. In fact, In some spe-
clalized areas, e.g., In compiler construction, the automated generation ol componenis thal are
customized to particular languages or target architeciures has already been successfully applied
In commercial products. Again, APSE may provide the means for a wide disiribullon of such
software—~generating tools.

Of all these factors, the last two are likely to be the most Important ones. As long as applicalion soflware
Is developed from scratch, whatever Improvements In tool support can be provided (o the software
developers will Increase their productivity only by some constant mulliplying factor. Significant as this faclor
may be, It will not be sufficlent to catch up with the oxponentially developing software demand In the long
run. The only hope to match the ascending curve of demand consisls in an ever Increasing reduclion ol the
amount of work to be performed to produce products. Only the utilization and increasing avallability of stan-
dard components or ol automated generation of customized componenis can lead o this reduclion. Ada
and APSE can play a major role In meeting these challenges, in pariicular, if the promise of increased
portablility of tools and software components among partially slandardized APSE can be realized.

6. Referencss

(1) Ada Information Clearinghouse, "Validated Ada Compllers®, AdaliC, 3D139 (1211 Fern Si., C-107), The
Pentagon, Washington, November 1983.

(2) U.S. Government, °‘Reference Manual for the Ada Programming Language®, ANSI/MIL-STD-1815A,
U.S. Government Printing Office, Washington, February 1983

(3) Honeywell, Aisys, “Rationale for the Design ol the Ada Programming Language®, Drail for edilorial
reviow, Honoywoll, Minnoapolls, January 1984

(4) United States Department of Defense, "PEBBLEMAN rovised - Requirements for the Programming En-
vironment for the Common High Order Language *, January 1979

(5) United States Department of Defense, "Requirements for Ada Programming Support Environmenis
- STONEMAN®, February 1980

(8) SofTech, Inc., "ALS Specification®, November 1983
(7) Intermetrics, Inc.,"System Specification for Ada Integraled Environment®, November 1982

(8) Bray, G., "AIE Support for Management of Embedded Computer Projects”, Ada Letlters, Vol. Il, Number
1, pp. 3348, August 1982

(9) Ploedereder, Erhard, °"Project SPERBER - Background, Status, Future Plans®, Ada Lellers, Vol. Iii,
Number 4, pp. 92-98, February 1984

(10) Department of Industry, *U.K. Ada Study, Final Technical Report®, June 1981,

(11) Bevan, S. et al. “Investigation Into the Differencos Between PAPS and M-Chapse®, unpublished paper,
December 1983.

(12) Emiont J.K., Kieln D.M., Willlams J.S., °APSE Tools - ROLM's experience®, In: Teller J. (ed.)
*Proceedings of the Third Joint Ada Europe/AdaTEC Conf *, Br is, 206-28 June 1984, Cambridge
University Press, 1984,




8-10
(13) Memorandum of Agreement, published in (14), Volume Ill, pp 38 18-19

(14) Patricia Oberndorf, “Kernel Ada Programming Support Environment (KAFSE) Interface Team FPublic
Report®, Naval Ocean Systems Center, San Diego.

Volume I, NOSC Report TD-209, NTIS AD A115 5980, April 1982

Volume Il, NOSC Report TD-552, NTIS AD A123 136, Octlober 1982

Volume lll, NOSC Report TD-552, NTIS AD Al41 576, Oclober 19683

Volume IV, NOSC Report TD-552, April 1984
Volume V, NOSC Report TD-552, August 1985

(15) KIT/KITIA, "DoD Requirements and Design Crilerla for the Common APSE Inlerface Set (CAIS)",
prepared by KIT/KITIA for the Ada Joint Program Office, September 1885

(16) U.S. Government, Ada Joint Program Office, “Military Standard Common APSE Interface Set (CAIS)",
Proposed MIL-STD—CAIS, NTIS AD 157-587, January 1985

(17) United States Department of Delense,"Trusied Compuler System Evalualion Criteria®, Compuler Securily
Center, Fort Meade, Maryland, CSC-STD-001-83, August 1983.



