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An opto-electronic technique for the classification of grains of photo- 
graphic emulsions by shape is described. Fortunately, the shapes to be 
distinguished differ only in their two-dimensional rotational symmetry 
group. A special optical filtering procedure has been developed to take 
account of the implied positional and rotational invariance. The transfer 
from the optical to the electrical signal is obtained in a simple manner. 
The method works satisfactorily even for a rather complicated cluster. 
Some results are discussed. 

OBJECTIVE CRITERIA for the quality of photographic 
emulsions are required. The projection of the indi- 
vidual AgBr-crystals of especially prepared emul- 
sions are produced by an electron microscope at a 
lateral magnification of 10, 000. According to the pre- 
cipitation conditions, different shapes of crystals 
occur: cubes, octahedrons and triangular or hexagonal 
plates. Since the orientation of the crystals is usually 
such that one side is parallel to the substrate plane, 
the projections of the crystals are square, rhomboidal, 
triangular or hexagonal as shown in Fig. 1. This pic- 
ture represents a mixture of differently precipitated 
emulsions to show all the characteristic shapes of 
photographic grains at once. The electron-microscopi- 
cal preparation has been performed to obtain the pro- 
jected areas of the grains only. The crystals are 
sparsely distributed, but some superpositions of two 
or occasionally more objects forming clusters can 
occur. The range of variation in the object size of the 
emulsion to be studied is about 0.05-o. 5pm. 

Manufacturers of photographic emulsions are interes- 
ted in the statistics of these crystals in shape and 
size. A method to determine these two parameters 
automatically must be developed. Measurement of the 
crystal size to the accuracy required is not too diffi- 
cult. To investigate the statistics of the shapes is not, 
however, an easy pattern recognition problem. Posi- 
tion and orientation of the crystals are of no impor- 
tance and small discrepancies, for instance rounded 
corners, should be of no significance. Thus the pat- 
tern recognition system to be devised must classify 
the shapes which occur, either separately or in clus- 
ters, into four groups independently of position or 
orientation. Such a system is described here. 

POSBIBLE SOLUTIONS 

In principle it is possible to scan the pattern shown 
in Fig. 1 photoelectrically and to analyse the infor- 
mation in a digital computer. This method, however, 
needs an exceedingly complicated algorithm. 

The reasons for not using the well-known optical 
filtering techniques such as those proposed by Vander 

m-4 l or Armitage & Lohmann,z for coherent and 
incoherent illumination respectively are now briefly 
discussed. These methods seek correlations between 
the presented pattern of the unknown material and 
the filter of the standard comparison object. Such 
filters are selective with respect to variation of both 
size and orientation. In this case classification of the 
objects into the four groups only is required. Never- 
theless, it would be possible to employ a large num- 
ber of rotating filters to account for this size dis- 
crepancy. Alternatively, zoom objectives or the 
method given by Vander Lug6 could also be used. 
The methods mentioned have not, however, been found 
to be suitable; they are very sensitive to the accuracy 
of positioning of the filters and are very slow. 

An opto-electronic analogue method was finally adop- 
ted with the required invariance properties. The 
following sections are devoted to the new method. It 
is assumed that the selection of the cluster or single 
object is carried out in the object space prior to the 
filtering procedure. 

Fig. 1 Example of an electron micrograph 
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OPTO-ELECTRONIC PATTERN RECOGNITION 
SYSTEM 

The two dimensional Fourier transform of the object 
is obtained in the back focal plane of the lens L shown 
in Fig. 2. The object in the plane P, is illuminated by 
a plane wave. The spectrum a(x, y) of the object with 
the complex amplitude A(u, v) obtained in the back 
focal plane P, of the lens L is (ref 4) 

a@, Y) = Jy A( u, v)exp [- 2rri(ux + vy)]dudv 
-m 

u and v are the coordinates in the object plane and 
x, y are the normalised coordinates in the back focal 
plane which are related to the geometrical coordi- 
nates X, Y in the following way 

X Y 
x==--,y=-z 

where A is the wavelength of the light and f the focal 
length. 

The intensity in the back focal plane is 

i(x, Y) = I a(x, y) I 2 

and, as is well-known, i(x, y) is invariant on transla- 
tion of the object in the (u, v) plane. 

Typical intensity spectra of examples of each of the 
four groups are shown in Fig. 3. The rotational sym- 
metry of the corresponding object is manifest in the 
spectrum. The reason for the three-fold symmetry 
of the triangular object is explained in the Appendix. 

Fig. 3 shows that each of the four groups is distin- 
guished by the azimuth dependence of the energy dis- 
tribution of the intensity spectrum 

cc 

e(a) = d’ i(x, y) r dr with r = (x2 + y2)rj2 1 

Except for an energy factor, the function of e(@) is 
independent of the extent of the object, as indicated in 
the Appendix. The same conclusions apply with 
reasonable approximation to the modified function 

r1 

e’(a) = J i(x, y) r dr with rr > rc 

r 0 

pr pz 

t 
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L 

Fig. 3 Typical spectra obtained for each of the four 
object groups: (a) square, (b) rhombus, 
(c) triangle, (d) hexagon 

where r,> the extent of the zero order of the spec- 
trum of the smallest object to be investigated. The 
limits of integration are physically reasonable, since 
the zero order of the spectrum contributes a constant 
intensity to e(a). Knowing that the central intensity 
in the spectrum is proportional to the area of the 
object, this is used for size determination. 

REALISATION OF THE METHOD 

The measurement of e’(G) is accomplished by rotat- 
ing a disc S with its centre on the optical axis and 
with a transparent sector, as shown in Fig. 4. The 
light flux is collected by the photo-cathode of a photo- 
multiplier behind the rotating disc. The power of the 
collected light can be written as 

@+$ 

f(@) = J 
(p-9 

e’(a) d@ = e’(a) * s(9) 

where s(q) is the characteristic function of the sector 
slit, A@ is the angle of the sector, and * indicates, 
as customary, the convolution sign. For an appro- 
priately small angle A%(A% of 15” was found to be 
adequate for the configuration chosen) there is prac- 
tically no information lost by considering f rather 
than e’. 

The behavior of f(@) as a function of the orientation 
of the object is obvious. Rotations of the objects 
correspond to the same rotations in the (x, y) plane 
and hence a phase shift is introduced. It is useful, 
therefore, to carry out a one-dimensional Fourier 
transform of f(a). For this reason it seems appro- 
priate to rotate the diaphragm at constant speed. The 
frequency was chosen to be vo = 80 cycles and, hence, 
+ = 2ll vat. 

This produces an electrical signal of the form 

U(t) = const. f(2n vat) 

from the photomultiplier. Fig. 2 Fraunhofer diffraction 
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a, 

u(u) = / U(t) exp [-2ni I/t] dt 
-cc 

It is obvious that the time-function U(t) is a periodic 
function and that therefore only spectra with multiple 
frequencies of uo are expected. Thus 

u(u) = “z C, 6(u - n u,) 
n=-W 

A finite integration time introduces a broadening of 
the spectra, but we are only interested in the ratio of 
c,. Because the c, are the complex Fourier coeffi- 
cients the moduli of the real function U(t) are related 
by 

)c,J= Ic_nI n=O,l,... 

This is easily verified with the spectrum analyser. A 
consequence of the rotational symmetry of the objects 
is the occurrence of coefficients c, listed in Table 1. 

Table 1 Complex Fourier coefficients 

grow object c, f 0 for n = 

k=2 rhombus 2,4,6,8,10,12, . . . 

k=3 triangle 3,6,9,12, . . . 

k=4 square 4,8,12, . . . 

k=6 hexagon 6,12, . . . 

Fig. 5 shows the time function U(t) as well as the fre- 
quency spectrum of a sample of each of the four 
groups. The arrow indicates the position of vo(n= 1). 
It is easily seen that the modulus lcnl of the coeffi- 
cients is invariant to rotation of the object; only a 
constant phase shift is introduced. 

All the desirable invariance properties for the coef- 
ficients 1 cn 1 are therefore secured. It remains now 
to investigate the classification into the appropriate 
group for a known set of coefficients 1 c,) . Classifi- 
cation of single objects in the four groups could be 
achieved according to Fig. 5 and Table 1 by consider- 
ing only the fundamental frequency of the signal. For 
analysing clusters, however, a set of coefficients / c, ) 
must be used. 

(i) In an ideal system, the coefficients cl, cs, c7, 
c1r.. . would not occur. This is, however, not the 

case in practice, according to Fig. 5. The reason for 
the discrepancy is partly due to instrumental error. 
These coefficients are not carrying useful informa- 
tion and so are neglected in the analysis. 

(ii) For n>12 the information content of the coeffi- 
cients is negligible. 

The remaining coefficients which agree with Table 1 
are 

C2, c3,c4, c6~ c8Y '9, '10, '12, 

This set characterises the pattern in two ways. The 
length 

L=(C (Cn(2)1'2 

is approximately proportional to the linear dimension 
of the object (as shown in Appendix) and the direc- 
tion specifies the shape of the object. From the nor- 
malised coefficients c’, = (c, (/L, four so-called 
recognition factors pk(k = 2, 3,4 and 6) may be calcu- 
lated to obtain an appropriate measure of the group 
number k. It was found to be adequate to use the 
linear relation although many other more complicated 

d 

Fig. 5 Typical time functions and the corresponding 
frequency spectra for a sample of each of the 
four object groups: (a) square, (b) rhombus, 
(c) triangle, (d) hexagon 
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laser 

Fig. 6 Schematic of lhe upparatus 

approaches were tried. Hence 

Pk = & r& Cn’, n = 2,3,4, 6, 8, 9, 10, 12 

The matrix elements rnk were determined empiri- 
cally and optimised by examining numerous known 
objects (37), and measuring their coefficients c,, so 
that the rnk could be calculated. 

The linear transformation in expression 2 may be 
carried out quite easily using an analogue computer 
(resistance matrix). A set of appropriately tuned 
frequency filters may be applied to obtain the coeffi- 
cients (c, I. At first, these filters were not available, 
therefore an alternative method of measuring the 
coefficients on the screen of a spectrum analyser 
was employed as indicated in Fig. 6. 

EXPERIMENTAL PROCEDURE 

The apparatus designed for the experimental investi- 
gations is shown schematically in Fig. 6, where the 
laser beam is expanded by the lenses L, and L,. A 
plane wave of X = 632.8nm illuminates the object in 
P, and the spectrum is formed by lens La in its focal 
plane P . 
(ZOOmmj, 

To use a rather short focal length lens L, 
an enlarging lens L, projects the magnified 

spectrum onto the photocathode of the photomultiplier 
through the rotating sector slit S. A frequency-stabi- 
lised motor M drives the diaphragm. A ground glass 
G between the diaphragm and photocathode was useful 
in eliminating the inhomogeneity of the photocathode. 
The zero order frequency which is not used for shape 
determination, can be deviated by a small mirror onto 
a photodiode for size determination. Typical results 
obtained with this configuration are shown in Fig. 5. 

M 

L4 L spectrum 
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RESULTS 

It should be noticed that for a single and ideal crystal, 
the recognition factor for the corresponding group is 
approximately one, but is negligible for the others, 
provided the normalisation 

It was found experimentally that out of 42 single 
objects, including many with considerably rounded 
corners, the recognition factor of the associated 
group was >O. 7. By contrast the remaining three 
recognition factors were always <O. 4. As has already 
been pointed out, the determination is unaffected by 
displacement and rotation of the object. 

It remains now to investigate the application of the 
method to the identification of clusters. The theoreti- 
cal analysis is complex since a number of non-line- 
arities occur. 

(i) Even in the object plane P, superposition is non- 
linear because the common area of two or more 
superposed objects has the same unit transmission 
as the single object. 

(ii) Linear superposition of the complex amplitudes 
of the spatial spectra a(x, y) of two or more objects 
occurs, but of course, the photomultiplier converts 
only intensities. 

(iii) The coefficients 1 c, 1 are not linear functions of 
the signal U(t), but depend on the relative phases of 
the components. 

These arguments do not support the linear super- 
position of the components suggested in expression 2. 
Nevertheless, further detailed study of the problem 
has shown that in many cases recognition of com- 
pound objects, using the method described above leads 
to satisfactory results. An analysis of 53 clusters 

C d 

is used. Fig. 7 Representative samples of clusters 
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has been carried out. Representative samples which 
were recognized are shown in Fig. 7. The dominant 
recognition factor was unequivocal in 41 cases and 
the dominant objects were clearly detected. Only 
12 samples were doubtful, giving either no unequivocal 
identification or leading to wrong conclusion. 

CONCLUSIONS 

The work presented leads to anautomatic pattern 
recognition system, which may, however, only be 
applied to specific geometrical objects differing only 
in their two-dimensional rotational symmetry group 
such as the crystals described. The desired invari- 
ance properties are implicit in the method without 
the special precautions necessary for the classical 
filtering methods. Furthermore, the method is fast- 
which is an important feature. The reliability for 
single objects was found to be almost 100% and,for 
clusters, more than 75%. 
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APPENDIX 

Symmetry of the spectrum of the triangle In general, 
the Fourier transform of a real function A(u,v) is 

FT[A(u, v)] = a(x, y) = a*(-x,-y) 

and 1 a(x, y)I 2 = i(x, y) = i(-x,-y) 3 

a 

Fig. 8 Spectra of triangles with and without induced 
phase modulation: 

(a) is spectrum of a triangle punched into 
metal foil showing six-fold symmetry 

(b) is a triangle copied on typolith showing 
threefold symmetry 

The intensity spectrum of a real function is always 
symmetrical as shown in Eqn 3. Hence, the spectrum 
of a real triangle has the sixfold symmetry shown in 
Fig. 8a. A triangle punched into a disc was used as 
object. By contrast, in Fig. 8b, the transparency of the 
object, a photographic film (typolith), is no longer 
real. It can be shown that a phase change due princi- 
pally to a surface swelling near the edge of the trans- 
parency object caused a phase modulation of the light 
and, hence, leads to a threefold symmetry of the spec- 
trum as shown in Fig. 3 and 8b. The width of the 
emulsion swelling was found to be about 50nm for 
objects of 0.5-5.Omm,and an increase of the thick- 
ness of about 300nm occurreds. This investigation 
will be subject of a further publication. 

Size invariance of the function e(*) From 

A(u, v) 3 a(x, y) it follows that 

A(u, v) = A(cu, cv) 2 a(x, y) = c2 a :, F . 
( > 

Substitution in Eqn 1 gives 

E(9) = e(a) . c-2 

Changing the upper limit of integration from CC to 
ri > r. does not appreciably change e(G) for as 
r--ta, Ia(x,y)12 = 0[l/r2]. By contrast, however, the 
lower limit of integration r. reduces the low fre- 
quency content of e(+) which is, of course, more 
important for larger objects (small zero order spec- 
trum). The suppression of the low frequencies is 
largely compensated by the increase of intensity in 
the spectrum due to the larger object. 
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