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Elementary physical considerations are used to show that the waves 
scattered from an optically rough surface have not only random phases but also 
random real amplitudes. The same simple physical model serves to establish the 
main features of speckling in diffraction patterns, namely (i) that the smallest 
size of detail in any azimuth is determined by the formula O.5A/e, where 0 is 
the angular diameter of the object in that azimuth, (ii) that the scale of the 
speckling is predominantly of this order of size, and (iii) that speckling is 
expected to be of high contrast. This last conclusion is easily derived from 
the randomness of the real amplitudes of the scattered waves. The result (ii) 
is obtained by finding the autocorrelation function of the diffracted intensity 
distribution, following Goldfischer (1965). 

In the formation of the image of a rough object using coherent light, 
the entrance pupil is illuminated by a speckled diffraction pattern. This 
random illumination then appears in the exit pupil, so that the speckling in 
the image is determined by considering the exit pupil to act as a rough object. 
The order of size of speckling in the image is thus determined by the formula 
O. S6

0
/A, where 6

0 
is now the total convergence angle of the image-forming pencil. 

(1) Physical Considerations : The Envelope of the Diffraction 

Pattern and the Minimum Size of Speckle 

We silall consider first the factors wbich determine the form of the 
envelope of the intensity in the diffraction pattern. Figure (1) shows 
schematically a rough object illuminated by a coherent wave converging to a focus 
in the neighbourhood of the point E. For simplicity in the diagram, transmitted 
illumination is shown, but the discussion applies equally well to the case of 
a reflected wave. The roughness is assumed to be localised on the exit surface 
of the object. A simple physical picture of what occurs may be obtained by 
considering the irregularities to comprise a random set of positive and negative 
lenses. The pencils of rays falling on two such lens elements are indicated in 
the diagram. The rays marked with double arrows pass undeviated to the point E. 
The convex lens element at 01 focuses rays at PI' from which they will diverge 
as a relatively narrow penci , giving a wave WI' The concave lens element at 
02 produces a pencil of rays coming from the vI rtual image P2' which, because of 
the deeper curvature, diverges as a wider- angle pencil, giving the wave W2. 
In the diffraction plane the total disturbance will be the resultant of the 
mutual interference of the coherent waves produced by all such elements of the 
object. These waves will have random mutual phases because of the random 
variation of the optical thickness of the object. 



At a point such as Q there will be light from all elements of the object, 
whereas only those elements1giving wide-angle scattering will send light to a 
point such as Q2 which is further from the centre, E, of the pattern. Since the 
maximum intensity that can be produced increases with ·the number of interfering 
waves, the envelope of the intensity in the diffraction pattern will be expected 
to have a greater value at Q1 than at Q2. Thus, if the sizes of scattering elements 
have a gaussian type distribution about a mean, the envelope of the diffraction 
pattern will be expected to have a maximum at the centre, E, and to decrease 
continuously to the edge. The form of this transition curve will depend on the 
standard deviations of the sizes and curvatures of the elements. For example, if 
all elements were of the same size and curvature all the scattered waves would 
have the same angular spread, and these would be a large constant region for the 
envelope of the intensity, with a rapid decrease to zero at the edge. The greater 
the size range of the surface elements, the greater will be the angular range of 
scattering produced. In this case there will be a smaller constant region, and a 
more · gradual transition to the edge of the pattern. 

The smallest size of detail which can occur in the diffraction pattern 
is determined by the angular size of the diffracting object as seen from the 
diffraction plane. The diffraction pattern may be regarded as produced by the 
coherent superposition of the interference fringes of the waves falling on the 
plane, E,taken in pairs. It can be seen at once that the finest structure in the 
pattern will correspond to that produced by the waves with the greatest mutual 
inclination. These would be the waves produced by the elements near to those 
marked O· in the schematic diagram of figure (1). Thus, if the diameter of the 
object in any azimuth subtends an angle e at E, the smallest scale of detail in 
the random pattern will have a half-width of the order of size o.sA/e in this 
azimuth. 

The above simple considerations account for the general form of envelope 
and smallest detail size in the speckling that is found in practice. Thus, if the 
exposed area of the object is reduced by a field stop, the envelope of the dif-
fraction pattern is little affected, but the scale of the speckling is increased 
in inverse proportion to the angular subtense e of the object. This is to be 
expected provided only that the area of the object employed is large enough to 
include a representative sample of its random structure. 

The above physical considerations serve to establish reasons for some of 
the general features of the speckled diffraction patterns observed from rough 
objects. They do not of themselves, however, give information about the 
expected predominant size and contrast of the speckles. 

The case considered here is that of the Fraunhofer diffraction pattern, 
since the unscattered wave is assumed to focus at, or near to, E. In other cases, 
the scattered waves, such as W1 and w2' will all be laterally displaced relative 
to each other, and merely alter the form of envelope of the diffraction pattern. 

~e shall consider belo~ the size-range to be expected in the s~ecKled 
diffraction pattern and also the contrast. This analysis is similar to that 
employed by Goldfischer (1965), but the arguments will continue to be based 
In the physical model illustrated in figure (1). It will be necessary to consider 
first the factors determining the amplitudes of the scattered waves. 
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Referring to figure (2), it will be seen that the angular aperture 
and the amplitude of the wave scattered by any lens-element will be determined 
by the area and curvature of the element. For two facets of the same area, the 
one of greater curvature will scatter a wave of greater angular aperture, and 
consequently the energy will be distributed through a larger solid angle. 
For this reason the scattered waves will not he of the same amplitude, even 
when the incident illumination is uniform. Goldfischer, by contrast, assumes 
each scattered to radiate a wave of real amplitude equal of the square root 
of the intensity of the illumination falling on it ; for uniform illumination, 
the scattered waves would thenbe wrongly assumed to be all of the same 
amplitude. That the scattered waves always have random real amplitudes is 
an important factor in the arguments developed later. 

To see the order of magnitude of this effect, consider a circular 
facet of radius p whose surface has radius of curvature r. For light 
transmitted from glass into air, the focal length of the facet is given 
by F = r/(n - 1), where n is the refractive index of the glass . The 
angular radius of the scattered wave is thus. 

p (n - l)p 
a = F = r (1) 

and the surface area of the scattered wave at E is given by 

where D is the distance from the object to E. The total energy falling on 
the facet is proportional to p2, and this energy is distributed over the 
area S. The energy per unit area of the wave is thus proportional to 
p2/S, that is proportional to r2. It follows that the amplitude of the 
scattered wave is inversely proportional to the curvature, c = l/r, of the 
facet f~~m which it is scattered. Now the local curvature of a rough surface 
will be expected to vary appreciably from point to point, and hence it is 
not admissible to assume the scattered waves to have all the same amplitude. 
Both the phases and the amplitudes of the scattered waves, superimposing at 
the diffraction plane will vary randomly about the mean values. 

(2) The Intensity in the Diffraction Pattern ; The size Range and Contrast 
of Speckling. 

In figure (3), let (~,n) be the coordinates of a point P on the 
object, and let 0 be the distance from the object to the diffraction plane. 
A spheri~al wave originating from the facet at P, and passing through E will 
produce at Q, whose coordinates are (X,Y), a disturbance whose phase is in 
advance of that produced at E by an amount k(QQ ). Let PQ = Rand 
PQ = R, where both Rand R are considered to bg essentia~ly p8sitive. 
The lenght (QQo) = (Ra - R~ is obtained as follows. First~ note that 

(PQ)L ; RL : (X -t)L + (Y _~)2 + D2 

( pQo)2 : R~ : ~2 + n2 + 02 

subtract~on of which gives 



Thus, writing Ro 

IRo - RI « 2Ro ' 

+ R = 2R o 
this last 

and the phase difference k 

xi 

- (R - R) ~ 2R , since o 0 

expression becomes 

(3) 

(4 ) 

The method used here for deriving (3) is much to be preferred to the more 
conventional way involving the series expansion of square roots, where the 
validity of the approximation is less easy to consider. It should also be 
noted that only the first term in (4) involves sigificantly the coordinates 
(~,n) of P on the diffracting object. 

Let the phase over the wave EQo be ~(~,n). The phase of the 
disturbance produced at Q by the wave from P is then, using (4) given by 

2n(x ~ + Yn) + ~(~,n) - E(X,Y) (5) 
AR 

where c(X,Y) is writte~ for the second term of (4). The roughness of the 
diffracting surface shows itself in randomness of the phases ~(t,n). 

The real amplitude produced at Q by the wave from P will be 
proportional to the square root of the intens ity, B (~,n); of the wave 
scattered at P. This intensity will~ in turn, be proportional to both 
the intenSity of the incident intensity at P and, as has been seen above, 
to the square of the curvature of the elementary facet at P. Because of the 
randomness of the curvatures of the different facets, the values of 
B(~,n) will also be random. 

the complex amplitude produced at Q by the wave from P may now 
be written as 

exp (-iE(X,Y») IB (~,n) exp 

the facet 
given by 

) + 

at P is denoted by the subscript n, the phase being given by (5). 1£ 
the total amplitude at Q will be 

N 
UQ = exp (-iE(X,Y») n~l 

XI; +Yn 
IB (I;n,nn) exp{i2n ( n n) + ~(~n' nn») (6) 

AR 
N being the total number of facets. The intensity prod8ced at Q is given 
by the sqqared modulus of (5), that is, with an obvious notation, by 

X(~ -~ )+Y(n -n) 
I(X,Y) = EE~ exp{i (~ _~ »)exp{i2.( n m n m nm n m n m ) ) (7) 
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This double sum may be separated into those parts locally independent of 
(X,Y), and those terms which do depend on the position (X,Y) of Q. This 
gives, grouping the terms m = n, 

I(X,Y) = EB n n 
;- E E/B B n m n m 

mtn 

r 
X(~ -i; )+Y(o n m n 

AR (8 ) 
o 

The sum rB will only be locally independent of (X,Y), because for widely n n 
differing positions for Q the number of waves to be summed will be different. 
Indeed, at sufficiently large distances from the centre of the pattern, E, 
nearly all of the intensities 8 will be zero, since only a few facets will 
scatter light trough very largenangles. 

In any local region of the pattern, the term EB 
n n 

will be constant, 
but even small changes in (X,Y) will affect the terms in the double summation. 
The first sum in (8) thus represents the mean intensity over a small region 
surrounding the point Q, and the double sum accounts for the interference effects 
responsible for the speckling. A typical term (n,m) of the double s um 
represents the interference pattern produced by the waves ~ro~ the two 
(different) facets, nand ro, of the object. It s hould be noted that the 
terms (m,n) and (n , m) are complex conjugates, and this permits (8) to the written 

I(X,Y) = EB ;- 2 E E Iii"""il cos {(~ -~ );-2, n n n m n m n m J ) (9 ) 

ntm 

provided the second summation is restricted to avoid each term being counted twice. 

To find the distribution of sizes among the speck l es the autocor-
relation function of I(X,Y) may be found. To simplify the notation, this will be 
carried out using one variable only. Thus, writing (9) in the form 

- ~ I(X)=ITI(X) (10 ) 

where I and i (X) are the mean and variable parts of l(X), the autocorrelation 
function of l(X) is defined by the mean value 

C(x) = (I(X)I"(X ;- x» X (J 1) 

Subst ituting from (10) in (11), this leaves 

C(x ) = 12;- <I(xfi''\x ;- x»x (2) 

since the local mean value of leX) will be zero. The presence of structure 
in l(X) is related only to the second term in (12), namely 

( 13) 
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which is the autocorrelation of the variable part of I(X), that is the 
variation of this function about its mean value. 

Substituting leX) from (7) in (12) gives 

C(x) = < nE E IilB exp (i($ -~ ) }exp{i2. m n m n m 

(I; -E; )X 
n m ) 
)'R 

o 

E E IilB exp p q p q 

(E; -E; )(X+x) 
{-i($ -$ »)exp(-i2. p rR )x 

p q 0 
q~p 

(14) 

In this average with respect to x, it is only in the exponential factors which 
group to give 

exp {i2. 
(E; -E; )X-(E; -E; )X n m p q ) 

). R o 

that X occurs, and each such term will 

Thus, writing ~ =~ +a and t = t + a 

average to zero except when ~ -~ =t -t . n m p q 

m n q p and omitting those terms which average 
to zero, (14) becomes 

(-i2'~) 
).R o 

In (15) the phase differences $(E; ) -~ (~ +a) and ~(E;) -+(E; 
with a~ 0, will be randomly relat~d excep¥ for the te~ p = n~ 
p ~ n will thus sum to zero in (15), leaving 

C(x) = rrB(E; )B (E; +a)exp{-i2. ~ ) na n n )'R 
o 

for the autoco~elation of the variable part of I(X). 

(15) 

+ a), 
The terms 

(16) 

sums in 
If the roughness of the object is of very 

(16) may be replaced by integrals, giving 
small scale, the discrete 

C(x) = II B(E;) B(E;+a) exp 

E;a 

This may be written 

C(x) = f B(E;) eXp{+i2·().~o)E;)dE;JB(E;+a) exp 
E; a 

(-i2. ax) 
).R o 

dE;da 

(E;+a» da (17) 



Definie now the (inverse) Fourier transform of B(C) to be 

The 

b(a) = f B«) exp (-2rra<) d< 

< 
first factor in (17) is then b* and the second factor is 

Thus, (17) merely reduces to 

Ib(2....)12 
\R o 

(18) 

b( A~ ). 
o 

(19) 

Reverting to two variables, the autocorrelation function of the variable part 
of I(X,Y) is given by 

C(x,y) = Ib (\~ ,rl-)12 
o 0 

where b(a,T) is the (inverse) Fourier transform of 8«(,n). 
Essentially this result was obtained by Goldfischer. 

(20) 

If the object occupies the rectangle inside the lines X =! a and I =± b, 
and the average local value of 8(~,n) i s constant, the form of C(x,y) may be 
found using 

+a +b 
b(a,1) = f f exp (-i2rr(a,+Tn» d,dn 

-a - b 

sin (2naa) sin (2rrbT) = 
rra rrT 

so that . (2rra ) . (2rrh ) 2 
C(x,y) 

Sln ~ s~n )..RoY 
= a 

rr rr 
(All )x (W)y 

0 0 

From (21), the value C(x,y) is first zero when 

and when 

y = y = o 

0.5\ -, e x 
e x = 2a/R o 

= 2b/R o 

( 21) 

(22) 

(23) 

Here e and e are the angular subs tenses of the width and height of the 
abjectXas seeh from the diffraction plane. When the autocorrelation of the 
variable part of I(X,Y)falls to zero for x = x 1 it implies that I(Y,Y) on 
the average changes apprec iably over a distanc~ of the order of x . ~ince, as 
shown above, the smallest size of detail in any azimuth is given gy a formul~ 
identical to (22), it follows that the size of speckle tends to be uniform, d! l' ! 

predominantly of a size in any azimuth equal to 0.5)../e, where e is the 
angular subtense of that azimuth of the object as seen from the diffracti vr· 
plane. 
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It remains to consider the expectation value of the contrast in 
the speckle pattern, an important aspect of the pheno~non not considered 
in Goldfischer's analysis. Since the autocorrelation C(x) re:ers only ~o 
the varying part of the intensity distribution, it says noth1ng r~gard1ng 
the ratio of the modulation of thi~ varying intensity to the magnltude of 
the mean intensity. 

Again using only one variable, the mean value of the intensity 
is given by 

N 
I = r 8 0=1 n = N8 (24) 

n 

where N is the number of scattering elements, and B is the mean value of the 
intensities of the scattered waves on arrival at the diffraction plane. The 
values of B , it has been shown, will be expected to show d random variation. 
The e xpecte3 depth of modulation of I(X) will be given by the expected modulus 
of this term in (7), namely of 

-I(X) = 
n=1 m=1 

m~n 

Iilil n m 

2n(f; -~ )X 
(

o n m ) 
exp l >'R (25) 

o 

18 8 n m 

This comprises the sum of (N2 -N) 2-dimensional vectors, of modulus 
and with phases which are random because of the presence of (~n-~m) 

with mIn. This is the random walk problem, so that 
modulus of i(X) is given by the root mean square 

the expected value of the 

1 

- N N 1 ln~l m~l 8n8m 2 
I. n~m 

1 
-~ 

={(N2_N) B 8 ) n m (26) 

1 
2 

the bar denoting the mean value of the product. Since N is large, (N 2 -N) = N 
and since the values of Bn are uncorrelated, 

ilil = BS = (il">2 n m n m n 

The expected value of the modulus of (25) is thus, from (26) equal 
to NB • This is precisely the same as the Talue of I, and demonstrates that 
the cgntrast, or visibility, of the s peckles will have a value near to 
unity. The variation of intensity i s then from maxima to zero minima of 
intensity. 

(3) Speckling in optical Images 

Image formation using coherent light isa two-stage diffraction 
process. In figure (4), 0 is an object illuminated coherently. This gives a 
speckle diffraction pattern in the entrance pupil E of the optical system, 
which is indicated only schematically in the diagram. The speckle pattern at E 
appears at E', the exit pupil of the sy s tem, and this illuminates the image 
plane at 0'. It needs only to be remembered that the size of speckling seen at E 
is determined by the angle Bo' and that the exit pupil itself behaves excatly 
like a rough object with an effective roughness of a lateral size equal to 
o.5A/e • This is very small compared with the size of the exit pupil. 
It fol~ows that the image has a speckle pattern whose size is determined solely 
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by the aperture angle~ a, subtented by the exit pupil at the image plane 0'. 

(~) Summary 

It has been shown that the known characteristic~ of speckling in both 
diffraction patterns and optical images can be explained on the basis of a 
simple physical model. This explains not only the occurence of a predominant 
size but also the high contrast in speckle patterns. 
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