A CHARACTERIZATION OF QUATERNION PLANES

Dedicated to my teacher, Prof. H. Salzmann, on his 60th birthday

Abstract

The eight-dimensional planes admitting $\mathrm{SL}_{2}{ }^{H} H$ as a group of automorphisms are determined.

Every open subset of the projective plane over $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (Hamilton quaternions) or \mathbb{D} (Cayley octonions) carries a stable plane in the sense of [4]. There exist stable planes which cannot be embedded into projective planes: Strambach [11] and Löwen [5] have constructed such planes admitting groups of automorphisms isomorphic to $\mathrm{SL}_{2} \mathbb{R}$ and $\mathrm{SL}_{2} \mathbb{C}$ respectively. For Strambach's plane, there is a generalization beyond the realm of stable planes [7]. Here we show that there is no quaternion analogue of these examples.

THEOREM. Let $\mathbb{M}=(M, \mathscr{M})$ be a locally compact stable plane of topological dimension 8 admitting $\Delta=\mathrm{SL}_{2} \mathbb{H}$ as a group of automorphisms. Then \mathbb{M} contains an open Δ-invariant subplane which is isomorphic to the punctured affine plane over \mathbb{H}, and the action of Δ restricted to this subplane is equivalent to the natural (linear) action on $\mathbb{-}^{2} \backslash\{(0,0)\}$.

REMARKS. (a) The subplane above is the geometry induced on the set of points moved by the central involution ζ of Δ. Since ζ cannot be planar, one can show that \mathbb{M} is embedded into the projective plane over \mathbb{H}, and that the action of Δ extends to the natural one.
(b) A special case of the stable planes considered here are compact eightdimensional projective planes. All such planes with automorphism groups of dimension at least 17 have been determined by Salzmann [9]. For semisimple groups, this bound lowers to 16 (see [9,(1)]). Our result extends this classification to the case of the 15 -dimensional groups locally isomorphic to $\mathrm{SL}_{2} \mathrm{H}$. (Since $\mathrm{SO}_{5} \mathbb{R}$ cannot act on eight-dimensional projective planes, we can exclude $\mathrm{PSL}_{2}{ }^{\mathrm{H}} \mathrm{H}$.)

NOTATION. Let $\Delta=\mathrm{SL}_{2} \mathrm{H}$, and let

$$
\mathrm{Y}=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
c & d
\end{array}\right) \right\rvert\, d \bar{d}=1\right\} \cong \mathrm{ASL}_{1} \mathrm{H}
$$

be the stabilizer of the point $(1,0)$ in the natural linear action on \mathbb{H}^{2} and
consider the maximal compact subgroup $\Sigma=\left\{\left.\left(\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right) \right\rvert\, d \bar{d}=1\right\}$ of Υ. Then

$$
\Upsilon^{*}=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & d
\end{array}\right) \right\rvert\, d \bar{d}=1\right\}
$$

is the stabilizer of the line $\{(1, y) \mid y \in \mathbb{H}\}$. Let

$$
\Phi=\mathrm{SU}_{2} \mathbb{H}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\bar{a} & \bar{c} \\
\bar{b} & \bar{d}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right\} \cong \operatorname{Spin}_{5} .
$$

All subgroups to be considered are closed, and all isomorphisms are isomorphisms of topological groups. The line joining two points x, y will be denoted as $x y$.
(1) LEMMA. (a) Every connected subgroup of Φ not containing the central involution $\zeta=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ of Φ is either conjugate to Σ or at most onedimensional.
(b) Every subgroup of Δ isomorphic to Υ is conjugate to Υ or to Υ^{*}.
(c) Let Λ be a subgroup of Δ containing Σ. If the centralizer $\mathrm{C}_{\Lambda}(\alpha)$ of the involution $\alpha=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \in \Sigma$ coincides with Σ, then either the connected component Λ^{1} is equal to Σ, or $\Lambda \cong \Upsilon$.
(d) Any proper subgroup $\Lambda<\Delta$ with $\operatorname{dim} \Delta / \Lambda \leqslant 4$ is conjugate to the group $N=\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right) \right\rvert\, a \bar{a} d \bar{d}=1\right\}$. Consequently, the smallest non-trivial orbits of Δ are four-dimensional, and the action of Δ on such an orbit is equivalent to the natural action on the projective line $\mathbb{H} \cup\{\infty\} \approx \mathbb{S}_{4}$.

Proof. (a) Let Ξ be a non-trivial connected subgroup of Φ not containing ζ. There is no pair of commuting involutions in Ξ since their product would be ζ. Therefore Ξ is a compact Lie group of rank 1 , and $\operatorname{dim} \Xi=1$ or $\Xi \cong \operatorname{Spin}_{3}$ (cf. [1, 22 §3, no. 6, Prop. 6]). In the second case, we may assume that $\alpha=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \in \Xi$. Then Ξ is a subgroup of the centralizer $C_{\Phi}(\alpha)=$ $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \right\rvert\, a \bar{a}=d \bar{d}=1\right\}$. The projections of Ξ to the quasi-simple factors Σ and $\Theta=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \right\rvert\, a \bar{a}=1\right\}$ must be bijective or trivial. Since the kernel of the projection to Θ contains α, we have $\Xi=\Sigma$.
(b) Let $\Upsilon \cong \Lambda \leqslant \Delta$ and write $\Lambda=\Xi \Omega$ with $\Xi \cong \operatorname{Spin}_{3}, \Omega \cong \mathbb{R}^{4}$ and
consider the natural linear action on $\mathbb{R}^{2}=\mathbb{C}^{4}$ as a complex representation. Since Ω is abelian, there is a vector $v \in \mathbb{C}^{4}$ with $v^{\Omega} \subseteq \mathbb{C} v$ by Lie's theorem. We may assume that $v=(1,0)$. Then $\Omega<\mathrm{N}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right) \right\rvert\, a \tilde{a} d \bar{d}=1\right\}$. From $v^{\Omega} \subseteq \mathbb{C} v$ we deduce $\operatorname{dim} \Omega_{v} \geqslant 2$. The stabilizer Ω_{v} consists of axial collineations of the affine quaternion plane. Since Ξ acts effectively on Ω, all elements of Ω are axial with axes through the origin. The group Δ leaves invariant the line at infinity W, therefore all centers of elements of Ω lie on W. The homologies in Δ are contained in compact subgroups. Thus Ω consists of elations. Commutativity yields $\Omega=\left\{\left.\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \right\rvert\, c \in \mathbb{H}\right\}$. The normalizer of Ω is N , and we may assume that the compact group Ξ is contained in $\Psi=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \right\rvert\, a \bar{a} d \bar{d}=1\right\}$. Acting effectively on Ω, the group Ξ cannot contain ζ. By (a) we have $\Xi=\Sigma$ or $\Xi=\Sigma^{l}$, where $\imath=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in \Phi$. In the second case, $\Lambda^{i}=\Upsilon^{*}$.
(c) Assume that $\Sigma \neq \Lambda^{1}$. By (a) the subgroup Σ of Λ^{1} is maximal compact. Therefore $\Sigma=\Phi \cap \Lambda^{1}$, and $\operatorname{dim} \Delta / \Lambda=\operatorname{dim} \Delta / \Lambda^{1} \geqslant \operatorname{dim} \Phi / \Sigma=7$. Since Δ is 15 dimensional, we have $\operatorname{dim} \Lambda \leqslant 8$. Any semisimple linear group with a maximal compact subgroup isomorphic to Σ contains a central involution which lies in each maximal compact subgroup (cf. [12]). Thus $\mathrm{C}_{\Lambda}(\alpha)=\Sigma$ implies that Λ is not semisimple. Now the Levi decomposition shows that there is a connected solvable group Ω such that $\Lambda^{1}=\Sigma \Omega$. Let N be a minimal abelian normal subgroup of Λ^{1}. Being reductive, the group Σ acts completely reducibly on the Lie algebra of Ω. Therefore there is an invariant complement K of N in Ω. Since Σ acts effectively on N, we have $N \cong \mathbb{R}^{4}$ and $\operatorname{dim} K \leqslant 1$. Thus Σ acts trivially on K, and from the centralizer condition we get $K=1$. By (b) the connected component Λ^{1} is conjugate to Υ or Υ^{*}. The normalizer of Υ in Δ being the product of Υ and the centralizer $C_{\Delta}(\Sigma)$, we obtain $\Lambda=\Lambda^{1}$.
(d) Let K be a maximal compact subgroup of the connected component Λ^{1}. By [6] we have $\operatorname{dim} K=6$. Thus K is locally isomorphic to Spin_{4} because Φ has rank 2. Since Φ does not contain a quadruple of commuting involutions, the group K is isomorphic to Spin_{4} and centralizes two involutions. We can assume that α is one of them, and obtain $K=C_{\Phi}(\alpha)$. Now Λ has dimension 11. Any semisimple connected linear Lie group containing Spin $_{4}$ as a maximal compact subgroup centralizes all its involutions (cf. [12]). The Levi decomposition shows that there is a solvable connected invariant subgroup Ω of Λ such that $\Lambda^{1}=\mathrm{K} \Omega$. Considering the usual linear action of Δ on $\mathbb{H}^{2}=\mathbb{C}^{4}$ as a complex representation, we find $v \in \mathbb{H}^{2}$ such that $v^{\Omega} \subseteq \mathbb{C} v$ (Lie's theorem). If Ω had two linearly independent eigenvectors, we could
assume that $\Omega \leqslant\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \right\rvert\, a \bar{a} d \bar{d}=1\right\}$, a contradiction to the fact that Ω is homeomorphic to \mathbb{R}^{5} (by the Malcev-Iwasawa decomposition). Normalizing Ω, the group Λ is therefore conjugate to a subgroup of N. Equality of dimensions yields that $\Lambda=N$ since N is connected.

In order to determine the stabilizer of a line we need the following
(2) LEMMA. Let \mathbb{M} be a locally compact stable plane of finite positive dimension and assume that the lines are (topological) manifolds. Let α be an axial involution and x any point on the axis A. Then α fixes precisely one line $Z \neq A$ through x.

Proof. We consider the action of α on the line pencil through x. By $[3,(1.19)]$ the pencil \mathscr{M}_{x} is homeomorphic to a sphere \mathbb{S}_{l}. For the restricted action on $\mathscr{M}_{x} \backslash\{A\} \approx \mathbb{R}^{l}$, there is at least one fixed element Z by [10]. Let X be a further fixed line through x. Choosing $y \in A$ near x, one finds a fixed line Y through y intersecting at least one of the two lines X, Z in a point z outside A. Having center z, the automorphism α has two axes and is trivial.

PROOF OF THE THEOREM. Without loss of generality we may assume that M is connected and that $\zeta=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$ has no fixed points; in the general case, the fixed points of ζ form a Δ-invariant closed set which can be removed.
(i) The action of Δ on M is equivalent to the natural (linear) action of Δ on $\mathbb{H}^{2} \backslash\{0\}$.

Proof. We show that $\Delta_{x} \cong \Upsilon$ for any point $x \in M$. Then all orbits are eightdimensional and thus open. Connectedness yields transitivity, and (1.b) completes the proof of (i).

Since $x \neq x^{5}$, a maximal compact subgroup of the connected component of $\Lambda=\Delta_{x}$ can be assumed to be Σ (cf. (1.a)). The centralizer of $\alpha=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ in Δ is the direct product of the groups

$$
\Sigma, \Theta=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) \right\rvert\, a \bar{a}=1\right\} \quad \text { and } \quad \mathrm{P}=\left\{\left.\left(\begin{array}{cc}
r & 0 \\
0 & r^{-1}
\end{array}\right) \right\rvert\, r>0\right\} .
$$

Let $G=x x^{\zeta} \in \mathscr{F}_{\zeta}=\left\{y y^{\zeta} \mid y \in M\right\}$. The set \mathscr{F}_{ζ} is connected and locally homeomorphic to a line (cf. [4, (1.1)]). Applying (1.d) to the action of Φ on \mathscr{F}_{ζ} we obtain transitivity on \mathscr{F}_{ζ} and see that α fixes precisely two lines G, H of \mathscr{F}_{ζ}. Moreover, the set $\{G, H\}$ is the set of fixed lines of $\Sigma \Theta$ in \mathscr{F}_{ζ}. .

Next, we determine the geometric type of α. If α is a central involution, its center has to be fixed by ζ. Analogously, no line $L \neq G$ through x can be an axis of α. Planarity of α would yield a two-dimensional set of fixed lines in \mathscr{F}_{ζ}. In the only remaining case, the involution α has axis G and acts freely on $M \backslash G$. Via conjugation by $l=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in \Phi$ we obtain the same result for $-\alpha$ and H.

For any point $y \in G$ we have $\Phi_{y} \leqslant \Phi_{G}$, and the connected component of Φ_{y} is Σ or Θ by (1.a). Since - α acts freely on $M \backslash H$, we obtain that Σ is contained in the group $\Phi_{[G]}=\left\{\varphi \in \Phi_{G} \mid \varphi\right.$ acts trivially on $\left.G\right\}$. Again, conjugation by t shows that $\Theta \leqslant \Phi_{[H]}$. Free action outside the axes enforces equality in both cases.

For any point $y \in G$ we consider the stabilizer in $\Sigma \Theta P=C_{\Delta}(\alpha)$. Since l induces inversion on P , we have $\mathrm{P}_{y}=\mathrm{P}_{y}^{-1}=\mathrm{P}_{y}^{t}=\mathrm{P}_{y^{2}}$. The stabilizer P_{y} therefore acts trivially on the three-dimensional orbits y^{Θ} and $y^{i \Sigma}$. Since these two orbits generate the whole plane, one gets $P_{y}=1$. Now $(\Sigma \Theta P)_{x}=\Sigma(\Theta P)_{x}$. The kernel of the projection of $(\Theta P)_{x}$ to Θ lies in $\mathrm{P}_{x}=1$, therefore $(\Theta \mathrm{P})_{x} \leqslant$ $\Theta_{x}=1$. Finally, (1.c) shows that $\Delta_{x} \cong \Upsilon$.
(ii) Let $x \in M$ and $\Delta_{x}=\Upsilon=\Sigma \Omega$ with $\Omega=\left\{\left.\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \right\rvert\, c \in \mathbb{H}\right\}$. Then Ω is sharply transitive on $\mathscr{A}_{x} \backslash\left\{x x^{5}\right\}$.

Proof. Let $L \in \mathscr{M}_{x} \backslash\left\{x x^{\xi}\right\}$. In a positive-dimensional stabilizer Ω_{L} one finds a one-parameter group $\Xi=\left\{\left.\left(\begin{array}{cc}1 & 0 \\ r c & 1\end{array}\right) \right\rvert\, r \in \mathbb{R}\right\}$. This group is invariant under $\mathrm{P}=\left\{\left.\left(\begin{array}{cc}r & 0 \\ 0 & r^{-1}\end{array}\right) \right\rvert\, r>0\right\}$ and therefore acts trivially on the orbit $L^{\Omega \mathrm{P}}$. If L^{Ω} is not trivial, there are $\rho \in \mathrm{P}$ and $\omega \in \Omega$ such that L^{ρ} and L^{ω} meet outside $x x^{\zeta}=G$. This contradicts the fact that Ω acts freely outside G. Thus $\Omega=\Omega_{L}$. For any further line L^{\prime} fixed by Ω there is again $\rho \in \mathrm{P}$ such that L^{\prime} and L^{ρ} meet outside G. Since all four-dimensional orbits in \mathscr{M}_{x} are open, this yields a (sharply) transitive action of $\Omega \cong \mathbb{R}^{4}$ on $\mathscr{M}_{x} \backslash\{G, L\}$, which contradicts $\mathscr{M}_{x} \approx \mathbb{S}_{4}$.
(iii) The stabilizer of any line $L \neq L^{\zeta}$ is isomorphic to Υ.

Proof. By the preceding results, one can assume that $L=Z$ (compare (2)). Thus $\Sigma=\Delta_{x, L}$. By (1.a) Σ is a maximal compact subgroup of Δ_{L}^{1}. For any $\rho \in \Delta_{L}$ commuting with $\alpha=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \in \Sigma$ we have $x^{\rho}=x^{\rho \alpha}$. Since α acts freely outside $x x^{\zeta}$, we obtain $\rho \in \Delta_{x, L}=\Sigma$ and $\Delta_{L} \cong \Gamma$ by (1.c).

Since $\Delta_{x, L}=\Sigma \neq \Delta_{L}$, we have $\Delta_{x} \neq \Delta_{L}$. The maximal compact subgroup Σ of
Δ_{L} is also maximal compact in Υ^{Υ} and in Υ^{*}. Therefore there is $\delta \in \mathbf{N}_{\Delta}(\Sigma)$ such that $\Delta_{L}=Y^{\delta}$ or $\Delta_{L}=\Upsilon^{* \delta}$. But the normalizer of Σ in Δ is precisely the centralizer of α, which leaves both Υ and Υ^{*} invariant. Therefore $\Delta_{L}=\Upsilon^{*}$. Transitivity of Δ on points and lines moved by ζ allows the reconstruction of the geometry analogously to [2]. This concludes the proof.

REFERENCES

1. Bourbaki, N., Groupes et algèbres de Lie, Chap. IX, Masson, Paris, 1982.
2. Higman, D. G. and McLaughlin, J. E., 'Geometric ABA-groups', Illinois J. Math. 5 (1961), 382-397.
3. Löwen, R., 'Vierdimensionale stabile Ebenen', Geom. Dedicata 5 (1976), 239-294.
4. Löwen, R., 'Halbeinfache Automorphismengruppen von vierdimensionalen stabilen Ebenen sind quasi-einfach', Math. Ann. 236 (1978), 15-28.
5. Löwen, R., 'Actions of Spin_{3} on 4-dimensional stable planes', Geom. Dedicata 21 (1986), 1-12.
6. Mann, L. N., 'Gaps in the dimensions of transformation groups', Illinois J. Math. 10 (1966), 532-546.
7. Prażmowski, K., 'An axiomatic description of the Strambach planes', Geom. Dedicata 32 (1989), 125-156.
8. Richardson, R. W., 'Groups acting on the 4-sphere', Illinois J. Math. 5 (1961), 474-485.
9. Salzmann, H., 'Compact 8-dimensional projective planes', Forum Math. 2 (1990), 15-34.
10. Smith, P. A., 'Fixed-point theorems for periodic transformations', Amer. J. Math. 63 (1941), 1-8.
11. Strambach, K., 'Zur Klassifikation von Salzmann-Ebenen mit dreidimensionaler Kollineationsgruppe', Math. Ann. 179 (1968), 15-30.
12. Tits, J., 'Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen', Lecture Notes in Math. 31, Springer, New York, 1967.

Author's address:

> Markus Stroppel, Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen 1, F.R.G.

