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A CHARACTERIZATION OF QUATERNION PLANES

Dedicated to my teacher, Prof. H. Salzmann, on his 60th birthday

ABSTRACT. The eighi-dimensional planes admitting SL,H as a group of automorphisms are
determined.

Every open subset of the projective plane over R, C, H (Hamilton quater-
nions) or O (Cayley octonions) carries a stable plane in the sense of [4]. There
exist stable planes which cannot be embedded into projective planes:
Strambach [11] and Ldwen [5] have constructed such planes admitting
groups of automorphisms isomorphic to SL,R and SL,C respectively. For
Strambach’s plane, there is a generalization beyond the realm of stable planes
[7]. Here we show that there is no quaternion analogue of these exampies.

THEOREM. Let M =(M, .#) be a locally compact stable plane of topological
dimension 8 admitting A=SL,H as a group of automorphisms. Then M
contains an open A-invariant subplane which is isomorphic to the punctured
affine plane over H, and the action of A restricted to this subplane is equivalent
to the natural (linear) action on H2\{(0,0)}.

REMARKS. (a) The subplane above is the geometry induced on the set of
points moved by the central involution { of A. Since { cannot be planar, one
can show that M is embedded into the projective plane over H, and that the
action of A extends to the natural one.

{b) A special case of the stable planes considered here are compact eight-
dimensional projective planes. All such planes with automorphism groups of
dimension at least 17 have been determined by Salzmann [9]. For semisimple
groups, this bound lowers to 16 (see [9,(1)]). Our result extends this
classification to the case of the 15-dimensional groups locally isomorphic to
SL,H. (Since SO;R cannot act on eight-dimensional projective planes, we
can exclude PSL,H.)

NOTATION. Let A = SL,H, and let
1 0\| -
Y: = >~
{(C d)’dd 1} ~ ASL,H
be the stabilizer of the point (1,0) in the natural linear action on H? and
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1 0

0 d)'dd = 1} of Y. Then

consider the maximal compact subgroup £ = {(

e-{ Dfa-

is the stabilizer of the line {(1,y)]ye H}. Let

ocsua-{ e i -6 Ofes

All subgroups to be considered are closed, and all isomorphisms are
isomorphisms of topological groups. The line joining two points x, y will be
denoted as xy.

(1) LEMMA. (a) Every connected subgroup of ® not containing the central
—1 0

involution { =( 0 {

) of @ is either conjugate to ¥ or at most one-

dimensional.

(b) Every subgroup of A isomorphic to Y is conjugate to Y or to Y*.

(c) Let A be a subgroup of A containing Z. If the centralizer C4(a) of the
0 _?)eZ coincides with X, then either the connected
component A is equal to Z, or A=Y.

(d) Any proper subgroup A < A with dim A/A < 4 is conjugate to the group
N a 0

- )
four-dimensional, and the action of A on such an orbit is equivalent to the
natural action on the projective line Hu{oo} = S,.

Proof. (a) Let E be a non-trivial connected subgroup of ® not containing {.
There is no pair of commuting involutions in = since their product would be
{. Therefore Z is a compact Lie group of rank 1, and dimE=1 or 2= Spin,
{cf. [1, 22 §3, no. 6, Prop. 6]). In the second case, we may assume that

(3 )
{2
o={(s 1)

projection to ® contains o, we have E=X.
(b) Let Y= A <A and write A=EQ with E Spin;, Q= R* and

involution o= <

aadd = 1}. Consequently, the smallest non-trivial orbits of A are

. Then Z is a subgroup of the centralizer Cgla)=

[x]

aa=dd= 1}. The projections of Z to the quasi-simple factors % and

ac‘l:l} must be bijective or trivial. Since the kernel of the
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consider the natural linear action on H?=C* as a complex representation.
Since Q is abelian, there is a vector ve C* with v? < Cv by Lie’s theorem. We

0
may assume that v = (1,0). Then Q < N= {<j d)

aadd = 1}. Fromv® < Co

we deduce dim Q, = 2. The stabilizer Q, consists of axial collineations of the
affine quaternion plane. Since = acts effectively on €, all elements of Q are
axial with axes through the origin. The group A leaves invariant the line at
infinity W, therefore all centers of elements of Q lie on W, The homologies in A
are contained in compact subgroups. Thus Q consists of elations. Commutat-

10
ivity yields Q= {( )
¢ 1

. . . a
assume that the compact group E is contained in ‘P:{(O d)

ceﬂ-ﬂ}. The normalizer of Q is N, and we may

aadd = 1}.

Acting effectively on Q, the group = cannot contain {. By (a) we have 2=X or
0 1

Z=2X' where 1:<1 0)6(1). In the second case, A'=Y*,

(c) Assume that £ # A, By (a) the subgroup T of A! is maximal compact.
Therefore T=® N A*, and dim A/A =dim A/A' = dim ®/Z =7. Since A is 15-
dimensional, we have dim A < 8. Any semisimple linear group with a
maximal compact subgroup isomorphic to % contains a central involution
which lies in each maximal compact subgroup (cf.[12]). Thus C,(0)=Z
implies that A is not semisimple. Now the Levi decomposition shows that
there is a connected solvable group Q such that A* =XQ. Let N be a minimal
abelian normal subgroup of A'. Being reductive, the group X acts completely
reducibly on the Lie algebra of Q. Therefore there is an invariant complement
K of N in Q. Since X acts effectively on N, we have N ~ R* and dimK < 1.
Thus Z acts trivially on K, and from the centralizer condition we get K= 1.
By (b) the connected component A* is conjugate to Y or Y*. The normalizer of
Y in A being the product of Y and the centralizer C,(X), we obtain A=Al

{d) Let K be a maximal compact subgroup of the connected component
A'. By [6] we have dim K = 6. Thus K is locally isomorphic to Spin, because
@ has rank 2. Since @ does not contain a quadruple of commuting
involutions, the group K is isomorphic to Spin, and centralizes two
involutions. We can assume that « is one of them, and obtain K = Cyg(x). Now
A has dimension 11. Any semisimple connected linear Lie group containing
Spin, as a maximal compact subgroup centralizes all its involutions (cf. [ 12]).
The Levi decomposition shows that there is a solvable connected invariant
subgroup Q of A such that A* =KQ. Considering the usual linear action of A
on H?=C* as a complex representation, we find ve H? such that v? < Co
(Lie’s theorem). If Q had two linearly independent eigenvectors, we could
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assume that Q < {(g 2)

homeomorphic to R* (by the Malcev-Iwasawa decomposition). Normalizing
Q, the group A is therefore conjugate to a subgroup of N. Equality of
dimensions yields that A=N since N is connected.

aadd = 1}, a contradiction to the fact that Q is

In order to determine the stabilizer of a line we need the following

(2) LEMMA. Let M be a locally compact stable plane of finite positive
dimension and assume that the lines are (topological) manifolds. Let o be an
axial involution and x any point on the axis A. Then « fixes precisely one line
Z # A through x.

Proof. We consider the action of « on the line pencil through x. By
[3,(1.19)] the pencil .4, is homeomorphic to a sphere S,. For the restricted
action on .#,\{A} ~ R, there is at least one fixed element Z by [10]. Let X be
a further fixed line through x. Choosing y € A near x, one finds a fixed line Y
through y intersecting at least one of the two lines X, Z in a point z outside A.
Having center z, the automorphism o has two axes and is trivial.

PROOF OF THE THEOREM. Without loss of generality we may assume
-1 0
that M is connected and that { =( 0 1) has no fixed points; in the

general case, the fixed points of { form a A-invariant closed set which can be
removed.

(i) The action of A on M is equivalent to the natural (linear) action of A on
HA\{0].

Proof. We show that A, = Y for any point x € M. Then all orbits are eight-
dimensional and thus open. Connectedness yields transitivity, and (1.b)
completes the proof of (i).

Since x # x°, a maximal compact subgroup of the connected component of

. 1 0y .
A=A, can be assumed to be Z (cf. (1.a)). The centralizer of a=( ) in A

0 -1
is the direct product of the groups

e

Let G=xx‘eZ,={y)’lyeM}. The set &, is connected and locally
homeomorphic to a line (cf. [4, (1.1)]). Applying (1.d) to the action of ® on &,
we obtain transitivity on %, and see that « fixes precisely two lines G, H of
Z . Moreover, the set {G, H} is the set of fixed lines of 2@ in #,. .
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Next, we determine the geometric type of a. If « is a central involution, its
center has to be fixed by {. Analogously, no line L # G through x can be an
axis of a. Planarity of « would yield a two-dimensional set of fixed lines in # .
In the only remaining case, the involution « has axis G and acts freely on
M\G. Via conjugation by z=((1) é)ed) we obtain the same result for —a
and H.

For any point ye G we have @, < @, and the connected component of @,
is £ or ® by (1.a). Since —a acts freely on M\ H, we obtain that X is contained
in the group @ ={@e®;| ¢ acts trivially on G}. Again, conjugation by i
shows that ® < @y,. Free action outside the axes enforces equality in both
cases.

For any point ye G we consider the stabilizer in XOP = C,(x). Since 1
induces inversion on P, we have P =P '=P,=P,. The stabilizer P,
therefore acts trivially on the three-dimensional orbits y® and y*=. Since these
two orbits generate the whole plane, one gets P, = 1. Now (Z@P),=Z(OP),.
The kernel of the projection of (@P), to @ lies in P, =1, therefore (OP), <
®, = 1. Finally, (1.c) shows that A, =~ Y.

10
(i) Let xe M and A,=Y=2Q with Q={<c 1)

ce [H]} Then Q is sharply

transitive on M\ {xx}.
Proof. Let Le . #,\{xx"}. In a positive-dimensional stabilizer , one finds

1 0 . . .
a one-parameter group Ez{(rc 1) re R}. This group is invariant under

e

not trivial, there are p € P and w € Q such that L and L” meet outsidé xx*=G.
This contradicts the fact that Q acts freely outside G. Thus Q=Q,. For any
further line L’ fixed by Q there is again p € P such that L’ and L? meet outside
G. Since all four-dimensional orbits in .#, are open, this yields a (sharply)
transitive action of Q = R* on .#,\{G, L}, which contradicts .#, ~ S,.

r> O} and therefore acts trivially on the orbit LF. If L% is

(iii) The stabilizer of any line L # L is isomorphic to Y.
Proof. By the preceding results, one can assume that L = Z (compare (2)).
Thus £=A, ;. By (1.a) X is a maximal compact subgroup of A}, For any

. 1 0 .
peA, commuting with o= <0 1) € X we have x* =x** Since « acts freely

outside xx*, we obtain peA,; = £ and A, = Y by (1.c).
Since A, ; =X #A,, we have A, #A;. The maximal compact subgroup X of
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A, is also maximal compact in Y and in Y*. Therefore there is 6 € N,(Z) such
that A;=Y° or A,=Y*’. But the normalizer of £ in A is precisely the
centralizer of a, which leaves both Y and Y* invariant. Therefore A; =Y*.
Transitivity of A on points and lines moved by { allows the reconstruction of
the geometry analogously to [2]. This concludes the proof.
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