A CHARACTERIZATION OF QUATERNION PLANES

Dedicated to my teacher, Prof. H. Salzmann, on his 60th birthday

ABSTRACT. The eight-dimensional planes admitting $SL_2\mathbb{H}$ as a group of automorphisms are determined.

Every open subset of the projective plane over \mathbb{R} , \mathbb{C} , \mathbb{H} (Hamilton quaternions) or \mathbb{O} (Cayley octonions) carries a stable plane in the sense of [4]. There exist stable planes which cannot be embedded into projective planes: Strambach [11] and Löwen [5] have constructed such planes admitting groups of automorphisms isomorphic to $SL_2\mathbb{R}$ and $SL_2\mathbb{C}$ respectively. For Strambach's plane, there is a generalization beyond the realm of stable planes [7]. Here we show that there is no quaternion analogue of these examples.

THEOREM. Let $\mathbb{M} = (M, \mathscr{M})$ be a locally compact stable plane of topological dimension 8 admitting $\Delta = SL_2\mathbb{H}$ as a group of automorphisms. Then \mathbb{M} contains an open Δ -invariant subplane which is isomorphic to the punctured affine plane over \mathbb{H} , and the action of Δ restricted to this subplane is equivalent to the natural (linear) action on $\mathbb{H}^2 \setminus \{(0, 0)\}$.

REMARKS. (a) The subplane above is the geometry induced on the set of points moved by the central involution ζ of Δ . Since ζ cannot be planar, one can show that \mathbb{M} is embedded into the projective plane over \mathbb{H} , and that the action of Δ extends to the natural one.

(b) A special case of the stable planes considered here are compact eightdimensional projective planes. All such planes with automorphism groups of dimension at least 17 have been determined by Salzmann [9]. For semisimple groups, this bound lowers to 16 (see [9, (1)]). Our result extends this classification to the case of the 15-dimensional groups locally isomorphic to SL_2H . (Since $SO_5\mathbb{R}$ cannot act on eight-dimensional projective planes, we can exclude PSL_2H .)

NOTATION. Let $\Delta = SL_2\mathbb{H}$, and let

$$\Upsilon = \left\{ \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix} \middle| d\bar{d} = 1 \right\} \cong \mathrm{ASL}_1 \mathbb{H}$$

be the stabilizer of the point (1,0) in the natural linear action on \mathbb{H}^2 and

Geometriae Dedicata **36**: 405–410, 1990. © 1990 Kluwer Academic Publishers. Printed in the Netherlands. consider the maximal compact subgroup $\Sigma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \middle| d\bar{d} = 1 \right\}$ of Υ . Then

$$\Upsilon^* = \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| d\bar{d} = 1 \right\}$$

is the stabilizer of the line $\{(1, y) | y \in \mathbb{H}\}$. Let

$$\Phi = \mathrm{SU}_2 \mathbb{H} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \cong \mathrm{Spin}_5.$$

All subgroups to be considered are closed, and all isomorphisms are isomorphisms of topological groups. The line joining two points x, y will be denoted as xy.

(1) LEMMA. (a) Every connected subgroup of Φ not containing the central involution $\zeta = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ of Φ is either conjugate to Σ or at most one-dimensional.

(b) Every subgroup of Δ isomorphic to Υ is conjugate to Υ or to Υ^* .

(c) Let Λ be a subgroup of Δ containing Σ . If the centralizer $C_{\Lambda}(\alpha)$ of the involution $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \Sigma$ coincides with Σ , then either the connected component Λ^1 is equal to Σ , or $\Lambda \cong \Upsilon$.

(d) Any proper subgroup $\Lambda < \Delta$ with dim $\Delta/\Lambda \leq 4$ is conjugate to the group $N = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \middle| a\bar{a}d\bar{d} = 1 \right\}$. Consequently, the smallest non-trivial orbits of Δ are four-dimensional, and the action of Δ on such an orbit is equivalent to the natural action on the projective line $\mathbb{H} \cup \{\infty\} \approx \mathbb{S}_4$.

Proof. (a) Let Ξ be a non-trivial connected subgroup of Φ not containing ζ . There is no pair of commuting involutions in Ξ since their product would be ζ . Therefore Ξ is a compact Lie group of rank 1, and dim $\Xi = 1$ or $\Xi \cong \text{Spin}_3$ (cf. [1, 22 §3, no. 6, Prop. 6]). In the second case, we may assume that $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \Xi$. Then Ξ is a subgroup of the centralizer $C_{\Phi}(\alpha) = \begin{cases} \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} & | a\bar{a} = d\bar{d} = 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0$

(b) Let $\Upsilon \cong \Lambda \leqslant \Delta$ and write $\Lambda = \Xi \Omega$ with $\Xi \cong \text{Spin}_3$, $\Omega \cong \mathbb{R}^4$ and

consider the natural linear action on $\mathbb{H}^2 = \mathbb{C}^4$ as a complex representation. Since Ω is abelian, there is a vector $v \in \mathbb{C}^4$ with $v^{\Omega} \subseteq \mathbb{C}v$ by Lie's theorem. We may assume that v = (1, 0). Then $\Omega < N = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \middle| a\bar{a}d\bar{d} = 1 \right\}$. From $v^{\Omega} \subseteq \mathbb{C}v$ we deduce dim $\Omega_v \ge 2$. The stabilizer Ω_v consists of axial collineations of the affine quaternion plane. Since Ξ acts effectively on Ω , all elements of Ω are axial with axes through the origin. The group Δ leaves invariant the line at infinity W, therefore all centers of elements of Ω lie on W. The homologies in Δ are contained in compact subgroups. Thus Ω consists of elations. Commutativity yields $\Omega = \left\{ \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \middle| c \in \mathbb{H} \right\}$. The normalizer of Ω is N, and we may assume that the compact group Ξ is contained in $\Psi = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \middle| a\bar{a}d\bar{d} = 1 \right\}$. Acting effectively on Ω , the group Ξ cannot contain ζ . By (a) we have $\Xi = \Sigma$ or $\Xi = \Sigma^i$, where $i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \Phi$. In the second case, $\Lambda^i = \Upsilon^*$.

(c) Assume that $\Sigma \neq \Lambda^1$. By (a) the subgroup Σ of Λ^1 is maximal compact. Therefore $\Sigma = \Phi \cap \Lambda^1$, and dim $\Delta/\Lambda = \dim \Delta/\Lambda^1 \ge \dim \Phi/\Sigma = 7$. Since Δ is 15dimensional, we have dim $\Lambda \le 8$. Any semisimple linear group with a maximal compact subgroup isomorphic to Σ contains a central involution which lies in each maximal compact subgroup (cf. [12]). Thus $C_{\Lambda}(\alpha) = \Sigma$ implies that Λ is not semisimple. Now the Levi decomposition shows that there is a connected solvable group Ω such that $\Lambda^1 = \Sigma \Omega$. Let N be a minimal abelian normal subgroup of Λ^1 . Being reductive, the group Σ acts completely reducibly on the Lie algebra of Ω . Therefore there is an invariant complement K of N in Ω . Since Σ acts effectively on N, we have N $\cong \mathbb{R}^4$ and dim K ≤ 1 . Thus Σ acts trivially on K, and from the centralizer condition we get K = 1. By (b) the connected component Λ^1 is conjugate to Υ or Υ^* . The normalizer of Υ in Λ being the product of Υ and the centralizer $C_{\Lambda}(\Sigma)$, we obtain $\Lambda = \Lambda^1$.

(d) Let K be a maximal compact subgroup of the connected component Λ^1 . By [6] we have dim K = 6. Thus K is locally isomorphic to Spin₄ because Φ has rank 2. Since Φ does not contain a quadruple of commuting involutions, the group K is isomorphic to Spin₄ and centralizes two involutions. We can assume that α is one of them, and obtain K = C_{Φ}(α). Now Λ has dimension 11. Any semisimple connected linear Lie group containing Spin₄ as a maximal compact subgroup centralizes all its involutions (cf. [12]). The Levi decomposition shows that there is a solvable connected invariant subgroup Ω of Λ such that $\Lambda^1 = K\Omega$. Considering the usual linear action of Δ on $\mathbb{H}^2 = \mathbb{C}^4$ as a complex representation, we find $v \in \mathbb{H}^2$ such that $v^{\Omega} \subseteq \mathbb{C}v$ (Lie's theorem). If Ω had two linearly independent eigenvectors, we could

assume that $\Omega \leq \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \middle| a\bar{a}d\bar{d} = 1 \right\}$, a contradiction to the fact that Ω is homeomorphic to \mathbb{R}^5 (by the Malcev–Iwasawa decomposition). Normalizing Ω , the group Λ is therefore conjugate to a subgroup of N. Equality of dimensions yields that $\Lambda = N$ since N is connected.

In order to determine the stabilizer of a line we need the following

(2) LEMMA. Let \mathbb{M} be a locally compact stable plane of finite positive dimension and assume that the lines are (topological) manifolds. Let α be an axial involution and x any point on the axis A. Then α fixes precisely one line $Z \neq A$ through x.

Proof. We consider the action of α on the line pencil through x. By [3, (1.19)] the pencil \mathcal{M}_x is homeomorphic to a sphere \mathbb{S}_l . For the restricted action on $\mathcal{M}_x \setminus \{A\} \approx \mathbb{R}^l$, there is at least one fixed element Z by [10]. Let X be a further fixed line through x. Choosing $y \in A$ near x, one finds a fixed line Y through y intersecting at least one of the two lines X, Z in a point z outside A. Having center z, the automorphism α has two axes and is trivial.

PROOF OF THE THEOREM. Without loss of generality we may assume that M is connected and that $\zeta = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ has no fixed points; in the general case, the fixed points of ζ form a Δ -invariant closed set which can be removed.

(i) The action of Δ on M is equivalent to the natural (linear) action of Δ on $\mathbb{H}^2 \setminus \{0\}$.

Proof. We show that $\Delta_x \cong \Upsilon$ for any point $x \in M$. Then all orbits are eightdimensional and thus open. Connectedness yields transitivity, and (1.b) completes the proof of (i).

Since $x \neq x^{\zeta}$, a maximal compact subgroup of the connected component of $\Lambda = \Delta_x$ can be assumed to be Σ (cf. (1.a)). The centralizer of $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in Δ is the direct product of the groups

$$\Sigma, \Theta = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle| a\bar{a} = 1 \right\} \text{ and } P = \left\{ \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \middle| r > 0 \right\}.$$

Let $G = xx^{\zeta} \in \mathscr{F}_{\zeta} = \{yy^{\zeta} | y \in M\}$. The set \mathscr{F}_{ζ} is connected and locally homeomorphic to a line (cf. [4, (1.1)]). Applying (1.d) to the action of Φ on \mathscr{F}_{ζ} we obtain transitivity on \mathscr{F}_{ζ} and see that α fixes precisely two lines G, H of \mathscr{F}_{ζ} . Moreover, the set $\{G, H\}$ is the set of fixed lines of $\Sigma \Theta$ in \mathscr{F}_{ζ} .

Next, we determine the geometric type of α . If α is a central involution, its center has to be fixed by ζ . Analogously, no line $L \neq G$ through x can be an axis of α . Planarity of α would yield a two-dimensional set of fixed lines in \mathcal{F}_t . In the only remaining case, the involution α has axis G and acts freely on $M \setminus G$. Via conjugation by $\iota = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \Phi$ we obtain the same result for $-\alpha$ and H.

For any point $y \in G$ we have $\Phi_y \leq \Phi_G$, and the connected component of Φ_y is Σ or Θ by (1.a). Since $-\alpha$ acts freely on $M \setminus H$, we obtain that Σ is contained in the group $\Phi_{IGI} = \{ \varphi \in \Phi_G | \varphi \text{ acts trivially on } G \}$. Again, conjugation by *i* shows that $\Theta \leq \Phi_{[H]}$. Free action outside the axes enforces equality in both cases.

For any point $y \in G$ we consider the stabilizer in $\Sigma \Theta P = C_{\Delta}(\alpha)$. Since iinduces inversion on P, we have $P_y = P_y^{-1} = P_y^{t} = P_{y^{t}}$. The stabilizer P_y therefore acts trivially on the three-dimensional orbits y^{Θ} and $y^{\nu\Sigma}$. Since these two orbits generate the whole plane, one gets $P_v = 1$. Now $(\Sigma \Theta P)_x = \Sigma (\Theta P)_x$. The kernel of the projection of $(\Theta P)_x$ to Θ lies in $P_x = 1$, therefore $(\Theta P)_x \leq$ $\Theta_x = 1$. Finally, (1.c) shows that $\Delta_x \cong \Upsilon$.

(ii) Let $x \in M$ and $\Delta_x = \Upsilon = \Sigma \Omega$ with $\Omega = \left\{ \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \middle| c \in \mathbb{H} \right\}$. Then Ω is sharply transitive on $\mathcal{M}_x \setminus \{xx^{\zeta}\}$.

Proof. Let $L \in \mathcal{M}_x \setminus \{xx^{\zeta}\}$. In a positive-dimensional stabilizer Ω_L one finds a one-parameter group $\Xi = \left\{ \begin{pmatrix} 1 & 0 \\ rc & 1 \end{pmatrix} \middle| r \in \mathbb{R} \right\}$. This group is invariant under $\mathbf{P} = \left\{ \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \middle| r > 0 \right\} \text{ and therefore acts trivially on the orbit } L^{\Omega \mathbf{P}}. \text{ If } L^{\Omega} \text{ is}$ not trivial, there are $\rho \in P$ and $\omega \in \Omega$ such that L^{ρ} and L^{ω} meet outside $xx^{\zeta} = G$. This contradicts the fact that Ω acts freely outside G. Thus $\Omega = \Omega_L$. For any further line L' fixed by Ω there is again $\rho \in P$ such that L' and L^{ρ} meet outside G. Since all four-dimensional orbits in \mathcal{M}_x are open, this yields a (sharply) transitive action of $\Omega \cong \mathbb{R}^4$ on $\mathcal{M}_x \setminus \{G, L\}$, which contradicts $\mathcal{M}_x \approx \mathbb{S}_4$.

(iii) The stabilizer of any line $L \neq L^{\zeta}$ is isomorphic to Υ .

Proof. By the preceding results, one can assume that L = Z (compare (2)). Thus $\Sigma = \Delta_{x,L}$. By (1.a) Σ is a maximal compact subgroup of Δ_L^1 . For any $\rho \in \Delta_L$ commuting with $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \Sigma$ we have $x^{\rho} = x^{\rho \alpha}$. Since α acts freely outside xx^{ζ} , we obtain $\rho \in \Delta_{x,L} = \Sigma$ and $\Delta_L \cong \Upsilon$ by (1.c).

Since $\Delta_{x,L} = \Sigma \neq \Delta_L$, we have $\Delta_x \neq \Delta_L$. The maximal compact subgroup Σ of

 Δ_L is also maximal compact in Υ and in Υ^* . Therefore there is $\delta \in N_{\Delta}(\Sigma)$ such that $\Delta_L = \Upsilon^{\delta}$ or $\Delta_L = \Upsilon^{*\delta}$. But the normalizer of Σ in Δ is precisely the centralizer of α , which leaves both Υ and Υ^* invariant. Therefore $\Delta_L = \Upsilon^*$. Transitivity of Δ on points and lines moved by ζ allows the reconstruction of the geometry analogously to [2]. This concludes the proof.

REFERENCES

- 1. Bourbaki, N., Groupes et algèbres de Lie, Chap. IX, Masson, Paris, 1982.
- Higman, D. G. and McLaughlin, J. E., 'Geometric ABA-groups', Illinois J. Math. 5 (1961), 382-397.
- 3. Löwen, R., 'Vierdimensionale stabile Ebenen', Geom. Dedicata 5 (1976), 239-294.
- 4. Löwen, R., 'Halbeinfache Automorphismengruppen von vierdimensionalen stabilen Ebenen sind quasi-einfach', *Math. Ann.* 236 (1978), 15–28.
- 5. Löwen, R., 'Actions of Spin₃ on 4-dimensional stable planes', Geom. Dedicata **21** (1986), 1-12.
- Mann, L. N., 'Gaps in the dimensions of transformation groups', *Illinois J. Math.* 10 (1966), 532–546.
- 7. Pražmowski, K., 'An axiomatic description of the Strambach planes', Geom. Dedicata 32 (1989), 125-156.
- 8. Richardson, R. W., 'Groups acting on the 4-sphere', Illinois J. Math. 5 (1961), 474-485.
- 9. Salzmann, H., 'Compact 8-dimensional projective planes', Forum Math. 2 (1990), 15-34.
- Smith, P. A., 'Fixed-point theorems for periodic transformations', Amer. J. Math. 63 (1941), 1-8.
- Strambach, K., 'Zur Klassifikation von Salzmann-Ebenen mit dreidimensionaler Kollineationsgruppe', Math. Ann. 179 (1968), 15-30.
- 12. Tits, J., 'Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen', Lecture Notes in Math. 31, Springer, New York, 1967.

Author's address:

Markus Stroppel, Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen 1, F.R.G.

(Received, January 19, 1990)

410