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Dedicated to my teacher, Prof. H. Salzmann, on his 60th birthday 

ABSTRACT. The eight-dimensional planes admitting SLzl/q as a group of automorphisms are 
determined. 

Every open subset of the projective plane over I~, C, H (Hamilton quater- 
nions) or O (Cayley octonions) carries a stable plane in the sense of [4]. There 
exist stable planes which cannot be embedded into projective planes: 
Strambach [11] and L6wen [5] have constructed such planes admitting 
groups of automorphisms isomorphic to SLzff~ and SL2C respectively. For 
Strambach's plane, there is a generalization beyond the realm of stable planes 
[7]. Here we show that there is no quaternion analogue of these examples. 

THEOREM. Let ~ = (M, rig) be a locally compact stable plane of topological 
dimension 8 admittin9 A = S L z ~  as a group of automorphisms. Then 
contains an open A-invariant subplane which is isomorphic to the punctured 
affine plane over ~, and the action of A restricted to this subplane is equivalent 
to the natural (linear) action on ~2\{(0,0)}. 

REMARKS. (a) The subplane above is the geometry induced on the set of 
points moved by the central involution ~ of A. Since ff cannot be planar, one 
can show that ~ is embedded into the projective plane over ~, and that the 
action of A extends to the natural one. 

(b) A special case of the stable planes considered here are compact eight- 
dimensional projective planes. All such planes with automorphism groups of 
dimension at least 17 have been determined by Salzmann [9]. For semisimple 
groups, this bound lowers to 16 (see [9,(1)]). Our result extends this 
classification to the case of the 15-dimensional groups locally isomorphic to 
SL2H. (Since SOs~ cannot act on eight-dimensional projective planes, we 
can exclude PSLzH. ) 

NOTATION. Let A = SL2I~ , and let 

be the stabilizer of the point (1,0) in the natural linear action on H 2 and 
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consider the maximal compact subgroup E = {(~ 

is the stabilizer of the line {(1, y)]y E H}. Let 

All subgroups to be considered are closed, 

~)ld3 = 1} of Y. Then 

~3)=(~ 01)} ~ Spins. 

and all isomorphisms are 
isomorphisms of topological groups. The line joining two points x, y will be 
denoted as xy. 

(1) LEMMA. (a) Every connected subgroup of  ¢P not containing the central (, ol) 
involution ~ = 0 -- of q9 is either conjugate to Z or at most one- 

dimensional. 

(b) Every subgroup of  A isomorphic to Y is conjugate to Y or to Y*. 
(c) Let A be a subgroup of A containing Z. I f  the centralizer CA(a) of the 

Ol) involution c~= ~ 2  coincides with ~, then either the connected 
0 - 

component A ~ is equal to Y~, or A ~- ¥. 

(d) Any proper subgroup A < A with dim A/A ~< 4 is conjugate to the group 

N = { ( ~  ~)a~d~t=l}.Consequently, thesmallestnon-trivialorbitsof Aare  

four-dimensional, and the action of A on such an orbit is equivalent to the 

natural action on the projective line H w { oc } ~ •4. 
Proof. (a) Let E be a non-trivial connected subgroup of @ not containing ~. 

There is no pair of commuting involutions in E since their product would be 
~. Therefore E is a compact Lie group of rank 1, and dim E = 1 or E ~- Spin3 
(cf. [1, 22 §3, no. 6, Prop. 6]). In the second case, we may assume that 

a=  e~-. Then E is a subgroup of the centralizer C~(c0= 
0 - 

{(~ ~)a~=dd=l} .Theprojec t ionsof~tothequas i -s implefac tors2and 

O = { ( ;  ~ ) a f i = l } m u s t  be bijective or trivial. Since thekernel of the 

projection to O contains ,, we have E = Z. 
(b) Let Y ~ A ~ < A  and write A=Ef~  with E -Sp in3 ,  f)~-~4 and 
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consider the natural linear action on H2= C 4 as a complex representation. 

Since f2 is abelian, there is a vector v 6 C 4 with v n _ Cv by Lie's theorem. We 

may assume that v -- (1, 0). Then 92 < N =  {(~ 0d)agtd21=l}.Fromvnc_Cv 

we deduce dim f2~ ~> 2. The stabilizer f~v consists of axial collineations of the 
affine quaternion plane. Since E acts effectively on 92, all elements of f2 are 
axial with axes through the origin. The group A leaves invariant the line at 
infinity W,, therefore all centers of elements of~q lie on W. The homologies in A 
are contained in compact subgroups. Thus 92 consists of elations. Commutat- 

i v i t yy i e ld s92={(~  ~) c ~ H } . T h e n o r m a l i z e r o f ~ i s N ,  a n d w e m a y  

assume t h a t t h e c o m p a c t g r o u p E i s c o n t a i n e d i n ~ = { ( :  Od)la?td~t=l }. 
Acting effectively on ~, the group E cannot contain (. By (a) we have E = Z or 

E = Z ' ,  where t=  0 eqb. In the second case, A'=Y*. 

(c) Assume that Y~ ¢ A t. By (a) the subgroup 2; ofA t is maximal compact. 
Therefore Z =qbc~A t, and dim A/A =dim A/A t >/dim 0)/2;=7. Since A is 15- 

dimensional, we have dimA ~< 8. Any semisimple linear group with a 
maximal compact subgroup isomorphic to Z contains a central involution 
which lies in each maximal compact subgroup (cf. [12]). Thus CA(C~)=Z 
implies that A is not semisimple. Now the Levi decomposition shows that 
there is a connected solvable group 92 such that A ~ =292. Let N be a minimal 
abelian normal subgroup of A1. Being reductive, the group Z acts completely 
reducibly on the Lie algebra of 92. Therefore there is an invariant complement 
K of N in 92. Since Z acts effectively on N, we have N ~ N4 and dim K ~ 1. 
Thus Z acts trivially on K, and from the centralizer condition we get K = '~. 
By (b) the connected component A 1 is conjugate to Y or Y*. The normalizer of 
¥ in A being the product of Y and the centralizer Ca(Z), we obtain A = A  ~. 

(d) Let K be a maximal compact subgroup of the connected component 
A ~. By [6] we have dim K = 6. Thus K is locally isomorphic to Spin 4 because 
q) has rank 2. Since q) does not contain a quadruple of commuting 
involutions, the group K is isomorphic to Spin4 and centralizes two 
involutions. We can assume that c~ is one of them, and obtain K = C.(c 0. Now 
A has dimension 1 1. Any semisimple connected linear Lie group containing 
Spin 4 as a maximal compact subgroup centralizes all its involutions (cf. [12]). 
The Levi decomposition shows that there is a solvable connected invariant 
subgroup I) of A such that A t = K92. Considering the usual linear action of A 
o n  ~02=C d" as a complex representation, we find v e  ~_~2 such that vn__c Cv 
(Lie's theorem). If 92 had two linearly independent eigenvectors, we could 
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assume that f~ ~ { ( :  Od) a?tdSl=l}, acontradiction to thefact  that f~is 

homeomorphic to R s (by the Malcev-Iwasawa decomposition). Normalizing 
~, the group A is therefore conjugate to a subgroup of N. Equality of 
dimensions yields that A = N since N is connected. 

In order to determine the stabilizer of a line we need the following 

(2) LEMMA. Let ~ be a locally compact stable plane of finite positive 
dimension and assume that the lines are (topological) manifolds. Let c~ be an 
axial involution and x any point on the axis A. Then c~ fixes precisely one line 
Z =~ A through x. 

Proof. We consider the action of c~ on the line pencil through x. By 
[3, (1.19)] the pencil JC/x is homeomorphic to a sphere ~l. For the restricted 
action on dlx\{A } ~ R t, there is at least one fixed element Z by [10]. Let X be 
a further fixed line through x. Choosing y e A near x, one finds a fixed line Y 
through y intersecting at least one of the two lines X, Z in a point z outside A. 
Having center z, the automorphism e has two axes and is trivial. 

PROOF OF THE THEOREM. Without loss of generality we may assume 

that M is connected and that ~ = has no fixed points; in the 

general case, the fixed points of ~ form a A-invariant closed set which can be 
removed. 

(i) The action of A on M is equivalent to the natural (linear) action of A on 
H2\{0}. 

Proof. We show that A~ ~ Y for any point x e M. Then all orbits are eight- 
dimensional and thus open. Connectedness yields transitivity, and (1.b) 
completes the proof of (i). 

Since x ~ x ~, a maximal compact subgroup of the connected component of 

A = A ~ c a n b e a s s u m e d t ° b e £ ( c f ' ( l ' a ) ) ' T h e c e n t r a l i z e r ° f ~ = (  10 --01)inA 

is the direct product of the groups 

IE, O = { ( ;  01 )a~= ' l  } and P = { ( ;  r_01)[r>0}.  

Let G = x x ~ ¢ = { y y ~ l y ~ M } .  The set ~¢  is connected and locally 
homeomorphic to a line (cf. [4, (1.1)]). Applying (1.d) to the action o f ~  on ~¢  
we obtain transitivity on ~'~ and see that a fixes precisely two lines G, H of 
ff¢. Moreover, the set {G, H} is the set of fixed lines of ZO in o~¢ . .  
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Next, we determine the geometric type of c~. If c~ is a central involution, its 
center has to be fixed by (. Analogously, no line L ~ G through x can be an 

axis of c~. Planarity of c~ would yield a two-dimensional set of fixed lines in o~.  

In the only remaining case, the involution e has axis G and acts freely on 

M\G. Via conjugation by t =  0 e q) we obtain the same result for -c~ 

and H. 
For any point y e G we have q)y ~< ~G, and the connected component  of q)y 

is 2; or O by (1.a). Since - e  acts freely on M\H,  we obtain that I; is contained 

in the group q~a~---{(o e q~alq~ acts trivially on G}. Again, conjugation by ~ 
shows that O ~< q~w~" Free action outside the axes enforces equality in both 
cases. 

For  any point y e G we consider the stabilizer in Y.OP = C~(e). Since t 
induces inversion on P, we have P~=P~-~=P~=Py, .  The stabilizer P~ 

therefore acts trivially on the three-dimensional orbits yO and y'~. Since these 

two orbits generate the whole plane, one gets Pr = ~. Now (2;®P)~ = 2;(®P)x. 
The kernel of the projection of (OP)~ to O lies in Px=  ~, therefore (OP)~ ~< 
®~ = ~. Finally, (1.c) shows that Ax ~ ¥. 

(ii) Let x E M  and Ax=Y=Zf2  with f ~ = f ( ~  
k . \  

transitive on JP/~\(xx~}. 

01) c 6 H ) .  Then ~ is sharply 

Proof Let L ~ ~x\{xx~}.  In a positive-dimensional stabilizer f2 L one finds 

a one-parameter group E =  rc r~ ~ . This group is invariant under 

{(; °)l t P = r > 0 and therefore acts trivially on the orbit L nP If L n is 
r _  1 • 

not trivial, there are p ~ P and o) ~ f~ such that L p and L ~° meet outside xx ~ = G. 
This contradicts the fact that ~ acts freely outside G. Thus ~=f~L- For  any 
further line L' fixed by f~ there is again p e P such that L' and L ° meet outside 
G. Since all four-dimensional orbits in ~'~ are open, this yields a (sharply) 

transitive action of f~ ~ N4 on ~'~\{G, L}, which contradicts ~ 'x  ~ ~4. 

(iii) The stabilizer of any line L ~ L ~ is isomorphic to T. 
Proof By the preceding results, one can assume that L = Z (compare (2)). 

Thus ~=Ax,L. By (1.a) Y, is a maximal compact subgroup of Az x. For  any 

p e a  L commuting with 7 = ( 1  0)  0 - ! ~ E we have x p = x p'. Since ~ acts freely 

outside xx ~, we obtain p e Ax.L = Z and AL ~ Y by (1.c). 
Since Ax,L = E ~ AL, we have A x ~ A L. The maximal compact  subgroup Z of 
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AL is also max imal  compac t  in Y and in Y*. Therefore  there is ~ ~ Na(Y,) such 

tha t  A L = Y  ~ or  A L = Y  *~. But the normal ize r  of E in A is precisely the 

centra l izer  of  ~, which leaves bo th  Y and Y* invariant .  Therefore  A L = Y*. 

Transi t iv i ty  of A on poin ts  and  lines moved  by ~ al lows the recons t ruc t ion  of 

the geomet ry  ana logous ly  to [2]. This concludes  the proof.  
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