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Reconstruction of incidence geometries from groups of 
automorphisms 

By 

MARKUS STROPPEL 

In [4], Freudenthal  describes a method to construct an incidence geometry from a 
group such that  the given group acts transitively on the set of flags (incident point-line 
pairs) of the constructed geometry. This method can be found in [5], too. Here we give 
a useful generalization to geometries that  are not flag-homogeneous. Such geometries 
occur quite naturally in the study of stable planes (see e.g. [16]). We consider geometries 
G = (P, L, F) with a group A of au tomorphisms of G acting transitively on the point 
set P of G such that  the orbit decomposit ion Lv/Ap of the pencil Lv = {l ~ L l(p, l) ~ F} 
via the stabilizer Ap = { ~ E A  I p a =  p} coincides with the induced decomposi t ion 
LvnL/A  = {l ~ c~Lv[ I t Lp} (cp. (R2)). Additional assumptions are made in (R3) to 
distinguish the different orbits. 

(1) D e f i n i t i o n .  Let G = ( P , L , F )  be an incidence geometry in the sense of 
Dembowski  [2]. 

a) a subgroup A < Aut(G) is said to represent G, if the following conditions hold: 

(R 1) A acts transitively on P. 
(R 2) There is a point p ~ P and a subset R ~ L v that forms a cross section for L/A and 

Lv/Av, simultaneously. 
(R 3) For  any two different elements r, s e R, the stabilizers At, As are different. 

In this situation, (A, Av, (Ar)r~a) is called a representing triplet for G. 

b) Let (A, Av, (Ar),~R) be a representing triplet for G. The geometry (~ = (P, L, P) 
defined by 

P=A/Av,  L,= U d/Ar, 
r ~ R  

ff ={(Avct, Ar[3)~ P x  FIAvc~C~ Arfl 4= O} 

is called the geometry represented by (A, Av, (A~),~R). 

(2) Proposition. Let (A, Ap, (Ar)r~R) be a representing triplet for G = (P, L, F). Then G 
and the geometry G represented by (A, Ap, (Ar)r~R) are isomorphic. 
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P r o o f. i) The mapping ~: P = A/Av ~ P: Ap c~ ~ p" is a bijection. 

ii) For  r, s ~ R and ~, fl ~ A we have 

Ar~ = Asf l .~ d r = Asfl~ - i .  

Since A r is a group, the second assertion is equivalent to fl c~-1 e Ar = A~. By condition 
(R 3), this is equivalent to r = s and r ~ = s ~. Thus the mapping 

2 : L =  U A / A r ~  L:Ar c~'--~r~ 
r E R  

is well-defined and injective. Since R is a cross section for L/A, it is surjective, too. 

iii) For  r e R and c~, f le  A we have 

(p~,r~)e F , ~ ( p ,  ra~-~)e F 

since A consists of automorphisms. By (R 2), the second assertion is equivalent to the 
existence of ~ ~ Ap with ra~-~ = rL This is equivalent to Ap~ ~ A~fl ~ O, which means 
(Apo~, Arfl ) E ft. Thus we have shown that the pair (z, 2) is an isomorphism. []  

(3) R e m a r k. Via ~z and 2, the given action of A on G is equivalent to the action of 
A on G via A ~ 7 ~ A ~ 7 ~ .  

We now turn to stable planes in the sense of [10], i.e. we assume that P and L 
are endowed with locally compact Hausdorff topologies such that their covering dimen- 
sion is positive and finite; joining of points is continuous and intersecting of lines is 
stable (i.e. continuous with open domain of definition). Of special interest are the 
geometries induced on open orbits in the point space of a compact connected projective 
plane. Without additional assumptions, Proposit ion 2 carries over to the topological 
case: 

(4) Proposition. Let G -- (P, L, F) be a stable plane, and assume that a closed subgroup 
A of Aut (G) (the group of continuous collineations, endowed with the compact-open to- 
pology) represents G. I f  the point set P = A/Ap is endowed with the quotient topology, 
then there is exactly one topology on ~, such that G becomes a stable plane. With these 
topologies, the stable planes G and Cr are isomorphic. 

P r o o f. The underlying incidence geometries are isomorphic by Proposit ion 2. The 
group Aut (G) is locally compact  and separable metric by [7: 2.9], a result of Freudenthal 
[3] says that n is a homeomorphism. By [7 : 1.4] there is exactly one topology on L such 
that G is a stable plane. This topology is carried over to L via )~- ~. []  

(5) Corollary. Let (A, Ap, (Ar)r~R) be a representing triplet for both the incidence ge- 
ometries (stable planes) G and G'. Then G and G' are isomorphic, and the actions of A are 
(topologically) equivalent. 
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(6) R e m a r k s .  
a) The validity of incidence properties can be characterized in terms of the representing 

group analogously to [4 : 6.3] and [5]. E.g. a geometry represented by (A, Ap, (A,)r~R) is a 
linear space if, and only if, the following conditions hold: 

i) A = U AvA,  Ap (existence of joining lines) 

ii) For  all r ~ R : A v A r c~ Ar Ap = Ap w Ar (uniqueness of joining lines). 

b) The conditions for (P, L, F) to form a projective plane seem to be of a rather 
complicated nature. There are, however, two cases where our conditions yield flag homo-  
geneity (i.e. the situation studied in [4] and [5]): For  f ini te  projective planes, the orbit 
theorem [6: Th. 13.4] says that  any point transitive au tomorphism group is transitive on 
the set of lines, too. Condition (R2) implies flag homogeneity.  Point homogeneous 
compact connected projective planes are always flag homogeneous [15], [9]. 

c) In the case of affine translation planes, our  result is known already (though stated 
differently): cp. [1], [14: 8.1, Satz 2, p. 201], [12: 1.1, p. 1-7] .  

(7) E x a m p 1 e. Let h be a hermitian or symmetric form on a (left) vector space V of 
dimension 3 over a (skew) field F of characteristic ~: 2. The corresponding unitary group 
induces a group A of collineations Of the projective plane (P, L, < )  described by V 
According to Witt 's theorem [13], a line 11 e L (i.e. a two-dimensional  subspace of V) can 
be moved to a line 12 by an element of A if, and only if, the induced forms H I z~ • t~ are 
equivalent. In this case, there are x l , x z ,  y l , y z E  V such that I i = Fx~ + F y  i and 
h (vl, wl) = h (v z, wa) for i e {1, 2} and v, w e {x, y}. Moreover,  one can choose x l  ~ la n l z 
and xz  = x l .  This means that there is 6 e A such that  x~ = x a and y~ = Y2. Therefore, 
conditions (R 1) and (R 2) hold for the geometry (p~, E, < )  induced on any orbit pa, where 
p = F x  ~ P. Using Witt 's theorem, one may  find a cross section R for L'/A and compute 
the corresponding stabilizers. Now it is checked easily whether condition (R 3) is valid or 
not. These geometries are generalizations of the familiar euclidean, elliptic and hyperbolic 
planes. Topological examples have been described by L6wen [8], [11]. 
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