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Dedicated to Karl H. Hofmann, on the occasion of his 60th birthday 

ABSTRACT. The author's reconstruction method ['Reconstruction of incidence geometries from 
groups of automorphisms', Arch. Math. 58 (1992) 621-624] is put in a categorical setting, and 
generalized to geometries with an arbitrary number of 'types'. The results amount to saying that 
the reconstruction process involves a pair of adjoint functors, and that the class of those 
geometries that are images under reconstruction forms a reflective subcategory. 

The present paper deals with the problem whether a given geometry (i.e. 
roughly spoken, an incidence structure together with a group of auto- 
morphisms) is determined by the action of the group. After results on flag- 
transitive groups on incidence structures with two types of objects (see I-7] for 
further historical notes), a first attempt by the author led to results that were 
quite satisfactory for the case of partial planes (see Proposition (2.7) below), 
and in particular for stable planes (see [-7, 4]). In a discussion about this 
previous result, K.H.  Hofmann urged a categorical point of view. This 
categorical treatment led to new insights: some of the previous restrictions on 
the action of the group may be dropped, and the reconstruction process 
applies to geometries with an arbitrary number of types. Moreover, the 
categorical point of view helps the groups to their full rights: in fact~ this 
paper presents an equivalence (in a strictly categorical sense) of 'sufficiently 
homogeneous' geometries and systems of subgroups. 

1. A CATEGORY OF I N C I D E N C E  S T R U C T U R E S  

(1.1) NOTATION. By Set and Gp we denote the familiar categories of sets 
and mappings, and of groups and group homomorphisms, respectively. The 
fact that a morphism (in any category) is monic (epic) shall be stressed by the 
notation~---~ (---). An isomorphism shall be denoted by ;- , which is not to 
be confused with =~ (logical implication). A natural number is defined as the 
set of its predecessors: n :=  {mlm < n}. Thus 0 is the empty set, and 1 = {0}. 
For each mapping f : X ~  Y and each subset U___ Y we write 
f f-(U) := {xl f (x)  ~ U}. 

We shall consider categories that are not balanced, i.e. a morphism that is 
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both monic and epic need not be an isomorphism. Hence the following 

classes of morphisms are of interest: 

(1.2) D E F I N I T I O N .  Consider any category. 

(a) A monomorphism m is called ex t reme ,  if for each factorization m = h o g 

the fact that g is epic implies that 9 is an isomorphism: 

A ~ B A ~-~ B 
ida{ lh ~ idA{ lh 

A ---~ X A =:~ X Y g 

(b) Dually, an epimorphism e is called ex t reme ,  if for each factorization 
e = h o g the fact that h is monic implies that h is an isomorphism: 

e e 
A ~ B A --~ B 

gi idn ~ ]g It idn 
X ~ B X ~ =  B 

h h 

It  is easy to see from the definition that an extreme monomorphism is an 
isomorphism if, and only if, it is an epimorphism; and dually. Note that Set 

and Gp are balanced categories, where, in particular, each monic and each 

epic is extreme. We shall denote extreme monics and epics by the symbols c~ 

and--t>, respectively. 

(1.3) D E F I N I T I O N .  An incidence s tructure  ( I , A )  consists of a family 

A : T ~ Set: t ~ At  and a subset I ___ H,~r At.  For  incidence structures (I, A) 

and (J, B), a morphism f = (F, f r ) :  (l ,  A ) ~  (J, B) consists of a mapping 
f T  : T ~ U (where U is the domain of B), and a family F : t ~ F t with domain 

T such that Ft: At ~ ByT(t) is a mapping (for each t e T). Finally we require 

that there exists some mapping F I : I --* J such that 

(A) 

I i pr, 
' ' H~T A~ ~ ( >  At 

J j H, ,ev  Bu - - ~ >  B fT( Q Prlr~. 

is commutat ive for each t ~ T, where i a n d j  denote the inclusion maps, and pr t 
the projection. Every mapping FI that meets these requirements shall be 
called suited. These data define a category, which we shall denote by Inc. The 
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following diagram makes clear how the composition g o f of morphisms has 

to be defined (and that this definition works well): 

2Y t 

J , 

K , 

) 1-I,,eu B~ Prjr,~ 

k ' I - I v E v  C u  prov(, ) 

- - c ~  At 

- - t >  B/r( ,  ) 

~ Gfr.t 

t> Cgv(lr(O ) 

(t.4) INTERPRETATION.  The domain T of A may be considered as set of 
types of geometric objects, while I is an incidence relation in the spirit of G. 
Pickert's definition* [-6: 1.1, p. 2]. In this interpretation, a morphism is a 
mapping that preserves incidence and equality of type. Note that the 'type 
mapping' fT need not be monic nor epic; and that, in general, the mapping F I 
is not determined uniquely. 

(1.5) LEMMA. Assume that f = (F, f T): (I, A) ~ (J, B) is a morphism in Ine such 
that fT is bijective. Then the following holds: 

(a) The suited mapping FI is determined uniquely by the family F. 
(b) I f  F t is monic for each t ~ T then F t is monic. 
Proof If fT is a bijection then there exists the product mapping 

~o:= ]-[ (Fzo prO: l-I At -o ~I BTT(O 
t~T teT t~T 

and the following diagram commutes for each suited FI: 

i pr, 
I ' ' ] -]~TA' - - ~ >  A~ 

J ' ) ]-L, euB~, t> Bir(~ ) 
j PrfTI" 

Sincej is monic, this implies that the suited mapping F x is unique. This proves 

assertion (a). If each of the Ft is monic, then (p is monic. Hence F1 is monic, 
and assertion (b) is established. []  

*In contrast with a 'symmetric' notion of incidence, cf. [3]. 
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Note  that  a m a p p i n g  with the propert ies  of  the p roduc t  mapp ing  (in 
part icular ,  uniqueness!) need not  exist if f r  is not  epic* or not  monic.  

(1.6) P R O P O S I T I O N .  Let f = (F, f r ) : ( l ,  A ) ~  (J, B) be a morphism in Inc. 

(a) f is epic if, and only if, f r  and F t for each t E T (but not necessarily FI) are 
epic. 

(b) f is monic if, and only if, f r  and F t for each t ~ T are monic. 
(e) An epimorphism f is extreme if, and only if, every suited F I is epic. 
(d) A monomorphism f is extreme if, and only if**, 

Proof (i) Assume that  f~ is epic, and that  F t is epic for each t e T. We 
consider morph i sms  g = (G, gv): (J, B) ~ (K, C) and  h = (H, by) :(J, B) 

(K, C) such tha t  9 o f  = h o f  This means  that  gvofT = hvo fr  and that  

GIT(t ) ° Ft = HIT(0 ° F, for each t ~ T. The  fact that  f r  and the Ft are ep imorph-  
isms implies that  #v = he and that  G, = H ,  for each u E U = f r (T) .  Hence  f is 
epic. 

(ii) Conversely,  assume tha t  either f r  or  one of the F t is not  epic. We 
define a ( '2-gon') incidence structure (K, C) by V := 2, C o := 2 =: C1, and 

K := 2 x 2. Obviously,  the mappings  9 v -  O, G, = 0 define a morph i sm  

g = (G, 9v): (J, B ) ~ ( K ,  C): e.g. Gj - (0,0) is suited. On  the other  hand,  there 

exists a m o r p h i s m  h = (H, hv) such tha t  

hv(u) = {O 1 if u~ fr (T)  
otherwise 

SO if u = fv( t )and x e F,(At) 
H,(x) 

otherwise. 

N o w  O ° f = h o f,  but  g = h only if f r  and each of the F t is epic. Thus  assert ion 
(a) is established. 

(iii) Dual iz ing the a rguments  of  (i), one obtains  that  f is monic  if f r  and 

each of the Ft are monic.  
(iv) Assume tha t  there are two types s, t ~ T such that  f r (s)  = fr(t). We 

consider the incidence s tructure (K, C) that  is given by the settings V : =  1, 

*For example, consider the embedding of a line into 3-dimensional affine space: one is free to 
choose any plane that is incident with the line. 
**If J r=idr  this condition simplifies to the condition that (1-It~ T Ft)~(J)= I. Note that the 
inclusion ' _ '  is already a consequence of the fact that Fr is suited. 
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Co :=0 ,  and K : = 0 .  There are morphisms g,h:(K,C)-o(I,A) such that 

9K(O) = S and hK(0) = t. Now f o g = f ° h, and we infer that f is not monic. If, 
on the other hand, there is some t~ T such that there are two elements 
x , y~A  t with Ft(x)=Ft(y ), then V' := 1, C~:= 1, and K ' : = 0  define an 
incidence structure (K', C') that admits morphisms to (I, A) that show that f 
is not monic. Thus assertion (b) is established. 

(v) In order to prove assertion (c), we fix a suited mapping F~ and consider 
the incidence structure (d', B) that is given by J '  := F,(I). Obviously, the 
morphism f may be regarded as a morphism from (1, A) to (J',/3). Now the 
diagram 

(I,A) f ,  (J,B) 

(J' ,B) ~ (J,B) 

commutes, where h U := id U, and H u := idBu for each u~ U (the inclusion 
H j ,  : J '  --* J is suited). If f is an extreme epimorphism, we conclude that h is 

an isomorphism, hence J '  = J. 
(vi) Assume that f is an epimorphism and that every suited F I is epic. If 

f = h ° g  for morphisms g:(I ,A)~(K,C)  and h:(K,C)~(J,B)  and h is 
monic, then h is epic (since f is), and we infer that hr and each of the H v are 
bijeetions. Since Fx := H r o Gs is suited, it is epic, and this holds for Hr, too. 
Thus H~ is a bijection by Lemma (1.5(b)), and h is an isomorphism. This 

proves assertion (c). 
(vii) For  the proof of assertion (d) we introduce the ad hoc notation 

re:= I ]  Prv T~,): I-[ B. ~ [I BfT~,) 
t~T u~U t~T 

q3 := 1-[ (Ft o pr,): I~ At--+ l~ Bfr(,) 
t~T teT  t~T 

I ' :=q~(x(J))=(~(Ft°prt))~-(( t~TPrfr~t))(d))  

We obtain an incidence structure (I', A). From the commutativity of (A) we 
infer that I _  I'. Now for each xe l ' ,  there exists some yx~J such that 
~o(x) = ~(Yx)- Any choice of such a Yx for each x ~ I' defines a suited mapping 
F r : x ~ Yx- Hence we have the following commuting diagram: 
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I ' ' [IteT At pr, t> At 

G|  1' r , ]-iteT A, D At F, 

i 
J '-"'+ I-i,~6 U Bu > I~t6T B.fT(Q > B f T ( ' )  / u Prfrm 

Here for each t~T, the identity idA, is denoted by Et, and E , : I  ~ I' is the 
inclusion. 

(viii) I f f  is an extreme monic, we conclude that (E, idr): (I, A) ~ (I', A) is an 
isomorphism. This implies that Et is a bijection (cf. (1.5)), hence I '  = I. 

(ix) Finally, assume that I = I ' ,  and that f is monic. Let 
g = (G, gr): (I, A) ~ (K, C) and h = (H, hv): (K, C) ~ (J, B) be morphisms such 

that 9 is epic and f = h o g. Then 9 is monic (since f is), hence gT and each of 
the G, are bijections. According to (1.5) there is a unique suited mapping G1, 

and G1 is monic. We have the following diagram: 

J 1~ PrIT(O 
J ~ I]~cu B~ t> 1-[,~T Bfr(O -----t> BITU) 

t % T~ / ] u~ I ' ' I-I,~T A~ t> At rt+~,,, 

/ <  1 "~ ¢ \  

K ' k ' I - I ~ v C ~  t> CST(O PrgT(O 

Here 7 : =  Ht~ T Gt ° pr,. From the relation 

~p~(rr(HK(K)) ) ~ ~p~(~(d)) = I '  

we infer that 

K __ 7(~o~-(~(H~(K)))) _~ ~(r). 

Since ~(I')-- ~(I)-- GI(I) and k is monie, we conclude that G1 is epic. Hence g is 
an isomorphism, and assertion (d) is proved. [] 

Later on, we shall be interested mainly in morphisms (F, Jr) that preserve 
types (in the sense that fT = idT, or at least is a bijection). In this case, extreme 
epimorphisms are easier to recognize: 

(1.7) LEMMA. Assume that f = (F, fT): (1, A) ~ (J, B) is an epimorphism in Ine, 
and that fT is a bijeetion. Then f is extreme if, and only if, there exists a suited F I 
that is epic. 

Proof. This follows immediately from (1.5(a)) and (1.6(c)). [] 
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(1.8) REMARK. Similar arguments may be used to show that extreme monics 
(epics) in Ine are embeddings (identifications)*. 

(1.9) EXAMPLES. (a) In descriptive geometry, one is particularly interested 
in extreme monomorphisms: e.g. a drawing of a polyhedron may be 
interpreted as a morphism from a (finite) incidence structure to the real affine 
plane. Of course one tries to avoid that the drawing 'shows' incidences that do 
not occur in the original object. 

(b) Closure theorems give examples of situations where one is interested in 
monomorphisms that are not extreme. For  example, the validity of 
Desargues' theorem may be phrased in the following way: Let (I, A) be the 
incidence structure that is obtained by 'drawing two perspective triangles, the 
three points where corresponding sides meet, and a line that contains exactly 
two of these three points'. Then Desargues' theorem is valid in (J, B) if there is 
no monomorphism from (I, A) to (J, B) that is extreme. 

(c) Examples of morphisms that change types are given by dualities. 

Further examples are the embeddings of rank 2 residues in diagram 
geometries, cf. [3]. 

2. G E O M E T R I E S ,  S K E T C H E S  A N D  P I C T U R E S  

We turn to geometries in a sense inspired by F. Klein: 

(2.1) DEFINITION.  Assume that (I, A) is an incidence structure, and let F be 
a group. A geometry (7, I, A) is given by a family ? (with domain T) of group 
actions 7t: F × A t -~ A r such that there exists an action y~: F × I ~ I making 
the following diagram commutative: 

(B) 

id r x i id r x pr, 
F x I  ' , PX]-I~eTA~ t> P x A t  

I ' i ' ]-I~er A, pr, ~> As 

Note that ?~ is uniquely determined, cf. (1.5). 
A morphism ((p, f )  = (q~, F, fr):(~, I, A)--*(3, J, B) consists of a morphism 

q): F ~ A (in Gp) and a morphism f = (F, fT):(1,A ) ~(J ,B)  such that 
commutes for some suited F~. These data define a category, which we shall 
denote by Geo. There are the forgetful functors 

Uln c : Geo ~ Ine: (?, I, A) ~-~ (I, A) and UGp: Geo ~ Gp: (7, I, A) ~ F. 

* H e r e  we use  the  t e rms  ' e m b e d d i n g '  a n d  ' iden t i f i ca t ion '  in the  sense o f  ' E i n b e t t u n g '  a n d  
' Ident i f iz ie rung ' ,  as def ined  in [2, 4.8.1, 4.10].  
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D 

FI 

A 

/ 
~ I]~eT At 

\ 
P x I , ~ P x I]~cT A~ > F x A~ 

A x J ' ~ A x [ I u c u  B , ,  [> A x B f r ( t  ) 

/ \ 

F, 

(2.2) PROPOSITION. There are initial and terminal objects (but no null 

objects*) in the categories Ine and Geo: 
(i) There exists exactly one object of Ine with no types at all; in this case, 

the family A (and hence also I) is empty. The corresponding incidence 

structure (0, O) is initial in Inc. Fixing the (cardinality of  the) set T of  

types, one obtains a subcategory Ine T of Inc. In Incr, the initial object is 

given by (0, (0)t~T), where (0)t~T: T ~ S e t :  t ~ 0.  

(ii) The (unique) action of  the initial 1 ~ Gp on the empty set gives rise to the 

initials .~ and 3 r  in Geo and Gent,  respectively, where UI.e(~)= (0, 0) 

and UInc(~T) = (0, (0),~T). 
(t) The setting T = A o = I = 1 defines a terminal object (1, (1)) e Ine, while 

1 = 1 and A =- 1 gives the terminal object (1 r, (1)t~T) ~Ine T. 
(tt) The (unique) action of  1 on 1 gives terminals Z and Z r  in Geo and Geor, 

respectively, where Ulne(~ ) = (1, (1)) and UIne((~T)) = (1 a°, (1)t~r). 

The proof of these statements is straightforward and left to the reader. 
The initial 1 e Gp acts on each incidence structure (K, C) in a unique way; 

we shall denote this action by (v, K, C). In particular, we obtain that the 
functor U~.~ is full. (This is in contrast to familiar forgetful functors, e.g. 
Gp --+ Set.) Note that for each group qJ there are unique actions W × 0 --+0 and 
qJ x 1 ~ 1. This implies that there are families t and z of actions such that 
(t, 0, 0) and (z, 1, (1)) are geometries. We shall use these objects in the proof of 
the following statement. 

(2.3) LEMMA. The functors Uin c and U6p preserve monics and epics. 
Proof. (i) Assume that f is not epic. Then there are morphisms 

g, h:(J, B ) ~ ( K ,  C) such that g o f  = h o f  but g ~ h. Now the unique morph- 
ism ~0: (3, J, B) ~ Z factors through morphisms (~, g) and (fl, h) from (6, J, B) to 

*If one requires the sets I, T, and A t to be non-empty, then (1, (1)) and (1T, (1)t~T) are null objects 
in Inc and Incr,  respectively; while • and ~ r  are null objects in Geo and Geor,  respectively. 
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(v,K,C). Now ~ ¢ f l  implies that (~,g)~(fl ,  h), but (~,9) °(~o,f)= 
(fl, h)o (~o, f) ,  hence (~o, f )  is not epic. This shows that Ulnc preserves epics. 
Dual arguments (with .~ instead of Z) show that Uin ¢ preserves monics. 

(ii) Assume that ~0 is not epic. Then there are morphisms ~, fl: A ~ qJ such 
that ~ o q~ = fl o q~ but ~ ~ ft. Now the unique morphism co: (6, J, B) -~ Z factors 
through morphisms (~, g) and (fl, h) from (6, J, B) to (z, 1, (1)). Now ~ ~ fi 
implies that (a, 9) ~ (fl, h), but (~, 9) ° (q~, f )  = (fl, h) o (~0, f) ,  hence (q~, f )  is not 
epic. This shows that UGp preserves epics. Dual arguments (with (t, 0, 0) 
instead of (z, 1, (1))) show that UGp preserves monics. [] 

Note, however, that neither Uinc nor UGp reflects monics or epics. 

(2.4) PROPOSITION.  Let (~o, f):(7, 1, A)--*(6, J, B) be a morphism in Geo. 
(a) (q~, f )  is epic if, and only if, q~ and f are epic. 
(b) (~p, f )  is monic if, and only if, ~o and f a r e  monic. 
(c) An epimorphism (q~, f )  is extreme if, and only if, f is extreme. 
(d) A monomorphism (q~, f )  is extreme if, and only if, f is extreme. 
Proof According to (2.3), the fact that (q~, f )  is epic (monic) implies that 

both ~o and f are epic (monic). Since the composition of morphisms in Geo is 
defined by (fl, h) o (a, 9) :-- (fl ° ~, h o g), the product functor U,p  × UIn~ reflects 
monics and epics. Thus assertions (a) and (b) are proved, and (c), (d) 
follow. [] 

Given a geometry ff~ = (~, I, A), one may try to recover information about (5 
from the family 7 of actions. Of course, this attempt will yield interesting 
results only if this family is 'sufficiently strong'. Our next definition is a 
precision of 'strength': 

(2.5) DEFINITIONS.  (a) Let ~ = (7, I, A) be a geometry. A family L: T--, Set 
is said to sketch (fi, if the following conditions hold: 

- F o r  each t ET, the set L t is a set of representatives for the orbit 
decomposition of A r under the action )'r 

- The product Lt := Ht~r Lt is contained in I, and forms a set of represen- 
tatives for the orbit decomposition of I under the action 7t. 

If L sketches (5, then (L, 7, I, A) is called a sketched geometry. A morphism 

(q~, f) :(L,  7, I, A ) ~ ( M ,  6, J, B) 

of sketched geometries is a morphism (~p, f):(7, I, A)~(6,  J, B) in Geo such 
that Ft(Lt) ~- M~ for each t E T (then F~(L~) ~ M j  for each suited Fx). Thus we 
obtain a category SGeo. 

(b) Let F be a group, and denote the set of all subgroups of I7 by a(F). A 
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sketch (F, ~ )  is given by a family ~q :T- -*  2"w):t  ~ ~ (i.e. ~ is a set of 

subgroups  of F). A m o r p h i s m  (q~, ~,  fT): (F, £f) ~ (A, J/l) consists of  a m o r p h -  
ism q~: F ~ A (in Gp), a m a p p i n g  J r :  T --* U (where U is the domain  of J/g), and 
a family ~ : t  ~--~tI) t with domain  T such that  

- ~t: ~ - ' *  Jgs~,) is a m a p p i n g  for each t~  T. 
- Fo r  each A e ~ ,  the inclusion ~o(A) ~< q~t(A) holds. 

These da ta  define a ca tegory  Sk of sketches. 

(2.6) P R O P O S I T I O N .  The family Z, where Z t = {1} for each t, sketches the 
terminal Z resp. ZT. Thus one obtains null objects in SGeo. 

Again, the (straightforward) p roof  is left to the reader. 

The existence of a family L that  sketches a given geomet ry  (V, I, A) is ra ther  a 

s t rong condition: 

(2.7) P R O P O S I T I O N .  Let (I, A) be a partial plane* with point space Ap and 

line space At, and assume that there are families 7 and L such that 
(L, 7, I ,  A)~ SGeo. Then either Lp or L l has exactly one element. 

Proof Assume that  there are points  x, y e L v and lines v, w e Lt. Then 

{(x, v), (x, w), (y, v), (y, w)} _~ I, 

hence either x = y or  v = w by the definition of a part ial  plane. [ ]  

In part icular ,  this means  that  each sketched finite linear space is point  
homogeneous ,  cf. [1, Th. 2.1]. Outside the realm of partial  planes, one can 

easily cook  up examples  with non-tr ivial  sets Lt: 

(2.8) E X A M P L E .  Assume that  the points  p, (1 ~< n ~< 4) form the vertices of  a 

te t rahedron,  and  denote  the sides of this t e t rahedron  by s, in such a way that  

p, lies on Sm if n ¢ m. The  t ransposi t ions  (12) and (34) generate a subgroup  F 
of Sym4 that  acts in the obvious  way on the vertices and on the sides of  the 

te t rahedron.  N o w  the sets Lp :=  {Pl, P3} and Ls :=  {$2, $4} sketch the given 

geometry.  
There is a ra ther  obvious  way to associate a sketch with each sketched 

geomet ry  t5 = (L, 7, I, A), namely  to define ~ := {Ft~ ] r ~ L~} where F~ denotes 
the stabilizer o f t  with respect  to the act ion ?r  Then  S(~)  := (F, ~ )  is a sketch. 
Fo r  the reversed direction, f rom Sk to SGeo, we have to work  a little harder: 

*In the sense of M. Hall [-4]: i.e. there are two types ('points' and 'lines'): T = {p,/}, and an 
incidence relation I ~ Ap x At such that for any two points x, y E Ap there is at most one line 
w ~ Al with {(x, w), (y, w)) _~ I, and dually. 
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(2.9) DEFINITION. Let ~ = (F, ~ )  be a sketch. For each t c T, write 

F 
P , :=  P , (~) :=  O A '  

Ae£~, 

and let 2, be the action of F on P, via left multiplication. With 

PI := P*(~) := {(~A,),eT I c~ e F, a~ e ~ } ,  

and the action 2, of F on P, via (simultaneous) left multiplication, we obtain a 
geometry (2, P,, P): 

i d r × i  idv x pr, 
F × PI I-[~TP~ 

PI ' ' F l ,er  P, ~ >  P' i pr, 

Obviously, the family ~ sketches (2, P~, P). (Note that P~ is just the union of 
the orbits of the elements of Ht~r ~t under the action 2,.) We shall call 
(5F, 2, PI, P) the picture of (F, £a) and denote it by P(F, ~q). 

3. RECONSTRUCTION 

The categorical view of the reconstruction of sketched geometries amounts to 
the proof that the reconstruction process involves a pair of adjoint funetors 
(with object mappings S and P, respectively), and that the class of those 
geometries that are images under reconstruction forms a reflective 
subcategory. 

Straightforward verification shows: 

(3.1) LEMMA. For each morphism (~0, F, fr): (L, 7, I, A ) ~  (M, 6, J, B) define 

S(tp, F, J r ) :=  (q~, O, fT), 

where • r is given by Ot(F~):= f (t) Afar). Then S:SGeo ~ Sk is a functor. 

A first step towards the understanding of the connection between S and P is 
the following trivial observation: 

(3.2) LEMMA. S o P = idsk. 

The study of P o S requires some more effort. 

(3.3) THEOREM. For each sketched geometry 0 = (L, 7, I, A), there is an 
extreme epimorphism 3/o = (idr, H, idr): ~ ~ P(S(ffi)). The epimorphism rlo is 
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an isomorphism if, and only if, the following holds: I f  r, s t  L t, the equality 
Ftr= Ft~ implies that r = s. 

Proof. F o r  each x ~ A~, there is a (unique) representat ive r ~ L t and a (usually 

not  unique) e lement  ct e F such that  x = ?t(ct, r). If  yt(e, r) = 7t(fl, s) for some 
(fl, s)~ F x Lt, then e - l f l  e Ftr and r = s. This implies that  the m a p p i n g  

H t : A t ~ P¢: 7t(c¢, r) ~-* ~Ft~ 

is well defined, and that  it is injective if, and only if, for any two 

representat ives r, s e L~ the stabilizers Fir and  Fts are different. (Note, however,  
that  for different types t, u ~ T, there m a y  hold an equat ion  t _  Fr - F~ without  
dis turbing the injectivity of  any  of the Ht, cf. Example  (2.8).) Similar 
a rguments  show tha t  

H~ : I ~ Pl  : Vi(~, (rt)tET) ~ (o~Ftrt)tET 

is a well-defined mapping .  Obviously ,  the family H defines an extreme 
ep imorph i sm t/¢ = (idr, H,  idr). The assert ion tha t  ~/~ is an i somorph i sm is 

equivalent  to the assert ion that  t/~ is monic,  hence equivalent  to the assert ion 

that  for each t ~ T the m a p p i n g  H t is monic. [ ]  

(3.4) T H E O R E M .  < S , P , ~ > : S G e o ~ S k  is an adjunction with unit 

~1 = (t5 ~-~ tl~) and counit e = ( ~  ~ idz), where 

(~¢ ,z ) -  ~ : SGeo((5, P ~ )  ~ Sk(SlS, ~ )  :(¢p, F, fT) ~ S(~p, F, f~). 

In particular, we have that P : S k  ~ SGeo is a functor, and that ~1 is a natural 

transformation f rom idsG¢o to P o S. 

Proof. Since eer,~) = id(r,~) is a universal  a r row f rom S to (F, L), this follows 

f rom I-5, Th. IV.1.2(iv)]. [ ]  

Since each c o m p o n e n t  e® of the counit  ~ is an i somorphism,  we obta in  
[5, Th. IV.3.1]: 

(3.5) C O R O L L A R Y .  The functor P is full  and faithful. 

(3.6) T H E O R E M .  The image o f  Sk under P in SGeo  forms a reflective 

subcategory. 

Proof. Using (3.2) we obta in  that  P o S o P = P, hence P o SIP(sk) = idp(sk). 
N o w  [5, Th. IV.1.2(v)] says that  p oS is a left adjoint  for the inclusion 

functor.  [ ]  

Qui te  often, one wishes to identify a certain object in an incidence structure 
with the se t  of  objects that  are incident with it. General izing not ions like 
'point  row'  or 'line pencil', we introduce residues in an incidence structure 
(I, A) with type set T by  the following procedure:  Fix an element r of type u, 
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consider all objects that are 'in some flag together with r', and introduce an 
incidence structure with type set Tk{u} on these objects. To be formal: 

(3.7) DEFINITION.  Let (I, A) be an incidence structure, and fix some type 
uE T and an element r~A, .  Writing / i t := prt(lc~pr~(r)) for each t~ Tk{u} 
defines a family ~,i of sets with domain Tk{u}. With 

/ : =  {(prt(x))teT\{u }[x~Ic~pr~(r)} ~_ 1NI A t 

we obtain an incidence structure (1, A). To stress the choice of u s T and r e A,, 
we write Res~ := (I, A). 

(3.8) PROPOSITION.  Assume that (L, y, I, A) is a sketched geometry, and f ix 
r~L ,  for some type u~ T. Then (L,~, I, A) is a sketched geometry, where 

A A 

(I, A) = Res~ as in (3.7), and 

%:= ~ti~×~,, L : =  Lira{u}. 

Proof. By definition of F~", we have that ~t(F~ x At) __q A t for each t ~ Tk{u}. 
This implies that (~, I, A) is a geometry. In order to show that L sketches 
(~,I,A), we observe that each element x ~ I  is of the form 

x = ?t(c~, (rt)t~r) = (Yt(e, rt))tsr for some e ~ F and unique representatives rt e Lt. 
Now ? . ( r , )=  r implies that r, = r, hence e e F~ if, and only if, the element x 

belongs to I c~ pr~-(r). This yields that for each t e Tk{u}, the set Lt is a set of 
representatives for the action ~, of F~" on A t, and that IIteT~{, ) L't forms a set of 
representatives for the action 

(3.9) COROLLARY. Assume that I~i = (L, 7, I, A) is a sketched geometry. Then 
for each type u ~ T, the equality F~ = F~ for r, t ~ L, implies that Res~ = Rest'. 

Proof. This follows easily from the fact that, for each t ~ T, there holds the 
equation 

pr t ( I~  pry(r)) = ~ t ( F  u × Lt). [] 

In view of (3.9), it seems reasonable to consider the full subcategory RGeo of 

SGeo, consisting of those sketched geometries (L, 7, I, A) such that the 
following condition holds: 

(R) For every t ~ T and r, s ~ Lt, the equality Restr = Rests implies that 
r ~ S .  

In fact, it is easy to find examples that show that condition (R) does not 
imply that for any two objects x , y ~ A ,  we have the implication 
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Res~ = Res~ ~ x = y. Though it seems somewhat arbitrarily, condition (R) 
singles out an important subcategory: 

(3.10) THEOREM.  The categories RGeo and Sk are equivalent (via ~l). 

Proof. From (R) we infer that for r, s ~Lt,  the equation Ftr= Fts implies that 
r = s. According to (3.3), this means that r/~ is an isomorphism for each object 
~i of RGeo. [] 

(3.11) FINAL REMARK. In our present treatment, the situation that was 
studied in [7] occurs as a special case, namely: The geometries under 
consideration have two types ('points' and 'lines'), and are subject to three 
conditions (R1), (R2), and (R3). Condition (R2) says that one has a sketched 
geometry, with the additional property (R1) that the actions on the points is 
transitive (i.e. a property that is quite natural in the realm of linear spaces, cf. 
(2.7)). Condition (R3) says that stabilizers of different representatives are 

different. Thus it makes sure that the reconstruction process yields an 
isomorphism. Our result (3.10) above implies that (R3) in [7] may be replaced 
by condition (R), without affecting the results of I-7]. In particular, the validity 
of (R3) in the examples ['7, 7] holds afortiori. 
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