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Abstract. Stable planes are a generalization of compact connected projective planes. 
The possible configu~'ations of fixed points for quasi-perspectivities are determined 
(extending results of R. Baer), and restrictions to the structure of finite quasiperspective 
groups as well as bounds for the dimension of quasi-perspective groups are derived. 

A stable plane • = (M, Jg)  is a topological linear incidence geome- 
try such that  

�9 the point space M and the line space ~ are locally compact  
Hausdorff  spaces 

�9 the covering dimension dim M is positive and finite 
�9 the operations /~ ~ - .  M :  (X, Y) w-~ X A Y (intersection of lines) 

and v : M  x M\{(x, x)tx~M} ~ Jg : (x ,  y)~-.xy (joining of points) 
are continuous, and the domain ~ of definition of A is open in 
~ / x J A  

Familiar examples of stable planes are the geometries induced on 
open sets of  points of compact  connected projective planes of finite 
covering dimension (e.g. the Klein model  of the hyperbolic plane, see 
[5]). There are, however, stable planes that are not embeddable in this 
way, see [18]. 

According to a deep result of L6WEN [8], the covering dimension of 
M equals 2l, where l denotes the dimension of a line, and l is one of 
the integers 1, 2, 4, or 8 (i.e. the dimension of one of the real division 
algebras [~, C, H, or @). The group Aut  (~)  of all continuous collinea- 
tions, endowed with the compact-open topology, is a separable, locally 
compact  transformation group on M and ~ (see [6], 2.9). This group 
has proved to be a good tool for the study of stable planes of low 
dimension (see e.g. [3], [9] and the references given there) and for the 
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theory of compact connected projective planes in general (see [14] and 
the references given there). In order to exploit these techniques for 
stable planes of  arbitrary dimension, one needs information about 
planar groups (cf. [19]~ as well as about quasi-perspectivities. 

1. Definitions. a) A subgroup A ~ 1 of Aut(M) is called quasi- 
perspective if each orbit x a is contained in some line Lx. 

b) An element fi of  Aut (M) is called quasi-perspective (or a quasi- 
perspectivity) if the subgroup ( 5 )  generated by fi is quasi-perspective. 

c) An element 5 of Aut (~)  is called a Baer collineation, if the set 
Fix(5) of fixed points contains a quadrangle and dim Fix(5) = 
= dim M/2. 

Note that, for each quasi-perspective group A, the line Lx is 
determined uniquely if x is moved by A. We write ~ a  = 
= {LxlXeM\Fix(A)} and ~ =  ~w<~> for each quasiperspectivity 5. 
According to ([7], 1.1), the mapping Z : x ~ L x : M\Fix  (A) ~ ~ is 
continuous. Restricting/!. to a line H that is moved by A, one obtains 
that 5e~ is locally homeomorphic with H. Note that each line Lx e 5r 
is fixed by A. 

2. Definitions. Let A be a subgroup of  Aut (M), where M = (M, ~ ' )  
is a stable plane. 

a) If A acts trivially on the pencil Jgz = {L e Jglz e L} for some point 
z e M, then z is called the center of A. 

b) If A acts trivially on some open nonvoid subset U of a line L U 
in ~/ ,  then U is called a semi-axis of  A. If  U = Lu, then Lu is called 
an axis of  A. 

Note that each group A with semi-axis U acts effectively as a group 
with axis on the open subplane induced on M\(Lu\U). 

According to a well-known theorem of  R. BAER [1] (see also [11], 
pp. 71--73), each quasiperspectivity 5 of  a projective plane either has 
center and axis, or the geometry induced on Fix (5) is a non-degenerate 
projective plane (in fact, a so-called Baer subplane, cf. [4], pp. 82, 
91--94). In the case of compact connected projective planes of  dimen- 
sion 0 < 2l < ~ ,  such a subplane has dimension l (see [12], 1.4, [13], 
1.4). Note that this follows readily from L6wen's restriction of  the 
possible dimensions and the fact that the set of  fixed lines is locally 
homeomorphic with a line. 

We are going to extend Baer's theorem to the case of stable planes. 
A special feature of stable planes is the following: Removing a proper 
closed subset X of  M (where (M, ~ )  is a stable plane), one obtains a 
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stable plane ( M \ X ,  fig), where fig consists of  those lines of Jg that meet 
M in at least two points. If fi is an automorphism of (M, J4') that leaves 
X invariant, then ~ induces an automorphism of  ( M \ X ,  fig). Therefore 
one can only expect that Fix (fi) forms a part of  one of  the configurati- 
ons that occur in projective planes. The following lemma is the key to 
the characterization of the possible configurations: 

3. Lemma. Let  ~ be a quasi-perspective automorphism o f  a stable 
plane ~ = (M,  rig), and assume that two lines I x ,  Ly~ S f  8 intersect in 
a point  z ~ M. I f  fi is not a Baer collineation, then z is the center o f  8. 

Proof. We use the continuous mapping ~ : M\Fix  (6) ~ ~ :  q ~ Lq. 
Set l = dim Lx. In lines G and H through x and y, respectively, one 
finds compact neighbourhoods X of x and Y of y such that X z • YZ 
is contained in the domain of definition of A. Define the mappings 

l . t :X ~ Ly:q~"--~ Lq A Ly, 

v: Y ~  Lx:q~-*L  q ix L x. 

There are two cases: i) There is a point r s X  ~ such that d imr u~z > l/2. 
Assume that K ~ r  u~x meets L ~ Y  ~ in a point s # r .  Then 
dim{L A K ' l K ' e r  u~x} = direr  u~x > l/2. Choosing L ' e  YX near L, one 
obtains that Fix (g) generates a subplane of dimension greater than l. 
Consequently, dim Fix (g) = dim M, and Fix (6) is a neighbourhood in 
M by ([8], Theorem l lc)). Now fi = 1, a contradiction. Therefore 
y v =  {z}- -X ", and r = z. Since L x was arbitrary, we obtain that 
s 8 m Jr is open in ~g~. On the other hand, ~ z  is closed in Jg. Now 
~ 8 ~  Jgz = Jg~ since J/g~ is connected ([6], 1.14), and z is the center 
of  & 

ii) In the remaining case we have that m a x { d i m r U ~ l r e X  ~} <~ l/2. 
An application of  the dimension formula in ([10], III.6) yields that 
dim X ~ >>, 1/2, and the set {K/~ L[ (K, L) e X" x Y~} generates a sub- 
plane of  dimension d/> l. Now d = l since fi # 1, and fi is a Baer col- 
lineation. [] 

We wish to extend R. Baer's theorem to the case of  quasi-perspecti- 
vities of  prime order, in particular involutions. For this purpose, we 
shall use the following topological lemma. 

4. Lemma. Let  p e M,  where (M, Jg )  is a stable plane. Then Jgp\{L} 
has trivial homology groups for  each line L through p. 
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Proof. According to ([8], 5.3) each compact  subset q / o f  J//p\{L} has 
a contractible compact  neighbourhood in Jdp\{L}. Hence all homotopy  
groups are trivial, and the assertion follows from Hurwitz' Theorem 
([17], Theorem 4, p. 397). [] 

5. Theorem. Let ~ v a 1 be a quasi-perspectivity (e.g. an involution). 
Then one (and only one) o f  the following holds: 

a) ~ is free, i.e. Fix (8) = 0. 
b) ~ is a Baer collineation. 
c) ~ has a center or an axis (or both). 
d) Fix(8) is contained in a unique line L, which is not an axis; and 

through each f ixed point there passes no other f ixed line except L. 
I f  6 has prime order (in particular i f  8 is an involution), case d) does 

not occur. 

Proof. The cases a), b), c) and d) are mutually exclusive. Let 
q~Fix(8) .  Since Fix (8) is not  open in M, there is a sequence q, 
converging to q such that  q ,~Fix  (8). According to ([6], 1.17) the lines 
Lq, accumulate at a line L. This line passes through q by ([6], 1.5). If  

there is another  fixed line K through q, then either K or L is an axis, 
or 3) applies. Since Jgq\{L} has trivial homology groups, a result of 
P. SMITH [15] assures the existence of K in the case where ~ has prime 
order. [] 

For  stable planes, we do not  know whether case d) occurs. It is, 
however, easy to give examples for discrete linear spaces admitting 
such quasi-perspectivities: 

6. Example. Let (P, ~ )  be a projective plane admitting an elation 
r with axis A e N  and center c~A.  For  each point  x EA\{c}, the 
restriction of r to the geometry induced on P\(A\{x}) is a quasiperspec- 
tivity of  type d). Note  that  in the non-discrete case the deleted set is not 
closed, and we do not  obtain a stable plane. 

We turn to the study of  commuting quasi-perspectivities now. 

7. Lemma. Let a ~ 1 be a quasi-perspectivity o f  prime order with 
axis A. Then there is exactly one f ixed line Ca ~ J/ga\{A} for  each point 
a ~ A. Moreover, Ca belongs to ~a .  

Proof. The existence of Ca follows from [15] since J~a\{A} has trivial 
homology groups (4)). Now Ca e s because Ca is different f rom the 
axis A. If  there is another fixed line L e J//a\{A, Ca}, then a is the center 
of a by 3). In this case, Cb would be an axis for each b ~ A\{a}. 
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8. Proposition. Let A be an elementary abelian group of  automor- 
phisms of  a stable plane (M, rig) and assume that there is a line A ~ Jfl 
such that A is the axis o f  each 6~A\ l .  Then A is cyclic. 

Proof  Choose fie A\I, and let a be a point on A. By 7), there are 
exactly two lines A and Ca through a that are fixed by 6. Since A 
commutes with 6 and consists of  automorphisms with axis A, we 
conclude that each element of A\I fixes exactly the lines A and Ca in 
~g/a" Now A is an elementary abelian group acting effectively on the 
homotopy sphere d/{ a such that the set of  fixed lines through a forms 
a 0-sphere for each non-trivial element of A. A theorem of P. SMITH [16] 
yields the assertion. [] 

Note that 8) excludes many types of finite groups (see e.g. [2] Ch. 
5, Th. 4.10; Ch. 7, Th. 6.2). In particular, the possibilities for connected 
Lie groups are strictly restrained. 

9. Theorem. a) Commuting involutions with the same axis are equal. 
b) Let J be a nonvoid set o f  commuting involutions with common 

center a. I f  there is an involution a with axis A such that a commutes with 
each element o f  J ,  then J consists o f  one element o-. Moreover, o- = a 
if  a q~A, and era is an involution with axis Ca if a ~ A. 

Proof. Assertion a) is a corollary of 8). Let o-~ J .  Since o- and a 
commute, the axis A is fixed by o-. If a ~ A, then A is an axis of  o-, and 
o- = a by assertion a). If, on the other hand, a r o-, then a = A A Co, 
and the lines A and Ca are the only lines through a that are fixed by a. 
Since o- acts trivially on J~a, these two lines are the only lines through 
a that are fixed by o-a, and the involution o-a is not a Baer collineation, 
nor has it center a. Assertion a) yields that the axis of  o-a is Ca. Since 
this holds for each o-~ ~r we conclude that J = {o-}, and claim b) is 
established. [] 

10. Corollary. (Triangle Lemma). Let M be a stable plane, and let 
and A be subgroups of  Aut (M) such that q~ fixes a point x and A fixes 
a triangle pointwise. 

a) I f  there are three commuting involutions in ~, then at least one of  
them has not an axis through x. 

b) I f  there are four commuting involutions in A, then at least one of  
them is a Baer collineation. 

c) I f  there are three commuting involutions in �9 such that each of  
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them has center and axis, then the centers form a non-degenerate 
triangle. 

d) Let a, fl, 7/ be three commuting involutions in A. I f  none o f  them 
is a Baer collineation, then 7/= aft, and (a, fl) ~- Z/2Z • Z/2Z. 

Note that the automorphism groups PSL3H and E6( -26  ) of  the 
projective planes over Hamilton's quaternions and Cayley's octonions, 
respectively, contain subgroups isomorphic with (Z/27/) 4 and hence 15 
commuting involutions. Only three of these have axis and center, the 
remaining 12 are Baer collineations. 

In the study of stable planes with large automorphism groups, the 
following will be useful: 

11. Theorem. Let A be a locally compact group o f  automorphisms of  
a stable plane M = (M, Jr with dim M = 21. 

a) I f  A has a semi-axis, then dim A ~< 31. 
b) I f  A is quasi-perspective, then dim A ~< 3l. 
c) I f  A is quasi-perspective and has a semi-axis, then dim A ~< l. 
d) I f  A has a semi-axis U and centralizes an involution erdA, then cr 

has axis L U, dimA <<. l, and A acts freely on d//,\{Lv, C,} for  each point 
u~U.  

Proof. i) Let U _ Lv be a semi-axis of  A. For x e M~Lv, the stabilizer 
A x fixes each of  the lines xu, where u~ U. The set {xulue U} is open 
in J//x. Choose u e U. For y exu\{u}, the stabilizer Ax, y has two semi- 
axes and is therefore trivial. Assertion a) follows from the fact that 
dim A/Ax <<. dim M = 2l and dim Ax/A~.y <~ dim xu = l. 

ii) Assume that A is quasi-perspective, and let Xl be a point that is 
moved by A. Choosing two points x2, x3 such that xl (~x2x3 we obtain 
that A=~,xj3 is trivial. Since dimA/Axi <<. dimL= i = l, assertion b) fol- 

lows. In case c), choose x2 and x3 in the semi-axis. 
iii) Assume the situation of d). Obviously, the involution cr has axis 

Lu, and A fixes C, for each point u e U. Choosing xl e C,\{u} and x2, 
x3 e U, we obtain that dim A ~< l analogously to ii). [] 
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