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ABSTRACT. Hilbert and Beltrami (line-) systems were introduced by H. Mohrmann, Math. 
Ann. 85 (1922) p.177-183. These systems give examples of non-desarguesian affine planes, in 
fact, the earliest known examples are of this type. We describe a construction for "generalized 
Beltrami systems", and show that every such system defines a topological affine plane with 
point set Rl. Since our construction uses only the topological structure of Rl-planes, it is 
possible to iterate this process. As an application, we obtain an embeddability theorem for a 
class of two-dimensional stable planes, including Strambach's exceptional SL2R-plane 

In this paper, we study various types of topological plane geometries. We shall use these 
to distort the lines of the real affine plane A(R) = (R2,aff1(R2». Our construction uses 
only the topological properties of A(R) (in particular, the convexity theory for R2-planes, 
cf. [14, p.ll] and [2, p.57]). Therefore, it applies to arbitrary affine R2-planes, as defined 
below (see [4]; these planes are also called "Salzmann-planes" in the literature). 

Let us first consider planes on compact disks: 

(1) Definition. An incidence geometry (D, V) is called a compact disk (or CD, for short) 
if the following hold: 

(1) (D, V) is a linear space. (I.e., the set V of "lines" consists of subsets of D such 
that every line LEV contains at least two points, and for any two points I, y ED 
there is exactly one line LEV such that I, Y E L .) 

(2) The point set D is homeomorphic to the closed unit disk in R2. 
(3) Each line LEV is homeomorphic to the closed unit interval. Moreover, the 

boundary aL is contained in aD, and L \ aD is connected. 

Note that we do not exclude the case that L \ aD is empty for some LEV. There are, 
in fact, only two possibilities: 
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(2) Lemma. Let (D, V) be a CD, and let LEV be a line. Then either LeaD, or 
L n aD = aL. I.e., the incidence structure that is induced on aD has lines that are either 
connected or consist of exactly two points. 

Proof. The closure H of L \ aD (in D) is an interval that separates D. Assume that 
aL::I L n aD ::I L. Then H ::I L, and there exists some point x E L \ HeaD. Choosing 
y in the component of D \ H that does not contain x, we infer that the line X that joins 
x and y meets H, since X is connected. This contradicts the assumption that (D, V) is a 
linear space. 0 

(3) Corollary. For every CD II) = (D, V), there exists a "model in A(IR}", i.e., a home
omorphism "y: D ~ E onto some compact convex subset of A(R) such that "y induces an 
isomorphism of the incidence structures that are induced on aD (from O) and on aE (from 
A(IR)}, respectively. 

Proof. We may assume that D is the unit disk in 1R2. If a line LEV meets aD in more 
than two points, then L c aD by (2). For every LeaD, we replace L by the line 
segment that joins the endpoints of L in A(IR}. Thus we replace the unit circle aD by a 
Jordan curve JeD. The projection of aD onto J from an interior point q of J yields an 
isomorphism from the geometry that is induced on aD from D onto the geometry that is 
induced on J from A(R). This projection extends to a homeomorphism from D onto the 
closure E of the interior of J, as is easily seen using polar coordinates (with respect to q) 
and the fact that the distance function is continuous. 0 

It seems that the geometries that we call CD were already investigated by E. BEL
TRAMI, and their spatial analogues by F. KLEIN, see [6, §2J, cf. also [7, p. 154J. A main 
motive for our investigations was the wish to make precise (and, thus, accessible to modern 
mathematicians) some of the ideas of the second half of the 19th century. 

Since every compact convex subset D c R2 with non-empty interior is homeomorphic 
to the closed unit disk, we obtain many examples: 

(4) Examples. Let D be a compact convex subset of R2, and define 

Then (D, V) is a CD. In particular, the closure of the BELTRAMI-KLEIN model of the 
hyperbolic plane is a CD. If D is not strictly convex, we obtain examples with lines LEV 
such that L \ aD = 0. 

(5) Proposition. Assume that D C 1R2 is a compact convex subset, and that x E 1R2 \ D 
is a point such that the inversion L at some circle around x maps D onto a convex set. 
Then II) = (D, V) is a CD, where V consists of the nontrivial intersections with D of circles 
through x. 

Proof. For any two points c,d ED, there is a unique circle through c,d,x (degenerate, if 
c,d,x are collinear). Hence (D, V) is a linear space. Since D' is convex, we obtain that 
(D',V') is a CD, cf. (4). 0 

(6) Definition. Let (R2, £) be K. STRAMBACH's S~R-plane, as defined in [15], cf. [12]: 
The set £ is the union of the set of all ordinary lines through the origin and the set of all 
images of H = {(x, x-I); X > o} under the usual action of SL2R (i.e., the group of all real 
2 x 2-matrices of determinant I). 
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The mapping 

p: JR2 -t R2: (x, y) t-+ (x, y) 
V2+X2 +y2 

maps R2 onto the open unit disk U. We write D for the closure of U. For each line LEe, 
let L denote the closure of £P in D. Finally, let S = {Lj L E C}. 

Note that iI = {(x, 1 - x)j ° ~ x ~ I}, while L is part of a rational curve in general. 

(7) Theorem. The "closed STRAMBAcH-plane" (D,S) is a CD. 

Proof. Assume that L E .c is a line of STRAMBACH's plane. Since L is not compact, the 
image LP is not closed in D. If L passes through the origin, then LP C L , and L = L n D. 
If L = HO for some a E SL2R, we consider the "asymptotical rays" of HOj i.e., the half
lines {(x,O);x 2: O}a and {(O,Y)jY 2: O}a. The projection 1T:(X,y) t-+ {r(x,y);r 2: O} is a 
continuous mapping from JR2 \ {(O,O)} to the set n of all rays starting from the origin. 

-". 

Now HOP'" = Ha". is a proper open interval in n ~ SI. Hence Ha \ Ha". consists of 
the two asymptotical rays of HO. Since Hap is closed in U, we conclude that Ha consists 
of Hap plus the intersection points of the asymptotical rays with aD. In particular, we 
obtain that the point space and each of the lines have the topological properties that are 
required by Definition (1). 

In order to show that (D, S) forms a linear space, let p, qED be two points. If both p, q 
lie in U, then there exists a unique line that contains them, since STRAMBACH's plane is a 
linear space. So assume that p E aD. If q E Rp, then the line Rp n D is the unique joining 
line. If q E U \ Rp, then there exists a unique element a E SL2R that maps (1,1) to qP-1 
and one of the asymptotical rays of H to the ray {rp; r 2: a} . Finally, if q E aD, then the 
elements of SL2R that map the asymptotical rays to the rays {rp; r 2: O} and {rq; r ~ O} 
form a single coset D.a, where D. is the stabilizer of H in SL2R. In both cases, the line Ho 
is the unique joining line. 0 

If (D, V) is a CD, then the linear space induced on the interior DO is (DO, VO), where 
vo = {L \ aD;L E V} \ {0}. From condition (3) of Definition (1), we infer that (DO,VO) 
is an IIfl-plane in the sense of [4J: 

(8) Definition. An incidence geometry (U, U) is called an R 2 -plane if the following hold: 

(1) (U, U) is a linear space. 
(2) The point set U is homeomorphic to R2. 
(3) Each line LEU is closed in R2, and is homeomorphic to R . 

If the underlying linear space is an affine plane, we shall speak of an affine JR2-plane. 

(9) Examples. The real affine plane A = (R2,aff1 (R2)) is an R2-plane. In analogy 
with (4), an R2-plane is induced on every open convex subset U C R2. This includes, 
in particular, the hyperbolic plane. Numerous other examples have been constructed by 
H. SALZMANN, K. STRAMBACH, H . GROH, and others, see [14J, [4] and the references 
given there. 

There is a convexity theory for R2-planes, see [14, p.ll] and [2, p.57]: Convexity in 
(U,U) is defined with respect to the lines in U instead of the ordinary lines of the real 
affine plane. We shall speak of U-convex sets. Now the fact that the interior of a CD is an 
R2-plane has the following immediate consequence (cf. (2)): 
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(10) Lemma. Let (D, V) be a CD. Two lines L, MEV intersect in an interior point 
q E DO if, and only if, none of them is contained in aD, and their endpoints separate each 
other on aD (recall that aD is homeomorphic to the circle). 

Proof. This follows from the fact that lines in an JR2-plane intersect transversally, see 
[14, 2.8]. 0 

Note that (10) implies that, for every CD, the relation "meet in the interior" is just the 
relation of "separating" for 2-sets in the circle. This fact will be used later on. Our next 
aim is to show that every CD can be embedded in an affine R2-plane. 

(11) Definition. Let A = (JR2,A) be an affine JR2-plane, and let D = (D,V) be a CD. 
Moreover, assume that ""(: D ~ E is a homeomorphism onto some A-convex subset E C JR2. 
For every line LEV, we define t = L"f U (K \ E), where K E A joins the endpoints of 
£"I. Then the line set A~ = {L E A; IL n EI :::; I} U it; LEV} gives rise to the incidence 
structure A~ = (R2,A~). 

(12) Theorem. Let A = (JR2,A) be an affine JR2-plane. Assume that D = (D, V) is a 
CD, and that ""(: D ~ E is a homeomorphism of D onto some A-convex subset E C JR2 
such that ""( induces an isomorphism of the incidence structures that are induced on aD 
(from D) and aE (from A), respectively. Then A~ is an affine JR2-p lane. 

Proof. Let p, q E JR2 be two points. Existence and uniqueness of a line L E A~ that joins p 

and q are obvious if either both p, q E E or both p, q E JR2 \Eo. So assume that p E JR2 \ E, 
and q E EO. There exists a line H E A such that H n ( {p} U E) = 0. We fix an ordering 
on H. For each line L that meets H, we have the notion of the lower and the upper half 
plane with respect to this ordering on L. We consider the set <f of all points x E H with 
the property that q does not belong to the lower half plane with respect to the line that 
joins p and x in A~, and the set q t of all points y E H with the property that q does not 
belong to the upper half plane with respect to the line that joins p and y in A~. Obviously, 
inf q t = sup q.l., and q belongs to the line that joins p and inf q.l. in A~. According to (10), 
two lines that meet in q never meet outside E. This implies uniqueness of joining lines 
between points of 1R2 \ E and points in EO. The validity of the parallel axiom for A~ also 
follows easily from (10). 0 

Note that the assumption about the isomorphism between aD and aE holds trivially 
ifD is "strictly convex", i.e., if L n aD = aL for every LEV. Moreover, we know from 
(3) that there always exists a model in A(JR). Hence every CD can be embedded in some 
affine JR2-plane. From L.A. SKORNJAKOV's result [13], see [14, p.7], we infer: 

(13) Corollary. Each CD is embeddable in a projective plane with the property that 
the point space is a compact surface (in fact, homeomorphic to the point space of the real 
projective plane). 

The planes A(JR)~ are slight generalizations of Hilbert and Beltrami systems in the sense 
of [10]: Actually, H. MOHRMANN's definitions imply that A(JR)~ is a Hilbert system ifD is 
locally desarguesian, and that A(IR)~ is a Beltrami system if there exists no desarguesian 
neighbourhood for any point of D. Note that, even if one starts with the real affine plane, 
iteration of the process described in (11) requires the general setting. 
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(14) Example. Using a CD of the type described in (5), D. HILBERT [5, Kap. V, §23J 
obtains his first example 0/ a non-desarguesian planel. The existence of a point x such 
that some inversion with center x maps the convex set D onto a convex set is a restriction 
to the shape of D: if the boundary aD is a (piecewise) smooth curve, this is equivalent to 
the assertion that the curvature of aD is bounded below (in this case, choose x such that 
the distance from x to D is bigger than the inverted infimum, i.e., the supremum over the 
radii of curvature). In particular, there is no such point x for any polygon D . For any 
ellipse, however, there exists a suitable x. For his example, D. HILBERT explicitly gives 
an ellipse and a center of inversion. 

(15) Proposition. If one chooses the closed unit disk for D in (5), and for x any point 
outside D, then the resulting aRine plane A(R)~ is isomorphic to the real aRine plane. 

Proof. Let K be the circle with center x that is orthogonal to aD. If L denotes the 
inversion at K, and U denotes the (hyperbolic) reflection with center x and axis through 
the intersection points of K and aD, then LU fixes aD pointwise. Defining r.p by ',OlD = LulD 
and 'PIW\D = id, we obtain that ',0 is an isomorphism. 0 

(16) Examples. In [10J, H. MOHRMANN uses rectangles for D = E, and gives the system 
V explicitly (using parabolas, or exponential curves) . 

(17) Example. Combining (7), (12), (13), we obtain an embedding of K. STRAM BACH's 
exceptional S~R-plane in a projective plane whose point space is a surface. This is of 
particular interest since K . STRAM BACH showed that the SL2R-plane does not admit any 
SL2 R-equivariant embedding in a projective plane of the type mentioned above. The 
homeomorphism p in (6) is choosen in such a way that the action of the subgroup S02R 
extends to A(R)~, i.e., we obtain an S02R-equivariant embedding. Note that S02R is a 
maximal subgroup of SL2R. 

(18) Remark. Corollary (13) gives a criterion for embeddability as an open subplane of 
an affine or projective plane. There are some criteria that imply non-embeddability, see [8, 
Sect. 5J, [16, Sect. 2 and 3J. 

Recall that a Beltrami system is of the form A(R)~, where D is a CD with the property 
that no point has a desarguesian neighbourhood. Since every collineation of an R2-plane 
is continuous [14, 3.5J, we obtain: 

(19) Theorem. The group of collin eat ions of a Beltrami system A(R)~ leaves D invari
ant. The same assertion holds for the projective closure of the system. 

(20) Remark. The situation becomes more difficult for Hilbert systems, as is indicated 
by (15). In particular, a hard part in the determination of the automorphism group of 
D. HILBERT's first example (cf. (14» will be to show the invariance of D. Once this has 
been established, R. LOWEN's "local Fundamental Theorem" [9] can be used to determine 
the restriction to the complement of D (and to the interior DO, if one has a Hilbert system). 
Since the boundary aD contains one-dimensional orbits, results of H. GROH [3J may be 
useful as well. 

1 ActuaUy, there was an earlier example by D. HILBERT, see [17, p.158]. However, this example never 
appeared in print. Note the interesting fact that, as early as 1873, F . KLEIN [6, p.135f] seems to use the 
construction described in (11) to give an example of a non-desarguesian plane. 
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(21) Conjecture. It is tempting to conjecture that, among the affine R2-planes, the 
planes A(R)~ can be characterized by the fact that "the distortion is bounded": I.e., the set 
of points that do not have desarguesian neighbourhoods is contained in some compact set. 
However, we face the problem that it is not known whether the complement of a compact 
set in an affine JR2-plane is isomorphic to a subgeometry of A(JR), if it is desarguesian. The 
results of H. BUSEMANN [2, 11.2, 13.1] and C. POLLEY [11] use the assumption that each 
line is connected. For locally desarguesian planes, this assumption is not superfluous, as 
is shown by examples like F .R . MOULTON's famous plane (see D. BETTEN's description 
[1)), or the example in [16, 3.3]. 
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