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Abstract 

Stable planes are a special kind of topological linear spaces. In particular, there is a ‘planarity 

condition’ that excludes spaces of geometrical dimension greater than 2. Embeddability problems 

are posed and answered, and an outline of the classification program is given. 

1. Introduction 

A topological linear space is a linear space D whose point and line space are 

endowed with topologies such that the operations of joining points and intersecting 

lines are continuous. Dealing with topological linear spaces, one has several possibili- 

ties to impose further conditions in order to get satisfying results. One of these 

possibilities is to strengthen the incidence structure, e.g. to assume that D is a projec- 

tive or affine space or a geometric lattice of (geometrical) dimension 33. The first 

cases have most recently been studied by Zanella (among others, see e.g. [14, 37, 38, 

78-821) while the last one has been treated by Groh [9-111. 

However, in this paper we would like to draw attention to the case where stronger 

topological assumptions make the ‘planar’ case accessible. Our planarity condition (the 

stability axiom) is actually a combination of topological and incidence properties that 

leads to a generalization of the well-known topological plane geometries, namely, the 

real elliptic, euclidean, or hyperbolic plane. The analogues of these geometries over the 

classical real division algebras (namely, the complex numbers C, Hamilton’s quatern- 

ions W and Cayley’s octonions 0) are also covered by this treatment. 

Definition. Let M = (M, A) be a linear space, and assume that there are topologies on 

the set M of points and on the set J%! of lines such that the following hold: 

(a) M and JY are locally compact Hausdorff spaces of positive and finite covering 

dimension; 
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(b) the geometric operations of joining points and intersecting lines are continuous; 

(c) stability axiom, i.e. the set of pairs of intersecting lines is open in J& x M. 

Then M is called a stable plane. 
The stability axiom excludes, e.g. topological affine (or projective) spaces of geomet- 

ric dimension 33. The restrictions on the covering dimension imply that M and 

&Y share important properties of topological manifolds (see [29]); in fact there is 

a conjecture that M and JY are always manifolds. 

According to deep results of Liiwen [29], many of the fundamental properties of 

compact connected projective planes* of finite covering dimension (which are 

a special case of stable planes) are common to stable planes in general, e.g. 

- the covering dimension of M equals that of ,H and is one of the integers 2,4,8, 16. 
_ For each point REM, the line pencil dP= {Llp~,kA} is a compact connected 

homotopy l-sphere, where 1= dim J$ = dim L = 3 dim M. 

2. Embeddings 

Let ED = (D, 9) and E = (E, &) be linear spaces. An embedding of D into E is a pair 

(rc,J.) of injective mappings n:D+E and 1:g+d such that peD is incident (in D) with 

LEE if and only if pz is incident (in IE) with L”. 
An embedding (rr,A) is said to preserve pencils if for each point PED the pencil 

&Pr equals (5SP)“. 

Now assume that D and E are stable planes. An open embedding (n, A) of D into iE is 

an embedding of linear spaces such that n and /z are continuous, and D” is open in E. 
Let Ml = (M, A!) be a stable plane, and let U be a nonvoid subset of M containing 

a quadrangle. Define % to be the set of all lines in J%’ that are incident with at least two 

points of U. Then the geometry U = (U, 42) is called the geometry induced on U. If U is 

open in M, then U is called an open subplane of M. In this case UJ is a stable plane. 

It turns out (see Corrollary 1.2) that, in the case of an open embedding, the mapping 

n is in fact a homeomorphism of D onto D”, endowed with the topology induced from 

E. In particular, the embedding (n, %) induces a (topological) isomorphism of D onto 

the open subplane (D”,@) of E. 

Our main interest is the problem whether a given stable plane is isomorphic with an 

open subplane of a compact connected projective plane, i.e. whether there is an open 

embedding into a compact projective plane. 

Lemma 1.1. Let D = (D, 9) and [E = (E, 8) be stable planes and (n, A) an embedding of the 
linear space D into [E. Then (x,2) is an open embedding if and only if 7~ and 1 are 
continuous and (rc, A) preserves pencils. 

* For compact connected projective planes, the papers [Z, 36,46,49, 521 (each of which is, in some way, 

conclusive) are sources for further references. 
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Proof. Assume first that (z, 1) is an open embedding. For each point peD and each 

neighbourhood U of p in D, we have that gP= {p V q 1 q~ U \ {p} }. Since U” is open in 

E, we conclude that gPz = { p" V q” 1 qE U\ { p} } = 9;. Thus (rc, 1+) preserves pencils. 

Now suppose that n and J. are continuous and that (rc,,?) preserves pencils. The 

restriction of i to gP is a continuous bijection of compact spaces, hence a homeomor- 

phism of gP with 8”“. For each point PED there are lines G, H through p, points ggG 

and heH and neighbourhoods X and q of G and H in gq and a,,, respectively, such 

that U= { X A Y(XEX, YEVY) is a neighbourhood of p in D (see [16, 1.41). Since 

A induces homeomorphisms of 9g onto $ and Qh onto o$, we obtain that Z* and gy” 

are neighbourhoods in 8g= and eh=, respectively. Thus, U” is a neighbourhood of p” in 

E, and (rr, 2) is an open embedding. 0 

Since the restriction of an open embedding to the geometry induced on any open 

nonempty subset U of D is again continuous and preserves pencils, Lemma 1.1 yields 

the following corollary. 

Corollary 1.2. If (x,2) is an open embedding of a stable plane KD =(D,9) into a stable 

plane IE, then x : D-+ D” is a homeomorphism. 

3. Nonembeddable planes 

In this section, we give a simple criterion of nonembeddability (in terms of linear 

spaces). We shall see that this criterion applies to several examples of stable planes. 

Let D = (D, 9) be a linear space. For PGD and LEGS define /I p,L to be the set of lines 

through p that do not meet L. 

Lemma 2.1. Assume that a linear space iTID = (D, 9) has points x, y and a line L such that 

the sets IIx,L and I/y,L have different cardinality. Then there is no pencil-preserving 

embedding of [I3, into a projective (or an afine) plane. 

Proof. Assume that (rr, 1.) is a pencil-preserving embedding into a projective plane 

P =(P, 9). Then the bijection c(: 3x-9$: G H ((G” A L’) V y”)“- 1 restricts to a bijec- 

tion of II x,L onto 11 y,L. 0 

In the special case where ID is a stable plane, the bijection a is a homeomorphism of 

9x onto By. Thus, we obtain the following Corollary from Corollary 1.2 and from 

Lemma 2.1: 

Corollary 2.2. Zf a stable plane I3 = (D, 9) has points x, y and a line L such that there is 
no homeomorphism of SSx onto ~3~ that maps /Ix,L onto IIy,L (in particular, if IIx,L is not 
homeomorphic with I( & then there is no open embedding of D into a compact projective 
plane. 
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4. Examples 

The construction of examples of stables planes is particularly convenient in 

the case where the point space is [w2 (i.e. the point set of the real affine plane, 

endowed with the usual topology): For any linear space M = (M, ~2’) such that A4 = [w2 

and A! consists of closed connected subsets of M, there is a unique topology on 

A! such that lUl is a stable plane [46,2.12] (cf. [59,60]). Therefore, we just describe the 

set M. 

Let M = R2. The set J# of all ordinary lines of nonnegative slope, together 

with the set of all translates of some suitable arc A forms the line space of 

a stable plane M =( M, At’) (cf. [7]). Two special cases are of particular im- 

portance. 

Example 4.1 (Salzmann [47]). Let A = { (5, tmd) 15 >O>, where d 3 1. 

Example 4.2 (Betten [ 11; Strambach [66, (vi)]). Choose A = { (<, e-5) 1 (EEA?). 

In both cases, we obtain stable planes that do not allow any open embeddings into 

projective planes: choosing a line L of slope 0 and points x and y that lie on different 

sides with respect to L, one verifies easily that Corollary 2.2 applies. 

Example 4.3. In E = R2, let X and Y denote the horizontal and the vertical axis, 

respectively. Let & be the set of all ordinary lines of nonnegative slope, all lines of 

negative slope and positive intercept and all ‘lines’ of the form 

where g, T > 0. Then iE = (E, 8) is a stable plane. 

The construction in Example 4.3 was inspired by Moulton’s example of a nondesar- 

guesian affine plane. Yet IE has no open embedding into any projective plane, as can be 

seen by applying Lemma 2.2 to a line L that has negative slope and passes through the 

origin, and two points that lie on different sides with respect to L. 
Removing the points on the lower half of Y, we obtain the open subplane 

D = (D, g), where 9 = A! and D = E \ { (0, q) 1 v] GO}. Note that D is again homeomor- 

phic with [w’, but there are some disconnected lines now. The plane D has the 

following remarkable property: each point xeD has a neighbourhood U, in D such 

that the geometry induced on U, is desarguesian (i.e. Desargues’ theorem holds for 

each configuration such that all required intersections exist in U,). In fact, D is the 

union of the three desarguesian open half planes El = { (5,~) I 5 < 0}, 

E2 = { (5, q) I ye > 0}, E3 = { (5, q) I 5 > O}. However, the geometry D is not desarguesian. 

Thus, this example shows that the assumption of connected lines in Polley’s work on 

locally desarguesian geometries (see [39-41-J) is not superfluous. 
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Example 4.4. The so-called SL, R-plane [64] is obtained in the following way: Let the 

group Z= SLzR act in the usual (linear) way on M= [w’. If JV denotes the set of all 

ordinary lines through the origin, together with all Z-images of a branch of some 

hyperbola, then (M, J&‘) is a stable plane. 

According to [64], there is no C-equivariant open embedding (i.e. an open embed- 

ding such that the action of C extends) of this plane into a projective plane. In fact, this 

plane does not admit any proper C-invariant open embedding into a stable plane 

(see [28]). However, our criterion does not apply to this plane, so the question 

remains open whether there is an open embedding such that the action of C does not 

extend. 

Example 4.5. Lowen [34, pp. 9-121 constructed an analogue to Strambach’s SLpIw- 

plane: the point space is @‘, and the group C is replaced by SL,@. Lowen’s plane 

shares the embeddability properties of Strambach’s plane. For the quaternion case, 

there is no such analogue [69]. 

Example 4.6. In [22], Lowen describes a stable plane Ea=([W2, _I,?~) for each twice 

differentiable, convex, increasing function CI. We will not repeat the construction but 

just note that Corollary 2.2 applies: e.g. choose the points (0,O) and (0,2) and the line 

L,,O (in the notation of [22, 5.41) (cf. [22, Remarks, p. 3141). Therefore, there is no 

open embedding of E, into a projective plane (for the extension & defined in [22,2.3], 

this property has been established in [22]). 

5. Classification of stable planes (a short report) 

Following (yet extending) the ideas of F. Klein, we consider pairs (r, m/o), where 

Ml = (M, A@‘) is a stable plane and r is a closed subgroup of Aut( Ml) (i.e. the group of 

all continuous collineations, endowed with the compact-open topology derived from 

the action on M). 

The general classijcation problem can be stated as follows: 

l find suitable homogeneity conditions, 

l list all pairs (r, M) satisfying these homogeneity conditions. 

Several special cases have been treated successfully. 

Case 1: The ‘classical’ homogeneity conditions are transitivity of r on the 

set of points, the set of lines, or on the set of Jugs (incident point-line 

pairs). 

The last condition yields that M is isomorphic with one of the ‘classical’ stable 

planes (in particular, the group r contains an elliptic, hyperbolic or euclidean motion 

group (see [35] for details)). 
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In the special case of compact connected projective planes, transitivity on the set of 

points characterizes the compact connected Moufang planes (i.e. the projective planes 

over the real numbers R, the complex numbers C, Hamilton’s quaternions W or 

Cayley’s octonions 0). Moreover, the group r contains an elliptic motion group (see 

[SO] or [25]). 

Transitivity on the set of lines is equivalent to transitivity on the set of points in the 

projective case (by duality). In the case of locally compact connected ufJine planes, 

however, transitivity on the set of lines yields the Moufang planes [Sl], while there are 

many affine planes admitting a group that acts transitively on the set of points (e.g. 

translation planes). 

For stable planes in general, transitivity on the set of points is rather a weak 

condition. In fact, examples are obtained whenever r < Aut( Ml) has some open 

orbit U GM: the restriction of the action of r to the subplane induced on U is 

effective. Open orbits do occur in the non-Moufang planes, e.g. the translation planes, 

Hughes planes, Moulton planes, or each of the nonembeddable examples 3.1-3.4. 

Under suitable additional conditions (concerning line orbits) it is possible to re- 

construct the geometry induced on the open orbit from the action of r (see [70, 6.31 

or [71] for a method and [69]; [70, Ch. 7, pp. 36-471; [74, 761 for concrete 

applications). 

Case 2: Each closed subgroup r of Aut( M) is locally compact and separable 

[16, 2.91, and its identity component is a projective limit of Lie groups (cf. [70, 2.31). 

In particular, the different notions of topological dimension (covering dimension, 

inductive dimension etc.) coincide for r, and dim r equals the (R-)dimension of 

the corresponding Lie algebra (in the sense of Lashof [lS]). This dimension 

serves as a measure for the size of r and hence as a measure for the homogeneity 

of M. Moreover, the theory of Lie algebras supplies a description of the structure of r. 

In the late 1950s H. Salzmann initiated the project of determining all pairs (r, Ml), 

where dim r is ‘sufficiently’ large. In the projective case, quite satisfying results have 

been obtained. 

For each value m=dim M, there is a ‘critical’ dimension g,,, such that 

dim T>g,,, implies that the plane is isomorphic with the Moufang plane P2 [F 

(where [FE { R, C, W, 0}, according to m). The geometries with dim r > g,,, - 1 have 

been determined (mostly translation planes, Moulton planes or Hughes planes). 

It seems worth noting that gm lies in the vicinity of 3 dim C, where C = Aut(P, [F). 

The main results (and further references) can be found in [2, 36, 46, 49, 

52, 531. 

A similar classification has been obtained for stable planes under the special 

assumption that the point space is homeomorphic with R* and that each line is 

connected (the so-called ‘Salzmann-planes’) (see [12] and the references given 

there). 

In the case of stable planes in general, special assumptions about the structure of 

r have led to satisfying partial results. We attempt to describe the state of the art by 

Table 1. 
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Table 1 

Structure of F dimM=2 dimM=4 dimM=8 dimM= 16 

Almost simple (r, U) known 1281 dimF>3* dimr>16* ? 

(F, M) known (r, M) known 

[32, 34, 353 c701 

Semisimple fl C281 0 Cl81 
* ? 

Solvable dimr<$dimM [77] * ? 

Abehan dim r < dim M 174, 3.41 

Compact (r,M)z(E,P,IF) or dimr<dimE-dimM 1751 

Nofe: E = Elliptic motion group on P2 IF, where [FE { H, @, W, 0) (according to dim M), 

*Bounds for dim r have been proved, but probably these bounds are not sharp. 
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