
Data Models in
Object Management Systems

Abstract

During recent years, several research efforts in the area
of software development environments have fOCU5ed on the
provision of uniform Object '-'anagement Systems (OMS) as a
rramework for tool integration and communication. This
paper summatiles discussions of an OMS Workshop on the
issues that arise in defining an appropriate data model for an
O~(S.

1. Introduetion

An OMS is respon!lible for administering objects and the
plethora of inrormation about these objects, their properties
and interrelations, as they are created, modified, and possibly
deleted during software development. The term "object" is
used Itere in a generic sense; while data ultimately is decom
posable into individual bits and bytes, it needs to be aggre
gated into more comprenensive units in order to be manage
able and to be operated upon at a suitab le level of abstrac
tion. We refer to these units as obje.:=ts, without ne.:=essarily
implying any connotations arising from object-oriented design
methods. A precise definition of what constitutes an object is
largely dependent on the design of a particular O).{S and the
type model applied by the user to objects in this system.

2. The Nature of Objects

In defining the nature of objects in an OMS, we face
numerous issues:

What information is agglomerated in objects ~ Do
different contexts refer to different subsets of this infor
mation?

15 there a need to compose objects from smaller objects?

What access controls are required on the objects and the
individual pieces of information in or about an object ?

What operations are meaningful ~n objects and the
information in or about them? Should the set. of applica
ble operations be tailor able to different applications?

Does the nature of objects change over their Iiretime ?

Is the information in or about objects to be grouped phy
sically, perhaps for efficiency or OMS distribution rea
sons?

While the above list is far from complete, it already shows the
many facets to be considered in defining the nature of objects
for an OMS. The problems of object granularity, and of com·
pOlite ob)~cts are a recurring theme in addressing these ques
tions.

2.1. The Problem of Granularity

The objects administered by the OMS may have internal
structure whose details are unknown to the OMS; this is pri
marily a consequence of a trade-off between providing generic
OMS support down to the level of primitive data types and
utilizing possibly more efficient spedal·purpose operations on

the information content of more complex objects. The point
of transition from the OMS data model to the data model
applied to the individual objects delineates the choice of OMS
granularity. For example. the granularity could be chosen so
that the administered objects are host files; the OMS would
then act as an administrator of 6\es (tracking interrelations
and properties of files in the OMS data model with consider
ably more expressive power than traditional file management
systems in operating systems), while input/output packages
operate on the contents of the objects and apply their respec
tin data models to these contents.

......................... -----
- OMS Relation

- - - - non-OMS ~aUon

o OMS Objects

FI,me 1: OMS and non-Q1I8 relatlou

If the OMS granularity is cnosen to be at a coarse level,
problems arise in practice from the need to relate sub
granular data items within different OMS objects. In practical
terms, this need translates to rererences from data witnin an
object to another object or to data within another object.
Figure 1 displays this situation, which is typical, for example,
in supporting libraries of compilation results as done for Ada.
The main problem caused by such sub-granular references is
maintaining the consistency of the information; as objects get
modified, @xisting sub-granular references to them may no
longer be valid logically or representationally. However, since
the O)..1S is unaware of such references, the necessary con
sistency checks must be relegated to tools t hat understand
both the OMS data model and the data model of the objects.
Consistency enforcement by the OMS in this regard is not
possible.

2.2. The Problem of Composite Objects

ror the administration of objects. it is often desirable to
aggregate existing objects into a composite objut to be
treated as a single entity in some circumstances while, in oth
ers, the component objects are treated as separately
identifiable and accessible entities.

With composite objects. a problem comparable to the
one of sub-granular references exists: The OMS is now aware
of relationships among components of different composite
objects, but it is far rrom obvious how the consi.stency rules
can be conveyed to the OMS, whicb ensure that relations in
which components of composite objects partake are updated
consistently when composite objects are created, copied, or

227

....•..
I / ,

,- -, ,
, , ,

,
............. /

, ..
..............

OMS Re1aUon

, ,,' Composite Objects

o AtomJc Objects

l1gure 2: Compoalte ObJecta

modified as a whole. A picture of the !Situation is given in fig.
ure 2. which is remarkably similar to F'igure L It takes Ijttle
imagination to conc.lude that the need for c:omposite objects
increases with. decreasing coarseness of the OMS granularity.
It also becomes clear that, by refining the granularity of OMS
objects down to a level at which. no mOfe sub-granular refer
ences across objeet boundaries exist, the problem of sub.
granular references has been eliminated by mapping it to the
problem of relations among components of composite objects.
Largely uI1.!Olved important issues in replacing coarse object
granularity by composite objects are the ramifications on
access control and synchronintion, since applying these
mechanisms at the level of individual fine· grained objects car
ries a significant space and performance cost. Respective
"whole-sale" operations on composite objects with inheritance
semantics for their components are needed to achieve accept
able performance and user convenience. Other unsolved prob
lems are the consequences of the support for composite objects
on typing and type evolution mechanisms in an OMS.

3. The Choice of OMS Scope

In designing an OMS, the scope of its applicability needs
to be considered. On the one hand, one can design a single
OMS to support the management of all objects on a system
and imprint project management structures and policies on
the object base in terms of OMS acce~ control and typing
facilities. On the other hand, one can design one or more OMS
to create multiple, distinct object bases, so that only the
objects relevant to a given project are administered within a
project-speciflc OMS. The former approach poses a number of
stringent requirements on discretionary and mandatory access
control and on object typing approaches in the OMS to
accommodate the coexistence of multiple projects in a single
OMS base. The latter approach arguably may imply lesser
requirements in these arta.s, but creates barriers for reuse of
objects across projects. In order to support such reuse, either
import-by-copy or import-by-reference mechanisms across
project-specific OMS bases are necessary. Both these mechan
isms face considerable challenges in coping with change propa
gation, when exported, imported or referenced data are
modified. In the case of cross-project references, the picture
that emerges in Figure 3 is quite similar to the figure! shown
earlier for the problems of objet:t granularity and compo!ite
objectl.

From thue findings, one is led to conclude that the ideal
OMS exhibits the rollowing characteristics with respect to the
administered objects:

Granularity of objects can be reduced to a level at
which no sub-granular rdetences a.re necessary.

228

Project A OilS Project B 0118

PraJect COliS

.. - - - Inter-Project Relations
- OMS Relations

o OMS ObJ"'''

Flfure 3: Project SpcciBc 0118

A sufficiently rich set of object composition para
digms is available.

The OMS is universally applicable to objects across
projects, but tailorable to reflect project boundaries.

Unfortunately, O)'(S technology to-date has not been able to
fulfill these (and other) criteria in an implementation that
also satisfied performance requirements for use in real
sortware production.

-t. Typi.oS of Objedl

Typing of objects in programming languages is a well
researched area and generally considered to be of significant
benefit to software engineering. Comparatively little work
has been done to develop accepted typing models for the
objects that persist beyond the execution of a singh~ program.
Traditionally, objects lost all type protection and type infor
mation, once they crossed the boundary between the creating
or accessing program and the operating system. Quile obvi·
ously, it would be desirable to extend the protection of typing
and its influence towards good software engineering to those
pu"i"tent objects as well. By defining types and treating per
sistent objects as in.stances of these types, numerous beneflt~
accrue for the accessibility of the stored information and for
the protection again~t accidental and malicious application of
inappropriate operations to objects.

Typing in an OMS applies not only to the inrormation in
an object, but also extends to the information about the
object, i.e., its properties de~cribed in attributes and its
interrelations with other objects. We use the term object type
in this broadened sense. Alternatively, one could speak of the
obiut bast .schem4 as the sum of all object types to reflect

the high degree of interconnectivity among the objects and
related constraints that arise in an OMS.

A number of objectives need to be satisfied by a typing
model in an OMS:

expre~ing the association of properties with the
instances of a type;

expressing the association of (some) operations with
the instances or a type;

expressing constraints on instances of a type;

enforcement of constraints in maintaining OMS can·
sistency with the type model;

creation of views to tailor visibility of properties by
users and to resolve naming conflicts.

Depending on the choice of a particular typing model,
some of these objectives may map into each other: for exam
ple. the association of properties or operations with instances
of a type may well be viewed as the enforcement of a I.':on_
straint limiting applicability of operations to objects. Simi
larly. relations among instances of object types either can be
viewed as properties of instances or their utilitation can be
regarded as operations app lied to the involved instances.

The I.':ited objective. address the need for dedarative
informat ion that assists the user in determining the predse
nature of objects and the availability of information in and
about these objects and of meaningful operations on them.
They also address the need for conveying semantic informa
tion to the OMS that allows the enforcement of I.':onstraining
rules for operations on objects. Further. they address the
need for voluntary or enforced information hiding, so that
users are not overwhelmed by a flood of information available
but irrelevant to their momentary needs. Finally. to support a
paradigm of composition of independently developed tools
operating on the same objects in the OMS, one must allow
that these tools have different views of the available proper
ties and operations of a given object type. A mechanism is
needed to reconcile naming differences and to resolve naming
conRins in the combined views of these tools.

Typing models in programming languages t raditionally
consist of:

primitive "built-in" types (e.g., integer, boolean)

operations to c. reate types (e.g., arrays, record.!ll
classes)

operations on instances of types (e.g., creation. dele
tion, access'

relations between types (e.g .• type derivation, type
specialization) and implied semantics

There seems to be no reason why similar models could
not equally be applied to typing persistent objects. although
some extensions we likely to be desirable. Notably absent
from these traditional models is the capability to specify more
encompassing constrai nts on interrelations of instances of
these types. The re~ponsibility for such enforcement has been
typically left to the user of the programming language (except
for some efforts of integrating specification or assertion sub
languages into programming languages). Also absent in many
typing models for programming languages is a mel.':hanism for
views and name conflict resolution, pre!umablr on the
assumption that, for a single program. a-priori coordination of
these views into a single type definition or definition hierarchy
is a reasonable expeuation. Mechanisms for view creation and
name conflict resolution have been developed primarily in the
data base area.

Another desirable extension to the conventional model is
the capability to add operations and other properties to a
type definition in an incremental fashion (without affecting
existing tools', rat her than being forced into a closed a-priori
definition of all such properties. It remains an open question
whether such an incremental approach should apply
throughout the entire life.time of the type definition or
whether a closing of the definition is appropriate at .!lome
stage.

•. 1. Tbe Problem of Enforcement of Object Typing

(n programming languages, object typing rules are pri
marily enforced at compile time by diagnosing the application
of illegal applications of operations to objects of a given type.

At run time, checks can be perrormed to prevent violations of
constraints on the value of objects. To ensure ea rly detection
of erron, violations of typing rules for persistent objects
should ideally also be caught at the time of compilation of
programs that access persistent objects.

229

Since the types of persistent objects are generally not
known a-priori to the compilation of the al.':cessing programs,
the programs can only express a tllpe upedation for existing
persistl' nt objects. Some run-time validation of the type
expectation against the actual type of an accessed object is
necessary. An appropriate mapping of the OMS typing model
to the typing facilities of the language in a binding of the
OMS interfaces, or a direct integration of the OMS typing
model into the language. can utiJile the expressed type expec
tation to limit the operations available on the object (e.g., by
equating the type expl'ctation with an abstract data type of
the language). It thereby may be possible to reduce the need
for run-time validation to be performed repeatedly for each
operation on the object. Generally, the latter is necessary if
the OMS interfaces are accessible without utilizing a specific
language binding or if one wants to safeguard the integrity of
the OMS base against malicious breaches of the typing rules
of a given programming language. Despite the need for such
repeated run-time checks, a mapping of the OMS typing
model into the typing model of a programming language is
desirable to detect some error situations at compile time
(evl'n if eventual run-time chetks I.':annot be avoided). A direct
integration of the O~tS typing model into a programming
language, on the other hand, causes obvious problems ' in
multi· language environments.

Lastly, typing rules and constraints I.':ould be enforced
explicitly by ehecks in the executable code of tools. Since the
danger of accidental omission of such explicit checks by the
user is high, the majority of such chedcs should be relegated
to the OMS and performed implicitly .

•• 2. The Problem of Object Type Evolut.ion

Tn programming languages, the general assumption is
that any changes in type definitions are sufficient grounds for
at least partial recompilation and relinkage of programs using
~uch types, so that all objects of the type comply with the
modified definition. Tn software engineering environments, this
assumption is unreasonable in this generality, since a large
number of objects of the type and tools operating on those
objects may already exist. It is not feasible to mandatl' are
compilation of all such tools and an explicit migration of all
objects to conform to the modi6ed type prior to resuming nor
mal operations. Different mel.':hanisms are needed that allow
certain modifications to be made to type definitions and yet
allow continued existence of objects of the previous venion of
the type definition and of tooll! operating on old and new
objects of the type.

The mel.':hanisms for type evolution are tightly linked
with the mechanisms for migrating the object base to the
evolved type definitions and with the mechanisms for type
binding of objects. Different trpe e"olution models mar cause
differences in the model of migrating instances of types to
more evolved definitions and in formulating compatibility
rules between type expectations and actual object type,.
Three prevalent models of type evolution in OMS designs are:

(1) the specialisation/generalisation model: it create' new
types by derivation from existing types. If the new type
has lesser capabilities or weaker I.':onstraints than the old
types. we spl"ak of generalisation. If the new type has

more capabilities or stronger constraints, we speak of
specialization. Type binding is such that instances of
specializations are always consistently readable under a
more general type expectation. To the extent that the
differences between two types are the presence or
absence of properties unrelated to other properties
(rather than a difference in the strength oC constraints
on properties), an instance oC the more specialized type
can be read and written under a more general type
expectation. In practice, the specialiution/ generaliza
tion models allow for a graceful additive evolution oC the
type definitions, for the introduction oC generalized types
Cor hitherto unrelated more specialized types, and for a
gradual non-mandatory migration or objects Crom more
general type definitions to more specialized ones and vice
versa without unduly affecting t he operability of existing
tools.

(2) the type versioning model: in this model, each object has
exactl)· one type definition under which it can be handled
by tools. Such type definitions can be versioned; migra
tion rules are provided that control the evolution of
objects from one type to another version of the same
type. Here, tools are affected by changes in the type
definitions, unless compatibility rules be). een type
expectations and actual types si milar to those of the
speeialiution/generaliution models are defined.

(3) the in-place modification model: Here, objects have a sin
gle type definition. Changes to the type definition are
a$$Ociated with implicit realignment se mantics for the
objects and quite possibly a requirement for a ·'lazy"
recompilation of the object base and of the tools operat
ing on it.

In the cit~d three mod~ls, each instance uniquely identifies its
type as given by its creation or subsequent migration to a
related type. They differ mainly in the migration rules for
objects and in tbe compatibility rules that allow existing tools
to continue to op~rat~ on all objects that still satisfy its
expectations of properties and constraints, regardless of the
specific type binding oC the object.

It can be surmised that this model of instances uniquely
identifying a type, combined with compatibility rules to allow
alternative type expectations, may be an unfortunate para
digm. Instead, it might be preferable for the purposes of type
evolution, if th~ type of an object were determined by type
predicate, onr the properties of the object. Each object may
satisfy many type predicates. Changes to the properties of an
object may im plicitly cause it to assume a different sd of
types by now satisfying their type predicates instead. Type
expectations would be satisfied if the properties of t he object
satisfied the respective type predicate. This alternative model
eliminates the OMS problem of type evolution and
corresponding object migration but, in order to prevent a
chaotic evolution of Objects, needs highly exp ressive formal
isms to imp<»e constraints on the circumstances in which
changes to object properties are allowed.

4.3. Coexistence of Multiple Type Model ..

In examining the constituents of type models, a hierar
chy can be (tenned, in which different alternatives can be
chosen at each level. The difficulty of integrating information
expressed in type models that differ in their choices at some
level decreases substantially with each such le\'el.

230

These levels are:

level I: data model, family of type models, e.g" ERA

level 2: specialized data model, built-in 0\15 sema ntics
e.g., CAIS ERA

level 3: data description language (DOL)

level 4: schema definition(s) in DOL

level $: instances of types

•

Level I defines the overall data model, e.g., the entity_
relationship-attribute (ERA) model, that serves as the com.
mon framework over which subsequent levels are built. It
defines a meta-schema that delineates the domain of discourse
without imposing any additional sem antic constraints. If two
typing models differ at leve l I, then the difficulty of integrat
ing information expressed in such different models is extremely
high.

Level 2 augments the overall data model with more
specific restrictions. Possibly some rudimentary semantics
built into the OMS are expressed at this level. An example of
a level 2 augmentation to an ERA model is the CAIS ERA
mode:!, in which some restrictions on the general ERA model
are expressed and built~in semantics are provided that allow a
representation oC type definitions in terms of the basic ERA

model. The latter communicates user-defined semantics of
type definitions to the OMS in a self-descriptive fashion. If
two typing models differ at level 2, then the difficulty of
integrating information expressed in suc h different models is
quite high. Some predicates may be decidable based on the
common meta-schema of level I.

Level 3 defines the language in which the user.supplied
type definitions are expressed. If two typing models differ at
level 3, then the difficulty of integrating information expressed
in such different models depends significantly on the runc
tiona lity of a common level 2. If level 2 provides a seU·
descriptive method of representing type information and the
DOL is merely an external means Cor communicating this
informa.tion to the OMS. then integration of information is
relatively straight-forward for the O~IS. t:sers may have some
problems to relate the results of such integration back into an
integrated DOL representation , in particular if the differences
of the DDLs are not merely a matter of syntactic sugaring,
but impact the expressiveness of the respect ive DOL. If level
2 doe s not provide a seIC·desc ripti\·e capability and the DOL is
the primary means Cor integration. then the difficulties a re
probably as hiRh as on leve l 2, when information expressed in
two type models with different DDL is to be integrated .

Level " utililes the DOL to provide the schema
definitions that describe the specific types oC objects. tli.eir
properties, operations, and interrelations. It is to be expected
that tools developed independently may rely on diffe rent, but
overlapping type descriptions for the sa me objects. Suitable
OMS mechanisms (e.g., views) must exist to integrate such
types and ~econeile any conflicts. Thus, differences at level ..
are a quite neceuary part of the OMS support, rather than
an avoidable complication.

Level 5 deals with the representation of objects as
instances of types defined at level 4. Here, differences are to
be expected, in particular, if the OMS base is dist ributed
acro" heterogeneous host syStems. With suitable abstraction
mechanisms for accessing the objects, representational
differences must be hidden from the tools utilizing the OMS.

We conclude that, for information integration purposes
in an OMS, uniformity oC the first three levels would be highly

desirable, while the coexistence of different approaches at lev
els" and 5 needs to be accommodated.

".4. Uninraal Va. Spec:ialbed Type Models

While the preceding section examined multiple type
models from the viewpoint or information integration. it
ignored the que!tion of appropriateness and efficiency. The
issue therefore remains whether substantially different type
models need to be supported by an O~IS on those latter
grounds.

In particular, is one sufficiently general typing model
functionally adequate to address the needs or the users? Or is
it necessary to permit multiple typing models to be applied?
In the latter case, the transition from one typing model to the
other could occur at several different places:

It could occur at the granularity boundaries or the OMS.
e.g., while files are administered under the typing model
of the OMS, their contents could be dealt with under the
typing models provided by programming languages and
their input/output capabilities, in particular by existing
packages that implement a specific type model (e.g.,
SQL. GKS, lOL. or fROS bindings). In this case, the
responsibility or the OMS ends after ensuring that the
cotrect typing model is chosen for handling the contents
of the objects. The problem or sub-granular references
remains, but all other cited problems or integrating mul
tiple type models do not arise, since tt\eir object domains
are disjoint.

Alternatively, in the case of project-specific OM:S bases,
different type models could be applied to different such
data bases. This would, of course. substantially aggra·
vate the already discussed problem of inter-project refer
ences.

Finally, in a single OMS base, the set or administered
objects could be "overlayed" with multiple type models,
one of which is selected for each application, based on
the appropriateness of the respective typing model.

The problems with multiple type models are two-rold:
first, consistency I:onstraints that involve predicates expressed
in multiple type models are exceedingly hard to formulate, in

particular, if equality predicates over obiect references are
involved. Second, the implementation effort for OMS support
or multiple type models can be orders or magnitude more
difficult tban support for a single type model.

The problems with a single type model are mainly those
of power of expressiveness. Properties easily expressed in a
specialized typing model may well be difficult to state or only
inefficiently implementable in such a universal and generic
type model. Nevertheless, we conclude that a single,
sufficiently general and adaptable type model is presently the
most promising aDd desirable approach in addressing the vari
ous problems in OMS design.

S. Conchuion.

In examining the research and industrial practice in the
area of data models for OMS, we find that significant progress
has been made in recent years in understanding the problems
and providing some proto-typical solutions, but that a large
set of iSlJues remain to be addressed truly satisfactorily, e.g.,

definitioD of requirements fat the OMS typing model

selection of appropriate typing models

evolution of type definitions, data bases, and toolsel$

dYDamicness or schemas and the impact of incremental
changes

deletion semantics in type definitions

access control in a global OMS

231

access control and synchroniution at fine OMS granu
larity levels

consistency checking; triggering and notification mechan
isms

boundary between the O~iS and the programming
language

non· traditional execution models fot typing enforcement
at compile-time

This large and certainly incomplete set of unresolved prob
lems shows the immaturity of the field and the need for
significant research in the OMS area.

