
The Data Model of the ConjQuration Management Assistant

Erhard Ploedereder, Ph.D.
Adel Fergany, Ph.D.

Tartan Laboratories Inc.
300 Oxford Drive

Monroeville, PA 15 146

Abstract
In an environment in which systems are configured by

reusing existing subsystems, the determination of complete
and consistent configurations is a non-trivial and error-
prone task, although considerable information about the
subsystems may already be available from previous con-
figurations. The Configuration Management Assistant is a
tool that supports tracking and exploiting such information
in the difficult process of x-e-configuration on a large scale.
Its data model was designed to be as independent as pos-
sible of configuration management policies and procedures
and yet provide substantive assistance in this process. The
inost important elements of this data model are described in
this paper. ’

1. INTRODUCTION
Configuration Management is a central activity in the

software generation process. Today, many projects
flounder or are considerably delayed by problems that
originate from insufficient discipline or technical support
for configuration management. Progress in the area of con-
figumtion management is desperately needed.

‘Work reported herein was performed by Tartan Laboratories,
300 Oxford Drive, Monroeville, PA 15146. for the Naval
Avionics Center, Indianapolis, under contract no. NOO163-98-
C-0148.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear.
and nottce is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
8 1989 ACM 089791-334-5/89/00l0/0005 $1.50

Configuration management is often mistakenly con-
sidered to be satisfied by a capability to rrack changes to
program source code [8,71 and to automatically regenerate
a system after such changes have taken place [4]. While
these activities play an important role in software manage-
ment and change control, they are nevertheless not the
primary, let alone the sole focus of configuration manage-
ment. For such capabilities, the GIG0 (“garbage-in-
garbage-out”) law applies: if the programmers are not
capable of determining a functionally consistent set of
sources to begin with, no degree of automation will make
the resulting system operational. Moreover, the ease with
which systems can be rebuilt automatically in this fashion
makes it even more likely that functional inconsistencies
are not detected at an early stage of system integration, but
only after considerable time and effort has been wasted on
building and testing a non-functioning system.

These problems become even more pronounced in an
environment in which sizeable software components are
heavily reused. Here, the internal dependencies within the
reused software are largely unknown to the (rejuser, but
may have subtle interactions with other software that need
to be accommodated in the system integration. Conversely,
as software gets reused in different contexts, a wealth of
information is accumulated about consistent and inconsis-
tent compositions. Utilizing this information can sig-
nificantly increase the probability of aniving at consistent
and complete configurations even for newly created con-
figurations, in which major subsystems have been replaced.
Tracking and exploiting such information and making it
available to the (re)user is the central objective of the Con-
figuration Management Assistant (WA). While many of
the basic concepts employed in CMA are also found in
other systems, it is the integration of such concepts as logi-
cal dependency, consistency, compatibility, absuact
decomposition, and configuration semantics that distin-
guishes CMA.

2. THE CONFIGURATION MANAGEMENT
ASSISTANT (CMA)

The Configuration Management Assistant (CMA) is a
tool that assists in configuration management by

l recording and relieving descriptions of configura-
tions and the set of entities of which they are com-
prised;

l recording and retrieving information about known
(in)consistencies and dependencies between in-
dividual entities that are included in configurations;

l predicting the completeness and consistency of
newly created configurations based on the recorded
information, and assisting in the consuuction of such
new configurations.

The CMA is a powerful administration system for con-
figuration management information and imposes as few
constraints as possible on the specific policies and methods
of configuration management that a particular CMA instal-
lation might wish to apply. The CMA offers open inter-
faces that can be used by other tools both to record and to
retrieve configuration management related information.
Enforcing particular management policies and procedures,
as necessary to perform efficient configuration manage-
ment, is left to other tools interfacing with the CMA and to
locally established guidelines and procedures. Producing a
CMA that supports a large variety of configuration
management procedures and of styles to describe con-
figurations has been a guiding principle and a major chal-
lenge in the design of the CMA.

The major advantage of using the CMA comes from its
capability of using recorded information about depen-
dencies and consistencies between entities to assist the user
in defining workable configurations. The heavy expense of
finding configuration errors through laborious debugging,
once the attempt to build a product has failed, can be
avoided. In providing these services, the CMA relies
heavily on the wealth and correctness of the dependency
and consistency information supplied by the user or by
tools. Its capabilities are likely to be particularly strong in a
production environment where components and tools are
heavily reused across products, since earlier usages can
provide such needed information reliably.

Source control systems, e.g. RCS [7], by which changes
to individual entities are controlled and differences are
tracked, can be integrated with the CMA through the use of
intermediary tools or the recording of source control labels

in the CMA data base. Similarly, tools for the automatic
(re,)generation of products, e.g. Make [4], can obtain a
large portion of the information needed for such
(re)generation from the CMA.

The CMA has been implemented by Tartan Laboratories
Inc. under contract for the Naval Avionics Center, In-
dianapolis. It consists of the implementation of the Public
CMA Access Interface in terms of Ada packages, on which
diverse tools can be built, and of the interactive, menu-
driven CMA User Interface that guides the user in building
new configurations and in entering other information not
already communicated by tools via the Public CMA Access
Interface. The CMA is implemented in Ada; in March 1989
it consisted of about 45,000 lines of Ada code.

3. BASIC CONCEPTS
The CMA has the concepts of logical objects anti their

instances. A logical object may have multiple instances,
distinguished by key attributes that characterize each in-
stance. For example, different versions of an object will
typically be instances of the same logical object. However,
the CMA has no built-in knowledge of a specific scheme or
policy of versioning. The CMA does not explicitly support
a tree-structure of instances (i.e., versions of versions). In-
stead, multiple key attributes can be used to reflect sub-
ordinated versioning; nevertheless, all versions are
regarded as direct instances of their logical object. This
relieves the user of the necessity of an a-priori decision
regarding such tree structures and avoids the potential need
for entity duplication to conform to a tree-structured divi-
sion of information.

The CMA has the concept of composite logical objects,
consisting of a set of other (possibly composite) logical
objects. Composite logical objects are used to describe the
abstract decomposition of large systems into their subsys-
tems, called components. A component may belong to mul-
tiple composite objects and, in particular, may be a. com-
ponent of multiple subsystems of a single composite logical
object. In other words, system decomposition need not be
uee-structured, but can be represented by an acyclic graph
of subcomponents. For example, the logical object “com-
piler” may be composed of a “front end” and a “back
end” logical object, both of which in turn have substruc-
ture containing the same logical object “error writer” as
component

The CMA has no built-in knowledge of the nature of the

6

A rendition attribute is predefined to exist on each in-
stance. The attribute and its user-defined values are in-
tended as a means to distinguish the nature of the instances,
to delineate whether or not multiple instances of the same
logical object can occur in a configuration, and to describe,
by implication, the nature of a configuration.2 Examples of
rendition attribute values might be “Source”, “Object”,
“Ada Library”, “Documentation”, “Specification”,
“Body”, etc. Similar to partition attributes values, the
values in the value set of the rendition attribute may be
specified as being specializations or generalizations of
other such values. The following specific semantics apply
(see also Section 5):

1. a dependency, constraining the rendition of any
satisfying instance, can be satisfied only by any in-
stance whose rendition generalizes the given ren-
dition.

2. an inheritable dependency, constraining the ren-
dition of the source instance of inherited depen-
dencies, is applicable only to instances whose ren-
dition generalizes the given rendition.

3. a compatibility relationship can exist only, if the
rendition of the target instance generalizes the ren-
dition of the source instance.

4. a configuration cannot include two or more (used)
instances of the same logical entity and of overlap-
ping rendition.

By applying specialization and generalization semantics
to rendition attribute values, CMA is capable of tracking
dependencies and other relationships among administered
objects even if their aggregation changes in different ver-
sions. For example, at early stages of a development, a
given instance might contain both specification and im-
plementation of a module while, later on, specification and
implementation are separated into different instances.
CMA nevertheless will be capable of creating configura-
tions including either representation of the module, based
on the same dependency information.

Version atnibures are used to distinguish variations of
instances of the same partition and rendition, e.g., “Vl”
and “V2” of a library, “debug” and “optimized” of a
module, etc. There is no specific CIMA semantics as-

2-l-h e concept of rendition is very close to the concept of typing.
As the rendition semantics are different from Ada typing. we
consciously avoided the use of the word “typing”.

sociated with these attribute values (other than the overall
requirement of unique identification of instances by at-
tribute values). Each instance may have multiple version
attributes.

Within configurations, instances have a pwpose
attribution, distinguishing whether the instance is produced
by some production step utilizing the configuration descrip-
tion, or used in the production of another instance, or both.

5. THE RELATIONSHIPS IA’ THE CMA
DATA MODEL

Component relationships exist among logical objects.
Such a relationship specifies that a given logical object is a
component of a composite logical object. Each logical ob-
ject can have multiple logical objects as components as
welI as be a component of multiple composite logical ob-
jects. These relationships are used to describe the composi-
tion of logical objects in a “top-down” fashion. The
primary purpose of these relationships is to create a system
decomposition that can serve as the description of a con-
figuration family in terms of its logical objects. Each com-
ponent relationship can be attributed with a rendition at-
tribute value to indicate that the relationship is valid only
for configurations that are not constrained to exclude in-
stances of a rendition that generalizes this given rendition
(see Section 6). The system composition can also be
described in a “bottom-up” fashion by means of depen-
dency relationships discussed below.

Insrance relationships relate logical objects and their in-
stances. While every logical object may have multiple in-
stances, no such instance can belong to multiple logical
objects.

Figure 1 depicts the component and instance relation-
ships of the example of a compiler that has two com-
ponents, front end (FE) and back end (BE), both of which
require an error writer (EW). This figure shows several
specification (“spec”) and implementation (“impl”) in-
stances of FE, BE, and EW. It is assumed that the user has
defined “spec” and “impl” as rendition attribute values,
and “VMS” and “Unix” as partition attribute values: both
“Vl” and “V2” are version attribute values.

Logical dependency reiarionships exist between in-
stances and logical objects. They specify that the given
instance depends on, i.e., cannot operate or be processed
correctly without, or depends in its correctness on, Some
instance of the given logical object Any instance may

7

entities it administers. It merely expects the user to provide
suings presumed to identify the entities. These strings
could be (the names of) host files, directories, Ada
libraries, labels used by a source control system to identify
appropriate host entities, command scripts to generate the
entities, or anything the user chooses them to mean. These
Wings could differ in their user-defined semantics for dif-
ferent kinds of administered entities. Instances of a logical
object can be of quite diverse nature: A logical object
representing an Ada package may have as its instances the
package specification and the package body in source form,
assembly or object files compiled from these sources,
separate documentation, erc. Also, each of these instances
may exist in different variations and revisions. Similarly, a
logical object representing a tool may have as its instances
the tool’s executable image, its user documentation, its in-
ternal documentation, or the configuration used to build the
tool. Consequently, the CMA can be applied to many
diverse configuration management problems. The CMA
can be viewed as an elaborate mechanism for name storage
and retrieval, highly structured and supported by the
knowledge the CMA has about configurations that interre-
late the administered entities. Administered entities need
not even exist at the time they are made known to the
CMA: it may, in fact, be the very purpose of the configura-
tion to control the generation of these entities.

The CMA concept of a configuration is simply that of a
set of instances. Based on information recorded about
these instances, completeness, consistency, and satisfaction
of uniqueness constraints of the configuration are decided.
The CMA also has the concept of a configuration family,
describing a not fully determined set of instances in terms
of constraints imposed on the eventual selection of in-
stances for a particular configuration.

The data model used by the CMA is an ERA (entity-
relationship-attribute) model, in which both entities and
relationships can be attributed. Logical objects, instances,
configurations and configuration families are such entities.
The CMA implementation supports most relationships only
as directional relationships.

4. THE ATTRIBUTES IN THE CMA DATA MODEL
Instances are characterized by (user-detined) attributes.

These attributes are presumed to be detailed enough to al-
low the user the selection of the instance of a logical object,
matching the purpose of the configuration to be built. The
CMA requires that the set of attributes and their respective

values on instances of a logical object be sufficiently dis-
tinct to uniquely identify the respective instances. New
atnibutes can be declared at any time and henceforth used
on instances to be created. The value sets of attributes can
be extended at any time by the user. The semantics of the
attributes depends on their respective kind. There are three
different kinds of key attributes: partition, rendition, and
version attributes. The kind of an attribute is determined
when it is declared to the CMA.

Partition attributes are intended as a means to distin-
guish those instances of all logical objects in a configura-
tion family that are guaranteed to never be in the same
configuration. For example, some modules may be host-
dependenS in this case, a partition attribute named “host”
and valued “VMS” or “UNIX” can be defined and used
for the respective modules. The semantics conveyed to the
ClMA is that, for a configuration built for a “UNIX” host,
modules with a “host” attribute must have the value
“UNIX”. Each instance may have multiple partition at-
tributes.

In order to create nested sets of successively more
detailed partitions, a partial order can be induced on par-
tition attribute values: the values in the value set of a given
partition attribute may be specified as being specializations
or generalizations of other such values. Any value may
have many specializations and generalizations. As an ex-
ample of the use of specialization and generalization, in-
stances can be partitioned according to a “target” partition
attribute and its values “register-based architectures” with
specializations “Intel-386” and “MC68k” with further
specializations “MC68020”, and “MC68030”. Since
“register-based architectures” generalizes both “MC68k”
and “MC68020”, a configuration can then be built from
instances with the target partition attribute values “register-
based architectures”, “MC68k” or “MC68020” (or with-
out a target partition attribute). However, no configuration
can be formed that includes “Intel-386” and “MC68020”
targeted modules as these two values are incompatible.
Similarly, “MC68030” and “MC68020” are incompatible
and may not co-exist in the same configuration.

By definition, for any two values A and B of the same
attribute, A is said to generalize B, if and only if A is equal
to B or A is a member of the transitive generalizations Of
B. Similarly, A specializes B if and only if B generalizes
A. Finally, A overlaps B, if either of them is a Umitive
generalization of the other.

8

t component relationship

+.++. instance relatlonship

Figure 1: Component and Instance Relationships

have many such dependencies and a logical object can be
depended upon by many instances. These relationships are
attributed to distinguish between dependencies arising from
using or producing the respective instance in a configura-
tion; this is referred to as a purpose affribufion of the
respective dependency. They are also attributed with a ren-
dition, indicating that, for an instance of the logical object
to satisfy the logical dependency, its rendition must
generalize the given rendition.

The logical dependency relationships are used in the
process of establishing configurations. A complefe
configurnfion must include an instance of any logical ob-
ject targeted by any applicable logical dependency emanat-
ing from any instance in the configuration. The rendition
of the instance must generalize the rendition of the logical
dependency. The same instance may satisfy multiple
dependencies.

Inherifubfe dependency relafionships exist from logical
objects to other logical objects. They indicate to the CMA
that upon creation of an instance of a logical object from
which such relationships emanate, logical dependency
relationships are to be installed to the logical objects at
which the inheritable dependency relationships terminate.

Any logical object may have many such emanating and
terminating inheritable dependency relationships. These
relationships have a purpose attribution to distinguish be-
tween dependencies arising iiom using or producing the
instance that inherits an equally attributed logical depen-
dency relationship. They are also attributed with a fargef
rendition to become the rendition of the inherited logical
dependency relationship of an instance. In addition, they
are attributed with a source rendition which limits the in-
heritability to those instances whose renditions generalize
this source rendition.

_ inheritable dependency
relationship

- r%ionshtp
I ical dependency

-+-+ instance relationship

Figure 2: Inheritable and Logical Dependency
Relationships

Figure 2 illustrates the inheritable and logical depen-
dency of the compiler example. It is assumed that every
implementation instance (“impl”) requires a specification
instance (“spec”) of the same logical object, every front
end (FE) requires an error writer (EW), and every back end
(BE) requires a front end, but not every back end requires
an error writer. Thus, ail dependencies shown in Figure 2
are inheritable dependencies, except those of the “VMS”
back end on the error writer which are logical depen-
dencies. The pm-pose attributions specify that dependencies
exist on specifications only, if the depending instance is to
be produced (i.e., compiled), or on both specifications and
implementations, if the depending instance is to be used
(i.e., linked). This setup allows one to configure a stand-
alone front end that includes an error writer, or a back end
that includes a front end and an error writer. However, one

9

cannot configure a back end that does not include a front
end. Moreover, CMA ensures that, upon combination of a
back end with a (previously configured) front end, only one
version of an error writer is included in the resulting con-
figuration.

Consistency reI&onships exist only between instances
of different logical objects or of disjoint renditions. Any
instance may have many consistency relationships. By
boolean attribution of the relationships, known inconsis-
tencies can also be recorded. These relationships specify
that a logical dependency of a given instance can be
satisfied by another instance which is (in)consistent with
the former for any configuration that chooses the respective
instances. What is meant by “consistency” is largely to be
determined by the user of the CMA, although the intuitive
intent is that of “correctly operating togethertt3. The CMA
semantics of consistency merely requires that the user’s
notion of consistency satisfies three rules:

1. A pair of instances consistent in some configuration
will be equally consistent in any other configuration
that includes this pair of instances.

2. A configuration is to be regarded as a consistent
configururion if, for every applicable logical depen-
dency relationship emanating from an instance in
the configuration, there either is a consistency
relationship from the given instance to the instance
selected for the logical object in this configuration
and satisfying the dependency, or no such instance
has been selected yet.

3. Consistency is independent of the purpose of inclu-
sion of the respective instances in a configuration,
i.e., the consistency exists regardless of whether the
depending instance is used or produced within the
configuration.

Compuribiliry relationships are between instances of the
same logical object and of certain related rendition. Any
instance may have many compatibility relationships. These
relationships specify a directional compatibility between
the involved instances. Such compatibility is taken to
mean that replacement of the source instance of the
relationship by the target instance will preserve the consis-
tency with any instance that depended on the replaced in-

3Note that the CMA notion of consistency is not the absence of
the conflicting inclusion of multiple versions of the same object in
a configuration, as it is in systems like Gypsy [3]. CMA refers [o
the latter situation as a skewed configuration.

stance. Note that no such guarantee is required regarding
any object depended upon by the compatible instances.
That is, the replacing instance may well depend on logical
objects and instances different from those of the replaced
instance. The rendition of the source instance of a com-
patibility relationship must specialize the rendition of the
target instance. Compatibility relationships are used to
predict the consistency of a new configurations formed by
(compatible) transformations of existing configurations.
They are also used to guide the search for consistent in-
stances that satisfy logical dependencies on some objects.

c- inheritable dapndency
relationship

.- consistency relationship

-Y\ - - - - compatibility relationship

-%-$s- instance relationship

Figure 3: Consistency and Compatibility Relationships

Figure 3 iilusnates the consistency and compatibility
relationships on our example of a compiler. As a result of
including the Vl implementation of BE as a used instance
in 3 configuration, one must satisfy four inheritable depen-
dencies. The dependency of this BE implementation on a
specification of BE can be satisfied consistently only by
including the VI specification instance as the Vl im-
plementation is known to be inconsistent with the V2
specification. The dependency on the FE implementation
can be satisfied consistently either directly by the V2 im-
plementation of known consistency, or by the VI im-
plementation by virtue of the recorded compatibility with
the V2 implementation. The dependency on a FE specifica-
tion can be satisfied consistently by inclusion of the Vl
specification. The dependency of the FE implementation on
an FE specification is already satisfied by the included VI

10

specification of FE. Note that, at this stage, the resulting
configuration is still not regarded as a consistent one, since
no consistency relationships are present that match the
satisfied dependencies between the implementation in-
stances and the specification instances of each logical ob-
ject, e.g., between the FE implementation and the FE
specification instances. CMA allows the creation of con-
figurations of such unknown consistency and even of con-
figurations known to contain inconsistencies. Users can
query CMA for display of the specific dependencies for
which either consistency is unknown or an inconsistency
has been detected. Furthermore, upon retrieval of any con-
figuration, CMA will track any changes to relevant consis-
tency relationships since the last retrieval and thus always
present the most recent consistency information to the user
of the configuration.

Configuration relationships exist between instances and
those instances that contain configuration descriptions in-
cluding the former instances. These relationships are im-
plicitly maintained by the CMA and are attributed by the
reasons for including instances in configurations. They
serve to answer useful queries such as “what are the in-
stances included in a given configuration?“, “why is a
given instance included in a given configuration, which in-
stances depend on it and which ones does it depend on?“,
“which dependency caused a constraint on the instance
selection?“, “what are the configurations in which a given
instance is included?“.

Appendix A graphically depicts all the relationships
among the entities of the CMA data model.

6. CONFIGURATIONS
The properties of completeness and consistency of a con-

figuration have already been explained in the preceding
section. Two additional properties of configuration descrip-
tions are of interest:

A configuration description is said to be ambiguous, if it
includes logical objects without selection of specific in-
stances or logical objects depended upon without also in-
cluding the appropriate instances to satisfy the depen-
dencies. The choice of such instances may have already
been narrowed by user-specified selection constraints. An
ambiguous configuration can be consistent with respect to
all the instances already included. It can be recorded and
subsequently used to derive complete configumtions.

A configuration description is said to be skewed, if it

includes multiple used instances of the same logical object
and overlapping rendition, thus violating the uniqueness
restrictions. The Public CMA Access Interface will not
allow the generation of a skewed configuration, e.g., one
that contains both the Vl and V2 implementation instances
of the FE shown in Figure 3.

A configuration description can cany a partition
constraint in terms of names and values of partition at-
tributes. Such a constraint causes the CMA to automatically
eliminate ail instances as candidates for inclusion in this
configuration, whose partition attributes are thus named
and have a value incompatible with the value specified in
the constraint. In terms of our earlier example, this means
that, for a configuration constrained to a “target” partition
value “MC68k”, an instance with “MC68030” partition
value cannot be selected for inclusion.

A configuration is also allowed to have a rendition
constraint on the instances included in the configuration. It
thereby becomes possible to build a configuration contain-
ing, for example, “source” renditions only, e.g., for ship-
ping the entire set of sources, but no object code renditions.
The specific rule enforced is that instances whose rendition
does not specialize one of the renditions specified in the
constraint are not eligible for inclusion in the configuration.

Configuration descriptions can be recorded as instances
of the logical objects which they configure, and as such
they can partake in other configurations. They can also be
expanded into new configurations to insert their con-
stituents into the latter. Resulting skews are detected and
automatically resolved by the CMA through weakening of
instance selection constraints and subsequent refinement by
the user.

7. USING THE CM4
Users can create multiple CMA Data Bases, in which

entities and configurations are administered. Each such
data base can be subjected to access control restrictions. To
resolve naming conflicts upon merger of hitherto unrelated
configurations, naming of attributes and objects is done
through name spaces, of which there can be an arbitrary
number within a C,MA data base. These name spaces avoid
the need for global name coordination among all users of a
CMA data base. Each such name space can be subjected to
access control restrictions. Finally, each configuration can
be individually access controlled.

The CMA interfaces have a simple ua%.tCtiOn

11

mechanism: that is, changes to a CMA data base become
visible to other users only after a commitment of the
changes. Similarly, changes to a configuration are accumu-
lated in transactions and not made externally visible until
an explicit commitment occurs. All transactions can be
abandoned to reestablish the most recent committed state.

The main activities for the users and tools interfacing
with the CMA are

l first, the conveying of information about logical ob-
jects, instances, and their relationships to the CMA;

l second, the gradual and guided build-up of con-
figurations based on entered information: and

l third, retrieving and utilizing of existing configura-
tions.

In building configurations, users have a choice of top-
down refinement along component relationships or a
bottom-up refinement along logical dependencies, or a
mixture of both. At each refinement step, users can impose
selection constraints in terms of attribute values without as
yet deciding on a particular instance for inclusion in the
configuration. For every refinement of a logical object,
queries are available that return the set of alternative in-
stances satisfying already existing constraints. These sets
can be further narrowed by requesting only those alter-
natives that lead to configurations of guaranteed consis-
tency. The user can of course back out of previous refine-
ments if necessary. At any time, numerous queries for
various aspects of a configuration are possible, such as for
the set of unsatisfied dependencies, the set of ambiguous
selections, the set of satisfied dependencies of unknown
consistency status, the set of causes for the inclusion of a
particular instance, and so on.

In practice, the benefits of the C,MA become more
pronounced with the wealth (and accuracy) of the
peripheral tools interfacing with the CMA, and with the
re-use of existing sub-systems in a multitude of different
configurations.

8. COMPARISON WITH RELATED EFFORTS
Configuration management has become an important

research topic of software engineering. Many efforts have
addressed the problems and produced valuable tools.

Both SCCS [S] and RCS [7] are useful tools for tracking
changes of text (source code or documentation) and offer a
primitive form of configuration identification. They

automate the storage and retrieval of various ve&ns of
text files, keep track of when and (optionally) why changes
were made and who made them, exercise access control on
various versions, and identify configurations in the form of
trees of versions. Both delegate the issues of dependency,
consistency, compatibility, and generation of new con-
figurations to the user (or other tools).

Make [4] is a tool for the automatic regeneration of a
program once some of its modules have been modified. A
Makefile can recursively refer to other Makefiles.
However, Make has no notion of versions; the consistency,
ambiguity, and completeness of a configuration are left to
the user to establish or resolve. The development of a new
configuration from an old one is a manual operation.

The systems described in [2,9,6,5, 1, 31 are integrated
software environments which contain, among others, a con-
figuration management component. The “configuration
threads” of DSEE [2] are rule-based descriptions of con-
figurations. ‘shape’ [9] utilizes a much enhanced version of
the Makefile [4], and produces a “configuration identifica-
tion” from the selection and variant rules. The Odin sys-
tem [6] is an extensible object manager. Odin’s user
defines objects (tools, their input and outputs) using a
specification language. Adele’s consistency of configura-
tions [1] corresponds to CMA’S notion of partitions, and
utilizes attributes associated with versions, and constraints
on the versions or modules that may be combined together.
Gypsy [3] can bind versions to configuration components
dynamically, thus allowing configuration families (am-
biguous configurations in CIMA). Gypsy intentionally al-
lows the construction of skewed configurations, such that
skewed versions can be used in building different derived
objects. Configuration threads in DSEE, configuration
identification in ‘shape’, derivation *Onph in Odin, and the
target concept of NSE [5] roughly correspond to CMA’s
notion of I “complete configuration”, except that none of
these systems has the added notion of operationally
(in)consistent configurations or of deriving such consis-
tency from other relationships such as compatibility. Odin,
Adele, and NSE have a pronounced notion of composite
objects similar to CMA. Adele and Odin can dynamically
construct new systems, though Odin’s form of
parameterization is more restricted. NSE, however, has no
obvious support for controlling the combination of existing
components into new systems.

A common theme to the cited efforts is the automated
tmcking of configurations as their elements are changed by

12

the user, so that the configured system can be rebuilt
automatically. Changes might be minor or whole-sale (via
configuration families). An axiomatic assumption in these
approaches is that any such change will preserve (or work
towards) operational consistency of the configured system.
Arguably, this is a good model for the development of a
system from scratch, where the configuration is a result of
the development, but not an initial input to it. Principles of
software reuse partially invalidate this model: systems are
no longer built from scratch, but largely configured from
pre-existing components. CMA therefore takes the ap-
proach of first configuring the system by combination of
existing (or postulated) components and tools, exploiting
known (in)consistencies and (in)compatibilities to murow
the choices, and then permitting other tools to track the
development process and report configuration changes and
properties back to CMA.

Another difference is the highly generic model offered
by C,MA. Most of the cited efforts force users into a par-
ticular mold of organizing the administrated entities, typi-
cally restricted to host files and directories. No such built-
in rules exists in CMA; they are left to tools built on top of
CMA. Yet, the C&IA data model is capable of answering a
surprisingly large number of CM-related questions com-
pletely independently of such additional rules.

Often, the fundamental capabilities of other CM systems
rely on predefined object types that are either non-
extensible or difficult to extend by the user, or they require
information flow from user-provided tools without offering
a clean integration platform. The very nature of CMA is to
provide this extensibility and information integration.

Finally, the notion of user-defined attributes with
predefined CM-semantics and, in particular, of attribute
value specialization and generalization adds considerable
expressive power and flexibility to CMA, which we have
not found in any of the cited systems.

9. SUMMARY
The CMA and its built-in generic concepts are intended

to supply a solid foundation for a variety of C$-related
tools without a-priori intermingling diverse aspects of ap-
plication domain, version control policies, configuration
management policies, system modelling approaches,
change tracking, automated rebuilding, etc. The latter often
need to reflect the idiosyncrasies of an organization, pro-
gramming language, or software engineering environment.

In particular, the CMA semantics associated with attributes
and their values is quite general. Such semantics, together
with CMA’s notion of consistency, contributes to the
generality and power of CMA’s concept of configurations.

By isolating a kernel of policy-independent CM
functionality and by resolving the non-trivial implemen-
tation choice of a sufficiently general data model, the CIMA
can serve many tools tailored to these specifics without
being merely a general purpose data-base system. Im-
plementation of many such tools or even integration of
CMA in a software engineering environment becomes con-
siderably easier, if not trivial. Such implementation or in-
tegration allows the user to decide on the desired degree of
automation for a given application environment.

REFERENCES

1. J. Estublier. Configuration Management: The Notion
and the Tools. Proceedings of the International Workshop
on Software Version and Configuration Control, German
ACM Chapter, Grassau, FRG, Jan., 1988.

2. D. B. Leblang, R. P. Chase, Jr., and G. D. McLean, Jr.
The Domain Software Engineering Environment for Large-
Scale-Software-Development Efforts. Proceedings of the
1st International Conference on Computer Workstations,
lEEE, Los Alamitos, CA, Nov., 1982.

3. E. S. Cohen et. al. Version Management in Gypsy.
Proceedings of the Software Engineering Symposium on
Practical Software Development Environments, AC&M
SIGSOFT/SIGPLAN, Boston, MA, Nov., 1988.

4. S. I. Feldman. “Make--A program for ,Mainta.ining
Computer Programs”. Soflware--Practice and Experience
9,3 (Apr. 1979).

5. W. Courington. The Network Software Environment.
Sun Microsystems Inc., Mountain View, CA, Apr., 1989.

6. G. M. Clemm. The Odin Specification Language.
Proceedings of the International Workshop on Software
Version and Configuration Control, German KM Chapter,
Gra.csau, FRG, Jan., 1988.

7. W. F. Tichy. Design, Implementation an Evaluation of
a Revision Conttol System. Proceedings of the 6th Inter-
national Conference on Software Engineering, IEEE,
Tokyo, Japan, Sep., 1982.

8. M. J. Rochkind. “The Source Code Control System”.
IEEE Transactions on Software Engineering SE-I, 4 (Dec.
1975).

13

9. A. Mahler and A. Lampen. An Integrated Tool Set for
Engineering Software Configurations. Proceedings of the
Software Engineering Symposium on Practical Software
Development Environments, ACM SIGSOFT/SIGPLAN,
Boston, MA, Nov., 1988.

APPENDIX A

DATA MODEL RELATIONSHIPS

This appendix shows all the relationships of the CMA
data model. Each relationship is represented by a rectangle
containing the name of the relationship and its cardinality.
The xrows emanating from the rectangle of a relationship
show the direction of the relationship.

Legend

0
q
cl

0

I

0
Name

Relationships

A Logical Object

An Instance

A Configuration

A Relationship

An Attribute

M
Dependson N

-

@@ziJ

--
-- e-

-.n : -e-
-- : --

--- -. --

Inheritably

M
Depends o

74

0 Status

Compatible with

Reason of 0 inclusion

Has Component

14

