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Abstract 
In an environment in which systems are configured by 

reusing existing subsystems, the determination of complete 
and consistent configurations is a non-trivial and error- 
prone task, although considerable information about the 
subsystems may already be available from previous con- 
figurations. The Configuration Management Assistant is a 
tool that supports tracking and exploiting such information 
in the difficult process of x-e-configuration on a large scale. 
Its data model was designed to be as independent as pos- 
sible of configuration management policies and procedures 
and yet provide substantive assistance in this process. The 
inost important elements of this data model are described in 
this paper. ’ 

1. INTRODUCTION 
Configuration Management is a central activity in the 

software generation process. Today, many projects 
flounder or are considerably delayed by problems that 
originate from insufficient discipline or technical support 
for configuration management. Progress in the area of con- 
figumtion management is desperately needed. 
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Configuration management is often mistakenly con- 
sidered to be satisfied by a capability to rrack changes to 
program source code [8,71 and to automatically regenerate 
a system after such changes have taken place [4]. While 
these activities play an important role in software manage- 
ment and change control, they are nevertheless not the 
primary, let alone the sole focus of configuration manage- 
ment. For such capabilities, the GIG0 (“garbage-in- 
garbage-out”) law applies: if the programmers are not 
capable of determining a functionally consistent set of 
sources to begin with, no degree of automation will make 
the resulting system operational. Moreover, the ease with 
which systems can be rebuilt automatically in this fashion 
makes it even more likely that functional inconsistencies 
are not detected at an early stage of system integration, but 
only after considerable time and effort has been wasted on 
building and testing a non-functioning system. 

These problems become even more pronounced in an 
environment in which sizeable software components are 
heavily reused. Here, the internal dependencies within the 
reused software are largely unknown to the (rejuser, but 
may have subtle interactions with other software that need 
to be accommodated in the system integration. Conversely, 
as software gets reused in different contexts, a wealth of 
information is accumulated about consistent and inconsis- 
tent compositions. Utilizing this information can sig- 
nificantly increase the probability of aniving at consistent 
and complete configurations even for newly created con- 
figurations, in which major subsystems have been replaced. 
Tracking and exploiting such information and making it 
available to the (re)user is the central objective of the Con- 
figuration Management Assistant (WA). While many of 
the basic concepts employed in CMA are also found in 
other systems, it is the integration of such concepts as logi- 
cal dependency, consistency, compatibility, absuact 
decomposition, and configuration semantics that distin- 
guishes CMA. 



2. THE CONFIGURATION MANAGEMENT 
ASSISTANT (CMA) 

The Configuration Management Assistant (CMA) is a 
tool that assists in configuration management by 

l recording and relieving descriptions of configura- 
tions and the set of entities of which they are com- 
prised; 

l recording and retrieving information about known 
(in)consistencies and dependencies between in- 
dividual entities that are included in configurations; 

l predicting the completeness and consistency of 
newly created configurations based on the recorded 
information, and assisting in the consuuction of such 
new configurations. 

The CMA is a powerful administration system for con- 
figuration management information and imposes as few 
constraints as possible on the specific policies and methods 
of configuration management that a particular CMA instal- 
lation might wish to apply. The CMA offers open inter- 
faces that can be used by other tools both to record and to 
retrieve configuration management related information. 
Enforcing particular management policies and procedures, 
as necessary to perform efficient configuration manage- 
ment, is left to other tools interfacing with the CMA and to 
locally established guidelines and procedures. Producing a 
CMA that supports a large variety of configuration 
management procedures and of styles to describe con- 
figurations has been a guiding principle and a major chal- 
lenge in the design of the CMA. 

The major advantage of using the CMA comes from its 
capability of using recorded information about depen- 
dencies and consistencies between entities to assist the user 
in defining workable configurations. The heavy expense of 
finding configuration errors through laborious debugging, 
once the attempt to build a product has failed, can be 
avoided. In providing these services, the CMA relies 
heavily on the wealth and correctness of the dependency 
and consistency information supplied by the user or by 
tools. Its capabilities are likely to be particularly strong in a 
production environment where components and tools are 
heavily reused across products, since earlier usages can 
provide such needed information reliably. 

Source control systems, e.g. RCS [7], by which changes 
to individual entities are controlled and differences are 
tracked, can be integrated with the CMA through the use of 
intermediary tools or the recording of source control labels 

in the CMA data base. Similarly, tools for the automatic 
(re,)generation of products, e.g. Make [4], can obtain a 
large portion of the information needed for such 
(re)generation from the CMA. 

The CMA has been implemented by Tartan Laboratories 
Inc. under contract for the Naval Avionics Center, In- 
dianapolis. It consists of the implementation of the Public 
CMA Access Interface in terms of Ada packages, on which 
diverse tools can be built, and of the interactive, menu- 
driven CMA User Interface that guides the user in building 
new configurations and in entering other information not 
already communicated by tools via the Public CMA Access 
Interface. The CMA is implemented in Ada; in March 1989 
it consisted of about 45,000 lines of Ada code. 

3. BASIC CONCEPTS 
The CMA has the concepts of logical objects anti their 

instances. A logical object may have multiple instances, 
distinguished by key attributes that characterize each in- 
stance. For example, different versions of an object will 
typically be instances of the same logical object. However, 
the CMA has no built-in knowledge of a specific scheme or 
policy of versioning. The CMA does not explicitly support 
a tree-structure of instances (i.e., versions of versions). In- 
stead, multiple key attributes can be used to reflect sub- 
ordinated versioning; nevertheless, all versions are 
regarded as direct instances of their logical object. This 
relieves the user of the necessity of an a-priori decision 
regarding such tree structures and avoids the potential need 
for entity duplication to conform to a tree-structured divi- 
sion of information. 

The CMA has the concept of composite logical objects, 
consisting of a set of other (possibly composite) logical 
objects. Composite logical objects are used to describe the 
abstract decomposition of large systems into their subsys- 
tems, called components. A component may belong to mul- 
tiple composite objects and, in particular, may be a. com- 
ponent of multiple subsystems of a single composite logical 
object. In other words, system decomposition need not be 
uee-structured, but can be represented by an acyclic graph 
of subcomponents. For example, the logical object “com- 
piler” may be composed of a “front end” and a “back 
end” logical object, both of which in turn have substruc- 
ture containing the same logical object “error writer” as 
component 

The CMA has no built-in knowledge of the nature of the 
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A rendition attribute is predefined to exist on each in- 
stance. The attribute and its user-defined values are in- 
tended as a means to distinguish the nature of the instances, 
to delineate whether or not multiple instances of the same 
logical object can occur in a configuration, and to describe, 
by implication, the nature of a configuration.2 Examples of 
rendition attribute values might be “Source”, “Object”, 
“Ada Library”, “Documentation”, “Specification”, 
“Body”, etc. Similar to partition attributes values, the 
values in the value set of the rendition attribute may be 
specified as being specializations or generalizations of 
other such values. The following specific semantics apply 
(see also Section 5): 

1. a dependency, constraining the rendition of any 
satisfying instance, can be satisfied only by any in- 
stance whose rendition generalizes the given ren- 
dition. 

2. an inheritable dependency, constraining the ren- 
dition of the source instance of inherited depen- 
dencies, is applicable only to instances whose ren- 
dition generalizes the given rendition. 

3. a compatibility relationship can exist only, if the 
rendition of the target instance generalizes the ren- 
dition of the source instance. 

4. a configuration cannot include two or more (used) 
instances of the same logical entity and of overlap- 
ping rendition. 

By applying specialization and generalization semantics 
to rendition attribute values, CMA is capable of tracking 
dependencies and other relationships among administered 
objects even if their aggregation changes in different ver- 
sions. For example, at early stages of a development, a 
given instance might contain both specification and im- 
plementation of a module while, later on, specification and 
implementation are separated into different instances. 
CMA nevertheless will be capable of creating configura- 
tions including either representation of the module, based 
on the same dependency information. 

Version atnibures are used to distinguish variations of 
instances of the same partition and rendition, e.g., “Vl” 
and “V2” of a library, “debug” and “optimized” of a 
module, etc. There is no specific CIMA semantics as- 

2-l-h e concept of rendition is very close to the concept of typing. 
As the rendition semantics are different from Ada typing. we 
consciously avoided the use of the word “typing”. 

sociated with these attribute values (other than the overall 
requirement of unique identification of instances by at- 
tribute values). Each instance may have multiple version 
attributes. 

Within configurations, instances have a pwpose 
attribution, distinguishing whether the instance is produced 
by some production step utilizing the configuration descrip- 
tion, or used in the production of another instance, or both. 

5. THE RELATIONSHIPS IA’ THE CMA 
DATA MODEL 

Component relationships exist among logical objects. 
Such a relationship specifies that a given logical object is a 
component of a composite logical object. Each logical ob- 
ject can have multiple logical objects as components as 
welI as be a component of multiple composite logical ob- 
jects. These relationships are used to describe the composi- 
tion of logical objects in a “top-down” fashion. The 
primary purpose of these relationships is to create a system 
decomposition that can serve as the description of a con- 
figuration family in terms of its logical objects. Each com- 
ponent relationship can be attributed with a rendition at- 
tribute value to indicate that the relationship is valid only 
for configurations that are not constrained to exclude in- 
stances of a rendition that generalizes this given rendition 
(see Section 6). The system composition can also be 
described in a “bottom-up” fashion by means of depen- 
dency relationships discussed below. 

Insrance relationships relate logical objects and their in- 
stances. While every logical object may have multiple in- 
stances, no such instance can belong to multiple logical 
objects. 

Figure 1 depicts the component and instance relation- 
ships of the example of a compiler that has two com- 
ponents, front end (FE) and back end (BE), both of which 
require an error writer (EW). This figure shows several 
specification (“spec”) and implementation (“impl”) in- 
stances of FE, BE, and EW. It is assumed that the user has 
defined “spec” and “impl” as rendition attribute values, 
and “VMS” and “Unix” as partition attribute values: both 
“Vl” and “V2” are version attribute values. 

Logical dependency reiarionships exist between in- 
stances and logical objects. They specify that the given 
instance depends on, i.e., cannot operate or be processed 
correctly without, or depends in its correctness on, Some 
instance of the given logical object Any instance may 
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entities it administers. It merely expects the user to provide 
suings presumed to identify the entities. These strings 
could be (the names of) host files, directories, Ada 
libraries, labels used by a source control system to identify 
appropriate host entities, command scripts to generate the 
entities, or anything the user chooses them to mean. These 
Wings could differ in their user-defined semantics for dif- 
ferent kinds of administered entities. Instances of a logical 
object can be of quite diverse nature: A logical object 
representing an Ada package may have as its instances the 
package specification and the package body in source form, 
assembly or object files compiled from these sources, 
separate documentation, erc. Also, each of these instances 
may exist in different variations and revisions. Similarly, a 
logical object representing a tool may have as its instances 
the tool’s executable image, its user documentation, its in- 
ternal documentation, or the configuration used to build the 
tool. Consequently, the CMA can be applied to many 
diverse configuration management problems. The CMA 
can be viewed as an elaborate mechanism for name storage 
and retrieval, highly structured and supported by the 
knowledge the CMA has about configurations that interre- 
late the administered entities. Administered entities need 
not even exist at the time they are made known to the 
CMA: it may, in fact, be the very purpose of the configura- 
tion to control the generation of these entities. 

The CMA concept of a configuration is simply that of a 
set of instances. Based on information recorded about 
these instances, completeness, consistency, and satisfaction 
of uniqueness constraints of the configuration are decided. 
The CMA also has the concept of a configuration family, 
describing a not fully determined set of instances in terms 
of constraints imposed on the eventual selection of in- 
stances for a particular configuration. 

The data model used by the CMA is an ERA (entity- 
relationship-attribute) model, in which both entities and 
relationships can be attributed. Logical objects, instances, 
configurations and configuration families are such entities. 
The CMA implementation supports most relationships only 
as directional relationships. 

4. THE ATTRIBUTES IN THE CMA DATA MODEL 
Instances are characterized by (user-detined) attributes. 

These attributes are presumed to be detailed enough to al- 
low the user the selection of the instance of a logical object, 
matching the purpose of the configuration to be built. The 
CMA requires that the set of attributes and their respective 

values on instances of a logical object be sufficiently dis- 
tinct to uniquely identify the respective instances. New 
atnibutes can be declared at any time and henceforth used 
on instances to be created. The value sets of attributes can 
be extended at any time by the user. The semantics of the 
attributes depends on their respective kind. There are three 
different kinds of key attributes: partition, rendition, and 
version attributes. The kind of an attribute is determined 
when it is declared to the CMA. 

Partition attributes are intended as a means to distin- 
guish those instances of all logical objects in a configura- 
tion family that are guaranteed to never be in the same 
configuration. For example, some modules may be host- 
dependenS in this case, a partition attribute named “host” 
and valued “VMS” or “UNIX” can be defined and used 
for the respective modules. The semantics conveyed to the 
ClMA is that, for a configuration built for a “UNIX” host, 
modules with a “host” attribute must have the value 
“UNIX”. Each instance may have multiple partition at- 
tributes. 

In order to create nested sets of successively more 
detailed partitions, a partial order can be induced on par- 
tition attribute values: the values in the value set of a given 
partition attribute may be specified as being specializations 
or generalizations of other such values. Any value may 
have many specializations and generalizations. As an ex- 
ample of the use of specialization and generalization, in- 
stances can be partitioned according to a “target” partition 
attribute and its values “register-based architectures” with 
specializations “Intel-386” and “MC68k” with further 
specializations “MC68020”, and “MC68030”. Since 
“register-based architectures” generalizes both “MC68k” 
and “MC68020”, a configuration can then be built from 
instances with the target partition attribute values “register- 
based architectures”, “MC68k” or “MC68020” (or with- 
out a target partition attribute). However, no configuration 
can be formed that includes “Intel-386” and “MC68020” 
targeted modules as these two values are incompatible. 
Similarly, “MC68030” and “MC68020” are incompatible 
and may not co-exist in the same configuration. 

By definition, for any two values A and B of the same 
attribute, A is said to generalize B, if and only if A is equal 
to B or A is a member of the transitive generalizations Of 
B. Similarly, A specializes B if and only if B generalizes 
A. Finally, A overlaps B, if either of them is a Umitive 
generalization of the other. 
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t component relationship 

+.++. instance relatlonship 

Figure 1: Component and Instance Relationships 

have many such dependencies and a logical object can be 
depended upon by many instances. These relationships are 
attributed to distinguish between dependencies arising from 
using or producing the respective instance in a configura- 
tion; this is referred to as a purpose affribufion of the 
respective dependency. They are also attributed with a ren- 
dition, indicating that, for an instance of the logical object 
to satisfy the logical dependency, its rendition must 
generalize the given rendition. 

The logical dependency relationships are used in the 
process of establishing configurations. A complefe 
configurnfion must include an instance of any logical ob- 
ject targeted by any applicable logical dependency emanat- 
ing from any instance in the configuration. The rendition 
of the instance must generalize the rendition of the logical 
dependency. The same instance may satisfy multiple 
dependencies. 

Inherifubfe dependency relafionships exist from logical 
objects to other logical objects. They indicate to the CMA 
that upon creation of an instance of a logical object from 
which such relationships emanate, logical dependency 
relationships are to be installed to the logical objects at 
which the inheritable dependency relationships terminate. 

Any logical object may have many such emanating and 
terminating inheritable dependency relationships. These 
relationships have a purpose attribution to distinguish be- 
tween dependencies arising iiom using or producing the 
instance that inherits an equally attributed logical depen- 
dency relationship. They are also attributed with a fargef 
rendition to become the rendition of the inherited logical 
dependency relationship of an instance. In addition, they 
are attributed with a source rendition which limits the in- 
heritability to those instances whose renditions generalize 
this source rendition. 

_ inheritable dependency 
relationship 

- r%ionshtp 
I ical dependency 

-+-+ instance relationship 

Figure 2: Inheritable and Logical Dependency 
Relationships 

Figure 2 illustrates the inheritable and logical depen- 
dency of the compiler example. It is assumed that every 
implementation instance (“impl”) requires a specification 
instance (“spec”) of the same logical object, every front 
end (FE) requires an error writer (EW), and every back end 
(BE) requires a front end, but not every back end requires 
an error writer. Thus, ail dependencies shown in Figure 2 
are inheritable dependencies, except those of the “VMS” 
back end on the error writer which are logical depen- 
dencies. The pm-pose attributions specify that dependencies 
exist on specifications only, if the depending instance is to 
be produced (i.e., compiled), or on both specifications and 
implementations, if the depending instance is to be used 
(i.e., linked). This setup allows one to configure a stand- 
alone front end that includes an error writer, or a back end 
that includes a front end and an error writer. However, one 
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cannot configure a back end that does not include a front 
end. Moreover, CMA ensures that, upon combination of a 
back end with a (previously configured) front end, only one 
version of an error writer is included in the resulting con- 
figuration. 

Consistency reI&onships exist only between instances 
of different logical objects or of disjoint renditions. Any 
instance may have many consistency relationships. By 
boolean attribution of the relationships, known inconsis- 
tencies can also be recorded. These relationships specify 
that a logical dependency of a given instance can be 
satisfied by another instance which is (in)consistent with 
the former for any configuration that chooses the respective 
instances. What is meant by “consistency” is largely to be 
determined by the user of the CMA, although the intuitive 
intent is that of “correctly operating togethertt3. The CMA 
semantics of consistency merely requires that the user’s 
notion of consistency satisfies three rules: 

1. A pair of instances consistent in some configuration 
will be equally consistent in any other configuration 
that includes this pair of instances. 

2. A configuration is to be regarded as a consistent 
configururion if, for every applicable logical depen- 
dency relationship emanating from an instance in 
the configuration, there either is a consistency 
relationship from the given instance to the instance 
selected for the logical object in this configuration 
and satisfying the dependency, or no such instance 
has been selected yet. 

3. Consistency is independent of the purpose of inclu- 
sion of the respective instances in a configuration, 
i.e., the consistency exists regardless of whether the 
depending instance is used or produced within the 
configuration. 

Compuribiliry relationships are between instances of the 
same logical object and of certain related rendition. Any 
instance may have many compatibility relationships. These 
relationships specify a directional compatibility between 
the involved instances. Such compatibility is taken to 
mean that replacement of the source instance of the 
relationship by the target instance will preserve the consis- 
tency with any instance that depended on the replaced in- 

3Note that the CMA notion of consistency is not the absence of 
the conflicting inclusion of multiple versions of the same object in 
a configuration, as it is in systems like Gypsy [3]. CMA refers [o 
the latter situation as a skewed configuration. 

stance. Note that no such guarantee is required regarding 
any object depended upon by the compatible instances. 
That is, the replacing instance may well depend on logical 
objects and instances different from those of the replaced 
instance. The rendition of the source instance of a com- 
patibility relationship must specialize the rendition of the 
target instance. Compatibility relationships are used to 
predict the consistency of a new configurations formed by 
(compatible) transformations of existing configurations. 
They are also used to guide the search for consistent in- 
stances that satisfy logical dependencies on some objects. 

c- inheritable dapndency 
relationship 

.- consistency relationship 

-Y\ - - - - compatibility relationship 

-%-$s- instance relationship 

Figure 3: Consistency and Compatibility Relationships 

Figure 3 iilusnates the consistency and compatibility 
relationships on our example of a compiler. As a result of 
including the Vl implementation of BE as a used instance 
in 3 configuration, one must satisfy four inheritable depen- 
dencies. The dependency of this BE implementation on a 
specification of BE can be satisfied consistently only by 
including the VI specification instance as the Vl im- 
plementation is known to be inconsistent with the V2 
specification. The dependency on the FE implementation 
can be satisfied consistently either directly by the V2 im- 
plementation of known consistency, or by the VI im- 
plementation by virtue of the recorded compatibility with 
the V2 implementation. The dependency on a FE specifica- 
tion can be satisfied consistently by inclusion of the Vl 
specification. The dependency of the FE implementation on 
an FE specification is already satisfied by the included VI 
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specification of FE. Note that, at this stage, the resulting 
configuration is still not regarded as a consistent one, since 
no consistency relationships are present that match the 
satisfied dependencies between the implementation in- 
stances and the specification instances of each logical ob- 
ject, e.g., between the FE implementation and the FE 
specification instances. CMA allows the creation of con- 
figurations of such unknown consistency and even of con- 
figurations known to contain inconsistencies. Users can 
query CMA for display of the specific dependencies for 
which either consistency is unknown or an inconsistency 
has been detected. Furthermore, upon retrieval of any con- 
figuration, CMA will track any changes to relevant consis- 
tency relationships since the last retrieval and thus always 
present the most recent consistency information to the user 
of the configuration. 

Configuration relationships exist between instances and 
those instances that contain configuration descriptions in- 
cluding the former instances. These relationships are im- 
plicitly maintained by the CMA and are attributed by the 
reasons for including instances in configurations. They 
serve to answer useful queries such as “what are the in- 
stances included in a given configuration?“, “why is a 
given instance included in a given configuration, which in- 
stances depend on it and which ones does it depend on?“, 
“which dependency caused a constraint on the instance 
selection?“, “what are the configurations in which a given 
instance is included?“. 

Appendix A graphically depicts all the relationships 
among the entities of the CMA data model. 

6. CONFIGURATIONS 
The properties of completeness and consistency of a con- 

figuration have already been explained in the preceding 
section. Two additional properties of configuration descrip- 
tions are of interest: 

A configuration description is said to be ambiguous, if it 
includes logical objects without selection of specific in- 
stances or logical objects depended upon without also in- 
cluding the appropriate instances to satisfy the depen- 
dencies. The choice of such instances may have already 
been narrowed by user-specified selection constraints. An 
ambiguous configuration can be consistent with respect to 
all the instances already included. It can be recorded and 
subsequently used to derive complete configumtions. 

A configuration description is said to be skewed, if it 

includes multiple used instances of the same logical object 
and overlapping rendition, thus violating the uniqueness 
restrictions. The Public CMA Access Interface will not 
allow the generation of a skewed configuration, e.g., one 
that contains both the Vl and V2 implementation instances 
of the FE shown in Figure 3. 

A configuration description can cany a partition 
constraint in terms of names and values of partition at- 
tributes. Such a constraint causes the CMA to automatically 
eliminate ail instances as candidates for inclusion in this 
configuration, whose partition attributes are thus named 
and have a value incompatible with the value specified in 
the constraint. In terms of our earlier example, this means 
that, for a configuration constrained to a “target” partition 
value “MC68k”, an instance with “MC68030” partition 
value cannot be selected for inclusion. 

A configuration is also allowed to have a rendition 
constraint on the instances included in the configuration. It 
thereby becomes possible to build a configuration contain- 
ing, for example, “source” renditions only, e.g., for ship- 
ping the entire set of sources, but no object code renditions. 
The specific rule enforced is that instances whose rendition 
does not specialize one of the renditions specified in the 
constraint are not eligible for inclusion in the configuration. 

Configuration descriptions can be recorded as instances 
of the logical objects which they configure, and as such 
they can partake in other configurations. They can also be 
expanded into new configurations to insert their con- 
stituents into the latter. Resulting skews are detected and 
automatically resolved by the CMA through weakening of 
instance selection constraints and subsequent refinement by 
the user. 

7. USING THE CM4 
Users can create multiple CMA Data Bases, in which 

entities and configurations are administered. Each such 
data base can be subjected to access control restrictions. To 
resolve naming conflicts upon merger of hitherto unrelated 
configurations, naming of attributes and objects is done 
through name spaces, of which there can be an arbitrary 
number within a C,MA data base. These name spaces avoid 
the need for global name coordination among all users of a 
CMA data base. Each such name space can be subjected to 
access control restrictions. Finally, each configuration can 
be individually access controlled. 

The CMA interfaces have a simple ua%.tCtiOn 
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mechanism: that is, changes to a CMA data base become 
visible to other users only after a commitment of the 
changes. Similarly, changes to a configuration are accumu- 
lated in transactions and not made externally visible until 
an explicit commitment occurs. All transactions can be 
abandoned to reestablish the most recent committed state. 

The main activities for the users and tools interfacing 
with the CMA are 

l first, the conveying of information about logical ob- 
jects, instances, and their relationships to the CMA; 

l second, the gradual and guided build-up of con- 
figurations based on entered information: and 

l third, retrieving and utilizing of existing configura- 
tions. 

In building configurations, users have a choice of top- 
down refinement along component relationships or a 
bottom-up refinement along logical dependencies, or a 
mixture of both. At each refinement step, users can impose 
selection constraints in terms of attribute values without as 
yet deciding on a particular instance for inclusion in the 
configuration. For every refinement of a logical object, 
queries are available that return the set of alternative in- 
stances satisfying already existing constraints. These sets 
can be further narrowed by requesting only those alter- 
natives that lead to configurations of guaranteed consis- 
tency. The user can of course back out of previous refine- 
ments if necessary. At any time, numerous queries for 
various aspects of a configuration are possible, such as for 
the set of unsatisfied dependencies, the set of ambiguous 
selections, the set of satisfied dependencies of unknown 
consistency status, the set of causes for the inclusion of a 
particular instance, and so on. 

In practice, the benefits of the C,MA become more 
pronounced with the wealth (and accuracy) of the 
peripheral tools interfacing with the CMA, and with the 
re-use of existing sub-systems in a multitude of different 
configurations. 

8. COMPARISON WITH RELATED EFFORTS 
Configuration management has become an important 

research topic of software engineering. Many efforts have 
addressed the problems and produced valuable tools. 

Both SCCS [S] and RCS [7] are useful tools for tracking 
changes of text (source code or documentation) and offer a 
primitive form of configuration identification. They 

automate the storage and retrieval of various ve&ns of 
text files, keep track of when and (optionally) why changes 
were made and who made them, exercise access control on 
various versions, and identify configurations in the form of 
trees of versions. Both delegate the issues of dependency, 
consistency, compatibility, and generation of new con- 
figurations to the user (or other tools). 

Make [4] is a tool for the automatic regeneration of a 
program once some of its modules have been modified. A 
Makefile can recursively refer to other Makefiles. 
However, Make has no notion of versions; the consistency, 
ambiguity, and completeness of a configuration are left to 
the user to establish or resolve. The development of a new 
configuration from an old one is a manual operation. 

The systems described in [2,9,6,5, 1, 31 are integrated 
software environments which contain, among others, a con- 
figuration management component. The “configuration 
threads” of DSEE [2] are rule-based descriptions of con- 
figurations. ‘shape’ [9] utilizes a much enhanced version of 
the Makefile [4], and produces a “configuration identifica- 
tion” from the selection and variant rules. The Odin sys- 
tem [6] is an extensible object manager. Odin’s user 
defines objects (tools, their input and outputs) using a 
specification language. Adele’s consistency of configura- 
tions [1] corresponds to CMA’S notion of partitions, and 
utilizes attributes associated with versions, and constraints 
on the versions or modules that may be combined together. 
Gypsy [3] can bind versions to configuration components 
dynamically, thus allowing configuration families (am- 
biguous configurations in CIMA). Gypsy intentionally al- 
lows the construction of skewed configurations, such that 
skewed versions can be used in building different derived 
objects. Configuration threads in DSEE, configuration 
identification in ‘shape’, derivation *Onph in Odin, and the 
target concept of NSE [5] roughly correspond to CMA’s 
notion of I “complete configuration”, except that none of 
these systems has the added notion of operationally 
(in)consistent configurations or of deriving such consis- 
tency from other relationships such as compatibility. Odin, 
Adele, and NSE have a pronounced notion of composite 
objects similar to CMA. Adele and Odin can dynamically 
construct new systems, though Odin’s form of 
parameterization is more restricted. NSE, however, has no 
obvious support for controlling the combination of existing 
components into new systems. 

A common theme to the cited efforts is the automated 
tmcking of configurations as their elements are changed by 
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the user, so that the configured system can be rebuilt 
automatically. Changes might be minor or whole-sale (via 
configuration families). An axiomatic assumption in these 
approaches is that any such change will preserve (or work 
towards) operational consistency of the configured system. 
Arguably, this is a good model for the development of a 
system from scratch, where the configuration is a result of 
the development, but not an initial input to it. Principles of 
software reuse partially invalidate this model: systems are 
no longer built from scratch, but largely configured from 
pre-existing components. CMA therefore takes the ap- 
proach of first configuring the system by combination of 
existing (or postulated) components and tools, exploiting 
known (in)consistencies and (in)compatibilities to murow 
the choices, and then permitting other tools to track the 
development process and report configuration changes and 
properties back to CMA. 

Another difference is the highly generic model offered 
by C,MA. Most of the cited efforts force users into a par- 
ticular mold of organizing the administrated entities, typi- 
cally restricted to host files and directories. No such built- 
in rules exists in CMA; they are left to tools built on top of 
CMA. Yet, the C&IA data model is capable of answering a 
surprisingly large number of CM-related questions com- 
pletely independently of such additional rules. 

Often, the fundamental capabilities of other CM systems 
rely on predefined object types that are either non- 
extensible or difficult to extend by the user, or they require 
information flow from user-provided tools without offering 
a clean integration platform. The very nature of CMA is to 
provide this extensibility and information integration. 

Finally, the notion of user-defined attributes with 
predefined CM-semantics and, in particular, of attribute 
value specialization and generalization adds considerable 
expressive power and flexibility to CMA, which we have 
not found in any of the cited systems. 

9. SUMMARY 
The CMA and its built-in generic concepts are intended 

to supply a solid foundation for a variety of C$-related 
tools without a-priori intermingling diverse aspects of ap- 
plication domain, version control policies, configuration 
management policies, system modelling approaches, 
change tracking, automated rebuilding, etc. The latter often 
need to reflect the idiosyncrasies of an organization, pro- 
gramming language, or software engineering environment. 

In particular, the CMA semantics associated with attributes 
and their values is quite general. Such semantics, together 
with CMA’s notion of consistency, contributes to the 
generality and power of CMA’s concept of configurations. 

By isolating a kernel of policy-independent CM 
functionality and by resolving the non-trivial implemen- 
tation choice of a sufficiently general data model, the CIMA 
can serve many tools tailored to these specifics without 
being merely a general purpose data-base system. Im- 
plementation of many such tools or even integration of 
CMA in a software engineering environment becomes con- 
siderably easier, if not trivial. Such implementation or in- 
tegration allows the user to decide on the desired degree of 
automation for a given application environment. 
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APPENDIX A 

DATA MODEL RELATIONSHIPS 

This appendix shows all the relationships of the CMA 
data model. Each relationship is represented by a rectangle 
containing the name of the relationship and its cardinality. 
The xrows emanating from the rectangle of a relationship 
show the direction of the relationship. 
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