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Curvature-Induced Lateral Phase Segregation in Two-Component Vesicles 
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Shape transformations of two-component vesicles in which the spontam .. 'Qus curvature depends on the 
local compositions in the two monolayer:s are invest igated theoretically. Even if the two components do 
not ellhibit la1l.'ral phase separation in spherical ve~icles, temperature-induced shape transformations 
cause lateral phase segregat ion. Vesiculation of sma ller buds is favored in the two-component system. 
In two-component vesicles with inll'rmonolayl'r phase separat ion. thermal budding is dominated by the 
different thermal ellpansion coefficie nts of the two monolayers. 

PACS numbe .. , 82.70.-y. 64.60.Cn. 68.15.+e 

Shape transformations of large single-component fluid 
bilayer vesicles have been investigated ellperimentally and 
theoretica lly (for reviews, see Refs. []) and [2]). Even 
though not all aspects are completc:1 y understood so far. a 
comprehensive picture is emerging. The evolution of 
shapes is determined by the interplay between the bend
ing energy (3,4) of the bilayer membrane and the geome
trical constraint of a controlled volume-to-area ratio of 
the vesicle. Changes in the latter quantity with tempera
ture lead to pronounced shape transformations such as 
budding and vesiculation, depending on the area expan
sivity coefficients of the two monolayers, and their equi
librium area difference [5- 111. 

Thc next step towards an underst anding of the physics 
of biological membranes, consisting of lipid mixtures, is 
the controlled study of two-component systems [12-201. 
Quite generally, two different possibilities for a two
component membrane in the Huid state have to be dis
t inguished: (i) The system can ellhibit genuine phase 
sepa ration, i.e., there are A-rich and B-rich domains 
separated by phase boundaries. The competition between 
the line tension of phase bounda ries and the curvatu re en
ergy can give rise to (he format ion of buds as recently 
discussed by Lipowsky (14). (ii) There is no latera l phase 
separation. Even then , local deviations in the composit ion 
of the two monolaye rs lead to a spontaneous curvature if 
the two species have a different molecular geometry 
112.1 3. 15,161. Suppose an initially spherical vesicle is 
subject to an increase in temperature. This temperature 
change necessa rily leads to deviations from the spherical 
shape and. thus. to an inhomogcneous curvature. Be
cause of the coupling between the local curvature and the 
locllI composition, the composition becomes inhomogene
ous too. In this case, the shape cha nge drives phase 
segregation contrary to case 0) where the domains ca use 
the shape transformation. The purpose of this p<lper is to 
investigate case (jj) within a simple model which has the 
virtue of being ellactly solvable since it ca n be mapped 
onto the standard model for single-component vesicles. 
So far, shape transformations of two-component vesicles 
have been studied ellplicitly only for two-dimcnsionlll 

vesicles [1 5, 17) and perturbatively in three dimensions 
arou nd the sphere [181. 

We first motivate the energy functiona l for a two
component vesicle. The composition (area fractions) of 
lipid A in the individual monolayers x~ ( - I - x1 ) 
(i -in ,out) can deviate locally from the mean value XA as 
cx~ (s) =:x:" (s) - XA, wherc s parametrizes the two
dimensional surface of the vesicle. If this loca l deviation 
is different in the two monolayers. a local spontaneous 
curvalure is induced according to (1 5. 16) 

Co(s) -J..{cxt"(s) -Cx~n(s» +Co=:},,9 (S) +CO, (I) 

with a coupling constant }" with the dimensions of an in
verse length. We also allow for a systematic spontaneous 
curvature Co. 

The bending energy F t of the two-component vesicle is 
then chosen as <l generalization of the bending energy of a 
single-component vesicle as 

FI - (1('/2) { P (2H(s) - CO(9(S»]2dA 

+ (u/4R lOl ) (.1.A - 6.A o) 2} , 

where H(s ) is the mean cur\l<lture and /( is the bending 
rigidity which we assume for simplicity not 10 depend on 
the composition. For lateral homogeneous Co, (2) is the 
area-difference-elasticity (ADE) model , within which 
budding a nd vesiculation have been investigated in detail 
17, 11,211. It contains two bending contributions. The 
first term is the usual local bending energy 131. The 
second term is the nonlocal bend ing energy which arises 
from the fac t that wh ile stresses in the monolayer can re
tail locally by gliding the monolayers over each other, a 
global term remains because of the closed topology 141. 
I1 depends on the deviation of the area difference 6.A of 
the two monolayers from the equilibrium value 6.Ao. 
While 6.A is a geometrica l quantity depending only on 
the shape, 6.Ao is determined by the difference in the 
number of molecu les of the outer and the inner mono-
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layer. D is the d istance of the two monolayers and the d i
mensionless consta nt a is of order un ity. 

Si nce the membrane does not show genui ne phase sepa
ration, there is a free energy associated wi th devia tion of 
the composition from its mean value. For sma ll devia
tions, the lowest-order terms are - [8X~2+ (~V8x~)2 1, 
where ~ is the correlation lengt h for composition fluctua
tions and V is the covar ian t grad ient ope rator. Expressed 
in the variable 9, and ignoring the terms in (8x~U( 

+8x~n). since t hcy do not couple to the shape. the free 
energy F2 associated wit h an inhomogeneous composition 
can be wri tten as 1161 

(3) 

where f is some molecular ene rgy divided by the bend ing 
rigidity. The tota l (free) energy F is then F;F ,+F2. 
S ince the 11' fiel d enters the energy F quadratica lly, it can. 
in principle, be integra ted out exactly. However. this in
volves a n inversion of the Vl operator wh ich is nontrivia l 
for any nonspherical shape. 

Axisym met ric vesicle shapes could now be calculated 
by fi rst derivi ng the shape equat ions th rough va riation of 
F wi th respect to the shape and the ~ field and then solv
ing these eq uations in analogy to the si ngle-component 
case 18.2 11. Even though this approach does not pose any 
fundamen tal problems, a comple te phase diagram would 
require extensive numerical work. 

In th is paper, we use another approach to determine 
solutions wh ich mini mize F. Since we are dealing with 
shape changes of large vesicles wh ich have a linear s ize of 
the order of IIm while the typica l correla tion length ~ will 
be of the order of nm, the gradient term in F2 will be, in 
gcneral. much smaller than the ~2 term. T herefore, we 
ca n set ~ - 0. T his a llows us to map the energy F onto 
the usual bending energy for single·componen t vesicles as 
follows: We minimile with respect to the composition 
profi le t>(s). S ince we assume that there is no exchange 
of molecules between the two monolayers. the constrain t 
PdA9 - 0 is added with a Lagrangian multiplier "11 to 
F. Minimization then leads to ~(S)- ( -II+,, (2H (s) 

-Co)1/(,,2+ f ). Usi ng the condition PdA~ -O, 11 is 
found to be 1I-A(l!.AI(AD) - Co ), where A ;4lfR 2 is the 
total area. T his leads to 

(4) 

which shows that the local composil ion follows the devia
tion of the mea n cu rvature N (s) from its average va lue 
l!.A/2DA. After inserting (4) into F, the total energy ca n 
be written as 

F- ;8 { p dA(2 N )2+ 4R~D2 (.'lA _~)2+const}. 
(S) 

Explession (5) is the standard form of the bend ing en
ergy of a single-component vesicle in the ADE model [11 J 
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in which the three essen tial parameters have been renor
mal ized as follows: First, the effective bending rigidity is 
,,18 where 

(6) 

measures the effect ive strength of thc curvature to com
posit ion coupl ing. Th us, the bending rigidity decreases 
for a two-componen t system, as has been previously de
rived [161. Second, the non loca l term becomes morc 
relevant fo r stronger couplings since a gets renormal ized 
accord ing to 

a=a+(8-1)(1 + 1/1f) > a . (7) 

Fi nally, t he renorma lized equilibri um area d ifference is 

Mo; (8Iii)(4CoDR 2+al!.Ao) . (8) 

Th is mapping of the energy F of the two-component 
system onto the energy of a single-component system in 
the ADE model const itutes our main resu lt. Since the 
ADE model has been investigated in detail, further 
analysis is rela tively stra ightforward. As an illustrat ive 
example, consider the evolu tion of a n init ially spherical 
vesicle [with a homogeneous composition profile 9(S) -oJ 
with increasi ng temperature, see Fig. I. For simpl icity, 
we assume (I) that the thermal expa nsion coefficients of 
both monolayers are the same, (ij) that the membra ne 
thickness D decreases with temperature in such a way 
that the bilayer volume remains constant, <lnd Oii) that 
the compa ratively small therma l expansion of tne en
closed fl uid can be neglected (8!. Then the equilibrium 
area difference .6.Ao is rela ted to the redu ced volume t' by 

(9) 

where .6.Ao( I ) is the equilibrium area difference of the 
spherica l vesicle (I' - I ), as determ ined presum ably by 
the (poorly understood) fo rmation process of the ves icle. 
With increasing temperature the red uced volu me de
creases and the shape becomes more prolate. T he inho
mogeneous curvature then ind uces a nontrivia l composi
tion profile o;;(s). In the oute r monolayer, the A mole
cu les are enriched <11 the poles (i f their enhancement in 

FIG. t. Evolution of a spherical vesicle as the reduced 
volume l' changes due to an increase in temperature for C,, - O. 
0 - 1. a - 2. and Ll.Ao( 1 )/81fDR - 1.7. The thin curves show the 
composit ion~. The dash-dOlled lines correspond to ~ - O. The 
reduced volumes arc ,. - 1.0. 0.89. 0.89. 0.86. and 0.82 from left 
to right. At ,. - 0.89. the symmetric and the asymmetric shapes 
have the same energy. indicating a discontinuous budding tran
sition . The vesiculation line is reached with the last shape. 
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the outer layer leads to a positive spontaneous curvature, 
i.e., if A> 0) while the B lipids are enriched along the 
rim. For smallcr t', the up/down asymmetric shapes have 
lower energy leading to a discontinuous buddi ng transi 
tion. These shapes finally end up at the vesiculation point 
where two spheres of different radi i are si tting on top of 
each other connected by a microscopic neck. In the ve
siculated state. the composition within each sphere be
comes homogeneous again wHit all the variation oecu r
ring in the neck [22). Thus, the shape change, i.e., here 
budding and vesiculation, leads to phase segregation. 

The e:>ltent to which the vesiculation . as an e:>lample of 
a shape transformation. is modified by the prese nce of 
two components is displayed in Fig. 2. It demonstrates 
that the formation of smaller b uds is more favorahle in 
the two-component system than in a onc-component sys
tem under the same conditions. Specifically. we plot the 
(dimensionlcss) radi us ' 1 of the bud (where ' 2 is the ra 
diu s of the mother vesicle and ,.f + d -I) at the vesicu
lation point as a function of the equilibrium area dif
ference a nd the coupling constant 8, where 8 - 1 corre
sponds to the single-component case, i.e .. no coupling. 
Analytically. the vesicula tion point. -liAcU('I). in the 
AOE model is given by [211 

~.L ('1) -2DR[4Jf('1 +(2) +20/'1 + 1/(2)/a ) . (10) 

Using Eqs. (7)-(10) . it is easy to determ ine the relation
ship between t.Ao( I ), '1. and li shown in Fig. 2. Note 
that vesicu lation requires that the spherical vesicle has an 
ini tial equilibrium area difference l!.Ao(1) > 8JfDR [1 
+ I/(Jfa». For compa rison, a sphere with no nonloca l 
bending energy has t.AoO) -8TrDR. Larger equilibri um 
area differences lead to smaller buds. For a given initial 
a rea difference. the radius ' 1 of the bud decreases as the 
coupling increases. 

2 3 , 4 5 

F[G. 2. Contour plot of the size ' J of the bud at vesicu[alion 
as a function of the coupling 8 and Ihe initial equilibrium art;a 
difference Il.Ao( I). The contou rs correspond 10 '1 - 0.1, 0.2. 
0.3. 0.4. 0. 5. 0.6, and ,/2/2 from lOP 10 bouom. Below Ihe [asl 
curve. vcsicu[alion is no longer possible. The asterisk marks the 
parameters chosen for Lhe sequence shown in Fig. I. 

A crude est imate for the magnitude of the curvat ure
induced phase segregation Can be obtained as follows: If 
the spontaneous curvature is caused by the different 
molecular geometry of the A and B molecu les, a typical 
value for the coupl ing A might be ),,=0. [ /nm. For the 
free energy density coefficient l, one estima tes l="CTI 
/({J 2, where "C~(T-TC>/Tc is the distance to the A-S 

critical point which separates the two cases alluded to in 
the introduction, and a is a molecu lar length a = I nm. 
With the typical va lue TI/( = 1/25. onc obtains a-I 
= 0.2 5/ r . For r :SO. I, this indicates an effect of O( [) in 
8 wh ich translates into an appreciable shift in'l- see Fig. 
2. More interest ing, however. is to estimate the amount 
to which the phase segregation is effective. Insertin g the 
values just given and r=O. 1 into Eq. (5). onc obtai ns 
~=14IH-6.AI(2DA) 1 nm. With H -t.A/(2DA) 
= I IR, the typical variation in the composi tion becomes 
of the order of 1% fo r vesicles with a radius R = I pm but 
10% for R = IOO nm. The relatively small va lue for the 
la rger vesiclc can be substantially enhanccd by approac h
ing the critical point [23 1. 

This model also covers the therm al cvolution of an in i
tiall y spherical vesicle formcd spon taneously by ( lIte,

lIIol/olaye, phase separation in an A-rich outer monolayer 
and a S-rich inner monolayer as st udied recently in e:>l
perimcnt ([ 9) and theory [201. Again. for thcse vesicles. 
the spherica l state has a lateral homogeneous composition 
in each monolayer. T he differe nt mean compositions 
x~n~.i~"( cause a non zero ave rage spont aneous curvature 
Co. As temperat ure increases, the a rea e:>lcess leads to 
deviat ions from the spherical shape which induces again 
lateral phase seg regation in the ind ividua l monolaye rs. 
S ince for this case, the thermal ellpa nsion coeflicients in 
the two monolayers are different due to their different 
composi tion, assumption (j) used above to derive the re
sults shown in Fig. 2 no longer applies. In fac t, it has 
been shown in Ref. [8) tha t any asymmetry r?:-DIR in 
the thermal e:>lpansion coefficients of the two monolayers. 
a in and aO"(~ ([ +r)ain. has a significan t effect on the 
shape evolution for single-component vesicles. An analo
gous calculation fo r the case studied here shows that the 
size of the bud at vcsicu lation sca les as 

( I I ) 

fo r D « R in un its of R. if wc sta rt with an initially spher
ical rela:>led vesicle [t.Ao(1) -8IfDR I. Thc temperature 
increase, l!.T, necessa ry to reach vesiculat ion is l!.T 
= '1

2Ia i"( 1 + rl2). For an estimate. consider a 10% 
asymmetry in the e:>lpansion coeflicients. i.e .. r - O.I , and 
choose a-I. 8 - 2. For large vesicles with DIR - IO - l • 
onc obtains '1 = 0.1. and, with a in = 5 x 10 - J/K. 6. T= 2° , 
i.e., an initially retailed sphere reaches the vesic ulation 
poi nt after a 2° temperature increase and the size of the 
bud is 10 of the mot her vesicle. The bud size and the 
temperature interval necessa ry to reach vesicu lation are 
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generically much smaller than for the case of symmetric 
expansIon. Moreover, the asymmetric expansion also al
lows vesicu lation even start ing with a relaxed sphere 
t.Ao(l) -8lTDR in contrast to the symmetric case as 
displayed in Fig. 2. However. the size of the vesicles ob
tained by spontaneous vesicle formation in mixed sys
tems, so far, is typically R.:SlOO nm. In th is case, 
D/R.:S 10 -2 and neither the bud radius rl nor the tem · 
perature interval t.T will be substantially different from 
the case of sym metric expansion discussed above. 

In summary, a model for Yesicles made of two mixed 
components can be mapped onto the model for s ingle ' 
component vesicles wit h renormalized coefficients. The 
formation of smaller buds is favored in the two
component system. Curva ture-induced phase segregation 
should be a measurable effect for R = 100 nm vesicles or 
for larger yesicles in the vicinity of a cri t ical point for 
demixing. For vesicles which show inlermono/ayer phase 
separation the same formalism applies. Thermal bud
ding, howeYer, is then dominated by the presence of 
different therma l expansion coefficients which. for large 
vesicles. typically lead to sma ller buds and sma ller tem· 
perature changes required to induce vesiculation. 
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