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ABSTRACT - Shapes and shape transformations of vesicles are considered theoretically within 
the spontaneous curvature model for three cases. (i) For free vesicles, the whole phase diagram 
is presented which includes pear-shaped vesicles and a line of limit shapes related to budding. 
(ii) For toroidal vesicles, three branches of solutions with low energy are found. (iii) An 
extension of this model to the adhesion of vesicles is briefly discussed. 

I. INTRODUCTION 

Vesicles are closed surfaces of lipid bilayer which form spontaneouosly in aequous solutions in 
order to prevent contact between the hydrocarbon chains and the water.' They exhibit a wide variety 
of different shapes including biconcave discocytes and cup-shaped stomatocytes. Transformations 
between these shapes can be induced ,e.g., by changing the temperature.:! Recently, the phenomenon of 
budding, i.e., the expulsion of a small vesicle has attracted much interest.' The theoretical description 
of shape transformations is based on the concept of bending elasticity for which a curvature model 
is considered. In this model, the vesicle is described as a two dimensional surface embedded in three 
dimensional space. In the version introduced by Helfrich, the bending elasticity is expressed by4p5 

The variables Cl and C2 denote the two principal curvatures, while the spontaneous curvature CO is a 
phenomenological parameter introduced in order to account for a possible asymmetry of the bilayer. 
K and KG denote the two bending rigidities. 

A second version of the curvature model is the bilayer coupling m0de1.~'~ Here it is assumed that 
the two monolayers do not exchange area on experimentally relevant time-scales which leads to a 
constraint on the integrated mean curvature, (112) $ dA(C1 + (7-2). Both models are then related via 
a Legendre transformation. 

In this paper, I will discuss recent theoretical progress for the spontaneous curvature model. In 
Sect.11, the phase diagram is presented for vesicles of spherical topology. These results are part of a 
systematic study of the phase diagram for both variants of the curvature model and will be discussed 
in more detail elsewhere (U. Seifert, K. Berndl and R. Lipowsky, to be published). In Sect.111, the 
possibility of shapes with the topology of a torus is investigated. Finally, I briefly discuss the basic 
features of an extension of the model (1) to the adhesion of vesicles in Sect.IV. 

11. PHASE DIAGRAM FOR VESICLES OF SPHERICAL TOPOLOGY 

The phase diagram is determined by the shape of lowest bending energy for given area A and 
enclosed volume V. These constraints are introduced with Lagrange multipliers C and P. The shape 
equations then derive from 

S F  &(Fb + CA + PV)  = 0, (2) 

where S denotes variation with respect to the shape of the vesicle and C and P are adjusted in order 
to guarantee the prescribed area and volume. The Gaussian curvature term, FKG, is a topological 
invariant given by F', = 4 n ~ ~ ( 1  - g) = 2nx, where g denotes the number of holes or the genus of 
the vesicle and X its Euler characteristics. Therefore, it does not show up in the shape equation. In 
general, (2) is a partial differential equation of fourth order.8 For axi-symmetric shapes, the shape 
equation reduces to four (or six, if the constraints are already imposed) coupled nonlinear differential 
equations which can be solved on a computer. Because of the scale invariance of the bending energy, 

(l) Address past October lSt: Department of Physics, Simon Fraser University, Burnaby, B.C., 
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it is sufficient to discuss the solutions to this equation as a function of the two reduced variables v and 
CO, with 

v = v / { ( ~ T / ~ ) [ A / ( ~ T ) ] ~ / ~ )  and c0 E C ~ ( A / ~ T ) ' / ~ .  (3) 

For nearly spherial vesicles with v 1, the solutions of the shape equations can be classified 
according to branches which result from deformations of a sphere with spherical harmonics y'lrn. 
Since it is known that shapes which correspond to 1 1 3 are locally unstable: the physically relevant 
solutions are those with 1 = 2, i.e., the prolate and oblate ellipsoids. 

First, consider the prolate ellipsoids and the shapes which evolve along this branch when the volume 
is reduced. For y) = 0, the prolate shapes become then dumbbell-like and finally approch a long thin 
cylinder. With increasing y), this prolate branch develops additional structure. As an illustrative 
example consider Fig.1, where the bending energy and the corresponding shapes are displayed as a 
function of the reduced volume for c0 = 2.4. The prolate branch now consists of two parts (prolate-l 
and ~rolate-2), which are connected by asymmetric pear-shaped vesicles.(') The pear-shaped branch 
bifurcates from both parts of the symmetric branch and consists of two parts which meet in the point 
of maximal volume. It is evident from the bifurcation diagram that the upper part of the pear-shaped 
branch corresponds to shapes which are locally unstable with respect to axi-symmetric deformations. 
The unstable mode drives these shapes either back to the symmetric shapes or to the asymmetric shapes 
with the narrow neck which-lie on the lower part of the pear-shaped branch. Of course, stability with 
respect to non-axisymmetric deformations can not be read off from such an energy diagram. 

pear-shaped 
,$ 

3' 
./i 

FIG.l: Bending energy and shapes of lowest energy for c0 = 2.4. The two prolate branches 
are connected by a branch of asymmetric pear-shaped vesicles. This leads to a discontinuous 
transition DPear between the prolate-l and the pear-shaped states and to an continuous transition 
Cpear between the pear-shaped and the prolate-2 states. 

With decreasing volume, a spherical vesicle becomes, thus, first prolate and then metastable be- 
yond DPear where a discontinuous transition to the asymmetric shapes occurs. These shapes become 
continuously symmetric again at Cpear and finally approach a long cylinder for v --+ 0. 

Analysis of the co-dependence of these transitions leads to the phase diagram as displayed in 
Fig.2. For 2 . 0 8 2 ~  < 2&, the sequence of shape transformations proceeds as just described. For - 

(l) These shapes have independently been found by Wiese and ~elfrichl', Svetina, Kralj-Iglic and Zeks 
(preprint) and the group of M. Wortis (private communication). 



2.066Z~22.08,  - - there is a discontinuous transition DPrO between two different prolate shapes. For 
c02 2.066, only one type of symmetric prolate shape gives the state of lowest energy. 

For y, > 2&, a new phenomenon happens. The branch of pear-shaped vesicles terminates in a 
l imit  shape Pear where an infinitesimal neck connects two spheres of different radii R1 and R2. Such 
an ideal neck nevertheless does not cost energy, since the two curvatures of the neck have compensating 
signs. The locus of this limit shape is determined by 

which relates the two inverse radii CA = l/R1 and CB = 1/R2 of the limit shape to the spontaneous 
curvature. If R1 and R2 are expressed by the area and the volume, an analytic expression v(co) for 
the line Pear of limit shapes can be derived. This line corresponds to the end points of budding 
trajectories in the spontaneous curvature model. The value y) = 2 f i  is the smallest value of c0 for 
which budding occurs. At this point, both spheres have the same radius. The larger y) is, the smaller 
is the radius of the expelled vesicle. For cg + m, the phase boundary DPear and the line of limit 
shapes LPear approach v = 1. 

FIG.2: Phase diagram of the spontaneous curvature model in the region where the pear-shaped 
vesicles arise. Dpear and DPP' denote discontinuous transitions, Cpear denotes a continuous tran- 
sition. LPear and- LdUmb denote limit lines. 

Similarly for the dumbbell-like shapes of the second symmetric branch, prolate-2, an increase in v 
leads to a limit shape LdUmb where two identical prolate shapes are connected by an ideal neck. Again, 
the relation (4) holds where cA = C? = C; and CB = C! = C; denote the local curvature at the 
poles of the two adjacent prolates. The relation (4) is rather universal since we have found several 
limit shapes which consist of two or even more parts which are connected by ideal necks obeying (4). 

Now, consider the oblate ellipsoids. With decreasing volume, they become biconcave discocytes. 
In the CO-range just described, shapes of the oblate/discocyte branch have larger energy than the 
prolate and pear-shaped vesicles. Therefore, they do not show up in the region of the phase diagram 
displayed in Fig.2. For lower values of the spontaneous curvature, however, there is a discontinuous 
transition from prolates to oblates as displayed in the phase diagram Fig.3. The oblate/discocyte 
shapes then undergo a second discontinuous transition to the stomatocytes which terminate at limit 
shapes where a small inverted sphere of radius R1 < 0 is embedded in a larger sphere of radius R2. The 
loci of these limit shapes are once more determined by relation (4), with C A  = 1 /R1 and cB = l /  R2. 
The oblate/discocyte and the stomatocyte region are moreover bounded by lines which denote the 
selfintersection of the shapes at the two poles. For the oblate/discocytes, this line is related to the 
occurence of toroidal vesicles as discussed below. 
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FIG.3: Phase diagram for c0 < 2. The prolate, oblate and stomatocyte regions are separated 
by discontinous transitions. The stomatocyte region is also bounded by a line of limit shapes 
where a sphere includes a spherical cavity. The dotted lines denote selfintersection of the oblate 
and stomatocyte vesicles which define the physical limit of the model. The dashed line is the 
continuation of the prolate-oblate transition into this region of selfintersection. 

This detailed investigation of the phase diagram provides the basis for a crucial experimental test 
of model (1) provided it is known how v and y) vary with experimentally controllable parameters. 
Consider, e.g., an increase in temperature. This leads via (3) to a decrease in v since the area 
expansivity of the bilayer is significantly larger than the volume expansivity of the enclosed water. 
Although the temperature dependence of c0 is not obvious, any trajectory starting near the sphere 
which ends either at the budding line or at the limit shapes for the stomatocytes, must pass through 
at least one discontinuous transition before that limit shape is reached. This is in contrast with the 
predictions of the bilayer coupling model for which the oblate-stomatocyte as well as the prolate-pear- 
shaped transition is continuous. Based on such an analysis for both models, we reached good agreement 
with a recent experiment using the bilayer coupling model and assuming a small asymmetry in the 
monolayer expansivities. (K. Berndl, J. Kas, R. Lipowsky, E. Sackmann and U. Seifert, submitted 
for publication.) More experiments on different systems are certainly required to obtain a complete 
picture. 

111. SHAPES OF TOROIDAL TOPOLOGY 

Although vesicle shapes of toroidal topology have not been reported so far, there is no fundamental 
reason against their occurrence. In fact, it turns out that already for c0 = 0 they have a lower energy 
F, than the vesicles of spherical topology for a large range of v-values. Of course, for the total bending 
energy also the difference in Gaussian curvature energy must be considered which is given by the value 
of the sphere ~ X K G  since the Euler characteristic of a torus vanishes. Therefore, a positive value of 
KG should favour toroidal vesicles. 

The shape equations (2) remain valid for the toroidal topology which must be enforced by appro- 
priate boundary conditions. As a result, I find three branches of axi-symmetric toroidal shapes which 
can be characterized according to a typical cross-section as (i) the circular toroids (Fig.4a), (ii) the 
sickle-shaped toroids (Fig.4b), and (iii) the discoid toroids (Fig.4~). 

In Fig.5, the bending energy F, is displayed as a function of v. For comparison, the same quantity 
for the oblate/discocyte branch of spherical topology is also displayed. 

The circular toroids exist for any 0 < v < 1. The cross-section of the shapes of this branch is a 
circle for v = 3/(2&) and for v -t 0. In this limit, the distance of the cross-section from the axis of 
symmetry diverges and F, diverges as 1/v2. For v = 31(2~fi) E 0.71, the two generating radii have 
the ratio f i  and the bending energy acquires its minimum along this branch with F, = 4 7 ~ ~ ~ .  This 
special solution has been previously found analytically.''(1) For v > 3/(2fi), F, increases again along 
this branch and for v -t 1 the shape seems to approach a sphere excluding an idinitesimd cylinder 
surrounding the axis of symmetry. 

('1 In Ref.11, it is however argued that this special solution is unstable with respect to azisymmetric 
deformations for C ~ ( A / ~ T ) ~ / ~  > c$, with M -3.9. Since this toroid has the minimal bending energy 
of all toroids, it is hard to see to which%~pe the unstable mode should drive this circular toroid. 
In addition, I could not find any bifurcation along this whole branch. Therefore, I believe that the 
circular toroids are locally stable with respect to axi-symmetric deformations for all values of v. 



FIG.4: Shapes of toroidal vesicles for several values of the reduced volume v. The bar shows 
the axis of symmetry. (a) circular toroids; (b) sickle-shaped toroids; (c) discoid toroids. The 
asterisks denote locally unstable shapes corresponding to the upper parts of the two latter branches, 
respectively. 

\ 

1.8- oblates/ toroids 

FIG.5: Curvature energy of the three toroidal branches and the oblate/discocyte branch of spher- 
ical topology. 

The branch of sickle-shaped toroids consists of two parts which are connected at  a point of maximal 
volume. As discussed in Sect.II., the upper part of such cusped branches can be identified with solutions 
which are locally unstable, while the lower part corresponds to shapes which are locally stable, at least 
with respect to axi-symmetric deformations. For v -+ 0, the stable part approaches a limit shape, 
which consists of an inverted sphere embedded in a sphere with the same radius. Both spheres are 
connected by two ideal necks. Consequently, Fn approaches the value 1 6 ~ ~  of two spheres in this 
limit. For v > 0, the energy of these sickle-shaped toroids decreases monotoneously and reaches its 
minimum for maximal volume. 

The discoid branch also consists of two parts. The lower, locally stable part exists for 0 . 5 0 2 ~ 2  0.58. 
For v + 0.50, the diameter of the hole goes to zero and the shape approaches - apart from tl;is%ole - 
the shape of a discocyte vesicle of spherical topology where the north and the south pole touch each 
other. The curvature energy of this toroidal vesicle approaches the mean curvature energy, Fn of the 
discocyte vesicle from below. 

This merging of branches with different topology should facilitate the formation of toroidal vesicles. 
Suppose that a discocyte vesicle of spherical topology is driven into this v-range, e.g., by increasing the 
temperature. If the hole formation can be enforced externally, (l) the toroidal vesicle should remain 
stable provided KG > 0. Therefore such an experiment could yield the sign of the Gaussian bending 
rigidity. Once this discoid toroid has been created, fascinating experiments should be possible. Since 
this toroid has larger energy than the sickle-shaped toroids over a large range of v-values, it should 

(l) A possible technique could be e l e~ t ro~ora t ion '~  or photodissociation of special amphiphiles imbed- 
ded in the membrane. The latter method was successful in transforming a necklace of vesicles into 
single separated vesicles.13 
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undergo a transition to the latter state. The sickle-shaped vesicle, finally, must transform to a circular 
toroid for increasing v. This sequence of shape transformations can be read off from Fig.5. 

A global comparison of the curvature energy of shapes of spherical and toroidal topology reveals 
that that the state of lowest bending energy for KG = 0 is a sickle-shaped toroid for 0 < ~20 .56 ,  a 
circular toroid for 0 .562~20.73 and a prolate shape for 0 . 7 3 2 ~ 2 1 .  For KG # 0, the relative position of 
the two families of di6reKt topology is shifted by 4?fKG whTchis the difference in Gaussian curvature 
energy. 

IV. ADHESION OF VESICLES 

The adhesion of giant vesicles has been investigated by micro-pipet techni ues14 while accidental 
adhesion of membranes in dilute systems can be studied with li ht microscopyg. Theoretically, adhe- f- sion of vesicles can be discussed by an extension of model (l).' l' A vesicle bound to a 'wall', which 
might be another membrane or a substrate gains the adhesion energy 

F~ = -wA*, (5) 
where A* denotes the contact area of the vesicle with the wall and W denotes the strength of the 
adhesion potential. Bound vesicle states and the phase diagram are now determined by the minimum 
of F& + FW. This minimization leads to a universal boundary condition for the contact curvature Cf ,  

c; = m, (6) 

at the point where the vesicles contour meets the wa11.16 Of course, the contour meets the wall 
tangentially since any other contact angle would imply an infinite bending energy. Solutions of the 
shape equation (2) with the boundary condition (6) lead to a similar variety of bound vesicle shapes 
as for free vesicles. Likewise, shape transitions between different bound states occur. As a novel 
feature, the competition between bending and adhesion energy leads to an adhesion transition. For 
W < ~ T W ~ ( V ) K / A ,  where wa(v) is of order unity and depends only on v (and co), the vesicles are free 
even in the presence of an attractive  all.^^''^ For fixed potential strength W, the scale dependence 
of the adhesion transition thus leads to a lower cutoff for the size of bound vesicle states. For a bound 
vesicle, an increase in W leads to a shape which approaches a spherical cap. In this limit, an effective 
contact angle !Pef can be defined which relates the tension C, as given by the Lagrange multiplier, 
and the wall potential W by a Young-DuprB equation W = C(l +cos !Peff). Strong adhesion, however, 
will also induce topological changes like fusion and the rupture of bound vesicles.'' 
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