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Heat transfer and solidification of a laminar liquid flow 
in a cooled parallel plate channel: The stationary case 

B. Weigand and H. Beer, Darmstad t ,  BRD 

Abstract. A simple numerical model is presented to predict the 
steady-state ice layers on the cooled walls inside a parallel plate 
channel for arbitrary entrance velocity profiles. The effect of two 
different entrance velocity distributions (a parabolic velocity distri- 
bution and a slug flow) on the shape of the ice-layers are examined. 
The quality of an approximative solution given in literature was 
checked by comparing with the numerical results. For the case of a 
fully developed parabolic velocity distribution at the entrance of the 
cooled channel the results are compared with experimental findings 
of Kikuchi [8]. A generally good agreement was found. 

Erstarren ciner laminar str6menden Fliissigkeit in einem ebenen 
Kanah Der stationiire Zustand 

Zusammenfassung. Es wurde ein einfaches numerisches Modell ent- 
wickelt, das es erm6glicht, die stationfiren Erstarrungsfronten an 
den Kanalw/inden fiir beliebige Verteilungen des Eintrittsgeschwin- 
digkeitsprofils zu berechnen. Als Beispiele wurden ein voll ausgebil- 
detes Parabelprofil und ein Pfropfenprofil am Eintritt in die Kiihl- 
strecke untersucht. Mit Hilfe der numerischen L6sung konnte die 
Giite einer aus der Literatur bekannten N/iherungsl6sung zur Be- 
rechnung der Erstarrungsfronten iiberpriift werden. F/Jr den Fall 
des Parabelprofils am Kanaleintritt wurde die Rechnung mit Mel3- 
werten von Kikuehi [8] verglichen. Es zeigte sich eine gute ~berein- 
stimmung zwischen Theorie und Experiment. 
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thermal diffusivity 
dimensionless freezing parameter [Eq. (30)] 
hydraulic diameter: D =4 h 
modified stream functions 
distance from centerline to the wall 
thermal conductivity 
local Nusselt number 
pressure 
Prandtl number 
Reynolds number based on h 
Reynolds number based on the hydraulic diameter 
temperature 
bulk temperature 
freezing temperature of the liquid 
constant inlet temperature of the liquid 
fluid velocity components 
mean axial velocity 
maximum axial velocity at the channel centerline 
coordinates 
distance from centerline to the liquid-solid interface 

0 W dimensionless temperature difference [Eq. (30)] 
~o density 
v kinematic viscosity 
~0 stream function 

Subscripts 

s solid 
L liquid 
w at the wall 
0 at the entrance 

Superscripts 

~,  * dimensionless quantity 

1 Introduction 

Problems of solidification or freezing of liquids flowing 
through channels have been encountered in numerous engi- 
neering applications. Because a freeze shut may  lead to a 
destruction of the system (water pipe, heat  exchanger, 
molten sodium in a nuclear reactor) blockage should be 
prevented. If solidification on the cooled channel walls can 
not  be suppressed, steady state condit ions must be aimed. 

Many  theoretical and experimental  studies have been 
performed for fluid flow with solidification in circular tubes. 
An early investigation was repor ted by Zerkle and Sunder- 
land [1] for the steady-state freezing of laminar  flow inside a 
horizontal  tube. Under  the assumption of a parabol ic  axial 
velocity distr ibution throughout  the full axial region and 
with an appropr ia te  coordinate  transformation,  they were 
able to reduce the problem to the classical Graetz  problem 
without  solidification. ~z i s ik  and Mull igan [2] used a slug 
flow approximat ion  for the liquid core to analyze transient  
solidification in an isothermal  circular tube. They applied 
integral transforms to obtain the transient  development  of 
the ice-layer inside the tube. Bilenas and Jiji [3] solved the 
boundary-layer equations applying a finite-difference scheme, 
but  used a wide-meshed grid for their calculation. Chida [4] 
calculated numerically, under considerat ion of axial conduc- 
tion, the steady state ice-layer thickness. A fully developed 
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parabolic axial velocity distribution at the entrance of the 
cooled section was assumed in [3] and [4]. The combined 
thermal and hydrodynamic development during solidifica- 
tion inside an isothermal tube has been analyzed by Hwang 
and Sheu [5]. Under the assumption that the axial variation 
of the solid layer thickness was small, they were able to 
reduce the problem to the combined entry region problem 
without solidification. The simplifications made in [5] give 
accurate solutions only for small dimensionless freezing 
parameters (B ~< 3). 

Despite its relevance to many important technological 
and physical problems, the freezing of liquid flows through 
a cooled two dimensional channel has scarely been studied, 
both, analytically and experimentally. An early investigation 
of this problem was reported by Lee and Zerkle [6]. They 
assumed the axial velocity distribution to be parabolic 
throughout the chill region, which was in analogy to [1]. 
With this assumption, the axial velocity distribution yields 

u 2[ (:)2j Ooh 
u = 1 -  ; ' ~ =  a (1) 

With the approximated velocity profile according to Eq. (1) 
and with an appropriate coordinate transformation, the 
energy equation could then be reduced to a Graetz problem 
and the steady-state ice layer was calculated. Cheng and 
Wong [7] extended the model used in [6] to calculate the 
influence of an externally imposed convective boundary 
condition on the ice-layer. 

Bennon and Incropera [9] studied numerically the influ- 
ence of free convection effects on the axial distribution of the 
solid-liquid interface in a cooled channel with laminar flow 
for a fully developed parabolic entrance velocity profile. An 
experimental investigation of the effect of freezing of liquid 
for laminar flow between two cooled parallel plates was only 
performed by Kikuchi et al. [8]. Both plates were maintained 
at the same temperature, which was lower than the freezing 
temperature of the working fluid, water. The plate wall tem- 
perature varied from - 2 °C to - 7 °C. 

The subject of this paper is the presentation of a simple 
numerical model for the prediction of the steady-state ice 
layers inside a two-dimensional channel with cooled walls 
for arbitrary velocity profiles at the entrance of the chill 
section. Two entrance velocity profiles will be examined: 

- fully developed parabolic velocity distribution 
slug flow 

The numerical results are used to check the approximative 
solution given in literature for a fully developed entrance 
profile [6]. 

2 Analysis 

2.1 Formulation o f  the problem 

Figure 1 shows the geometrical configuration and the coor- 
dinate system for a planar symmetric channel. The laminar 

Fig. 1. Physical model and coordinate system 

fluid flow enters the cooled section at x = 0  with an arbitrary 
velocity profile and with constant temperature T o . In the 
cooled section (x > 0) the wall temperature is maintained at 
a constant value T w which is lower than the freezing temper- 
ature T e of the fluid. The frozen layers are generated on both 
walls as the fluid proceeds along the channel. By assuming 
an incompressible, Newtonian fluid with constant fluid 
properties, the quasi-steady conservation equations for the 
fluid may be written as follows: 

~u ~v 
~xx + ~yy = 0 (2) 

©u ~u 1 ©p ~2u 

u ~xx + v ~Y 0 ~x + v --~y2 (3) 

8TL eTL 82T L 
u~x + V~-y =a (4) ~yZ 

By deriving the Eqs. (2)-(4) the usual boundary-layer as- 
sumptions were made, which are a common treatment of the 
conservation equations for channel flows [3], [10], [11]. 

In addition to Eqs. (2)-(4), the energy equation for the 
solid region is required. By assuming constant properties in 
the solid region and negligible axial conduction, the heat 
conduction equation for the solid-phase reduces to 

~ 2 T  s 
= 0 (5) 0y 2 

After neglecting the momentum equation in y-direction, the 
presence of ~p/Sx in Eq. (3) introduces an additional un- 
known to the system given by Eqs. (2)-(4). Thus another 
equation is required. It is provided by the conservation of 
mass in integral form for steady state conditions 

Uo h = ~ u dy (6) 
o 

where Uo is the mean axial velocity for x = 0. 
The boundary conditions belonging to Eq. (2)-(5) are: 

x = 0: P = Po, u = given, v = given, T =  T o 

~T L ~u 
y = 0 :  ~Y = 0 ;  ~yy=0; v 0 

y = &  u = v = O ;  TL = Tv; T~ = T v 

y = h: T~ = T,~ (7) 
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Eqs. (2)-(4) and (5) are coupled by the interface energy 
equation which takes the following form if curvature terms 
are neglected: 

k~ ~Ts -- k L aTE 06 e y  = ; y = (8) 

Equation (8) shows that the heat conducted in the solid plus 
the heat resulting from phase change equals the heat trans- 
port from the liquid. For steady-state conditions Eq. (8) 
simplifies to: 

k OT~ OTL ~y-y=kr~y  ; y = 6  (9) 

2.2 Temperature distribution in the solid region 

With the boundary conditions Eq. (7) the temperature distri- 
bution in the solid phase is easily calculated from Eq. (5). 

T~,(y-b)+ Te(h--y) 
% - h - ~  (iO) 

Inserting Eq. (10) into Eq. (9) results in: 

Oy :~=~ k L h - b  
(11) 

2.3 Velocity and temperature distribution in the liquid 

Introducing the following dimensionless quantities into Eqs. 
(2)-(4) 

u v x / ~ h  ~o h T--Tp 
u* = - -  ; v* = c-  ; Re h= ; O = - -  

(to Uo v T O - T F 

x* x Y* y 
h ' h (12) 

results in the ensueing set of equations: 

~U* Or* 
Ox ~ + - -  = o (13) Oy* 

Ou* 8u* dp* 02u * 
u* v* - + (14) 

~ x  * +  ~y* dx* Oy *z 

00 00 I ~zO 
u* v* - (15) 

~ x  *+ By* Pr 8y.2 

Introducing a stream function, defined as 

u* = _ _ _ 0 ~ .  v* =--0q) (16)  
0y* ' ~x* 

Equations (13)-(15) may be written as: 

St) 020 00 820 dp* 83~ 
~y* Ox* By* Ox* 8y . 2 =  dx* 8y .3 (17) 

0~ 00 0~ 80 1 820 

By* 8x* Ox* Oy* Pr Oy .2 
(18) 

Because the boundary conditions of Eqs. (17) and (18) must 
be satisfied for y =  ~, it is useful to employ the following 
coordinate transformation 

y = ~  Y*" )?=x*  (19) c]* ' 

with 6" =5/h. A transform similar to Eq. (19) was first used 
in [1] with the purpose of reducing the energy equation to the 
Graetz problem without solidification. 

Applying the coordinate transform to Eqs. (17), (18), and 
inserting a modified stream function according to 

O = 6" F (X, y), (20) 

results in the following system of partial differential equa- 
tions 

I 03F dp* OF 02F OF 82F 1 d6* 82F 
- -  - + V 0 T  (21)  6 *2 8y 3 d2 0~ 020y OY~ Oy 2 fi* d2 

6. 2 0y 2 - P r  OY~ 0,2 Oy 6* d2 F (22) 

The term 1/8 *2 on the left side of Eqs. (21) and (22) could 
easily be eliminated by invoking a new axial coordinate, 
defined as 

~ - -  d~ 

However, this will not be done, because it offers no advan- 
tage in solving Eqs. (21), (22) numerically. Nevertheless, it is 
very interesting to see, that the transformation of a channel 
with a variable distance between the walls 6" (2), into a 
channel with parallel walls in ~, y coordinates, will introduce 
only one additional term into the conservation equations. 
This term, which is underlined in Eqs. (21) and (22), repre- 
sents the effect of acceleration which results from converging 
ice-layers in the axial direction. 

Equations (21) and (22) were derived in physical coordi- 
nates which are appropriate in the case of a fully developed 
parabolic axial velocity profile at the entrance of the chill 
region. For the case of combined hydrodynamic and thermal 
development of the flow, which is given by a slug flow profile 
at the entrance of the cooling section, however, it is conve- 
nient to take Falkner-Skan transformed variables [9]: 

y 
t/ ,~f~ x = x (23) 

The coordinates defined by Eq. (23), stretch the thin near 
wall region of the boundary layer. Because of this fact, it is 
possible to calculate the velocity- and temperature distribu- 
tion in the entrance region of the channel very effectively. 
After the velocity- or thermal-boundary layer thickness 
becomes approximately 75% of the distance from channel 
centerline to solid-liquid interface, the coordinates were 
changed and the calculations were performed with the vari- 
ables given by Eq. (19). 
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Applying the coordinate transform to the conservation 
equations and inserting a modified stream-function 

F (2, 33) = , J 2  f (2, t/) (24) 

eqs. (21) and (22) can be written in the following form: 

1 83f " 1 ~Szf ~dP* ~ ~,2 ~ (~_~f ~2f Of 02f 
8 *~ ~?3++J,+,, =+,+.+ +2 8)2e? o)2 e~ ~ 

+2f) (25) 1 da*f  
8" d2 

1 020 Pr 80 P r 2 ( S f  80 O08f  I dS* 80\ 
8 *2D/2+  2 + f 0 ~ =  \D /  8)2 D/02  8" ~ -  f ~ )  

(26) 

The boundary conditions for Eqs. (21) and (22) or Eqs. (25) 
and (26) are given by: 

)2 = 0 : 0  = 1, F = given 2 = 0 : 0  = 1, f =  given 

33=0: F=SF/033=O, 0 = 0  t /=0 :  f=Sf /Sr l=O,  0 = 0  

= , j ~ :  ~ F / S y  ~ = o, 80/8~ = 0 

_ . i =  8af 80 0" ~ = 0  (27) r / -  ~/~ . 8r/2 , 

The energy balance at the liquid-solid interface, Eq. (11), 
expressed in physical coordinates, is given by 

,/-~+ 8~ >o_  8" B 1 - 8 *  (28) 

and in transformed variables 

1 80 8" 

w/2 B S t / , = o -  1--fi* 
(29) 

with the dimensionless freezing parameter B, defined as 

B = k~ Yr + Tw _ ks Ow (30) 
kL To- ~. kL 

3 Calculation of the solid-liquid interface 

The calculation of the frozen layer can be performed in the 
following manner: An arbitrary distribution for 6"()2) is 
assumed, for example a linear decreasing function of )2. 
With the assumed distribution of 3" (2) Eqs. (21)-(22) or 
Eqs. (25)-(26) can be solved numerically according to the 
boundary conditions given by Eq. (27). After solving the 
conservation equations, a new distribution of 8" ()2) is calcu- 
lated by inserting the yet known temperature gradient at the 
solid-liquid interface into Eq. (28) or Eq. (29). The procedure 
described above results in an iteration scheme which con- 
verges rapidly. Normally only three iterations are needed to 
get 8" ()2) with sufficient accuracy. 

3.1 The numerical method 

In order to obtain solutions for example of Eqs. (2•) and (22) 
with the boundary conditions Eq. (27), an implidt finite- 
difference method is applied, which is known in literature as 
the Keller-box method. A detailed description can be found 
in [10] and [11]. Because the box scheme is a common 
method to solve parabolic differential equations, only a brief 
outline is provided here. In consequence of the assumption 
of an incompressible fluid with constant properties, the 
equation of motion and the energy equation are uncoupled 
and may be solved separately. 

3.1.1 The velocity distribution 

The momentum Eq. (21) will be first reduced to a first-order 
system of differential equations 

OF 
--+ = U (31) 

ec 
- - =  V (32) aY 

1 ~V dp* 8U ~F 1 d6* 
6- ,5 ~y = d~ + U ~x - V~)2 3" d2 FV (33) 

The following boundary conditions belong to Eqs. (31)-(33) 

2 = 0, F = given 

33=0, F = U = 0  

= x/-R-~h, V = 0 (34) 

The conservation equation in integral form, Eq. (6), has to be 
satisfied. Inserting the definition of the stream-function into 
Eq. (6), results in 

~ h  (35) ; = F -  a* 

For 0 ~< 2 ~< 2N and 0 ~< 33 ~< x/Reh a possibly nonuniform net 
is placed 

)20 = 0,  2,, = 2 ,_ ,  + k~ ; n = 1, 2 . . . .  , N (36) 

Yo = 0,  Y i = Y J- 1 + hj ; j = 1, 2, . . . ,  J, Ys = v R/~eheh 

with k, and h i denoting variable distances between nodes in 
the 2 and y direction. Equations (31) and (32) were approx- 
imated by central-difference quotients and averages about 
the midpoint (2,, y j_ 1/2), while Eq. (33) was centered about 
the midpoint (2,_1/2, 33~-1/2). After approximating the 
boundary conditions, Eq. (34), with central difference quo- 
tients, a system of 3 J + 3 nonlinear equations for the 3 J + 3 
unknowns (F], C}", Vj") is obtained. The system can easily be 
solved by block elimination after linearization by applying 
Newton's method. The pressure gradient appearing in Eq. (33) 
was treated as a nonlinear eigenvalue. Details of the numer- 
ical method are found in [10]. 
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3.t.2 The temperature distribution 

The method used to obtain solutions of Eq. (22) is similar to 
that described in the previous section. Reducing Eq. (22) to 
a first order system of differential equations yields 

80 
- -  = P (37)  
By 

J OP ( BO SF l dS* ) 
3 *2 B y - P r  U~-~-P~y  3" d~ FP (38) 

with the boundary conditions 

2 = 0 :  0 = 1  

y = 0: 0 = 0 (39) 

y = ~/-R~h: P = 0  

Equation (37) was approximated by central-difference quo- 
tients and averages about the midpoint (2,, ~j_ 1/2), while 
Eq. (38) was centered about the midpoint (2,_ 1/2, Y~-1/2) 
using the same net defined by Eq. (36). The solution of the 
resulting linear system of equations was obtained by the 
same block elimination method used with the momentum 
equation. 

3.2 The solid-liquid interface 

After solving Eqs. (37) and (38), the temperature gradient at 
the solid-liquid interface is known. Therefore, the distance 
between channel centerline and liquid-solid interface can be 
calculated from Eq. (28) for every axial position. 

6~1) _ ~ PW/B 
(40) 

l + @ P w  

After introducing this new distribution of 5" (2) into Eqs. (21) 
and (22), the velocity- and temperature distribution in the 
fluid can be calculated again. This results in the new distribu- 
tion 6~2 ) 07). The iteration procedure described above was 
repeated until the deviation was within A6 = I6~1)-6~2)1 < 
0.01 for every axial position. 

The iteration process converges rapidly. Normally only 
three iterations were necessary to get 3" (2) within the error 
tolerance given above. However, combined hydrodynamic 
and thermal development of the flow and large values of B 
required some more iterations, but they did not exceed the 
number of ten. 

4 R e s u l t s  an d  d i s c u s s i o n  

4.1 Parabolic entrance velocity profile 

For the case of a fully developed parabolic velocity distribu- 
tion at the entrance of the chill region, measurements were 
performed by Kikuchi et al. [8] with water. Figure 2 shows 
the effect of increasing wall cooling on the ice-layer at the 
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Fig. 2. Dimensionless distance from channel centerline to liquid- 
solid interface versus axial position for various 0 w 
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Fig. 3. Effect of Reynolds number on the axial distribution of g* 

wall for Re D = 700 and Pr = 12, compared with experimental 
results of [8]. It is obvious that the ice-layer thickness in- 
creases rapidly with growing 0 w. Generally the calculated 
distributions of 6" (2) are in good agreement with experi- 
mental findings, except for 0w=2.5. The reason might be, 
that Ow in [8] was given only by the axial mean value of the 
measured wall temperature. As the ice layer thickness reacts 
very sensitively on variations of 0 w, a possibly nonuniform 
distribution of Ow in the experiments could be responsible 
for the deviations from theory. Unfortunately, in [8] no com- 
ments are given about the uniformity of the wall tempera- 
ture. 

Figure 3 elucidates the influence of the Reynolds number 
on the axial distribution of 3" for 0w= 1.1 and Pr = 12. The 
calculated results agree well with measured values of [8]. It 
can be seen that increasing Reynolds numbers results in 
growing heat flux from the fluid to the solid-liquid interface 
and therefore in a decreasing ice-layer thickness. 

It is of importance to know the range of the dimensionless 
freezing parameter B in which an approximation given by 
Lee and Zerkle [6] coincides well with the numerical results. 
In this approximation the axial velocity distribution was 
assumed to remain parabolic, according to Eq. (1), through- 
out the chill region. Figure 4 depicts a comparison between 
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Fig. 4. Ice-layer thickness as a function of x/h with B as parameter, 
compared with the approximation given by Lee and Zerkle [6l 
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Fig. 5. Axial velocity distribution as a function of y~6 for various x/h 

the numerically calculated ice layers and freezing fronts 
which were determined by the approximation according to 
[6]. It can be seen, that the numerical solution leads to 
thinner ice layers than the approximative solution. This fact 
is due to the acceleration of the fluid according to the con- 
verging ice layers, which enhances heat transfer from the 
fluid to the solid-liquid interface and which inevitably is not 
taken into consideration in the approximation. The axial 
distribution of 5* (2) shows that the approx. [6] should not 
be used for high wall cooling parameters, e.g. B/> 10, as it 
leads to a distinct deviation. The effect of acceleration, due 
to the converging ice-layers is visualized in Fig. 5 for 
ReD = •800 and B = 25. The velocity profiles show, that there 
is a great deviation between numerically calculated profiles 
and the velocity distribution according to Eq. (1). The differ- 
ence between the parabolic distribution and the calculated 
velocity profiles is maximum for low values of 2, because the 
axial change in the ice-layer thickness and, therefore, the 
acceleration of the fluid is large. The parabolic entrance 
velocity profile is strongly deformed in the entrance region 
of the chill section. The profile is flattened in the near core 
region and the velocity gradient at the wall becomes much 

steeper than for a parabolic profile (2 = 2.8). For increasing 
2 the axial change in ice-layer thickness decreases and the 
profile tends to a parabolic distribution. Because of this fact, 
the numerical calculation coincides with the approx. [6] for 
great values of 2. This is also elucidated in Fig. 4. 

Figure 6 illustrates the effect of increasing 0 w on the local 
Nusselt number Nu for Re D = 700 and Pr = 12. The Nusselt 
number is defined by 

ST 

N u = 4 5 ~ Y  w 

Tr- T~ 

Nu first decreases rapidly with increasing 2 and then ap- 
proaches the value for a fully developed flow. It is obvious 
that the Nusselt number is but slightly effected by a variation 
in 0 w. 

4.2 Combined hydrodynamic- and thermal development 

The combined hydrodynamic and thermal development 
during solidification is more complicated than solidification 
in the presence of a fully developed parabolic velocity profile. 
The acceleration of the fluid, caused by the converging ice- 
layers, gives rise to a more rapid development of the entering 
slug flow profile than in a channel without solidification. The 
velocity profile in the entrance region of combined hydro- 
dynamic and thermal development has a much steeper gra- 
dient at the wall than for a fully developed profile at the 
entrance of the chill region. This results in an enhancement 
of the heat transfer between the liquid and the solid region 
and, therefore, in a thinner ice layer at the wall. 

Figure 7 shows the axial distribution of 5* for ReD = 400, 
P r = 1 0  and B=2.  Figures 8 and 9 illustrate the effect of 
acceleration due to the converging ice-layer of Fig. 7 on the 
axial velocity distribution. In Fig. 8 the velocity is scaled 
with rio, while in Fig. 9 u is scaled by the maximum velocity 
U,,ax at the channel centerline. Figure 9 elucidates the axial 
development of the velocity profile. For 2 = 10 the profile has 
adopted a nearly parabolic distribution. 
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Fig. 7. Axial distribution of 6" in the combined hydrodynamic and 
thermal entrance region 

1,0 

i 0.01 0.1 1.0 

10.0 
50.0 

0.5 100,0 

200.0 
-= 

0, i 0 0.5 1.0 

Fig. 10. Development of the temperature distribution in the com- 
bined hydrodynamic and thermal entrance region 
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Fig. 11. Axial distribution for 6* in the combined hydrodynamic 
and thermal entrance region 
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The temperature distribution for variable values of 2 and 
for the ice layer characterized by Fig. 7 is shown in Fig. 10. 
With increasing 2, the temperature at the centerline of the 
channel decreases, which can be accounted to the heat loss 
by wall cooling. For  a larger value of the dimensionless 
freezing parameter, B = 8, and for a larger Reynolds number 
R e  D = 1200, the axial distribution of the ice-layer thickness is 
depicted in Fig. 11. In this case 6" increases very rapidly for 
low values of )1, whereas the ice-layer grows nearly linearly 
at larger values of 2. Velocity profiles for this case under 
consideration are shown in Fig. 12. It can be seen that 
the distribution approaches a nearly parabolic profile for 
2 ~ 20.0. 

5 Concluding remarks 

A simple numerical model was presented to predict the 
steady-state ice-layers at the cooled walls inside a parallel 
plate channel for arbitrary entrance velocity profiles. The 
numerical results were compared with experimental findings 
of Kikuchi [8] for the case of a fully developed entrance 
velocity profile and a generally good agreement was found. 
The model is flexible and can easily be extended by an ap- 
propriate turbulence model in order to calculate ice-layers at 
the cooled walls inside a parallel plate channel for arbitrary 
entrance velocity profiles and turbulent internal flow. 
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