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Transient freezing of liquids in forced laminar flow 
inside a parallel plate channel 

B. Weigand and H. Beer, Darmstad t ,  BRD 

Abstract. A simple analytical approximative solution was given for 
calculating the time dependent development of the ice-layers at the 
cooled walls inside a parallel plate channel. By ignoring the effect of 
acceleration, resulting from converging ice-layers in the axial direc- 
tion, an analytical solution for the variation of the ice-layer thick- 
ness with time and axial position could be obtained. The approxi- 
mative solution was checked by numerical calculations and good 
agreement was found. 

Die zeitliche Entwicklung der Erstarrungsfronten in einem ebenen, 
gekiihlten Kanal mit laminater Durchstriimung 

Zusammenfassung. Es wurde ein analytisches N/iherungsverfahren 
entwickett, das es erm6glicht, die zeittiche Entwicktung der Er- 
starrungsfronten im gekiihlten, ebenen Kanal zu bestimmen. Die 
Methode liefert unter Vernachl~issigung der Beschleunigungsterme 
durch die konvergenten Eisschichten eine exakte L6sung der Pha- 
sengrenzbeziehung. Das Nfiherungsverfahren wurde mittels numeri- 
scher Berechnungen iiberpr/ift und stimmt bis zu Wandunterkiih- 
lungsverh/iltnissen yon B = 10 sehr gut mit der numerischen L6sung 
fiberein. 

Nomenclature 

a thermal diffusivity 
B dimensionless freezing parameter 
D hydraulic diameter: D = 4 h 
f function according to Eq. (27) 
Fo Fourier number 
h distance from centerline to the wall 
k thermal conductivity 
P pressure 
Pr Prandtt number 
r~ heat of fusion 
Re~, Reynolds number based on h 
Re D Reynolds number based on the hydraulic diameter 
T temperature 
T e freezing temperature of the liquid 
T o constant inlet temperature of the liquid 
t time 
u, v fluid velocity components 
~i mean axial velocity 
~0 mean axial velocity at the entrance 
x, y coordinates 

6 distance from centerline to the liquid-solid interface 
/~ steady state distance from centerline 

to the liquid-solid interface 

Q density 
dimensionless time 

v kinematic viscosity 
integral coordinate 

Subscripts 

s solid 
L liquid 
w at the wall 
0 at the entrance 

Superscripts 

dimensionless quantity 

1 Introduction 

Problems of solidification or freezing of liquids inside cold 
channels have been encountered in numerous engineering 
applications. Because the freeze shut of systems may lead to 
a destruction of the equipments (for example freeze shut of 
water pipes in winter or freezing of molten sodium in a 
nuclear reactor) it is advisable to prevent blockage. If solid- 
ification at the cooled channel walls can not  be suppressed, 
steady-state condit ions should be achieved. 

Many  theoretical  and experimental  studies have been 
performed for fluid flow in circular tubes with solidification. 
An early investigation was reported by Zerkle and Sunder- 
land [1] for the steady-state freezing of laminar  flow inside a 
horizontal  tube. Under  the assumption of a parabol ic  axial 
velocity distr ibution throughout  the total  axial region and 
with an appropr ia te  coordinate  transformation,  they were 
able to reduce the problem to the classical Grae tz  problem 
without solidification. Ozisik and Mull igan [2] used a slug 
flow approximat ion  for the liquid core to analyze transient  
solidification in an isothermal  circular tube. They applied 
integral transform to obtain the transient  development  of the 
ice-layer inside the tube. Bilenas and Jiji [3] solved the 
boundary- layer  equations applying a finite-difference 
scheme, but  they used a wide-meshed grid for their calcula- 
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tion. Chida [4] calculated numerically, under consideration 
of axial conduction, the steady state ice-layer thickness. A 
fully developed parabolic axial velocity distribution at the 
entrance of the cooled section was assumed in [3] and [4]. 
The combined thermal and hydrodynamic development 
during solidification in an isothermal tube has been analyzed 
by Hwang and Sheu [5]. Under the assumption that the axial 
variation in solid layer thickness was small, they were able 
to reduce the problem to the combined entry region problem 
without solidification. The simplifications made in [5] give 
accurate solutions only for small dimensionless freezing 
parameters (B _< 3). 

Despite its relevance to many important technological 
and physical problems, the freezing of liquid flows through 
a cooled two dimensional channel has searely been studied, 
both, analytically and experimentally. An early investigation 
of this problem was reported by Lee and Zerkle [6]. They 
assumed the axial velocity distribution to be parabolic 
throughout the chill region, which was in analogy to [1]. 
With this assumption, the axial velocity distribution yields 

u _ 3 1 -  ; ~i = (1) 
0 2 

With the approximated velocity profile according to Eq. (1) 
and with an appropriate coordinate transformation, the en- 
ergy equation could then be reduced to a Graetz problem 
and the steady-state ice layer was calculated. Cheng and 
Wong [7] extended the model used in [6] to calculate the 
influence of an externally imposed convective boundary con- 
dition on the ice-layer. An experimental investigation of the 
effect of freezing of liquid in case of laminar flow between 
two cooled parallel plates was performed only by Kikuchi 
et al. [8]. Both plates were maintained at the same tempera- 
ture, which was lower than the freezing temperature of the 
working fluid, water. The plate wall temperature was varied 
from - 2 °C to - 7 °C. A numerical calculation of the steady 
state ice-layers for arbitrary velocity profiles at the entrance 
of the chill section was given in [9]. For the case of a fully 
developed parabolic velocity distribution at the entrance of 
the cooled channel, the results of [9] were compared with 
experimental findings [8] and a generally good agreement 
was found. Bennon and Incropera [10] studied numerically 
the influence of free convection effects on the axial distribu- 
tion of the solid-liquid interface in a cooled channel with 
laminar flow and a fully developed parabolic entrance veloc- 
ity profile. 

The subject of the following study is the presentation of 
a simple analytical approximative solution for predicting the 
time dependent development of the ice-layers at the cooled 
walls inside a two dimensional channel. The approximative 
solution is presented for two different velocity profiles at the 
entrance of the chill region 

- slug flow 
- fully developed parabolic velocity distribution. 

Fig. 1. Physical model and coordinate system 

2 A n a l y s i s  

2.1 Transient liquid solidification 
in the combined hydrodynamic and thermal entrance region 

Figure 1 shows the geometrical configuration and the coor- 
dinate system for a planar symmetric channel. The laminar 
fluid flow enters the cooled section at x = 0 with a slug flow 
velocity profile and with constant temperature T o . In the 
cooled section (x > 0) the wall temperature is maintained at 
a constant value T w which is lower than the freezing temper- 
ature T I. of the fluid. The frozen layers are formed on both 
walls as the fluid proceeds through the channel. By assuming 
an incompressible, Newtonian fluid with constant fluid 
properties, the conservation equations for the fluid may be 
written as follows: 

Ou ~v 
+ = 0 (2) 

ax Gy 

au au I @ a2u 
u ~x + v ay ~o ax + v ay 2 (3) 

OTL + V ~TL = 82TL (4) 
u -~x ay a ay 2 

By deriving Eqs. (3) and (4) the usual boundary-layer as- 
sumptions were made, which are a common treatment of the 
conservation equations for channel flow [3, 11, 12]. Further, 
quasi-steady conditions are assumed. This is justified be- 
cause the typical time scale of the fluid motion (52/v) is much 
shorter than the typical time scale of the freezing process 
(r~ 52Q/k F (T O - Te) ). 

After neglecting the momentum equation in y-direction, 
the presence of Op/8x in Eq. (3) introduces an additional 
unknown to the system given by Eqs. (2)-(4). Thus another 
equation is needed and is provided by the conservation of 
mass in integral form 

fi 

 0h= fudy i Qs--~OL a5 
0 QL o ~ -  dx (5) 

which presumes a constant flow rate at the entrance of the 
chill region. ~i o is the mean axial velocity at x = 0. The 
boundary conditions belonging to Eqs. (1) (4) are: 

x = 0 :  P=Po,  U=Uo, v=0 ,  T L = T  o 

~ T L ~u 
y = 0 :  - - - v = 0  

~y ~y 
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_ _  [ ?ay]-* y = 6 :  v =  OL--O~ 86 1+  
o~ et \ 8 7 / J  ' 

~6 ~ = - ~ ,  TL = T,~ 
(6) 

Introducing the following dimensionless quantities into 
Eqs. (2)- (5) 

y = ~ ;  ~=x__,~,  ~e~=~°h" 3.=6h; 0_~o~-0~ 
h R e  h v ' OL 

uc5 v p T - T  F 
~ t = - -  " v =  7 R e h ;  /3 ........... 2_2; 0 . . . . .  

Uo h '  Uo O Uo To - TF' 

z = Fo Ste 

tas.  Cs(Te-- T~,) 
Fo = h---z- , Ste= (7) 

Ys 

results in the ensueing set of equations 

~z a 8~ '~ + ;  + ~ = o (8) 

80 80 _Y 83"80 1 1 820 
- - u ~ - 0 o )  U~x + v . ~  6 82 By Pr (~ 8y  2 

= i _ Ste ~ 86 1 ~tdf~+O~r Jo~zd2 (11) 

Applying the following coordinate transform 

i d2 { =  -~- (12) 

to the conservation equations and inserting a modified ve- 
locity component 

into Eqs. (8)-(10), leads to 

8~ ~ a [ ~ + y s ~ ]  8a 

80 80 1 83" _ _ 80 I 820 ~ - - + ~  uy - 
8~ 8f "6 8~ 8y Pr 8y 2 

The boundary conditions are given by 

a(y,0) = 0(y,0) = 1; e(y,0) = 0 

a Ste . ea . a 8a)~ 7-~ 
b(l,{) = PT°~z[l+\Reh ~-g~f j ; 

(13) 

82~ 
ey 2 (14) 

(15) 

0 (1,0=0 

8,7 80 
(~ = 0) = ~ (y = 0) = b (0, ~) = 0 (16) 

In Eqs. (13)-(16) appear several terms which are of the order 
(1/6 8g/8~). They represent the effect of acceleration due to 
the converging ice-layers. For moderate values of the wall 
cooling parameter B, this terms can be neglected with good 
accuracy [5, 9]. 

The second integral on the right side of Eq. (11) represents 
the mass, which gets lost by freezing on the channel walls. 
For the solidification of water, this term is very small and 
will be ignored. Because of a change in density between fluid 
and solid, there is a resulting velocity at the interface, which 
is given by Eq. (16). However, the velocity components ac- 
cording to Eq. (16) are also very small and can be neglected 
with good accuracy. Involving the above given simplifica- 
tions into the conservation equations, Eqs. (13)-(15), results 
in 

8g 8b 
87 + ~ = o (J7) 

~ 8ff = _ 3z d/3 82~ 
^--  - -  + - - - -  (18)  

, ~  ~ v s y  d~ 8 y  2 

80 80 1 820 
~ + b S f i -  Pr 8y 2 (19) 

Equations (17) (19) can be identified as the governing equa- 
tions for the problem in the combined hydrodynamic and 
thermal entrance region of a parallel plate channel with the 
particularity that there is a coefficient 3 "2 in front of the 
pressure term d/3/d~.. 

In the corresponding equations for liquid solidification in 
the combined hydrodynamic and thermal entrance region 
in a circular tube [5], the pressure term adopts the form 
54 dp/d2. This shows that the pressure loss in cooled pipe 
with a frozen layer at the wall increases with growing axial 
distance 2 more rapidly than in a parallel plate channel. 

Finally, it should be stated, that the approximation solu- 
tion presented here, is correct only for low values of the wall 
cooling parameter B. The range of B for which the approx- 
imative solution is valid, will be checked in the next chapter. 

By assuming constant properties in the solid region and 
negligible axial conduction, the heat conduction equation 
for the solid-phase reduces to 

a2Ts 
8y ~ = 0 (20) 

The associate boundary conditions are: 

T~(y = 6) = T F 
T~(y = h) = T~ (21) 

Integrating Eq. (20) according to the boundary conditions 
Eq. (21), results in the following expression for the tempera- 
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ture distribution in the solid region. 

= r~ y -  5 + Tr h - y  (22) 
h - 5  h - 5  

Equations (17)-(19) and Eq. (22) are coupled by the interface 
energy equation which takes the following form if terms 
proportional to (~6/~x) 2 are neglected. 

k,~-y ~ y l , = o = e , r , ~ - ;  y = 6  (23) 

Equation (23) elucidates that the heat conducted in the solid 
plus the heat arising from phase change equals the heat 
transported from the liquid. 

Introducing the dimensionless quantities given by Eq. (7) 
and with Eq. (22), Eq. (23) results in: 

, e0] e8 y = t  (24) 

B denotes the dimensionless freezing parameter 

k~TF-Tw 
B = (25) 

k L To-TF 

The calculation of the frozen layer can be performed in the 
following manner. Equations (17)-(19) describe the fluid 
flow and heat transfer in the combined hydrodynamic and 
thermal entrance region of a parallel plate channel. The 
solution of this equations is known in detail in literature 
[6, 12] and, therefore, will not be discussed in detail. After 
solving the conservation equations, the temperature gradi- 
ent at the solid-liquid interface is known. Figure 2 shows the 
temperature gradient (50/~y)y=l = f (4, Pr) as a function of ( 
for various values of Pr. The plot elucidates that the gradient 
decreases very rapidly at low values of 4. 

After involving the known temperature gradient at the 
solid-liquid interface into the unsteady state interface equa- 
tion, Eq. (24), the distribution of ~ can be obtained. It has to 
be pointed out, that the resulting Eq. (24) is a nonlinear 
integro-differential equation, because the derivation of $ 

with time had to be taken at constant 2. The solution of this 
integro-differential equation can be obtained only numeri- 
cally, because of the strong nonlinear character of Eq. (24). 
However, an approximative solution of Eq. (24) can be 
derived as follows. 

By transforming the axial coordinate in Eq. (24) accord- 
ing to Eq. (12) we get 

In the preceding analysis it was assumed that terms propor- 
tional to 1/6 ~6/~4 are negligible. By employing this as- 
sumption in Eq. (26), the second term on the right hand side 
can be omitted and Eq. (24) reduces to 

$ ~ ~ 3`-1 B f(4'Pr); y = l  (27) 

Equation (27) is a first order nonlinear partial differential 
equation which has to satisfy the following boundary and 
initial condition tor $. 

$(z = 0, ~) = 1 
$(z, ~ = 0) = 1 (28) 

Equation (27) can be integrated analytically. This results in 
an implicit equation for 3" as a function of the integral coor- 
dinate ~ and the dimensionless time z 

r I ($2_ 1) + (6 , -  1) $ -  1) + 3, In \ ~ _ ~ j j  (29) 
1 - 3, 2 

where 6~ denotes the steady state distance between channel 
centerline and solid-liquid interface. 6~ can easily be calculat- 
ed from Eq. (27), by neglecting the unsteady term on the left 
hand side. This results in: 

f(4,  Pr) 
6~ - (30)  

f (4, Pr) - B 

For a given dimensionless time z 1, Eq. (29) yields 8 as a 
function of 4. With the transformation relation 

~/-~=~; 2=0: ~=0; z=z,  (31) 

l -10 

~m----~, -5 
~lrO ~ P r =  7 

0! 
0 1 2 

Fig. 2. Temperature gradient at the wall as a function of ~ with Pr 
as parameter 

which results from Eq. (12), a relation between 4 and the 
axial coordinate 2 can be derived. Therefore, the distribution 
of $ with time and with the axial coordinate 2 is known. 

2.2 Transient liquid solidification 
for a parabolic entrance velocity profile 

The approximations given in the preceding chapter are also 
applicable in the case of a fully developed velocity profile at 
the entrance of the chill region. For convenience we start 
with the conservation Eqs. (17)-(19), in which the accelera- 
tion due to converging ice-layers was neglected, (56/~x ~ 0). 
For the case of a parabolic entrance velocity profile the 
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governing equations can be written as follows: 

K + ~ = 0 07) 

d~ ~2~ 
8a ~a - a  2 +--- (18) ' ~ + ' ~ =  4 ey ~ 

80 80 1 ~20 
o ~ + e e y -  Pr 8y 2 (19) 

with the conservation of mass in integral form 
J. 

1 = S ~ dy (11 a) 
o 

and the modified boundary conditions 

30 -y2 ) ;  ~(y,o)=o; o(y,o)=l ~(y,o) = 

0(1, 4) = 0(1, 4) = ~(1, 4) = o 

~ 80 
~ (y = 0) = -@- (y = 0) = ~ (0, 4) = 0 (16 a) 

The solution of Eqs. (17) and (18), according to the boundary 
conditions (16a), is given in [16]. 

?-=~ 1 -  ; ~ =  a (1) 

With the assumed velocity profile according to Eq. (1), Lee 
and Zerkle [6] were able to solve the energy Eq. (19) with the 
boundary conditions given by Eq. (16a). After obtaining the 
temperature gradient at the solid-liquid interface, they calcu- 
lated an expression for the steady-state distribution of 3"from 
the interface energy equation. 

By obtaining the profile according to Eq. (I) as a solution 
of the conservation equation it is assumed, that 85/~x ~0. 
Therefore, the transient development of the ice-layers at the 
cooled channel walls can be calculated with the help of 
Eq. (29), by inserting the altered temperature gradient in the 
fluid at the interface into Eq. (29). The temperature gradient 
at the solid-liquid interface was given by Lee and Zerkle [6] 
in form of an infinite series 

y=l=  ~0c, Y~o)exp - - ~ - , ~ ) = f ( ~ )  (32) 

in which ~=  4/Pr. The eigenvalues 2, and the coefficients 
c, y'~ o), which appear in Eq. (32), are given in literature [1. 3]. 

By solving Eqs. (29)-(32) in the same way as described in 
the preceding chapter, the distance between the channel cen- 
terline and the interface is obtained as a function of ~ and 
time z. 

3 Results 

3.1 Hy&odynamic- and thermal entrance region 

3.1.1 Steady state freezing front 

The validity of the assumption that terms of the order 
1/5 ~3"/~4 in the conservation equations are negligible will 

1.0 
~ [ '  Numerical Reo= t800 

~[x: B=6 

0 
o 2(1 40 

X 

h 
Fig. 3. Steady state ice-layers as a function of x/h with B as param- 
eter in the hydrodynamic- and thermal entrance region 

1.0. 
Numerical Reo=400 

k \ ~  luti°n Pr = 7 

~1'- " Q ~  B=3 

o 1'o io io 
X 

R 
Fig. 4. Steady state ice-layers in a pipe as a function of x/R for 
various values of B 

be checked for the steady-state solution. However, this yields 
an upper limit of error, as 1/3" 8~/~4 will reach its maximum 
for steady-state conditions. 

In Fig. 3 the steady-state ice-layer thickness is plotted as 
a function of dimensionless downstream coordinate. It eluci- 
dates the deviation of the approximative solution, Eq. (27), 
from the numerical calculation. The numerical solution was 
obtained by solving the Eqs. (8)-(11), which include terms of 
order 1/3" ~ /~4 .  For a more detailed information concern- 
ing the numerical method see [9]. 

Figure 3 shows that the approximation, given by Eq. (27), 
is in very good agreement with the numerical solution for 
dimensionless freezing parameters B _< 10. In contrast to the 
applicability of this approximative solution even for high 
values of B, the approximation given by Hwang and Sheu [5] 
for liquid solidification in the combined hydrodynamic and 
thermal entrance region of a circular tube, is only valid for 
small values of B. This fact is elucidated by Fig. 4. It is 
obvious that the deviation between the numerical solution 
and the approximative solution given in [5] increases rapidly 
with growing B. Therefore, the approximative solution given 
by Hwang and Sheu [5] should only be used in a range of the 
dimensionless freezing parameter 0_< B_< 3. This results from 
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the heat transfer mechanism in a circular pipe, which is quite 
different from that in a planar channel. This is evidenced by 
the steady state interface equation. Unlike in circular pipes, 
where the distance 6~ is proportional to e-n/le°/~rl% 6~ will 
be proportional to 1/(1 + B/l(OO/8~)w]) in planar channels. 
This shows that the same value of B will lead to a thicker 
frozen ice layer in a circular pipe than in a planar channel. 
From a physical point of view this fact is obvious, because 
the logarithmic temperature profile in the ice-layer inside the 
cooled tube will give rise to a steeper temperature gradient 
at the solid liquid interface and, therefore, to a thicker ice- 
layer than in a planar channel, for the same value of B. The 
generally good agreement between theory and experiments, 
which was mentioned by Hwang and Sheu [5], can be attrib- 
uted to the low values of the dimensionless freezing parame- 
ters B, which could be realized in their experiments (B g 1.2). 

1.0~ 

,~!.,=0.5- 

Pr=10 
B =2 v=0.1 

01 
o 0.2 o'.6 

x I 
h Reh 

Fig. 5. Transient development of the freezing front as a function of 
x/h/Reh 

3.1.2 Transient development of the ice-layer 

The series of Figs. 5 -7  illustrates the time dependent devel- 
opment of the freezing fronts at the channel walls for differ- 
ent values of the freezing parameter B. In the early stage of 
the freezing process the ice-layer thickness is approximately 
constant over the channel length, except for the near en- 
trance region, as can be seen from Fig. 7 for z = 0.1 and 

= 0.2. This is evidenced by Eq. (24). If we exclude small 
values of the axial coordinate 2, the first term on the left 
hand side of Eq. (24) dominates the second term. This means 
that for low values of z the growth of the frozen layer at the 
channel walls is dominated by heat conduction in the thin 
ice-layer. 

The time interval for which heat conduction is the domi- 
nant mechanism is related to the dimensionless freezing pa- 
rameter B, which is elucidated by Figs. 5 -7  as well as by 
Eq. (24). The time during which heat conduction in the ice- 
layer is dominating will increase with growing B. 

Excluding small values of the axial coordinate in Eq. (24) 
and neglecting the convectiv heat transfered from the fluid to 
the solid-liquid interface, results in 

3"(v = 0) = 1 (33) 
~ ' - 1  - at; 
An integration leads to 

= 1 - x / ~  (34) 

Equation (34) reveals the above mentioned constant thick- 
ness of the freezing front. 

Figure 8 shows the axial coordinate 2 as a function of the 
transformed integral coordinate 4, defined by Eq. (12), for 
the same parameters as in Fig. 7. For low values of the 
dimensionless time ~, there is a linear dependence between 
and ~. This is easily shown by inserting Eq. (34) into Eq. (12) 
and evaluating the integral. With increasing time, the shape 
of the profile deviates from a straight line. The deviation is 
more pronounced for low values of 2. This effect is due to the 
increasing relevance of heat transfered by convection from 

1.0 
Pr= 10 "C= 0.1 
B -5  / /0 .2  

" 0.3 

l _ _ _  o2 

I,_ 0"s" ~ _  . 

Steady state 

o o.1 o'.2 o.s 
x I 
h Reh 

Fig. 6. Transient development of the freezing front as a function of 
x/h/Reh 

1.0 ̧ 

i 0,5 

~oJ,- 

0" 
0 0.1 0.2 0.3 

x 1 
h Reh 

Fig. 7. Transient development of the freezing front as a function of 
x/h/Reh 

the fluid to the solid-liquid interface with increasing thick- 
ness of the frozen layer. 

The second assumption, which led to Eq. (29), was the 
time derivation of ~ in Eq. (24) for constant 2 to be replaced 
by the time derivation of 5 for constant ~. This requires that 
the term (8~/8~)~ (8~/Sz)e in Eq. (26) is negligible. In order 
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Fig. 10. Steady-state ice-layers as a function of x/h for various B for 
a fully developed entrance velocity profile 
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Fig. 9. Relative- and absolute maximum error as a function of B 

1.0 
B=5 ~'= 0.1 

I 0.5 

l / ~=0 6 / /  I Steady stote 0~7/ I 
0 I 
o 6.01 a.0z 0.d3 0.b4 0.0s 

x 1 
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Fig. 11, Transient development of the freezing front as a function of 
x/h with time as parameter for a fully developed entrance velocity 
profile 

to check this assumption, the integro differential Eq. (24) was 
solved for various values of B with a fourth order Runge- 
Kut ta  process. Figure 9 shows the maximum relative devia- 
tion between the numerical solution (6RK) of Eq. (24) and the 
approximative solution (6A) according to Eq. (29). It  is obvi- 
ous, that the approximative solution for B_< 10 is in very 
good agreement with the numerical calculation. This is elu- 
cidated by the absolute deviation between 5R, ~ and 6"A which 
is also plotted in Fig. 9. The absolute deviation for B_< 10 is 
less than 0.012. The same error bounds were also found in 
the case of a fully developed velocity profile at the entrance 
of the chill region. 

3.2 Fully developed entrance profile 

The results obtained in chapter 2.2 are presented in Figs, 10 
and 11. Figure 10 shows a comparison between steady-state 
freezing fronts according to the approximation given by Lee 
and Zerkle [6] with a numerical solution of the conserva- 
tion Eq. (9). It  can be seen, that  the relative deviation be- 
tween numerical solution and approximation increases with 
growing B. By comparing Fig. 10 with Fig, 3 it is obvious 

that the deviation between approximative solution and nu- 
merical calculation is more pronounced in the case of a fully 
developed entrance velocity profile. This is due to the veloc- 
ity profile according to Eq. (1) which is not correct for small 
values of x/h. In this region the actual axial velocity profile 
is flattened in the near core region and the velocity gradient 
at the wall becomes much steeper than for a parabolic profile 
according to Eq. (1). This effect is due to the strong acceler- 
ation caused by the converging ice layers in this region. 
Because of the steeper velocity gradient at the wall the heat 
transfer is intensified which gives rise to a thinner ice layer 
in this region. In the case of the hydrodynamic  and thermal 
development (Fig. 3) this effect is covered by the develop- 
ment  of the slug flow profile. 

Figure 11 shows the transient development of the ice-lay- 
er for a dimensionless freezing parameter  B = 5 as a function 
of the axial coordinate for a fully developed parabolic profile 
at the entrance of the chill region. The distribution of 5 in 
this case is only a function of z and x/h 1/RehPr and no 
longer an explicit function of Pr as in chapter 2.1. 

Finally it has to be pointed out that the above given 
method can not be applied to model the freeze shut of a 
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p lanar  channel, because a constant  flow rate at the entrance 
of the chill region is assumed. The fi'eeze shut of a p lanar  
channel can be calculated analogously to [14], by requiring 
a constant  pressure difference over the chill region. 

4 Concluding remarks 

A simple analytical  approximat ive  solution was given for 
calculating the transient  development  of the ice-layers on the 
cooled walls inside a paral lel  plate channel. The approxima-  
t ion was checked by a numerical  calculations for the steady- 
state case and good  agreement was found up to B = 10. The 
model  given above can easily be applied to turbulent  inter- 
nal flows by replacing the temperature  gradient  at the solid- 
liquid interface in Eq. (29). 
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