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The freeze-shut of a convectively cooled parallel plate channel 
subjected to laminar internal liquid flow * 

B. Weigand and G. RuB, Darms tad t ,  F R G  

Abstract. The paper presents an approximative solution for the time 
dependent development of the ice layers at the cooled walls inside 
a parallel plate channel. The upper and the lower wall of the channel 
are cooled by an uniform external convection. By assuming a con- 
stant pressure drop across the channel, the freeze-shut of the planar 
channel could be calculated approximately. It was found out that 
the origin of the freezing fronts moves upstream during the ice layer 
growth. Furthermore a simple criterion is presented to predict 
whether a given system wilt lead to blockade. 

Das Zufrieren eines konvektiv gekiihlten, ebenen Kanals 
bei laminarer DurchstrSmung 

Zusammenfassung. Die vorliegende Arbeit steltt eine Approxima- 
tionsl6sung vor, die das instation/ire Wachstum der Eisschichten in 
einem ebenen, laminar durchstr6mten Kanal beschreibt. Die obere 
und die untere Wand des Kanals werden hierbei konvektiv gekfihlt. 
Unter der Annahme eines zeitlich konstanten Druckverlustes im 
Kanal ist es m6glich, das instation/ire Verhalten der Erstarrungs- 
fronten, bis hin zur Blockade des Kanals, approximativ zu berech- 
hen. Als ein Ergebnis der Arbeit ergibt sich, dab der 6rtliche Beginn 
der erstarrten Schicht an der Kanalwand mit dicker werdenden 
Eisschichten stromaufw/irts wandert. Weiterhin wird ein Kriterium 
angegeben, das es erlaubt, a priori dariiber zu entseheiden, ob das 
System bei den vorliegenden Verhfiltnissen zufriert. 

Nomenclature 

a 

B 
D(~) 
Fo 
Fo 
Gm 
h 
k 
L 
L~ 
P 
Pr 
r~ 
Re~(z) 
Re4h(z) 
Ste 
T 
T~ 

thermal diffusivity 
dimensionless freezing parameter = k~/(k L OJ 
volume ratio = V(~ =0)/V(v) 
eigenfunctions, Eq. (11) 
Fourier number = t G / h  2 
eigenfunctions, Eq. (21) 
distance from centertine to the wall 
thermal conductivity 
channel length 
length of the solidification-free zone 
pressure 
Prandtl number 
heat of fusion 
Reynolds number based on h=  V(r)/(2vr) 
Reynolds number based on the hydraulic diameter (4 h) 
Stefan number = G ( T v -  T~)/G 
temperature 
freezing temperature of the liquid 

* Dedicated to Prof. Dr.-Ing. H. Beer's 60th birthday 

To 
r~ 
t 
U~ U 

v(~) 
/~0 
x, y 

7 
6 
6" 

# 

0 

0® 

"C 

constant inlet temperature of the liquid 
ambient temperature 
time 
fluid velocity components 
volume rate 
axial mean velocity at the entrance 
coordinates 
eigenvalues 
dimensionless channel length = L /(h Re 4h (0) Pr) 
convective parameter = ~ h/k  L 
distance from centerline to the solid-liquid interface 
dimensionless distance from centerline to the interface = 6/h 
dynamic viscosity 
dimensionless coordinate = y / 6  
dimensionless fluid temperature = ( r -  T~)/(T o -  TF) 
dimensionless fluid temperature = ( T - T ~ ) / ( T  o -  T~) 
superheat ratio = (T o -  Tr)/(T ~. 7- T~) 
over-all heat transfer coefficient 
kinematic viscosity 
integral coordinate, Eq. (16) 
density 
dimensionless time = Fo Ste 

Subscripts 

B blockade 
s solid 
St steady-state 
L liquid 
co surroundings 
0 at the entrance 

Superscripts 

, . dimensionless quantities 
' derivative with respect to 39, Eq. (11) or ~/, Eq. (2•) 

1 Introduction 

The  freezing of  l iquids in forced l aminar  f low inside c i rcular  

tubes o r  paral le l  plate  channels  is of  technical  impor tance .  

This  type of  sol idif icat ion process  arises for example  in the 

flow of l iquid metals  in paral le l  plate  hea t  exchangers.  Fur -  
thermore ,  it can be observed  in m a n y  cast ing operat ions ,  

where mo l t en  mater ia l  is poured  th rough  channels  and noz-  
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zles, the wall of which are initially below the freezing temper- 
ature of the flowing material. 

Many theoretical and experimental studies have been 
performed for fluid flow in circular tubes and channels with 
internal solidification [1-5]. The seminal papers in this field 
are due to Zerkle and Sunderland [1] and Lee and Zerkle [2]. 
In the papers [1-5] the mass flow rate at the inlet of the 
cooled test section is assumed to be constant. Therefore, 
these studies preclude by definition freezing shut of the appa- 
ratus. 

However, in some situations the pressure drop across a 
system, rather than the mass flow rate, may remain constant 
as freezing occurs in a portion of the system. This could arise 
for a flow between large reservoirs, between a reservoir and 
the atmosphere, or possibly in a system where liquid is circu- 
lated by a centrifugal pump. A system of this type may freeze 
shut. If the pressure drop across a system remains constant, 
the mass flow rate must decrease with increasing thickness of 
the ice layers. Hence, the tube or the channel may either 
freeze shut or the mass flow rate may be reduced to a steady- 
state value for which no further solidification occurs. 

Sampson and Gibson [6] derived a mathematical model 
tbr predicting the time dependent development of the frozen 
crust inside a cooled tube with laminar liquid flow and a 
constant wall temperature. They assumed a constant pres- 
sure drop across the cooled pipe section. Furthermore, they 
supposed the axial velocity profile to be parabolic through- 
out the whole chill region. Their analysis lead to a criterion 
which can be used to predict conditions under which block- 
ade will occur for the case of uniform wall temperature. This 
criterion was checked with some experimental results due to 
Des Ruisseaux and Zerkle [6] and a generally good agree- 
ment was observed. 

For the case of a parallel plate channel no investigations 
are known in literature, which deal with the blockade of the 
system. Furthermore, no investigation was undertaken in 
the past which incorporates the influence of external cooling 
of the pipe or the channel on the freeze-shut of the system. 
Therefore, the object of the current investigation is to ana- 
lyze the freezing of laminar liquid flow in a parallel plate 
channel subjected to external convection. By assuming that 
the pressure drop across the test section can be considered 
as constant, which is in analogy to the work of Sampson and 
Gibson [6], the time dependent development of the ice layers 
and the freeze shut of the system will be calculated approx- 
imately. 

2 Analysis 

Fig. 1 shows the geometric configuration and the coordinate 
system for a planar symmetric duct. The laminar fluid flow 
enters the cooled test section at x = 0 with a fully developed 
velocity profile and with the constant temperature T o . At the 
origin of the time coordinate, t = 0, the temperature of the 
ambient is suddenly lowered for x > 0 from T o to the temper- 
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Fig. 1. Physical model and coordinate system 

ature T~, which is lower than the freezing temperature T F of 
the fluid. Heat transfer takes place by conduction through 
the channel walls and by convection to the surroundings. 
Therefore, the liquid is cooled as it flows through the channel 
and eventually, at some downstream location (x = L,), the 
freezing temperature T F of the fluid is reached at the walls 
and solidification begins. Thus, the thermal entrance region 
consists of a solidification-free zone and a freezing zone 
where the solid layer increases in thickness monotonously 
along the channel walls. 

It is assumed that the physical properties are constant 
and axial heat conduction, viscous energy dissipation and 
free convection are negligible. Further, quasi steady-state 
conditions will be assumed. This is justified because the 
typical time scale of the fluid motion is much shorter than 
the typical time scale of the freezing process. Finally, it will 
be assumed that the pressure difference p(x = L ) - p  o is con- 
stant all the time. This supposition is made in order to model 
the blockade of the planar channel in analogy to the work 
of Sampson and Gibson [6]. It might not be right for some 
technical equipments, but it will be shown that p(x = L ) - p o  
can be considered as an arbitrary function of the volume rate 
in the channel without any complications. 

2.1 Velocity distributions 

In the solidification-free zone 0_< x < L, the estabfished Plane 
Poiseuitle flow at x = 0 will be conserved, 

u -  4 h 1 -  - , (1) 

where V(t) denotes the volume rate per unit of width. By 
deriving Eq. (1), quasi steady-state conditions are assumed. 

In the freezing zone L s < x _< L the velocity distribution in 
the liquid region can be approximated by 

u 46(x,t) 1 -  , (2) 

y ~6 
v = ~(x, t) u ~x " (3) 

The velocity profiles according to Eqs. (2) and (3) were ob- 
tained from the continuity and momentum equations by 



assuming that  Reh~6/~x tends to zero, as it was shown by 
Weigand and Beer [5]. However,  it was recognized in [5] that  
the supposition of the velocity profile, given by Eqs. (2) and 
(3), leads to a good approximat ion for the ice layer thickness 
at the channel walls for moderate  values of the cooling 
parameter  (B < 10). 

2.2 Pressure drop and volume rate in the channel 

Inserting the velocity distributions according to Eqs. (1) (3) 
into the momen tum equations and neglecting terms of the 
order ~6/Ox results in the following equation for the pressure 
drop across the channel 

L 

f 3  v(t) 3 v(t) 
P(L) - -Po=- -  ~ # L  b3(x,t~ d x - ~ p L L S  h a (4) 

Ls 

If p(L)--po is constant, Eq. (4) can be solved explicitly for 
V (t). The volume rate is found to be 

2(p o - p ( L ) )  
v(t) - ~ dx + 

3#m 63(X, t) 

If  the pressure drop ( P o -  p(L)) is an arbitrary function of 
V(t), Eq. (4) is an implicit equation which combines the 
shape of the ice with the reduction in flow rate during the 
growth of the frozen crust. 

2.3 The energy equation 

The energy equation of the liquid region can be simplified by 
invoking the upper mentioned assumptions. One obtaines 

~T OT ~ZT 
u ~xx + v ~ y  = a L --'By2 (61 

Eq. (6) can be solved separately in the solidification-free zone 
(x < Ls) and in the freezing zone (x > L,). 

2.3.1 The solidification-free zone (0 < x _< Ls) 

The energy equation for the parabolic flow of liquid in the 
thermal entrance region of the parallel plate channel is given 
in dimensionless form as 

3 ~G ~2~- 
(1 - 33 2) ~ 2  = D (z) ~33~ (7) 

with the boundary  conditions 

9~=0: 0-= 1 ,  

~6 
33=0: - - = 0 ,  (81 

e33 
86 

33=1: - - = - 7 6 .  
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In Eqs. (7) and (8) the following dimensionless quantities are 

used 

v ( ~  = O) 
Reh(O)-- , D ( z ) - - -  

2 v  L 

x 1 y 

= h Re h(O) Pr '  3 3 = h '  

~ _  T To~ 7 -  xh  

To-  T .  ' k~'  

V (z = O) Re h ('c = O) 

V('c) Reh(z ) 

V L 
z = FoSte ,  Pr = - - ,  (9) 

a L  

ta~ c~(Tr-  T~o ) 
F o =  h~,  S t e -  

r s 

The parameter  7, which appears in Eq. (8) represents the 
effect of external cooling. As it can be seen from Eq. (8) 7 = 0 
denotes the case of an adiabatic channel, while 7 ~ 0o repre- 
sents the case of an uniform wall temperature Too at the 
channel walls. The function D (z) is a volume rate ratio. With 
increasing ice layer thickness, the volume rate V(z) is reduced, 
as it can be seen from Eq. (5). Therefore, D (z) increases with 
growing values of z. 

It  is obvious that the time z appears only as a parameter  
in Eq. (7). Hence, the energy equation (7) can be solved for a 
fixed time z 1 by the method of separation of variables [8]. 
After some routine algebra one obtaines 

0 =  ~ A,F,(33)exp (10) - 4 D ( ~ )  2 . 
1 

The constants A n as well as the eigenvalues c~ n can be found 
in literature [9] for various values of 7. The eigenfunctions 
F n (33), appearing in Eq. (10), satisfy the Sturm-Liouville prob-  
lem 

F." 0))+g3 a2(1 _332) F. (33) = 0 (11) 

in conjunction with the boundary  conditions 

Fn'(0 ) = O, Fn'(1) + 7F.(1) = 0 (12) 

and an arbitrary normalizing condition 

Fn(O ) = 1. (13) 

In Eqs. (11) and (12) ' denotes the derivation of the function 
F, with respect to 33. 

To determine the location x = L  S at which the surface 
temperature becomes equal to the freezing temperature of 
the liquid, it is only necessary to set 33 = 1 and T = T r in 
Eq. (10). The following implicit equation is obtained for the 
determination of 2 s 

TF-- T® 1 
- ~ _ A,F,(1) exp D(z) Y~s (14) 

T o - T  o 1+0oo ,=1 - 4 -  " 

The left hand side of Eq. (14) is a constant. Therefore, the 
sum on the right hand side of the equation must be constant, 
too. This could only be satisfied, if 

D(z) x s = const. (15) 

for given values of 7 and 0~. Eq. (15) shows an interesting 
consequence of the assumption of a constant pressure drop 
across the test section. If the ice layer increases in thickness, 
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Fig. 2. Influence of the external convection parameter 7 and the 
superheat ratio 0~ on the origin of the ice layers 

the function D (z) increases because of the decreasing flow 
rate (see Eq. (9)). Hence, the axial distance 2~ decreases with 
growing ice layer thickness, which means that the axial point 
at which freezing starts at the channel walls moves upstream. 
From a physical point of view the movement of the origin of 
the frozen crust can easily be understood. If the layers grow, 
the flow rate at the entrance of the test section decreases, 
which is obvious from Eq. (5). Therefore, the fluid loses more 
heat by flowing through the cooled parallel plate channel 
and the freezing temperature of the fluid at the channel walls 
is reached for smaller values of the axial coordinate. Fig. 2 
shows the influence of external convection on the axial posi- 
tion of the origin of the ice layers. For a constant value of the 
parameter 0o~, which is a superheat ratio, the origin of the 
freezing fronts is shifted to lower values of the axial coordi- 
nate for growing values of 7. This is obvious, because 7 ~ oe 
represents the case of constant wall temperature, for which 
the origin of the freezing fronts coincides with x = 0. 

2.3.2 The freezing zone (L~<x<_L) 

Inserting the approximation for the velocity profile in the 
liquid region, given by Eqs. (2) and (3), into the energy equa- 
tion (6) and applying the coordinate transformation 

y ~ da (•6) 
~ = 6 '  ~=~6"(~ ,~)  

Xn 

to the energy equation, the following partial differential 
equation can be obtained 

3 2 ~0 ~20 
(1 - - .  ) ~ -  = D(z) (•7) 

where the dimensionless quantities 

T -  T~ 
0 - 6* = (18)  

To-- T ~ ' h 

are used. The origin of the coordinate ~, defined by Eq. (16), 
corresponds with the value 2s of the axial coordinate 2. 

Eq. (17) has to be solved in accordance with the tbllowing 
boundary conditions 

1 + 0 ~  1 
~=0: 0 -  6(~) - - -  

0~ 0~'  

~0 
t/=0: ~-~-= 0, (19) 

t / = l :  0 = 0 .  

The boundary condition for ~ = 0 states the fact that the 
temperature distribution at this axial position is prescribed 
by Eq. (10). 

The solution of Eq. (17) in conjunction with the boundary 
conditions Eq. (19) can be derived easily using the method of 
separation of variables. The temperature distribution 0 in 
the liquid region is found to be 

O= ~_ BmGm(t/)exp - D(z)~ . (20) 
m = l  

The eigenfunctions G,,(t/) are the solutions of the Sturm- 
Liouville problem 

G~(~) + ~ (1 -t/2) fl~ G,.(q) = 0 (21) 

with the boundary conditions 

G~,(0) = 0, Gin(t) = 0 (22) 

and an arbitrary normalizing condition 

G,,(I) = 1. (23) 

The eigenvalues fi,, can be found in literature [10]. The con- 
stants Bin, which appear in Eq. (20), can be calculated analyt- 
ically by using the orthogonality relations of the eigenfunc- 
tions G m (r/) and F n (3))- After some algebra, one finally obtains 

Bm = 
exp l--  ~ -  utz) ~ J+-2-- ~T 

\ 4 1 %  ~m 
_3 1 

(1 _•2) G~(~) d~ (24) 
8o 

The eigenfunctions F,(3)) and Gm(~/), appearing in Eq. (11) 
and Eq. (21) were calculated numerically with the help of a 
fourth order Runge-Kutta method. 

2.3.3 Temperature distribution in the solid region 

Assuming constant properties in the solid region and negli- 
gible axial conduction, the heat conduction equation for the 
solid-phase reduces, for quasi steady-state conditions, to 

~2T~ = 0. (25) 
~y2 



The associate boundary conditions are 

y = 6(x, t): T~ = Tr , 

eT, 
y = h :  k~ ~-y  + ~(T~-- T~) = 0.  (26) 

Integrating Eq. (25) according to the boundary conditions, 
Eq. (26), results in the following expression for the tempera- 
ture distribution in the spolid region 

(Tv-  Too)(y-6) 
T~ = T r -t (27) 

6 - h - k s / ~  

2.4 The growth o f  the solid crust 

The time dependent development of the ice layers at the 
channel walls will be calculated from the interface energy 
equation which adopts the following form if terms propor- 
tional to (O6/~x) 2 are neglected 

k~ ~T~ --kL a T  ~--86 
~Y [y:~ ~Y y:~ = ~ r ~  c t "  

(28) 

Eq. (28) states the fact that the heat conducted in the solid 
plus the heat arising from phase change equals the heat 
transported from the liquid to the interface. Introducing the 
dimensionless quantities given by Eq. (9) and Eq. (18) and 
using Eq. (20), Eq. (28) results in 

~, ( ~ * ~  _ 6" 

kL 7 

1 ~ B ~ G ' ( I ) e x p (  fi,2 D(~)~)  (29) 
B m=l - 4 -  " 

The function D (~) is given in dimensionless form by 

D(~) = Tf i  ~ - ~ (30) 

where fi denotes the dimensionless channel length, defined as 

L 1 
fl - (31) 

h Re4h(O)Pr" 

The quantity B in Eq. (29) denotes the dimensionless freezing 
parameter 

k~ l k ~ r ~ - r ~  
B (32) 

k L O~ k L T O - T e 

Eq. (32) elucidates that B is proportional to 1/0oo, where 0~ 
denotes the superheat ratio of the fluid. 

Eq. (29) is a strongly nonlinear integro-differential equa- 
tion for 6" which has to be solved in conjunction with the 
initial condition on 6" that 

~* (r = 0) = 1. (33) 
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The calculation of the frozen layer for different times can 
be performed in the following manner: Initially the constants 
Bm G~(1) and fl~, appearing in the interface energy equation 
(29), have to be calculated. This can be done by solving 
the eigenvalue problems according to Eqs. (11)-(13) and 
Eqs. (21)-(23). The solution of this equations was obtained 
numerically with the help of a fourth order Runge-Kutta 
process. As mentioned before, the eigenvalues % and fin can 
also be found in literature [9, 10]. If the eigenvalues and the 
eigenfunctions are known, the constant D (z) ff~ according to 
Eq. (15), can be calculated numerically from Eq. (14). For 

= 0 the function D (0) = 1 and the origin of the ice layers is 
determined by Eq. (15). 

The numerical solution of the integro-differential equa- 
tion (29) was performed with the aid of a Runge-Kutta meth- 
od for systems of differential equations. After integrating 
Eq. (29) at fixed values of ~, the local free channel height 6" 
for r+A~ is known. Therefore, the volume rate ratio 
D(~ + Az), can be calculated from Eq. (30). With the known 
value of D(r + AT), the new origin of the ice layer is fixed by 
Eq. (15). The time step A-c for the calculations was chosen 
after some numerical experiments as approximately 0.001. 
For the evaluation of the sum in Eq. (29) taking nearly 50 
terms guaranteed sufficient accuracy for the case of a convec- 
tively cooled channel, while for the case of constant wall 
temperature (7 ~oo) approximately 200 terms have to be 
used. 

The calculations were stoped, if the channel Mocked or if 
steady-state conditions were reached. The blockade of the 
channel was defined by 

h RG(O) P r ' Z  < I 0  2 (34) 

whereas steady-state conditions were reached if 

~6" ~ L 1 (35) 
<1 0  -4 for " 2 = h  R%(O)Pr 

was satisfied. 

3 Results and discussion 

3.1 Constant wall temperature 

The case of an uniform temperature at the channel walls is 
obtained for y -~ ~ from Eq. (8). If the temperature at the 
channel walls is maintained at the constant value To, which 
is lower than the freezing temperature of the liquid, the 
origin of the freezing fronts at the walls is fixed at x = 0 for 
all times and the length of the solidification-free zone is 
identically zero. 

Fig. 3 shows the time dependent development of the 
frozen crust at the channel walls for B = 3.5 and a dimension- 
less channel length o f f l=  8 • 10 -4. The figure elucidates that 
the channel blocks after a dimensionless time z>_ 1.41. The 
following two figures show phase planes of the value of the 
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crust at the end of the channel. It is obvious from the plots 
that the velocity of the ice-water interface at the end of the 
channel depends strongly on the value of 5*. For  the case of 
an uniform wall temperature, [~5*/~zl tends to infinity if 
6" ~ 1. This can be seen from the interface energy equation 
(29) for 7 ~ ~ .  For  B = 3.5 it can be observed in Fig. 4 that 
]~5*/Oz[ reaches a minimum tbr 8* approximately 0.3. In 
Fig. 3 it can be seen that the ice layer thickness at the end of 
the channel increases rapidly for low values of the dimen- 
sionless time, while the frozen crust grows slowly for 
0.34 <__ ~_< t.1. For  greater values of the dimensionless time, 
the velocity I ~ 5 " / ~  I increases, as it can be seen in the phase 
plane, Fig.& For  T_>IAI the channel blocks and ~5"/8~ 
adopts at finite value at the end of the channel. In the case 
of the freeze-shut of a circular pipe [ 85"/8T[ tends to infinity 
for 5*-+0  (see Sampson and Gibson [6]). 

A other interesting detail can be seen in Fig. 5. The phase 
plane for B=14.2  shows that two steady-state solutions 
(86*/~T = 0) may exist. This phenomena can be attributed to 
the strongly nonlinear character of the interface energy 
equation (29), which is a nonlinear integro-differential equa- 
tion. The double solution was also noted by Sampson and 
Gibson [6] in the case of internal freezing in pipe flow. With 
the help of a linear stability theory, it can be shown in analogy 
to [6], that only the thinner ice layer will be stable, whereas 
the thicker ice layer is found to be unstable against finite 
perturbations. From a physical point of view this result is 
easily understood, because the frozen crust will not encroach 
further into the liquid region if ~5*/~T reaches the value zero. 
Therefore, the thicker ice layer never exists in reality. 

3.2 Convectivety cooled channel 

For the calculation of the following ice layers the ratio of the 
thermal conductivities k~/k L was taken to be 4 in order to 
reduce the free parameters entering the problem. The value 
taken for k~/k r corresponds, as a good approximation, to the 
internal flow of water inside the channel. 

Fig. 6 shows the development of the frozen crust for 
B = 10 and a convection parameter 7 = t0. It can be observed 
that a steady-state ice layer is reached for the chosen param- 
eters. In Fig. 7, the phase plane of  the value of the crust at the 
end of the channel is plotted for f l=  10 - 4  and a convection 
parameter 7 = 10. The figure elucidates that [ ~5*/Oz I decreas- 
es continuously for B = 10. Further, it can be observed that 
~5*/~z adopts a finite value for 5" = 1 for a convectively 
cooled channel. This fact can be understood by recognizing 
that the denominator of the first term on the right hand side 
of Eq. (29) reaches the value - k ~ / k  L l/y for 6 " =  1. Further- 
more, it can be observed that the velocity of the interface, 
l es*/e~l, at the end of the channel decreases with decreasing 
values of 7- This is due to the smaller amount  of heat which 
can be convected to the ambient for smaller values of 7. 

Fig. 8 and Fig. 9 show the development of freezing fronts 
for a lower convection parameter 7 = 2 and two different 
freezing parameters B. It can be seen that steady-state condi- 
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Fig. 3. Transient development of the frozen crust as a function of 
the axial coordinate for constant wall temperature (curves for 
z>0.34335 for equidistant time steps Az = 0.112) 
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Fig. 4. Phase plane for 6" at the end of the channel for constant wall 
temperature 
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Fig. 5. Phase plane for 6" at the end of the channel for constant wall 
temperature 
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Fig. & Transient development of the frozen crust as a function of the 
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Fig. 9. Transient development of  the frozen crust as a function o f  the 
axial coordinate (curves for equidistant time steps A~ = 0.2) 
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Fig. 7. Phase plane for 5" at the end of the channel for a convective- 
ly cooled duct 

1.0 

) 
r, o 

0.5- 

B=6 
~=2 

0 .  

steady-state 
(TSt=&17) 

Ar = 0.3 ~ t = 5rain, 

t 

0.005 0.01 

x t 
h Rash(0) Pr = 

Fig. 8. Transient development of the frozen crust as a function of the 
axial coordinate (curves for equidistant time steps Az=0.3) 

tions will be obtained for B = 6, while the channel blocks for 
B = 10. Fig. 8 and Fig. 9 visualize the movement  of the origin 
of the frozen crust. To give the reader a more realistic insight 
into the real time scale of the movement of  the origin, Fig. 8 
indicates a relation between the dimensionless time T and t 

(h = 12 mm, T F -  To~ = 14 K). If we assume Re¢h(0 )-= 1000 
and Pr = 10, the origin of the ice layers moves with a mean 
velocity of approximately 2 mm/min in the upstream direc- 
tion. 

Fig. 10 shows a phase plane of the value of the crust at the 
end of the channel for the dimensionless channel length 
/?=0.01 and 7=2.  By comparing the Figs. 5, 7 and 10 it is 
obvious that the value of t 83"/8z ] at the end of the channel 
decreases with decreasing values of 7. The freezing process is 
dominated by heat conduction through the frozen crust for 
low values of 7. This fact can be seen in Fig. 11, where the 
freeze-shut of a channel is shown for the parameters B = 10, 
/? = 1 and 7 = 0.5. It is elucidated that the ice layers form nearly 
parallel lines to the ~ axis for x >0.5. The reason for this 
behaviour can be declared by examining Eq. (29). Neglecting 
the second term on the right hand side of Eq. (29), which 
denotes the heat transfered by convection from the fluid to the 
solid crust, and integrating the resulting expression, results in 

c5" = a - 1/2~ +(i - a )  z (36) 

where the quantity a is defined by 

k s 1 
- -  - - .  ( 3 7 )  a = l + k L  7 

Calculating 6" at the end of the cooled channel from Eq. (36) 
with the parameters given in Fig. 11, one obtaines for z = 5: 

* - -* =0.045, whereas the 3Eq.(36)--0.4 and for z=8.1:0Eq.(36 ) 
numerical predicted values, shown in Fig. 11 are z = 5 :  
5" =0.4 and for z =  8.1: 5" =0.048. The comparison shows 
that the development of the frozen crust for low values of 7 
is dominated by heat conduction, whereas convection in the 
liquid influences the shape of the freezing front only for small 
values of the axial coordinate. 

Finally, Fig. 12 shows a "blockade diagram", which makes 
it possible to predict a priori if a system will lead to blockade 
or if steady-state conditions can be obtained. The curves for 
constant values of the convective parameter 7, drawn in 
Fig. 12, devide the regions for which the channel blocks 
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Fig. 10. Phase plane for 6" at the end of the channel for a convec- 
tively cooled channel 
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Fig. l l .  Transient development of the frozen crust as a function of 
the axial coordinate for B=10 and ?=0.5 (curves for equidistant 
time steps Az = 0.45) 
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Fig. 12. Blockade diagram 

(right hand  side of the time line) from those regions, where 
steady-state solutions exist (left hand side of the line). 

A similar d iagram was developed by Sampson and Gib-  
son [6] for the case of freezing in internal pipe flow with a 
constant  wall temperature  (7 -~ oo). F r o m  Fig. 12 it is appar-  

ent that  b lockade in a convectively cooted channet having 
the same dimensionless channel length/3 as a channel with 
constant  wall temperature  occurs for higher values of the 
cooling parameter  B (the curve for 7 = 100 shown in Fig. 12 
coincides with the one for 7 --' oo for constant  wall tempera-  
ture). This is due to the smaller amount  of heat transfered by 
external convection from the channel walls to the ambient  
for a constant  value of B with decreasing values of 7. 

4 Concluding remarks 

By assuming a constant  pressure d rop  across the channel, 
the freeze-shut of the p lanar  duct, subjected to external con- 
vection, could be calculated approximately.  According to 
the results of the present theoretical  investigation, the fol- 
lowing major  conclusions may be drawn:  

- The origin of the ice layers moves upstream during the 
growth of the frozen crust. 
A criterion was developed which predicts condit ions un- 
der which b lockade  of the system will occur. 

- The freeze-shut of a convectively cooled channel for low 
values of Y is dominated  by heat  conduct ion in the frozen 
layer. 

Finally, it should be noted that  experiments dealing with 
the freeze-shut of a channel are not  known in literature. It 
would be interesting to compare  the given theoretical results 
with experimental  data. Therefore, we hope that  this study 
motivates the performance of an experimental  investigation 
concerning the freeze-shut of a convectively cooled channel. 

In the case of the freeze-shut of a circular pipe with con- 
stant walt temperature  the agreement between theory and 
experiment was found to be satisfactory, as it was noted by 
Sampson and Gibson  [6]. 
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