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Abstract. If  a fluid enters an axially rotating pipe, it receives a tangential component of velocity from 
the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization 
is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and 
the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a 
fixed value of a new defined rotation parameter. By taking into account the universal character of the 
velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating 
pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally 
good agreement is found. 

Nomenclature  

b = constant, equation (34) 
D = pipe diameter 
l = mixing length 
lo = mixing length in a non-rotating pipe 
N = rotation rate, N = Re~/ReD 
p = pressure 
/~ = pipe radius 
ReD = flow-rate Reynolds number, ReD = ~ D/v  
Re~, = rotational Reynolds number, Re~, = v ~ D / v  
Re.  = Reynolds number based on the friction velocity, Re. = v . R / v  
(Re.)0 = Reynolds number based on the friction velocity in a non-rotating pipe 
Ri = Richardson number, equation (10) 
r = coordinate in radial direction 

= dimensionless coordinate in radial direction, ~ = r / R  
v~, v~, vz = time mean velocity components 
v'~, v~, v'~ = velocity fluctations 
v~,w = tangential velocity of the pipe wall 

v.  = friction velocity, v. = 
~ = axial mean velocity 
VZM = maximum axial velocity 
~) = dimensionless radial distance from pipe wall, z) = 1 - 
y+ = dimensionless radial distance from pipe wall 
y+ = constant 
Z = rotation parameter, Z = %,w/v. = N ReD/2Re .  
e m  = eddy viscosity 
(era)0 = eddy viscosity in anon-rotating pipe 
A = coefficient of friction loss 
n = v o n  Karman constant 
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nl = constant,  equation (31) 
p = densi ty 
/z = dynamic viscosity 
u = kinematic viscosity 

1. Introduction 

Fluid flow and heat transfer in rotating systems are not only of considerable the- 
oretical interest, but also of great practical importance. Transport phenomena in 
rotating systems, therefore, have challenged engineers and scientists for a long 
time. In 1917 Lord Rayleigh [8] investigated the dynamcis and stability of revolv- 
ing fluids. Also, some of the classical solutions of the Navier-Stokes equations 
were obtained for rotating systems. Von K~trmfm [3] investigated the flow induced 
by a rotating disk and the associated convective heat transfer in 1921. The fluid 
mechanics stability criteria for circular flow in an annulus formed between two 
concentric rotating cylinders were studied by Taylor [13]. Another rather elemen- 
tary and common rotating configuration, which is the subject of this paper, is the 
case of flow through a rotating pipe. The obvious technical application is a rotating 
power transmission shaft that is longitudinally bored, and through which a fluid is 
pumped for cooling or for other purposes. 

When a fluid enters a pipe rotating about its axis, tangential forces acting 
between the rotating pipe and the fluid cause the fluid to rotate with the pipe, 
resulting in a flow pattern rather different from that observed in a non-rotating 
pipe. Rotation was found to have a very marked influence on the suppression of 
the turbulent motion because of radially growing centrifugal forces. The effects of 
pipe rotation on the hydraulic loss have been investigated experimentally by Levy 
[6], White [15] and Shchukin [12]. If the flow is initially turbulent, the pressure loss 
decreases with increasing rotational speed. For turbulent flows in a rotating pipe, 
Borisenko et al. [1] studied the effect of rotation on the turbulent velocity fluctua- 
tions using hot-wire probes and showed that they were suppressed by the rotation. 
Murakami and Kikuyama [7] measured the time-mean velocity components and 
hydraulic losses in an axially rotating pipe when a fully developed turbulent flow 
was introduced into the pipe. The pipe rotation was found to suppress the turbu- 
lence in the flow, and also to reduce the hydraulic loss. With increasing rotational 
speed, the axial velocity distribution finally approaches the Hagen-Poiseuille flow. 
By using a modified mixing length theory for the turbulent pipe flow, Kikuyama et 
al. [4] calculated velocity distributions and friction coefficients in the fully devel- 
oped region of a rotating pipe. They found that a flow relaminarization was set up 
by an increase in the rotational speed of the pipe, if the flow in the pipe is initially 
turbulent. Additional experiments confirmed the results of the calculations. Reich 
and Beer [10] calculated the velocity distribution and the heat transfer in an axially 
rotating pipe for the case of fully developed flow. They used a mixing length model 
which was slightly altered as the one given in [4]. Hirai and Takagi [2] were able to 
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Fig. 1. Coordinate system. 

predict the velocity and temperature distribution in an axially rotating pipe for fully 
developed flow conditions with the help of a Reynolds stress turbulence model. In 
this case there was no necessity to assume the tangential velocity distribution as it 
was done in [4] and [10]. 

The following study will focus attention on the universal character of the veloci- 
ty distribution in an axially rotating pipe. A complete representation of the velocity 
distribution is derived for fully developed flow. 

2. Analysis 

Figure 1 shows the physical model and the coordinate system. By assuming fully 
developed flow conditions, rotational symmetry and an incompressible Newtoni- 
an fluid with constant fluid properties, the conservation equations in cylindrical 
coordinates adopt the following form 

2 Vt Vl p V ~ _  Op p 0 ( ~ )  p qo q~ 
r Or r o t  r%v~ + (l) T 

1 0 (#r3 0 2LVZT-~a (2) 

O-- Op + 1 O f Ovz ) 
- - o ~  ; ~  t y - g 7  - p~'~' i  (3) 
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The boundary conditions belonging to equations (1)-(3) are 

r -~- R :  v~ ~-V~w~ Vr =0~  Vz = 0  

OVz 
r = O ' v ~ = O ,  Vr=O, Or --0" (4) 

Because the flow is fully developed, the radial component of the time-mean velocity 
must be zero. According to experiments in references [4], [7], [10], the tangential 
velocity profile in the fully developed region was found to be universal. The 
tangential velocity distribution can be characterized by a parabolic distribution 

v~ = v~o (5) 

Figure 2 shows a comparison between the approximation according to equation 
(5) and measurements performed by Reich [10]. It can be seen that the tangential 
velocity distribution, scaled wih the velocity of the pipe wall, is neither a function 
of the flow-rate Reynolds number, nor a function of the rotational speed. Because 
the tangential velocity distribution is known and the pressure is not a function of 
the tangential coordinate, the conservation equation in the tangential direction can 
be ignored. 

The axial velocity distribution can be calculated as follows. The axial turbulent 
shear stress, which appears in equation (3), can be expressed by the time-mean 
quantities by using a modified mixing length theory as proposed by Koosinlin et 
al. [5]. This results in the following expression for 

-PVlrV~ = pl2 L\ Or ] + ~r Or = PEru Or (6) 
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where 1 denotes the mixing length 

v0 
as proposed by Reich and Beer [10]. The mixing length 10 for a non-rotating pipe 
flow, which appears in equation (7), can be described by the well-known mixing 
length formula of Nikuradse, modified with the damping factor of van Driest 

R:l° [0 .14-0 .08 ( ~ ) 2 - 0 . 0 6  ( ~ ) 4 ]  [ 1 - e  -y+/26] 

Herein y+ is the dimensionless distance from the wall, defined as 

y+ _ v , ( R  - r)  

(8) 

(9) 
Y 

The Richardson number in equation (7) describes the effect of pipe rotation on the 
turbulent motion and is defined as 

2~2 °(%or) 
Ri = (10) 

Without rotation, Ri = 0, there exists a fully developed turbulent pipe flow. If Ri > 
0, i.e. for a rotating tube with a radially growing tangential velocity, the centrifugal 
forces suppress the turbulent fluctuations and the mixing length decreases. Inserting 
equations (6)-(10) into the conservation equation in the axial direction, equation 
(3) can be cast in the following form 

(dvz~ 2 (~NReD)2] 1/2 dSz 1 d~?z 
0 = [2 \-d--~--J + \ 2Re,,/ ] d-7 + Re----~ d--~- + ~: (11) 

with the dimensionless quantities 

[= I/R, F = r/R, G = Vz/V,, N = R % / R e D  

G D %o~,D v.R 
R e D =  , Re~o-- - - ,  R e . =  (12) 

L/ // // 

In equation (11), the partial differentials were replaced by ordinal differentials, 
because the velocity ~ is only a function of the radial coordinate (. All the studies 
done in the past concerning turbulent flow in an axially rotating pipe used the 
quantity N for describing the effect of tube rotation upon the turbulent motion 
[4], [10]. Therefore, a universal character of the axial velocity profile could not 
be observed. By examining equation (11), the only parameter which involves the 
effect of tube rotation on the axial velocity is found to be 

Z = N ReD _ V~ow _ N ~ / ~ .  (13) 
2Re. v. 
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Fig. 3, Mixing length distributions for different values of the flow-rate Reynolds number. 

From equation (13) it can be seen that the parameter Z involves the rotation rate 
N and, further, the coefficient of friction loss A. The rotation rate N is the ratio 
of the rotational Reynolds number and the flow-rate Reynolds number as shown 
in equation (12). N characterizes the effect of rotation on the axial mean velocity 
in the rotating pipe. The term V"~--/8 takes into account the variation in the shape 
of the axial velocity profile at the pipe wall and, therefore, includes the effect of 
different pressure losses in the rotational pipe section due to rotation. 

Keeping this fact in mind, one can hope to find a universal axial velocity profile 
for the flow in an axially rotating pipe, if it can be shown that the mixing length 
distribution [ is not a function of the flow-rate Reynolds number. By inserting 
equation (5) into the definition of the Richardson number, one obtains 

6~2Z 2 
R i  = 2 (14)  

( ~ )  -'}- ~2Z2 

Therefore, the mixing length distribution is only affected by the parameter Z. This 
fact is elucidated in Figure 3, where the mixing length distribution is plotted for 
constant values of Z and different flow-rate Reynolds numbers. In Figure 4, the 
axial velocity distribution is ploted for various values of the rotation parameter Z. 
The curves presented in Figure 3 and Figure 4 were obtained by solving equation 
(11) numerically, according to the given boundary conditions. Additionally, a 
constant flow-rate was required by performing the numerical calculations. It is 
obvious, that the axial velocity distribution, plotted in the form (VZM -- vZ ) /V .  
versus ~, is not or only a very weak function of the flow rate Reynolds number for 
a constant value of Z. The case Z = 0 represents the flow in a non-rotating pipe. 
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Fig. 4. Axial velocity profiles for various values of the rotation parameter Z and different 
ReD. 

The rotation parameter Z depends on the rotation rate N and on the flow-rate 
Reynolds number ReD. This fact is elucidated in Figure 5. It can be seen that Z = 
const, demands decreasing values of N for growing flow-rate Reynolds numbers. 
In Figure 4, it can be observed that the velocity profiles are affected by the flow-rate 
Reynolds number in the vicinity of the rotating wall of  the pipe. This is due to the 
growing viscous forces in the near wall region. 

It is common in the theoretical treatment of non-rotating turbulent pipe flow 
to split off  the flow region into a core region and into a near wall region [11]. In 
doing so, we will follow the excellent paper of Reichard [9], who developed an 
approximation formula for the axial velocity profile for a non-rotating turbulent 
pipe flow. 
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2.1. THE CORE REGION 

By examining equation (11) it is obvious that the term proportional to Re,  -1 can 
be ignored in the core region of the pipe if Re,  becomes large. Figure 6 shows 
( v Z M  --  2 7 Z ) / V ,  for two different values of Z. It can be seen that the curves are 
straight lines in the logarithmic diagram in the core region. Therefore, the velocity 
profiles can be approximated with good accuracy by 

V Z M  --  v z  _ A ~  B (15) 
27, 

where the constants A and B are functions of the rotation parameter Z. The 
functional dependence of A and B on Z can be described by the following equations 

A ( Z )  = v/6.052 × 10-2Z 2 + 5.4Z + 25.705 (16) 
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B(Z) = 1.55 + 0.33811 - exp(-5.53 x 10-2Z)]. (17) 

For Z = 0 the velocity distribution given by equations (15)-(17) reduces to the 
well known approximation of Darcy [11] for the velocity profile of a turbulent flow 
in a non-rotating pipe. Figure 7 shows a comparison between the approximation, 
according to the equations (15)-(17), and numerically predicted velocity profiles. 
It is obvious that the agreement between both is good for ~ < 0.7. For values of the 
radial coordinate ? > 0.7, the approximation deviates from the numerical result, 
which is due to the more pronounced influence of viscous forces on the shape of 
the velocity profile. By using equation (15) for calculating the velocity profile, the 
dependence of VZM on the rotation parameter Z and on the flow-rate Reynolds 
number has to be known. Figure 8 shows the variation of vzM, scaled with the 
friction velocity v,, for various values of the rotation parameter Z. It can be seen 
that VZM/V. increases with growing values of Z and with growing values of the 
flow-rate Reynolds number. 

2.2.  THE WALL REGION 

Back to Ludwig Prandtl [14] it is known that the velocity profile in the near wall 
region of a non-rotating pipe can be described by 

vz 1 
- l n y +  + 5 . 5 ,  (18) 

73. /~ 

where n = 0.4 is the von K~irm~in constant. The velocity profiles in the near wall 
region in a rotating pipe behave quite different than it might be expected from 
equation (18). Figure 9 shows axial velocity profiles for two different values of 
Z. It is apparent that the shape of the velocity profiles is strongly disturbed in the 
near wall region with increasing values of the rotation parameter Z. The region 
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for which a logarithmic shape of the velocity profiles can be observed tends to 
zero with growing values of Z. This fact can be easily understood by examining 
equation (11) for Z ~ co. In this case the mixing length tends to zero and the 
velocity profile is expressed by 

v__~z = y+ 1 y+2 (19) 
v. 2 Re. 

which is a parabolic distribution. 
In order to find an approximation for the velocity profile in the near wall region, 

it is necessary to examine the variation of the eddy viscosity with increasing 
rotation parameters Z, The eddy viscosity, defined by equation (6), is given in 
dimensionless form by 

~ .~  = Re ,~ /~  + 1 - ~ - v -  
( Z )2] 1 / 2 R e ,  (20) 

The distribution of the mixing length [ is given by equation (7). Rewritten in wall 
coordinates, [ adopts the following form 

\ d y + J  \dy+J + 1 - Re. (Re.  (21) 

Examining equation (20) and equation (21) for y+ --+ 0, results in the following 
expression for G~ 

]+ 
e m ~ 10Re * + l . (22) 
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By deriving equation (22) it was assumed that ~?z = Y+ in the near wall region. In 
the case of a non-rotating pipe, equation (22) simplifies to 

(~*)0 ,-~/02(Re,) 2 
y+ ~ 0 (23) 

where the Reynolds number (Re,)0 in a non-rotating pipe can easily be calculated 
from the Blasius friction formula [11]. 

Re, = i ~ 2 ~ R e ~  875. (24) 

The ratio e* / ( e* )0  can be expected to be a measure for the relaminarization due 
to pipe rotation in the near wall region. 

(~,~)o = \ ( R e , ) o ]  ~ + 1 . (25) 
y+--~0 

The nominator of equation (25) changes very rapidly with growing values of Z, 
while the denominator of equation (25) changes only slightly with increasing values 
of the rotation parameter. Therefore, the variation of the eddy viscosity in the near 
wall region of the rotating pipe is mainly influenced by the ratio of the Reynolds 
number based on the friction velocity. This is evident, because the shape of the 
velocity profiles close to the wall is dominated by viscous forces. 

I f  * (Cm)0 is known, the velocity distribution in the near wall region can be 
calculated from the identity 

d~z _ 1 - y+/Re,  (26) 
g dy + 1 + e m 

Because we are interested in this section to find only an approximation of the 
velocity profile close to the wall, the term y+/Re, ,  which appears in the nominator 
of equation (26), can be neglected in comparison to 1. 

Reichhardt [9] performed many measurements concerning the distributions of 
the eddy viscosity and of the velocity profiles in a non-rotating pipe. He was able 
to develop an approximation for (~*)0 for the region close to the wall. He stated 
that (e*)0 in the near wall region (y+ < 30) can be described according to 

(e~)0 = n y+ - y+arctan \Y-~I~,]J (27) 

where y+ = ~(Re,)0 and y+ = 11 is a constant. Rescaling equation (27) by using 
the wall coordinate y+ for the rotating pipe flow according to equation (9) results 
in 

(e*)o = n ~  y+ - y+ arctan (28) 
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with y+ = 11 Re,/(Re,)0 according to Reichhardt [9]. Inserting equation (28) 
into equation (25) results in an approximation for the eddy viscosity in the near 
wall region. 

, _.= ( R e ,  "]/[(Z) 2 ] 
em \ (Re,)0/ Re, + 1 

3.5 

(29) 

The distribution for c* given by equation (29) was found to be in good agreement 
with numerical calculations close to the wall (y+ < 30). By using equation (29) 
an expression for 5z for the near wall region can be obtained from equation (26) 
after integration 

y+ 

~?z = 1 ln(1 + Nly +) + i f(~) d( 
hl  

0 

(30) 

with the function f(~) given by 

tqyl + arctan(~/y +) 
f(~) = (1 + tq~)[1 + a,~ - aly + arctan(~/y+)] " (31) 

In the equations (30)-(31) the abbreviation 

3.5 ] ~1 = ~ \ (Re , )o )  ~ + 1 (32) 

was used. The integral, which appears in equation (30) cannot be solved analyti- 
cally. Reichhard [9] derived an approximation for f(~) in the case of non-rotating 
pipe flow. This function fl (~) can be used after some modifications to approximate 
f(~) appearing in equation (30). 

f l ( ( )  = Y--~0 exp - + (b~ - 1)exp(-b~) (33) 

with 

r,., Re,  /I/z)2 13"} 
b = 0.33 [ \  (Re,)0) ~e ,  + 1 (34) 

For Z ~ 0 equations (33)-(34) approach the approximation given by Reichhard 
[9]. The function fa (~), given by equation (33), agrees well with equation (31) for 
10000 < ReD < 106 and 0 _< Z < 200. Inserting equation (33) into equation (30) 
and integrating the resulting expression results in a formula for the velocity profile 
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in a rotating pipe in the near wall region 

~z 1 
- -  ln(1 + nip +) 
/~1 

y+ 
[ (Re,)o - -  exp(-bY+)] (35) 

Figure 10 shows a comparison between the numerical solution of equation (11) 
and the approximation according to equation (35). It can be seen that the profiles 
coincide in the near wall region. For y+ > 30 the profiles given by equation (35) 
deviate from the numerical solution. The velocity profiles according to equation 
(35) can be used in the future for numerical experiments as wall functions for the 
calculation of flows in rotating pipes and channels. 
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2.3. AN APPROXIMATION FORMULA FOR THE WHOLE REGION OF THE PIPE 

So far, we derived an expression for the axial velocity distribution in the core region 
and in the near wall region of the rotating pipe. For obtaining an approximation 
which is valid in the whole flow area, one has to combine the two expressions given 
by equation (15) and by equation (35). This can be done inthe following way 

~?z = { 1  ln(1 + ~ly+) 

+ 7.8 [(1 - exp ( - ~ ) )  Re, y+ 

x {exp(-al(1-r))}+ f~VZMl v, ASB} 

x { 1 - exp ( -a l (1  - ?)) } (36) 

with al ----- 5(Re,)0/Re,. It can be seen from equation (36) that the complete 
solution for ~3z consists of equation (15) and equation (35). The two velocity 
distributions are multiplied with the damping function exp ( - a l  (1 - ?)), so that 
the velocity distribution in the near wall region dominates the velocity profile for 
small values of ~, while the velocity distribution for the core region, equation (15), 
dominates the solution for increasing values of ~. The term VZM/V,, which appears 
in equation (36) is given graphically in Figure 8. However, using the continuity 
equation in integral form 

1 

ReD _ f 
4Re, ~z¢ df (37) 

0 

and approximating the axial velocity distribution ~?z in equation (37) only by 
the expression for the core region, equation (15), results in the following simple 
expression for vzM/v,. 

VZM ReD 2A 
v, -- 2Re~ + B +-------2 (38) 

where A (Z) and B (Z) are given by the equations (16)-(17). The values for VZM/V, 
predicted from equation (38) are in good agreement with the numerical calculation 
shown in Figure 8. The maximum relative deviation between VZM/V, given by 
equation (38) and the numerically predicted values was found to be approximately 
5% for 10000 < ReD _< 10 6 and 0 < Z < 200. 

Figure 11 shows a comparison between the numerical solution of the conserva- 
tion equation (11) and the approximation given by equation (36) for ReD = 50000 
and Z = 120. Also the approximation for the velocity distribution in the core 
region and in the near wall region are plotted in the figure. It can be observed that 
the agreement between the approximation and the numerical calculation is good. 



130 B. WEIGAND AND H. BEER 

2.0 

Vz 
Vz 

1.0- 

ReB= 50000 

Z = 120 

Numerica[ sotution x"~xx 

. . . .  : - 7 - - - - _ .  
Approximation eq. (35) "-.., ~ 

Approximafion eq. ( 36 ) 

I 

0.5 
_ _ . . . . . , , .  r 

R 

1.0 
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Only near the solid wall very small deviations between the approximation and the 
numerical solution can be observed. 

Figure 12 elucidates the influence of the rotation parameter Z on the axial veloc- 
ity distribution for two different flow-rate Reynolds numbers. It can be observed 
that increasing Z tends to relaminarize the flow. The axial velocity profiles tend 
to approach the parabolic distribution of the Hagen-Poiseuille flow for growing 
values of Z. 

In Figure 13 approximately calculated velocity profiles according to equation 
(36) are compared with measurements of Reich [10]. As the approximative cal- 
culations nearly coincide with the numerical solution for vz/~z, only the profiles 
according to equation (36) have been plotted. It can be seen that the approximations 
are in good agreement with the measurements for various values of the parameter 
N and various values of the Reynolds number. Because in this plot the classical 
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rotation parameter N was used instead of  Z,  the agreement between measurements 
and approximation can be taken as a confirmation for the universal behavior of  the 
velocity profiles in a rotating pipe. 

3 .  C o n c l u s i o n s  

According to the present investigation concerning the fully developed flow in an 
axially rotating pipe, the following major conclusions may be drawn: 

- Using a modified rotation parameter Z instead of the classical parameter N ,  
it was shown that universal axial velocity profiles exist in a rotating pipe. 

- The velocity profiles close to the wall are mainly affected by the decreasing 
shear stress at the pipe wall due to pipe rotation. 

- Wall functions could be developed for the axial velocity profile which take 
into account that the logarithmic region close to the wall disappears with 
growing rotation parameters Z.  

- An approximation formula was developed for predicting the axial velocity 
profiles for the whole flow region. The approximation was found to be in 
good agreement with measurements of Reich [10]. 

As universal velocity profiles can be observed in turbulent rotating pipe flows, 
further experimental studies concerning this type of  flows should use the rotation 
parameter Z instead of  the classical parameter N for scaling the experimental 
results! 
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