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ABSTRACT 

The complex tnteractlons between turbulence and rotation in the rotatlonal 
entrance reclon ot • pipe. rotaUng about Ita axis. are examJned . 
By ••• umlne: a unlvenal tangentla.l veloctty pronle and with the use of a 
modified mlxlnc leneth theory. the development ot the axial velocIty protUe 
and the heat tranlter coemelent alon& the rotational entrance length are 
calculated. The theoretical results a r e compared with experimental flndings 0' Reich [8]. 

I. INTRODUCTION 

Fluid now and heat transrer tn rotaUn, pIpes are not only of considerable 
theoretical Interelt. but also or creat practical Importance. An obvious 
technIcal appllcatlon Is a rotatlne power transmission shatt that is 
10ng1tudinally bored, and through which a fiuld Is pumped tor cooling of 
turbine biades or tor other purposes. 
When a fiuld enters a pipe rotatlne: about Its axis, tangential torces acting 
between the rota tine pIpe and the nuld cause the nutd to rotate with the 
pipe, resulttne tn a now pattern which Is rather dIfferent from that 
observed in a nonrotaUni pipe. Rotation was found to have a very marked 
innuence on the suppression ot the turbulent motion because ot radially 
growlnl centrifugal torces. 
In 1 Sf29 Levy (1) studied experimentally the now In rotaUng pipes. 
Murakami tnd Klkuyama (2) measured the time-mean velocity components 
and hydrauUc losslS in an axially rotaUng pipe when a rully developed 
turbulent now was introduced into the pipe. The pipe rotation was found 
to suppress the turbulence In the now, and also to reduce the hydraulic 
loss. With lnereasin&: rotational speed the axtal velocity distribution nnally 
approaches the Hagen-Potseullle now. Klkuyama et al (3) calculated the 
veloelty distribution In the tully developed region or a rotating pipe with 
the help of a modified mlxlne: lenlth theory proposed by Bradshaw (4). 
They assumed the tangenUal velocity to be a paraboUc distribution 
v,/v,. = (rIR)- In the tully developed region, which was well confirmed by 
experIments (2). [3], 
ReIch and Beer [5) examined experimentally and by analysIs the effect or 
tube rotation on the veloelt)' dIstrIbution and on the heat transter to a 
nutd nowinE Inside a tube. The now was thermaly and hydrodynamically 
rully developed. For their calculations they used a sUghtly different mixlnE 
length formula as proposed In (3] . With an Increase in the rotation rate 
N :z v,wIVzo they observed a remarkable decrease In heat transrer. The 
experimental observations were in close agreement w1th their theory. The 
remarkable decrease In heat transter with IncreasIng N results from the 
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atrong relam.1narlzatlon c:auled by the c:entrttugal torcel . For growing values 
of N, the errect of rotation becomes more pronounced and the Nusselt 
number approaches gradually the value tor laminar pipe now. 
For a hydrodynamic tully developed now the thermal entrance region was 
examined In [&J. The analytlc:al investigation ahowed that the problem 
could be reduced to a Graetz-Problem. With increasing rotatlonal Reynolds 
number Re, a remarkable decrease In heat transrer was observed. The 
thermal entrance length lncreasea remarkably with growing Re.,. (Par 
Reo ... 60000 and N := 3, the now needs nearly 200 pipe diameters to get 
thermally tully developed. 
The rollowlnc study wUl tocus attention on the nuld now and heat 
transrer Inside an axially rotaUng pipe tn the combined hydrodynamic and 
thermal entrance recton. Heretofore the interactlon at centrifugal torces 
and turbulence was Investigated only In the hydrodynamic rotational 
entrance by experUnents [8], [18] . 

2 . ANALYSIS 

2.1 The Conservation Equations In CyUndrlcal CoordInates: 

The problem under consIderation Is ot great practical Importance, because 
In most rotating machinery the geometric: connguratlons are not large 
enough to guarantee tully developed now conditions. 
Because at steady no .... conditions and cyllndrlcal symmetry, there are no 
variations In time and In tangential direction. By assuming an 
incompressible, Newtonian nuld .... ith constant nuld properties, the 
conservation equations tor the time smoothed variables may be written as 
tollows: 
av "r h"z --L + -+-- 0 3r r 3z (1) 

, • !~ ...L 0 r p 3r 

p[Yr av •• ~] 1 a [r' Tr ,) ----t + -L...l + 'z 0--3r r az r a ar (3) 

p['r 
av :z] ~ +!!... --L + 'z 

o _ [ r Tn J ar az r ar 

P Cp['r -ailTr + 'z ilT] 1 a [ • J az --rar rqr (S) 

By deriving the eqs. (2) - (5) the usual boundary-layer BIIsumptions were 
made, Which are a common treatment at the conservation equations tor pipe 
now [7]. [14] . 
The components ot the stress tensor, which appear in eqs. (3) and (4) can 
be written tor a Newtonian nuld as tollows 

_ I' r !... [ :t I _ P = • .....-: .• :-7. ar r r , (6) 

avz • I' - - p V 'v t ar r z (7) 
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rIGUIl 1. Cyliodrical coordinate IYltea 

The coordinate system and the components or the stress tensor are 
mUltrated in nCo 1. The radial component of the heat nux vector Is: 
• M ----
q • - t - + P e "'T' (8) r ar p r 
The parabollc nature ot the boundary-layer equations requires that 
boundary conditions be provided on three sides or the lolution domatn. In 
addition to Initial condItions tor the momentum and energy equations, 
symmetry 11 assumed. At the pipe wall the heat nux 1. prescribed and the 
zero sUp condition holds . 
r • I • 0 • 0 M • . or ; • • ° · 0, ; - t -. q . • , ,. ar rw 

0 • 0 ° • 0 
iIY, M r • : or · · -·0 ; -·0 • , • ar ar 

I • 0 : p • p · T • T ; .z - her) (9) • • • 
Accordln, to eq. (g) It 11 assumed that the nuld enters the rotaUng pipe 
section with a tully developed. turbulent velocity prante. This iniUal 
condition wa, chosen to compar. results with measurements ot Reich (8) . 

2.2 The UnIversal Tangential Velocity DIstribution 

FIg. 2 ahows experimental tangenUal velocity profiles tor various z/D and 
difterent values of the rotation rate N. It is obvIous, that the profiles are 
only sUghtly or not at all Innuenced by the now-rate Reynolds number 
and by N. 

This tact was also recognized In (8) and un. Inereas1ng rotational 
Reynolds numbers resUlts In a growing shear stress in the tangenU .. 1 
directlon which leads to an only IUght dependence at the tangential 
velocity pront. on N. This _111 Inttuence the entrance length which Is 
needed tor the development ot the tangential velocity protne. Theretore. It 
Is reasonable to Introduce a quite universal prattle to descrIbe the 
tangenUal velocity distributIon: . -...L. i(2 + f(I)) (10) 0,. _ 
f(i) • ; + 9.5 .-0.019 I (11) , 
with;' :; r/R and z :; z/R. 
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FIGUII 2. TaDgential .elocity 4iltributioB a •• fUBctioD of the axial 
coor4iDate lID. 

The universal tangential velocity pronle II assumed to be only a tllnction 
of the rotatlonal length. Fie. 2 showl that this asaumptlon Is well 
conftrmed by txperlmentt [8) . which were performed wIth air. Because the 
tangenUal velocity dlstrlbutlon I, now given by eq. (10) and the prenure 
Is not a function ot the tangenUal coordinate, eq. (3) can be omlted. 
However, It has to be pointed out that an extrapolation ot eq. (to) to 
N ) 3 Is admissible only It experlment.1 nndln&s which connrm the 
unlver.anty of eq. (to) for lareer values ot N were avallable. 

2.3 The Turbulence Model 

In order to nnd a lolution ot the dIfferential equations (t) -(5) with the 
boundary conditione un, a relation between the Reynolds ,hear ItrelSes 
and the time mean velodty components mUlt be eltabUshed. This w111 be 
done by the use ot • mixing lencth hypothesis proposed by KooslnUn (10]. 
This turbulence model I, well connrmed tor nuld now and heat transfer In 
rotating pIpes (3), (6), [6). It has to be pointed out, that luch a elmple 
turbulence model can be used lucesatully only, it the tangenUal velocity 
pronle Is known. Without know led,. at the tangential velocity distribution 
the laminarizatlon phenomena can only be calculated applyinc the etress 
equations turbulence model, whleh ••• shown by Htrai et al. (til tor tully 
developed fiow condItions. 
Usinc a modlned Prandtl'. mixIng length theory, .a proposed by Kooslnlln 
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[10], the axIal ahear .te •• Tr:r In eq. (7) can be .rltten •• 

Tn • [~+ P I' [ [ :. f + [ r :r [ ~ I f r ] :. (12) 

where ) I. the hydrodynam.1~ mlx!nl lencth. 
The radial eomponent or the heat nux vector eq. (8) I, tound to be 

qr • [ - k - P cp 1 lq [ [ ~ r + [ r :; [ ~ I r r ] :; (ll) 

where lq denote. the thermal mlxlne 1enlth. 
In a rota tine system the turbulence, I.e. the mixing length 1 and lq are 
markedly eNeeted by the eentrltugal torees [8), [9) . To describe the 
suppressIon ot turbulence wIth radially growlnl centrifugal torces , the 
mIxln, length I. or a nonrotatlnl pipe must be modified tor the now in a 
rotating tube. Bradshaw [4] proposed the tollowtng equation: 
L. (1 - _ Ii)« (14) 
1. 
where. 18 • constant (01 = 2 used tn [S]). 
The Richardson number Rt appearing in eq. 
tube rotation on turbulence. Rt Is denned by 

y ~ 
2 J - (y r) 

(14) describes the ettect or 

(15) 

Without rotation. Rt. 0, there exists a tully turbulent pIpe now. It 
Rt ) O. I.e. tor a rotatlna tube with a radially ,rowIng tangential veloe1ty. 
the eentrttugaJ torees luppres8 the turbulent nuctuatlons and the mixing 
lencth decreases. It Rt (0. e., . tor nows over spinning surtaces. the 
turbulence will be enhanced by rotation: 
The function _ In eq. (4) Is a con.tant tor tully developed now. as it was 
shown In [5) by checking the boundary value ot lU tor N .. -t which means 
the extstence ot quasi laminar fiow tor large N. This results In ~ = 1/6. In 
the case ot hydrodynamIcally developinc now. the same procedure yields an 
expression tor _. that 1s elven by 

- 2 _(i) • (1 + f(z~) • .. • (16) 
6 + 21(z) 

ot eourse. the value ot I(Z) according to eq. (6) can only present an 
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upper 11mlt. pretending a tully laminar now In a near wall reclon for laree 
values of N. This will overpredlct the lamlnarlzatlon phenomena In the 
rotational entrance region, because It lenores any Interactlon between the 
laminar wall region and the fUlly turbulent pipe fiow In the central core, 
which Is not yet etfected by the radIally cro.lnc centrlfUcal foreea 
(ng. 2). Only for large valuea of zlD. If the centrifugal torces Infiuence 
the whole cross aectlonal area ot the tube. there must be a transition to a 
laminar Uke proftle tor N ~ - . Thl. means that "(I.) muat take values 
between 1/ 6 and that or eq. oe) ror nnlte valuea ot z/D. In order to 
ov_ercome the above mentioned dlmcultlel. a aim pie empirical expresalon tor 
"Cx) wal developed, which Is 

,(i) • t. 1. 96 .-0 . 0225 i (17) 

Fig. 3 ahow. a comparlaon at 'C%.) accordln& to eq. (16) and to eq. (l7), 
respectively. 

A common conelatlon between the mIllng lenlth In a nonrotatine pipe I. 
and the radial coordinate r 1. Nlkuradae'. mIxlne length expression [12]. 
which 1. multiplled by the van Drtest dampln, tactor. In order to describe 
the disappearance of the mixIng leneth near the tube .all, In the viscous 
Bublayer. 

~o • [ 1 - .-Y·'l6 I [ 0.1. - 0.08 [ ~ }' - 0.06 [ ~ }' I 
with the dlmenslonle" dIstance from the wall 
y+ ••• (I - r) 

y 

and the friction velocity 

/
ITr (r' .)1 . 

... .!....!C!Z"p,-_--!. 

(11) 

(19) 

(l0) 

The Infiuence ot the eentrttucal torces on the thermal mIxinC length Is 
expreaaed by the lame e~uatIon a. the Innuence on the hydrodynamic 
mixing lencth. 

~. (1 - , 11)' 
lqo 

where lq. Is the thenaal mixlnc lencth for a nonrotatIne pipe 
expressed by the turbulent Prandtl-number [12] as 

1 1 -i! -a -, -. ;r- • 1 • 1.53 - 2. 82 r + 3.15 r - I . " r 
t 0 

Ill) 

whIch can be 

Ill) 

according to experlmenU performed by Ludwiec (13) tor air (Pr = 0.11) . 

2.4 The DlmenllonIe.s E~uationl 

In eq. (2) the radial prelJure cradlent 11 balanced by the radJaUy Irowlnc 
tancential veloetty. which relults In a radlaUy increastng pressure 
dltferenee. The maximum ot the radial pressure dltference between pipe 
•• U and ~en~er wU1 be attaIned tor a tully developed tancentlal velocity 
pronle. Reich Ihowed (8] that this pressure difference Is negligible for 
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alrfiow. Theretore. the pressure was assumed to be constant over the pipe 
cross .ectlon. 
Introducing the tollo.ln, dimen.lonless quantltlea 
-'. •• / V • •• 

• Yr fo;.' -
'r V •• 

r· r/. • 
T - T 
~ . • 8 • 1 

fir. I A 
.e. • 

"', • Y,/Yzo 

• - • ...I fo;.' 'J .zo I 

- I-r A J • --.- aea • • 
- P - p. 
p. 

p "zo • 

v Pr • -• 
• • Ie • ..!.L , v 

... "',1iI .... 

./. 

(2l) 

Into the eqs. 0). (2) - (5). re.ults In the follo.lng dlrterential equations 

- -
... Z ... z 1&'" + a. a. - [ • -::- +.,. -:-. - ~ + -= '""':' r[l •• I ray Z&z i)z ray a 

• !!. +; Cl!. L ~ !:. [<[1 • Jay .~. Prray 

with •• + denned by 

(2() 

(25) 

(26) 

(27) 

lnsertinc 
yields: 

the dlmen.ionless quantities into the boundary conditions eq. (9) 

-y • 0 

• • 0 

:. .0; y 

: p - 0 : 

-• • 0 • 
a.. -=-·0 ay 

e • 1 

~8 ; ~. - 1 ay 

"! • 0 . • ay 

; ;z • h(r) (28) 

In order to make eqs. (24) - (27) aceeslble to a numerIcal analysIs and to 
ensure that the equations have a form that i. common to plane and 
aXisymmetric Oow. the Mangler transformation (14] Is applled: 
dr • di 
Thl, results In 
~V n' 
-.!. + --I. • 0 
~z ~ 

v. ~z +" ~z. _ !g + "_ a. Yay ~. ay 

(29) 

(lO) 

(ll) 
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'f a!. 'f a!. L t _ [b a!) 
It. J3y Pr3y '31 

with the tollo,,1n& quantities 

-~. p -. . b • r (1" ) • • 
Introducing the 

a, 'f • , 
Itream tunction. denned. all 

a, " . - -aJ J ilr 
eq • . (30) - (32) may be .rltten & • 

• .!f + itr a·, _ aa, .!r 
h lIf liar lIf' ai 

• Pr [a! a! _ 3! a!J 
3yh 3yh 

(ll) 

Ill) 

Ilt) 

(lS) 

The presence or ~/az In eq. (34) Introduces an additional unknown to the 
system elven by eq. (34) and (35). Thus another equation 11 needed and 11 
provided by the conlervation of ma .. In Inteeral torm (141 . 

• 
'fl' I' • l I w, r 4r ~ l.fiO;'· r('L) (l6) 

• 
witb 'L • ! .fiO;' . 
At the centerllne. symmetry require. Iv,:lar and aTIIr to be zero In 
untranafotmed coordinates. In terma or dimension lese variables the 
parameters aV,fay and a8/~ at the unterllne are indeterminate. Theretore. 
the boundary cORditon. at the centerllne were calculated from eqs. (34) 
and (35). aeeordlnc to (15). 
The boundary condltlona are: 

, • 0 : r. 0 

a', -.-aJ' 

38 -. -lIf 
1'-0 : ~. 0 

. • ~. 0 
ar 

. !!.-1 
'aJ 

/.e •. [~ • ! a _ [a!J '] 
l a. l3z3y 

.fiO;' 3' a8 - Pr-=-= 3 31 a. 
; • • 1 ; r • gheD. 

2.6 The Numerlcal Method 

(31) 

In order to obtaln solutions 01 eq. (34) and (36) wIth the boundary 
condltlons eq. (37), an ImpUdt nnite-d1fterence method Is applled, whIch Is 
known in Uteratur. a. the Keller-box method. A detaUed delterlption can 
be found In (4) and (15]. BecaUI. the box leheme Is a common method to 
lolve parabol1c dlrterential equations, only a brlet outline I, provIded here. 
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In consequence of the .. sumptlon ot an incompressible nuld .Ith constant 
propertIes. the equatton or motlon and the energy equation are uncoupled 
and may be lolved separately. 

The velocity distribution. The momentum eq. 
nrat-order Iystem of dIfferential equations 

(34) will be nut reduced to a 

" • U 
U· • V 

[ I, ... ~ aT 
bV .~+O"",,:-V~ 

• Iz az az 

(l8) 

(l9) 

"0) 

where primes denote dIfferentiation with respect to }'. The rollowlng 
boundary condItions belong to eqs. (38) - (40) 

, • ° 
For 0 , % , %N' 0 , 7 , '1L' 

• • ° • • • + t 
0 • .-, D 

i ·0 -
l'J • "J-' + hj 0 

v • -! IiO' r~ + ! 3_ (u')l Z ,f --I az Z 3. 
a posilbly nonunltonn net is placed: 

Il. 1.2 •••••• I 

-• J • 1,2, •••.• J, "1· Yl 

(U) 

(U) 

with kIt and h J denoting variable dlltances between nodes In the i and y 
directlon. 
[qs. (38) and (30) were approximated by central-dlfference quotlents and 
averages about the midpoint an. 'l' J-')' whUe eq. (40) w .. centered about 
the mldpolnt (J.-". l' J-')' After approximating the boundary condItions, 
eq. (41) .• Ith central ditterence quotients, a system or 3J+3 nonlinear 
equations tor the 3J+3 unknowns (F~. Ul, Vl) il obtained. The system can 
eaaUy be lolved by the block eUmfnatioD atter linearIzation by applying 
Newton'. method. The pres.ure gradient appearing in eq. (40) w.s treated 
as a nonUnear etgenvalue. Detalls or the numerical method are found in 
1i51. 

The temperature distribution. The method used to obtain solutions of 
eq. (36) II ,lmUar to that described In the previous sectlon. 
Reductnc eq. (35) to a nrst-order system of differentIal equations gtves 
P • 8' 

[b P r . Pr [u 3! _ P a!1 
• Iz 3z 

with the boundary conditIons 

,. ° . . P • - 1 

Fe; 39 p. - - Pr 0-= 
2 h 

(tl) 

(CC) 

(tS) 

Eq. (43) was approximated by centrai-ditterenee quotIentl and averages 
about the midpoint (in' Y J-")' whUe eq. (44) waa centered about the 
midpOint (zn-'" V _~) usIng the same net defined by eq. (42.) . The solution 
of the resultlng linear system ot equations w.s obtained by the aame block 
eUmlnation method used with the momentum equation. 
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The Nusselt number. The Nussell number, bued on the local dIfference 
between wall temperature and the nuld bulk temperature I, defined by 

lu • 
2 I n/~l. 
T - T • • 

(U) 

with 
nuld 

the dennltlon 
aceordln, to 

of the nuld bulk temperature for an IncompressIble 

! "I T 41 
T • (t7) · ! ", 41 
inserting eq. (47) into eq. (44) results In the followln, expression for the 
Nusselt number 

- I. 
lu • I (U) 

'F- Fa· .. I ·u a df - 2 
• 

3. RESULTS AND DISCUSSION 

3.1 Velocity DIstribution 

The .ff.eu of tube rotation on the axial veloelty distribution In the 
rotational entrance reclon are shown tn nC. " for varlous rotation rates N 
and dIfferent now-rat. Reynolds numben. Ezperlmental relult' of Reich 
[8] are plotted for comparison. Generally the calculated profiles of the 
axIal veloelty are In good acreement with experiments. However, the 
entrance veloelty pronle deviates trom the experimental relulU. The 
experimental result •• how a more turbulent profile. W •• uppos., that either 
the entrance region of 40 pipe diameten ••• to short to produce a tully 
developed turbulent entrance velocity pronle, or the mtx!n, length 
hypothesi, Is In error for such loW Reynolds numbers. 
For Inere .. 1n, now-rate Reynolds numbers (Reo - 20000), where the 
entranee pronle Is In doser a,reement with the data, the development of 
the axial veloe1ty pronle In the rotational entrance reclon 1. In excellent 
agreement with experimental nndlngs. 
The pronles Ihows, that there exists a potenttal cor. In the pipe. which 1. 
not affected by the tube rotaUon for low '1./0. The veloelty pronl .. adopt a 
nat .hape near the center recloR for zlD , 80. The fiuld In this reclon 1. 
only accelerated by tube rotation. Por zlO > 80 the centrltucal forces 
lnnuence the eenter region (nC. 2) and the shape of the pronle. In the 
core region Is altered by rotation. Thl, typical development of the axial 
veloelty pronle was al.o mentioned by Nl.hlborl et al. [IS]. 

Por the calculation. of the veloe1ty distribution. and temperature pronles 
a .trongly nonuniform crld with approximately 60 Crld points in radJal 
direction .a. used. It enable. to predict the atrone variations of velocity 
and temperature In the near .aU reclon with load accuracy. 
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FIg. 5 shows tully developed velocity protlles tor two flow-rate Reynolds 
numbers and dUterent rotation rates N. compared with experimental results 
of [8]. ThIs may be considered as an other proof tor the valtdlty or the 
applied method. 
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3.2 Richardlon Number and Mixing Length 

To lllu.trate th.' ertect of turbulence luppreeslon due to tbe pipe rotatlon 
in the rotational entrance. dl.trlbutlona of the Richardson number and the 
mlxlnc Ieneth are depleted In fiC. G and nC. 1 re.pectlvely. tor varioul 
values or z/D. 
WIth Irow1ng zlD the Innuence or the centrlfu,a. forcee expands 
increasingly .croes the crol. .actlon of the pipe. For z/D > 80 the whole 
cross aectlon 11 lelzed by the radially crowIng centrltu,.l tore ••. 
The development of the Richardson number explains the appearance ot • 
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potential core In the axial velocity, because In the region 0 , z!D , 80 no 
suppres.ion or turbulent nuctuat10ns takes place near the pipe center and. 
theretore. a tully turbulent fiow II eltabUshed In this region. Because ot 
lam.1narlzaUon or the now dose to the wall. the velocity gradient decreases 
at the •• U and the central core Is accelerated tor reason or conservation 
or mus, eq. (3d). Fig. 7 ahow. the tnnuence or the tube rotation on the 
miXing lencth 1 tor Reo = 6000 and N:I: 3. For turbulent pipe fio" 
(zID ::II 0). the mixing length distribution Is that one given by Nlkuradse 
with the van DrIest damping tactor. eq. (8), The mixing length 
distribution. obtained trom eq. (14). elucidates the turbulence suppression 
.lth Increasing Z/D. 

3.3 The Nusselt Number 

In nc. 8 the Nusselt number Nu. tor tully developed now Is plotted as a 
functton ot the now-rate Reynolds number tor various valuea ot the 
rotatton rate N and tor Pr = 0.71. With Increas1ng N a remarkable decrease 
In the Nusselt nwaber can be observed. Por N.. the Nusselt number 
approach •• Iradually the value tor laminar pipe now. which Is Nu. = 4.38 
tor conltant heat nux at the .alL 
Pte. V Ihowl the local NUlaelt number Nu tor air (Pr = 0.71) devlded by 
Nu. tor different tlo.-rate Reynolds numbera and various N. Because 
lamlnarlzation tak.es place. the now Is not tully developed tor zlD = 120 
and N = 3. This I, a very Interestlng consequence ot the lamlnarlzatlon 
phenomena. With Increaslnl rotatlon rate N. the thenna} entrance region Is 
markedly enlarled. which w .. first recognized In (6] . For N". the 
thermal entrance length LID will approach 0.05 RenPr. which Is the 
entrance length tor laminar pipe now. 
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4 . CONCLUSIONS 

A theoretical model •• s presented to predict the eomplex Interactions 
between turbulence luppre •• lon and tube rotation in the rotatIonal 
entrance reelon or • pipe rotating about It I axis. With the assumption or a 
quite universal taneentlal profile and the us. of • modlned mixing length 
hypotheals, which takes Into account the turbulenee ,uppression due to 
centrltueal rore.a. the axial velocity distribution and the Nusselt number 
were calculated. The theoretical results were verlned by experimental 
findings [8] and a generally good agreement .as round. It could be stated 
that tube rotation w111 enhance the thermal entrance length, becau.e or 
no. laminarizetion. 
An eItr.polation to N > 3 1. adm1 •• 1ble only It tuture experimental results 
will confirm the universality at the tangential velocity pronles according 
to eq. (to.) 
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