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ABSTRACT

The complex interactions between turbulence and rotation in the rotational
entrance region of a plpe, rotating about its axis, are examined.

By assuming a universal tangential velocity profile and with the use of a
modified mixing length theory, the development of the axial velocity profile
and the heat transfer coefficient along the rotational entrance length are
calculated. The theoretical results are compared with experimental findings
of Reich [8].

1. INTRODUCTION

Fluid flow and heat transfer in rotating pipes are not only of considerable
theoretical interest, but also of great practical Importance. An obvious
technical application is a rotating power transmission shaft that is
longitudinally bored, and through which a fluid is pumped for cooling of
turbine blades or for other purposes.

When a fluid enters a pipe rotating about its axis, tangential forces acting
between the rotating pipe and the fluid cause the fluid to rotate with the
pipe, resulting in a flow pattern which is rather different from that
observed in a nonrotating pipe. Rotation was found to have a very marked
influence on the suppression of the turbulent motion because of radially
growing centrifugal forces.

In 1929 Levy [1] studied experimentally the flow In rotating pipes.
Murakami gand Kikuyama [2] measured the time-mean velocity components
and hydraulic losses in an axially rotating pipe when a fully developed
turbulent flow was introduced into the pipe. The pipe rotation was found
to suppress the turbulence in the flow, and also to reduce the hydraulic
loss. With increasing rotational speed the axial velocity distribution finally
approaches the Hagen—Poiseuille flow. Kikuyama et al [3] calculated the
velocity distribution in the fully developed region of a rotating pipe with
the help of a modified mixing length theory proposed by Bradshaw [4].
They assumed the tangential velocity to be a parabolic distribution
V¢/Vou = (r/R)* in the fully developed region, which was well confirmed by
experiments (2], [3].

Reich and Beer [5] examined experimentally and by analysis the effect of
tube rotation on the velocity distribution and on the heat transfer to a
fluld flowing inside a tube. The flow was thermaly and hydrodynamically
fully developed. For their calculations they used a slightly different mixing
length formula as proposed in [3]. With an Increase in the rotation rate
N = vyu/V,0 they observed a remarkable decrease in heat transfer. The
experimental observations were In close agreement with their theory. The
remarkable decrease In heat transfer with increasing N results from the

326



strong relaminarization caused by the centrifugal forces. For growing values
of N, the effect of rotation becomes more pronounced and the Nusselt
number spproaches gradually the value for laminar pipe flow.

For a hydrodynamic fully developed flow the thermal entrance reglon was
examined in [6]. The analytical investigation showed that the problem
could be reduced to a Graetz-Problem. With increasing rotatlonal Reynolds
number Re, a remarkable decrease in heat transfer was observed. The
thermal entrance length increases remarkably with growing Rey. For
Rep = 50000 and N = 3, the flow needs nearly 200 pipe diameters to get
thermally fully developed.

The following study will focus attention on the fluld flow and heat
transfer inside an axially rotating pipe in the combined hydrodynamic and
thermal entrance region. Heretofore the interaction of centrifugal forces
and turbulence was investigated only in the hydrodynamic rotational
entrance by experiments (8], [18].

2. ANALYSIS
2.1 The Conservation Equations in Cylindrical Coordinates:

The problem under consideration is of great practical lmportance, because
in most rotating machinery the geometric configurations are not large
enough to guarantee fully developed flow conditions.

Because of steady flow conditions and cylindrical symmetry, there are no
varjations in time and in tangential direction. By assuming an
incompressible, Newtonian fluid with constant fluid properties, the
conservation equations for the time smoothed variables may be written as
follows:
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By deriving the egs. (2) - (5) the usual boundary-layer assumptions were
made, which are a common treatment of the conservation equations for pipe
flow (7], [14].

The components of the stress tensor, which appear in eqs. (3) and (4) can
be written for & Newtonian fluid as follows
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FIGURE 1. Cylindrical coordinate system

The coordinate system and the components of the stress tensor are
illustrated in fig. 1. The radial component of the heat flux vector is:
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The parabolic nature of the boundary-layer equations requires that
boundary conditions be provided on three sides of the solution domain. In
addition to Initlal conditions for the momentum and energy equations,
symmetry is assumed. At the pipe wall the heat flux is prescribed and the
zero slip condition holds.
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According to eq. (9) it Is assumed that the fluid enters the rotating pipe
section with a fully developed, turbulent velocity profile. This initial
condition was chosen to compare results with measurements of Reich [8].

2.2 The Universal Tangential Velocity Distribution

Fig. 2 shows experimental tangential velocity profiles for various z/D and
different values of the rotation rate N. It is obvious, that the profiles are
only slightly or not at all influenced by the flow-rate Reynolds number
and by N.

This fact was also recognized in [8] and [9). Increasing rotational
Reynolds numbers results in a growing shear stress in the tangential
direction which leads to an only slight dependence of the tangential
velocity profile on N. This will influence the entrance length which is
needed for the development of the tangential velocity profile. Therefore, it
Is reasonable to Introduce a quite universal profile to describe the
tangential velocity distribution:

Yo -2+ £(z)) (10)
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z

with ¥ = r/R and z = z/R.
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FIGURE 2. Tangential velocity distribution as a function of the axial
coordinate 2/D.

The universal tangential velocity profile is assumed to be only a function
of the rotational length. Flg. 2 shows that this assumption Is well
confirmed by experiments [8], which were performed with air. Because the
tangential velocity distribution is now given by eq. (10) and the pressure
is not a function of the tangential coordinate, eq. (3) can be omited.
However, it has to be pointed out that an extrapolation of eq. (10) to
N > 3 is admissible only If experimental findings which confirm the
universality of eq. (10) for larger values of N were available.

2.3 The Turbulence Model

In order to find a solution of the differential equations (1) -(5) with the
boundary conditions (9), a relation between the Reynolds shear stresses
and the time mean velocity components must be established. This will be
done by the use of a mixing length hypothesis proposed by Koosinlin {10].
This turbulence model is well confirmed for fluid flow and heat transfer in
rotating pipes [3], [56], [6]. It has to be pointed out, that such a simple
turbulence model can be used sucessfully only, if the tangential velocity
profile I1s known. Without knowledge of the tangential velocity distribution
the laminarizatlon phenomena can only be calculated applying the stress
equations turbulence model, which was shown by Hiral et al. [(11] for fully
developed flow conditions.

Using a modified Prandtl's mixing length theory, as proposed by Koosinlin



[10], the axial shear stess 7., In eq. (7) can be written as
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where 1 is the hydrodynamic mixing length.
The radial component of the heat flux vector eq. (8) is found to be

o[- (2 L] )2 w

where lg denotes the thermal mixing length.
In a rotating system the turbulence, i.e. the mixing length 1 and 1, are
markedly effected by the centrifugal forces [8], [9]. To describe the
suppression of turbulence with radially growing centrifugal forces, the
mixing length 1, of a nonrotating pipe must be modified for the flow in a
rotating tube. Bradshaw [4] proposed the following equation:
L=a-pr)® (14)
L]
where « is a constant (« = 2 used in [5]).
The Richardson number RiI appearing in eq. (14) describes the effect of
tube rotation on turbulence. Rl is defined by

v
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Without rotation, Rl = 0, there exists a fully turbulent pipe flow. If
Ri > 0, i.e. for a rotating tube with a radlally growing tangentlal veloeity,
the centrifugal forces suppress the turbulent fluctuations and the mixing
length decreases. If Ri < 0, e.g. for flows over spinning surfaces, the
turbulence will be enhanced by rotation.

The function # In eq. (14) is a constant for fully developed flow, as it was
shown in [5§] by checking the boundary value of Ri for N @ =, which means
the existence of quasi laminar flow for large N. This results in g = 1/6. In
the case of hydrodynamically developing flow, the same procedure ylelds an
expression for B, that is given by
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Of course, the value of §(z) according to eq. (16) can only present an
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FIGURE 3. Function g
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upper limit, pretending a fully laminar flow In a near wall region for large
values of N. This will overpredict the laminarization phenomena in the
rotational entrance region, because it ignores any interaction between the
laminar wall region and the fully turbulent pipe flow in the central core,
which is not yet effected by the radially growing centrifugal forces
(fig. 2). Only for large values of z/D, If the centrifugal forces influence
the whole cross sectional area of the tube, there must be a transition to a
laminar like profile for N #+ «. This means that £(z) must take values
between 1/6 and that of eq. (168) for finite values of z/D. In order to
overcome the above mentloned difficulties, a simple empirical expression for
f(z) was developed, which is

B(Z) = &+ 1.96 e 0-0225 2 an

Fig. 3 shows a comparison of B(z) according to eq. (16) and to eq. (17),
respectively.

A common correlation between the mixing length in a nonrotating pipe 1,
and the radial coordinate r is Nikuradse's mixing length expression [12],
which is multiplied by the van Driest damping factor, in order to describe
the disappearance of the mixing length near the tube wall, in the viacous
sublayer.

1l + 2 -
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with the dimensionless distance from the wall

+ —

o g !x_qg__zl (19)

and the friction velocity
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The influence of the centrifugal forces on the thermal mixing length is
expressed by the same equation as the influence on the hydrodynamic
mixing length.

1

= 1-sei)’ (21)
qo

where lgo is the thermal mixing length for a nonrotating pipe which can be
expressed by the turbulent Prandtl-number [12] as

1 1

== 193 =1.53 -2.82r +3.85r -1.481° (22)
t o

according to experiments performed by Ludwieg [13] for alr (Pr = 0.71).

2.4 The Dimensionless Equations

In eq. (2) the radial pressure gradient is balanced by the radially growing
tangentlal velocity, which results in a radially increasing pressure
difference. The maximum of the radial pressure difference between pipe
wall and center will be attalned for a fully developed tangential velocity
profile. Reich showed [8] that this pressure difference is negligible for
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airflow. Therefore, the pressure was assumed to be constant over the pipe
cross section.
Introducing the following dimensionless quantities
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Into the egs. (1), (2) - (5), results in the following differential equations
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Inserting the dimensionless quantities into the boundary conditions eq. (9)
yields:
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In order to make eqs. (24) - (27) accesible to a numerical analysis and to
ensure that the equations have a form that Is common to plane and
axisymmetric flow, the Mangler transformation [14] is applied:

T =4dz , dy =t dy (29)
This results in
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with the following quantities
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Introducing the stream function, defined as
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The presence of 3P/dz in eq. (34) Introduces an additional unknown to the
system given by eq. (34) and (35). Thus another equation is needed and is
provided by the conservation of mass in integral form [14].

R
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At the centerline, symmetry requires 3v,/dr and 3T/dr to be zero In
untransformed coordinates. In terms of dimensionless varlables the
parameters aV,/3y and 38/3Y at the centerline are indeterminate. Therefore,
the boundary conditons at the centerline were calculated from egs. (34)
and (35), according to [15].

The boundary conditions are:
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2.6 The Numerical Method

In order to obtain solutions of eq. (34) and (35) with the boundary
conditions eq. (37), an implicit finite—difference method is applied, which Is
known In literature as the Keller-box method. A detalled description can
be found in [14] and [15]. Because the box scheme ls & common method to
solve parabolic differential equations, only a brief outline is provided here.



In consequence of the assumption of an incompressible fluld with constant
properties, the equation of motion and the energy equation are uncoupled
and may be solved separately.

The velocity distribution. The momentum eq. (34) will be first reduced to a
first-order system of differential equations

F'=1u (38)

U* = Vv (39)
' v oF
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where primes denote differentiation with respect to ¥. The following
boundary conditions belong to eqs. (38) — (40)
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with k, and h, denoting variable distances between nodes in the Z and ¥
direction.

Eqgs. (38) and (39) were approximated by central-difference quotients and
averages about the midpoint (2,, ¥;-%). while eq. (40) was centered about
the midpoint (Z,-%, Vj-%). After approximating the boundary conditions,
eq. (41), with central difference quotients, a system of 3J+3 nonlinear
equations for the 3J+3 unknowns (F], Uj, V]) is obtained. The system can
easily be solved by the block elimination after linearization by applying
Newton's method. The pressure gradient appearing In eq. (40) was treated
as a nonlinear eigenvalue. Details of the numerical method are found in
[15].

L

The temperature distribution. The method used to obtain solutions of
eq. (35) is similar to that described In the previous section.
Reducing eq. (35) to a first-order system of differential equations gives

P=2g (43)
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with the boundary conditions
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Eq. (43) was approximated by central-difference quotients and averages
about the midpoint (Z,, ¥;-y), while eq. (44) was centered about the
midpoint (Z,.y, ¥,-%) using the same net defined by eq. (42). The solution
of the resulting lfnear system of equations was obtalned by the same block
elimination method used with the momentum equation.

Y=YL=P._



The Nusselt number. The Nusselt number, based on the local difference
between wall temperature and the fluld bulk temperature is defined by

2R a‘l'lar|'
Nu = T (46)
w R
with the definition of the fluid bulk temperature for an incompressible
fluld according to

[v:'ru
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A

Inserting eq. (47) Into eq. (46) results in the following expression for the
Nusselt number
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3. RESULTS AND DISCUSSION
3.1 Velocity Distribution

The effects of tube rotation on the axial velocity distribution in the
rotational entrance region are shown in fig. 4 for various rotation rates N
and different flow-rate Reynolds numbers. Experimental results of Reich
[8] are plotted for comparison. Generally the calculated profiles of the
axial velocity are In good agreement with experiments. However, the
entrance velocity profile deviates from the experimental results. The
experimental results show a more turbulent profile. We suppose, that either
the entrance region of 40 pipe diameters was to short to produce a fully
developed turbulent entrance velocity profile, or the mixing length
hypothesis is in error for such low Reynolds numbers.

For increasing flow-rate Reynolds numbers (Rep = 20000), where the
entrance profile is in closer agreement with the data, the development of
the axial velocity profile In the rotational entrance region Is in excellent
agreement with experimental findings.

The profiles shows, that there exists a potential core in the pipe, which is
not affected by the tube rotation for low z/D. The velocity profiles adopt a
flat shape near the center region for z/D < 80. The fluld in this region is
only accelerated by tube rotation. For z/D > 80 the centrifugal forces
influence the center region (fig. 2) and the shape of the profiles in the
core region Is altered by rotation. This typical development of the axial
velocity profile was also mentioned by Nishibori et al. [16].

For the calculations of the velocity distributions and temperature profiles
a strongly nonuniform grid with approximately 60 grid points in radial
direction was used. It enables to predict the strong varlations of velocity
and temperature in the near wall region with good accuracy.
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FIGURE 4. Axial velocity distribution as a function of z/D.
Fig. 5 shows fully developed velocity profiles for two flow-rate Reynolds
numbers and different rotation rates N, compared with experimental results

of [8). This may be considered as an other proof for the valldity of the
applied method.
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FIGURE 5. Axial velocity distribution for fully developed flow (z/D = =) as
a function of the rotation rate N.

3.2 Richardson Number and Mixing Length

To lllustrate the effect of turbulence suppression due to the pipe rotation
In the rotational entrance, distributions of the Richardson number and the
mixing length are depicted in fig. 6 and fig. 7 respectively, for varlous
values of z/D.

With growing z/D the influence of the centrifugal forces expands
increasingly across the cross section of the pipe. For z/D > 80 the whole
cross section is seized by the radially growing centrifugal forces.

The development of the Richardson number explains the appearance of a

4,0
2/1D0=1204 Ren: zoom Z/D=120 Re‘izoom
20 Z/D = B0 210 = 80; =
. 2ID= 40, N= . Hz/0= 40| N=
Ri | lz/p- 2 Ri | |z/0= 20
| /D= 10 ) /D= 10
2.0
1,0-
0 0
0
0 05 _: 10 0 05 _ . 1

FIGURE 6. The Richardson number Ri for various z/D
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FIGURE 7. The mixing length 1/R as a function of z/D.

potential core in the axlal velocity, because in the region 0 € z/D < 80 no
suppression of turbulent fluctuations takes place near the pipe center and,
therefore, a fully turbulent flow is established in this region. Because of
laminarization of the flow close to the wall, the velocity gradient decreases
at the wall and the central core is accelerated for reason of conservation
of mass, eq. (36). Fig. 7 shows the influence of the tube rotation on the
mixing length 1 for Rep = 6000 and N = 3. For turbulent pipe flow
(z/D = 0), the mixing length distribution is that one given by Nikuradse
with the van Driest damping factor, eq. (18). The mixing length
distribution, obtained from eq. (14), elucidates the turbulence suppression
with Increasing z/D.

3.3 The Nusselt Number

In fig. 8 the Nusselt number Nu, for fully developed flow is plotted as a
function of the flow-rate Reynolds number for various values of the
rotation rate N and for Pr = 0.71. With increasing N a remarkable decrease
in the Nusselt number can be observed. For N @+ « the Nusselt number
approaches gradually the value for laminar pipe flow, which is Nu, = 4.36
for constant heat flux at the wall.

Fig. 9 shows the local Nusselt number Nu for air (Pr = 0.71) devided by
Nu, for different flow-rate Reynolds numbers and various N. Because
laminarization takes place, the flow 1s not fully developed for z/D = 120
and N = 3. This is a very Interesting consequence of the laminarization
phenomena. With increasing rotation rate N, the thermal entrance region is
markedly enlarged, which was first recognized in ([6). For N # e the
thermal entrance length L/D will approach 0.05 RegPr, which is the
entrance length for laminar pipe flow.
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4. CONCLUSIONS

A theoretical model was presented to predict the complex interactions
between turbulence suppression and tube rotation Iin the rotational
entrance region of a pipe rotating about its axis. With the assumption of a
quite universal tangential profile and the use of a modified mixing length
hypothesis, which takes into account the turbulence suppression due to
centrifugal forces, the axial velocity distribution and the Nusselt number
were calculated. The theoretical results were verified by experimental
findings [8] and a generally good agreement was found. It could be stated
that tube rotation will enhance the thermal entrance length, because of
flow laminarization.

An extrapolation to N > 3 is admissible only if future experimental results
will confirm the unlversality of the tangential velocity profiles according
to eq. (10.)

NOMENCLATURE
a thermal diffusivity T temperature
Cp specific heat at T temperature fluctuation
constant pressure T bulk temperature
D pipe diameter Ve, VgV, time mean velocity in
F stream-function r, ¢, z -direction
k thermal conductivity ou tangential velocity
L pipe length . _ . of the pipe wall
1, 1,4 hydrodynamic and thermal Vr.Vy,V, dimensionless
mixing length in the velocity components
rotating pipe ¥zo mean axial velocity over
lo, 140 hydrodynamic and thermal the pipe cross section
mixing length in the v;' velocity fluctuation
nonrotating pipe Vi _ friction velocity
| rotation rate yt.y.Y dimensionless radial
Nu Nusselt number distance from the wall
Pr Prandtl number z axial coordinate
Pry turbulent Prandtl number L5 X dimensionless
P pressure axial coordinate
q heat flux density et eddy diffusivity for
dru heat flux density nomentum
at the pipe wall ] dimensionless temperature
R pipe radius B dynamic viscosity
Re flow-rate Reynolds number v kinematic viscosity
Rey rotational Reynolds number Ty shear stress
Ri Richardson number [} function according to
r radial coordinate eqs. (16) and (17)
P density
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