3.5 Fluoridselenide der Selten-Erd-Elemente

Fluoridselenide MFSe und M_2F_4Se der Selten-Erd-Metalle [64] wurden erstmals, analog den Fluoridsulfiden, durch Reaktion von Selten-Erd-Metall-Trifluorid (MF₃) und dem entsprechenden Sesquiselenid (M₂Se₃) in mit Kieselglas ummantelten Graphittiegeln bzw. unter Verwendung von graphitierten Kieselglasampullen bei Temperaturen oberhalb von 800°C erhalten:

$$MF_3 + M_2Se_3 \longrightarrow 3 MFSe$$
(6)
$$4 MF_3 + 4 M_2Se_3 \longrightarrow 3 M_2F_4Se$$
(7)

Im PbFCl-Typ, analog der A-MFS-Struktur (vgl. Kapitel 3.1.1) mit der Zusammensetzung MFSe, konnten bisher, mit Ausnahme von Promethium, Europium, Terbium und Scandium, die Verbindungen mit M = Ce – Nd, Sm, Gd sowie die β -Form von LaFSe dargestellt und über Röntgenpulveruntersuchungen charakterisiert werden. Gitterkonstanten und kristallographische Daten sind in Tabelle 52 zusammengestellt.

Tab. 52: Gitterkonstanten für die Fluoridselenide MFSe (tetragonal, P4/nmm) anhand von Pulverproben röntgenographisch [64] ermittelt (Punktlagen: M und S in $(2d)^{1/4}/_{4}$ z/c; F in (2a): $^{3/4}/_{4}/_{4}$ 0)

MFSe	a / pm	c / pm	c / a	berechnete Dichte $D_x / g \text{ cm}^{-3}$
β-LaFSe	414	717	1,73	6,40
CeFSe	409	715	1,75	6,61
PrFSe	405	713	1,76	6,78
NdFSe	402	712	1,77	6,99
SmFSe	397	710	1,79	7,37
GdFSe	393	708	1,80	7,75

Im Gegensatz zu den Selten-Erd-Fluoridsulfiden liegt die entsprechende Lanthan-Verbindung α -LaFSe bei Raumtemperatur in einem hexagonalen Strukturtyp vor [65], dessen Schweratom-Struktur sich vom *anti*-NiAs-Typ ableitet.

Tab. 53: Gitterkonstanten für α -LaFSe (hexagonal, P6₃/mmc, Z = 2; Punktlagen: La in (2*a*): $\frac{1}{3}\frac{2}{3}\frac{1}{4}$; Se in (2*c*): 0 0 0; F in (2*a*): $\frac{1}{3}\frac{2}{3}\frac{3}{4}$)

	a / pm	c / pm	c / a	berechnete Dichte $D_x / g \text{ cm}^{-3}$
α-LaFSe	421,7	818,8	1,94	6,24

Tab. 54: Motive der gegenseitigen Zuordnung in α -LaFSe

	F	Se	CN
М	3 / 3	6 / 6	9
CN	3	6	

Wie das H⁻-Anion in LaHSe [66] liegt hier das F⁻-Anion in trigonal-planarer Koordination vor (vgl. Tab. 54). Die Fluoridselenide MFSe mit kleineren Selten-Erd-Kationen (M = Y; Er – Lu) kristallisieren isotyp zum hexagonalen B-YFS (vgl. Kapitel 3.1.2.1) und werden als 2H-Polytype bezeichnet. Gitterkonstanten und kristallographische Daten sind in Tabelle 55 zusammengestellt. Auch hier findet sich wie im 3R-Strukturtyp trigonal-planar koordiniertes F⁻ (vgl. Tab. 56 und 58). **Tab. 55:** Gitterkonstanten für MFSe (2H-Polytype) anhand von Pulverproben röntgenographisch [67] ermittelt (hexagonal, P6₃/mmc, Z = 4; Punktlagen: M1 in (2a): 0 0 ¹/₄; M2 in (2c): ¹/₃ ²/₃ ¹/₄; Se in (4f): ¹/₃ ²/₃ z/c (\approx 0,085); F1 in (2b): 0 0 ¹/₄; F2 in (2d): ¹/₃ ²/₃ ³/₄)

2H-MFSe	a / pm	c / pm	c / a
Er	407,2	1760	4,32
Tm	405,5	1752	4,32
Yb	404,5	1744	4,31
Lu	402,7	1736	4,31

Tab. 56:Motive der gegenseitigen Zuordnung in der 2H-MFSe-Struktur

	F1	F2	Se	CN
M1	0 / 0	0 / 0	6 / 3	6
M2	3 / 3	3 / 3	2 / 1	8
CN	3	3	4	

Mit annähernd den gleichen Elementen (M =Y; Ho – Lu) sind jedoch auch 3R-Polytype bekannt, die isotyp zu C-LuFS (vgl. Kapitel 3.1.2.2) kristallisieren. Neben den bisher beschriebenen Selten-Erd-Fluoridseleniden, die Isotypie zu den in Kapitel 3.1 vorgestellten Selten-Erd-Fluoridsulfiden aufweisen, werden in der Literatur für einige MFSe-Phasen weitere Polytype diskutiert, die mit 2O, 4M, 6O, 6M, 10M, 12M, 14O, 14M und 16O (O: orthorhombisch; M: monoklin) bezeichnet sind. Tabelle 59 gibt einen Überblick anhand der betreffenden YFSe-Beispiele, die sich jedoch durch Röntgenstrukturanalysen fast ausschließlich als O^{2-} -kontaminierte Verbindungen der ungefähren Zusammensetzung $YF_{(1-2x)}O_x$ Se herausgestellt haben.

Tab. 57: Gitterkonstanten für MFSe (3R-Polytype) anhand von Pulverproben röntgenographisch [67] ermittelt (trigonal, R $\overline{3}$ m, Z = 6; Punktlagen: M1 in (*3a*): 0 0 0; M2 in (*3b*): 0 0 $^{1}/_{2}$; Se und F in (*6c*): 0 0 z/c)

3R-MFSe	a / pm	c / pm	c / a
Y	409,7	2656	6,48
Но	408,9	2650	6,48
Er	407,3	2639	6,48
Tm	405,5	2628	6,48
Yb	404,5	2616	6,47
Lu	402,7	2605	6,47

 Tab. 58:
 Motive der gegenseitigen Zuordnung in 3R-MFSe-Struktur

	F	Se	CN
M1	0 / 0	6 / 3	6
M2	6 / 3	2 / 1	8
CN	3	4	

Versuche, das zuerst anhand der Selten-Erd-Fluoridsulfide MFS mit PbFCl-Struktur entwickelte Syntheseverfahren auf die analogen selenhaltigen Verbindungen zu übertragen, lieferten die im folgenden Kapitel beschriebenen isotypen Verbindungen MFSe (M = La, Pr). Daneben konnten durch Veränderung der Stöchiometrie die trigonalen Verbindungen der Zusammensetzung M₂F₄Se (M = La, Pr, Nd) in einkristalliner Form gewonnen und über Einkristallröntgenstrukturuntersuchungen charakterisiert werden. Die gesammelten Daten sind in Kapitel 3.4.2 angegeben.

Polytyp	a / pm	b / pm	c / pm	γ / grd	Raumgruppe
2O-YFSe	991,2(4)	631,4(2)	408,0(1)	90	Pnam
4M-YFSe	996,2(4)	1300,1(5)	410,6(1)	104,92(3)	P112 ₁ /m
6O-YFSe	997,4(3)	1880,5(5)	411,9(1)	90	Pnam
6M-YFSe	993,4(4)	1919,4(8)	409,9(1)	99,98(3)	P112 ₁ /m
8M-YFSe	993,5(3)	2542,0(1)	409,4(2)	97,50(2)	P112 ₁ /m
10M-YFSe	992,6(2)	3172,8(9)	409,5(2)	96,00(2)	P112 ₁ /m
12M-YFSe	991,8(5)	3784(2)	408,8(1)	92,42(3)	P112 ₁ /m
14O-YFSe	993,9(7)	4414(5)	409,7(2)	90	Pnam
14M-YFSe	_	_	-	_	_
16O-YFSe	_	_	_	_	_

Tab. 59:Kristallographische Daten zu den "MFSe"-Polytypen MF_(1-2x)O_xSe-Phasen[68]

3.5.1 Tetragonale Selten-Erd(III)-Fluoridselenide MFSe

3.5.1.1 Vorbemerkungen

Selten-Erd(III)-Fluoridselenide der Zusammensetzung MFSe mit tetragonaler Kristallstruktur, welche isotyp zu den Selten-Erd(III)-Fluoridsulfiden mit PbFCl-Struktur kristallisieren, sind bisher nur von den leichteren Lanthaniden (M = La - Nd, Gd) bekannt und anhand von Röntgenpulveruntersuchungen charakterisiert. Bei Versuchen, das bei den Selten-Erd(III)-Fluoridsulfiden MFS erfolgreich angewandte Syntheseverfahren auf die entsprechenden Selten-Erd(III)-Fluoridselenide zu übertragen, gelang nun die Präparation von zwei Verbindungen (mit M = La und Pr) im PbFCl-Typ sowie die röntgenographische Charakterisierung dieser anhand von Einkristallen. In den folgenden beiden Kapiteln werden die Synthesebedingungen und der kristallographische Strukturaufbau genauer beschrieben.

3.5.1.2 Synthese der Fluoridselenide MFSe (M = La, Pr)

In Analogie zu den Synthesebedingungen der Selten-Erd-Fluoridsulfide lassen sich die Selten-Erd-Fluoridselenide MFSe (M = La, Pr) auf die gleiche Weise erhalten. Hierzu wird bei der Präparation das entsprechende Lanthanid-Metall (M = La, Pr) mit dem entsprechenden Trifluorid (MF₃) und Selen (Se) in geeigneten stöchiometrischen Mengen (molares Verhältnis: 2:1:3) in kieselglasummantelten, gasdicht verschweißten Niob- oder Tantalkapseln bei einer Reaktionstemperatur von 850°C innerhalb weniger Tage quantitativ umgesetzt.

$$2 M + MF_3 + 3 Se \longrightarrow 3 MFSe$$
 (8)

Die Zugabe zumindest äquimolarer Mengen an Natriumchlorid (NaCl: Merck; *suprapur*) als Flussmittel fördert die Bildung von hochkristallinen Produkten und sorgt durch Mobilisierung für eine schnelle und vollständige Umsetzung der Edukte. Die lanthan- und praseodymhaltigen Verbindungen sind luft- und feuchtigkeitsunempfindlich und besitzen eine grüne Farbe.

3.5.1.3 Strukturbeschreibung von MFSe (M = La, Pr)

Die Fluoridselenide MFSe (M = La, Pr) der Lanthanide kristallisieren tetragonal in der Raumgruppe P4/nmm (Nr. 129) mit einer PbFCl-analogen Struktur (A-MFS, vgl. Kapitel 3.1.1). M³⁺ und Se²⁻ besetzen die Punktlage 2c (¼, ¼, z/c) mit der Lagesymmetrie 4mm (vgl. Abb. 13 und Tab. 6 bezüglich der freien Parameter z/c(M) und z/c(S)), F⁻ die spezielle Lage 2a (¾, ¼, 0) mit der Punktsymmetrie $\overline{4}$ m2. Das M³⁺-Kation ist als überkapptes quadratisches Antiprisma von insgesamt neun Anionen (4 F⁻ und 5 Se²⁻) koordiniert. Dabei bilden vier Se²⁻ eine quadratische Basisfläche (d(M–Se): 308 pm (La), 302 pm (Pr)), die in größerem Abstand (d(M–Se'): 310 pm (La), 306 pm (Pr)) von einem weiteren Se²⁻-Anion (Se') überkappt wird, während vier F⁻ die ebenfalls quadratische, aber um 45° dagegen verdrehte Gegenfläche aufbauen (d(M–F): 258 pm (La), 256 pm (Pr)). Die Fluoridionen selbst sind von vier M³⁺ tetraedrisch koordiniert (Abb. 13, *links*), wobei jeweils vier Kanten der einzelnen Tetraeder zu zweidimensional unendlichen Doppelschichten der Zusammensetzung $\frac{2}{m}$ [FM_{4/4}]²⁻ verknüpft sind. Entsprechend der tetragonalen Symmetrie der PbFCl-Struktur bleiben lediglich zwei (*trans*-ständige) Kanten eines $[FM_4]$ -Tetraeders, die durch $\overline{4}$ -Symmetrie ineinander zu überführen sind, von der Verknüpfung ausgeschlossen. Die für die Selten-Erd(III)-Fluoridsulfide vom A-Typ erarbeiteten Strukturbeschreibungen lassen sich auf die hier vorgestellten Fluoridselenide mit PbFCl-Struktur übertragen. Ein Vergleich der Teilchenabstände zeigt deutlich den Einfluss der unterschiedlichen Chalkogenidionen $(S^{2-}$ bzw. Se²⁻) auf die Gitterkonstanten (LaFSe: a = 413,8 pm, c = 715,2 pm; LaFS: a = 404,4 pm, c = 700,4 / PrFSe: a = 405,3 pm, c = 713,0 pm; PrFS: a = 396,3 pm, c = 692,7). Dabei sind die F⁻-M³⁺-Abstände ($d_{LaFS}(F-La) = 258,5 \text{ pm}, d_{LaFSe}(F-La) = 258,4$ pm und $d_{PrFS}(F-Pr) = 254,4$ pm, $d_{PrFSe}(F-Pr) = 255,5$ pm) recht ähnlich, so dass allein die $Ch^{2-}-M^{3+}-Abstände$ (d_{LaFS}(S-La) = 297,9 pm (4×) bzw. 294,4 pm (1×), $d_{LaFSe}(Se-La) = 307.8 \text{ pm } (4\times) \text{ bzw. } 309.9 \text{ pm } (1\times) \text{ und } d_{PrFS}(S-Pr) = 292.3 \text{ pm } (4\times)$ bzw. 290,5 pm (1×), $d_{PrFSe}(Se-Pr) = 302,2 \text{ pm} (4\times) \text{ bzw}$. 305,9 pm (1×)) den Übergang vom leichteren (S) zum schwereren Chalkogen-Homologen (Se) adäquat reflektieren. Neben der Aufweitung der Selten-Erd-Chalkogenid-Abstände ist erwartungsgemäß auch eine erhöhte berechnete Dichte der Selen- im Vergleich zu den Schwefelverbindungen festzustellen ($D_x(LaFSe) = 6.424 \text{ g/cm}^3$, $D_x(LaFS) =$ $5,508 \text{ g/cm}^3$; $D_x(PrFSe) = 6,773 \text{ g/cm}^3$, $(D_x(PrFS) = 5,696 \text{ g/cm}^3)$.

Abb. 70: A-MFSe (PbFCl-Strukturtyp): Perspektivische Ansicht der Kristallstruktur

Abb. 71: A-MFSe (PbFCl-Strukturtyp): Zweidimensionalunendliche Schichten der Zusammensetzung ${}_{\omega}^{2} \{ [FM_{4/4}]_{2}^{4+} \}$, aufgebaut aus über je vier Kanten miteinander verknüpften, F⁻-zentrierten [(M³⁺)₄]-Tetraedern (*oben*); Zweidimensionalunendliche Schichten der Zusammensetzung ${}_{\omega}^{2} \{ [Se(M_{5/5})]_{2}^{2+} \}$, aufgebaut aus über je vier Kanten miteinander verknüpften, Se^{2–}-zentrierten, quadratischen [(M³⁺)₅]-Pyramiden (*unten*)

Abb. 72: A-MFSe (PbFCl-Strukturtyp): Koordinationspolyeder [MF₄Se₅] um M³⁺

Abb. 73: A-MFSe (PbFCl-Strukturtyp): Koordinationspolyeder $[FM_4]$ um F⁻ (*links*) und $[SeM_5]$ um Se²⁻ (*rechts*)

3.5.1.4 Strukturdaten für die Fluoridselenide MFSe (M = La, Pr)

Tab. 60:Kristallographische Daten f
ür die Fluoridselenide MFSe (M = La, Pr) und
deren Bestimmung

Kristallographische Daten	LaFSe	PrFSe
Kristallsystem:	tetragonal	
Raumgruppe:	P4/nmm (1	Nr. 129)
Gitterkonstanten (a / pm):	413,79(3)	405,31(3)
(c / pm):	715,24(5)	712,98(5)
Zahl der Formeleinheiten (Z):	2	
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	6,424	6,773
molares Volumen ($V_m / cm^3 mol^{-1}$):	36,875	35,267
Messparameter		
Messgerät:	Einkristall	diffraktometer IPDS
verwendete Strahlung:	Mo-Kα (Graphitmo	onochromator; $\lambda = 71,07 \text{ pm}$)
F(000):	200	204
Messbereich:	$-6 \le h \le 6$	$-6 \le h \le 6$
	$-6 \le k \le 6$	$-6 \le k \le 6$
	$-10 \le 1 \le 10$	$-10 \le 1 \le 10$
Messgrenze ($2\Theta_{max}$ / grd):	65,79	65,71
Absorptionskoeffizient (μ / mm^{-1}):	31,95	35,96
Datenreduktion		
gemessene Reflexe:	1738	2078
davon symmetrieunabhängig:	163	159
Absorptionskorrektur:	Program	m X-SHAPE [11]
R_{int} ; R_{σ} :	0,048; 0,019	0,049; 0,012
Zahl der Reflexe mit $ F_0 \ge 4\sigma(F_0)$:	136	157
Strukturverfeinerung		
Strukturlösung und -verfeinerung:	Programmpake	t SHELX-97 [13]
R_1 (mit 4 σ -Schranke):	0,016 (0,011)	0,012 (0,012)
wR ₂	0,017	0,018
GooF:	1,082	1,190
Extinktion $(g / 10^{-3})$:	303(6)	309(8)
Elektronendichten: max.:	0,76	1,25
$(\rho(e^{-}) \text{ in } 10^{-6} \text{ pm}^{-3}) \text{ min.:}$	-0,89	-1,36

Atom	Lage	x / a	y / b	z / c
LaFSe				
La	(2 <i>c</i>)	$^{1}/_{4}$	$^{1}/_{4}$	0,21648(6)
F	(2 <i>a</i>)	³ / ₄	$^{1}/_{4}$	0
Se	(2 <i>c</i>)	¹ / ₄	$^{1}/_{4}$	0,64979(8)
PrFSe				
Pr	(2 <i>c</i>)	$^{1}/_{4}$	$^{1}/_{4}$	0,21827(5)
F	(2 <i>a</i>)	³ / ₄	$^{1}/_{4}$	0
Se	(2 <i>c</i>)	¹ / ₄	$^{1}/_{4}$	0,64736(8)

Tab. 61: Lageparameter für die Fluoridselenide MFSe (M = La, Pr)

Tab. 62:Koeffizienten der anisotropen thermischen Auslenkungsparameter (U_{ij}/pm^2) für die Fluoridselenide MFSe (M = La, Pr)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
LaFSe						
La	89(1)	U ₁₁	128(2)	0	0	0
F	173(11)	U_{11}	82(15)	0	0	0
Se	93(2)	U_{11}	118(3)	0	0	0
PrFSe						
Pr	92(1)	U_{11}	192(2)	0	0	0
F	151(9)	U_{11}	193(14)	0	0	0
Se	94(2)	U_{11}	188(3)	0	0	0

Abstände		M = La	M = Pr
Austaliue		d / pm	d / pm
M - F	(4×)	258,4	255,5
M – Se	(4×)	307,8	302,2
M – Se'	(1×)	309,9	305,9
M - M	(4×)	413,8	405,3
M – M'	(4×)	426,0	423,1
Winkel		∢/ grd	∢/ grd
M - F - M	(2×)	106,4	105,0
$M-F-M^{\prime }$	(4×)	111,0	111,8
M - Se - M	(4×)	84,5	84,2
M - Se - M'	(4×)	108,1	108,5
M - Se - M''	(2×)	143,8	143,0

Ausgewählte interatomare Abstände (d/pm) und Winkel (*/grd) für die

		d / pm	d / pm
M - F	(4×)	258,4	255,5
M – Se	(4×)	307,8	302,2
M – Se'	(1×)	309,9	305,9
M - M	(4×)	413,8	405,3
M - M'	(4×)	426,0	423,1
Winkel		∢/ grd	∢/ grd
M - F - M	(2×)	106,4	105,0
$M-F-M^{\prime }$	(4×)	111,0	111,8
M - Se - M	(4×)	84,5	84,2
M - Se - M'	(4×)	108,1	108,5
M - Se - M''	(2×)	143,8	143,0

Tab. 63:	Fluoridselenide MFSe (M = La, Pr)
----------	-----------------------------------

Motive der gegenseitigen Zuordnung in den Fluoridseleniden MFSe Tab. 64: vom A-Typ

	F	Se	CN
М	4 / 4	5 / 5	9
CN	4	5	

3.5.2 Trigonale Selten-Erd(III)-Fluoridselenide M₂F₄Se

3.5.2.1 Vorbemerkungen

Die Verbindungen mit der Zusammensetzung M_2F_4Se (M = La – Nd) [64] wurden bisher ebenfalls stets durch Zusammenschmelzen von Selten-Erd-Sesquiseleniden M_2Se_3 und Trifluoriden MF₃ bei Temperaturen oberhalb 1000°C in mit Kieselglas ummantelten Graphittiegeln erhalten. Bei Versuchen, die Selten-Erd-Fluoridselenide aus kieselglasummantelten Tantalampullen unter zu Hilfenahme von Natriumchlorid als Flussmittel zu erhalten, gelang es tatsächlich, auch die Verbindungen M_2F_4Se (M = Ce, Pr, Nd) in einkristalliner Form zu erhalten. Die Synthesebedingungen, die Kristallstrukturbeschreibung und die gesammelten röntgenographischen Daten werden im Folgenden angegeben.

3.5.2.2 Synthese der Fluoridselenide M_2F_4Se (M = La – Nd)

Anders als bei den Selten-Erd-Metall-Fluoridsulfiden lassen sich bei den -seleniden auch fluoridreichere Verbindungen mit der Summenformel M_2F_4Se (MFSe · MF₃; M = La – Nd) durch Umsetzung des entsprechenden Selten-Erd-Metalls (M) mit Metalltrifluorid (MF₃) und Selen (Se) innerhalb 7 d bei 850°C bevorzugt aus einer Natriumchloridschmelze erhalten:

$$2 M + 4 MF_3 + 3 Se \longrightarrow 3 M_2F_4Se$$
 (9)

Als Reaktionsbehälter werden evakuierte, gasdicht verschweißte und mit Kieselglas ummantelte Tantal- bzw. Niobampullen verwendet. Nach dem Abkühlen der Ampullen lassen sich die luft- und wasserbeständigen Verbindungen durch Waschen mit Wasser vom anhaftenden Natriumchlorid befreien. Die erhaltenen, nahezu farblosen (La₂F₄Se), gelben (Ce₂F₄Se) bis schwach grünlich (Pr₂F₄Se) bzw. bläulich (Nd₂F₄Se) erscheinenden Produkte zeigen einen plättchenförmigen Habitus mit drei- oder sechseckiger Grundfläche. Je ein Kristall guter Qualität wurde pro Verbindung (Pr₂F₄Se und Nd₂F₄Se) ausgewählt und auf dem IPDS vermessen. Die gesammelten Daten und die Ergebnisse der Strukturbestimmungen sind in den Tabellen 65 bis 69 für beide Verbindungen zusammengefasst.

3.5.2.3 Strukturbeschreibung der trigonalen Fluoridselenide M₂F₄Se

In diesen bislang fluoridreichsten Fluoridseleniden der Selten-Erd-Metalle vom Ce₂F₄Se-Typ [69] liegen [(F2)M₄]-Tetraeder vor, die über drei *cis*-ständige, *nicht*coplanare M-M-Kanten zu zweidimensionalunendlichen Doppelschichten der Zusammensetzung $\sum_{m=1}^{2} \{ [(F1)M_{4/4}]_2^{4+} \}$ verknüpft sind. Dieses Strukturelement findet sich auch in den Oxidseleniden der Zusammensetzung M_2O_2Se (trigonal, $P\overline{3}m1$) [70] gemäß $_{m}^{2} \{ [OM_{4/4}]_{2}^{2^{+}} \}$ wieder. Es erfolgt also formale Substitution von O²⁻ gegen F⁻. Um jedoch zwei zusätzliche Leichtanionen (F⁻) für den geforderten Ladungsausgleich in der Kristallstruktur unterzubringen, werden auch noch die trigonalen Lücken zwischen den nur über Ecken verknüpften [(F1)M4]-Tetraedern innerhalb von M3+-Monoschichten mit $(F1)^-$ (CN = 3) aufgefüllt. Abbildung 74 zeigt die alternierende Stapelung dieser aufgefüllten Doppelschichten mit dichtest gepackten Monoschichten aus Se²⁻, die für den Ladungsausgleich und die dreidimensionale Vernetzung sorgen. Se²⁻ selbst liegt hier, wie auch in den Oxidseleniden M2O2Se, in einer trigonal, antiprismatischen (oktaedrischen) M³⁺-Koordination vor. Der direkte Vergleich der Bindungs- und Koordinationsverhältnisse in PrFSe und Pr₂F₄Se lässt eine deutliche Verkürzung der durchschnittlichen Pr-Se-Bindungslängen in PrFSe (Pr-Se: 303 pm) gegenüber 316 pm in Pr₂F₄Se erkennen, wohingegen die durchschnittlichen Pr-F-Bindungslängen (Pr–F: 256 pm in PrFSe) gegenüber 249 pm in Pr₂F₄Se im Vergleich verlängert erscheinen. Dabei ist natürlich bei Pr₂F₄Se zwischen trigonalplanar (F1: d(F1-Pr) = 229 pm, CN = 3) und tetraedrisch koordinierten (F2: $\overline{d}(F2-Pr) = 257 \text{ pm},$ CN = 4) Fluorid-Anionen zu unterscheiden. Verallgemeinernd lässt sich für die hier beschriebenen Verbindungen sagen, dass die Kationen-Anionen-Abstände in umso verkürzterer Form vorliegen, je mehr Anionen der jeweiligen Sorte am Strukturaufbau beteiligt sind.

Abb. 74: M₂F₄Se (M = La – Nd): Blick auf die Elementarzelle in [110]-Richtung. Die M³⁺-Kationen bilden eine kubischdichteste Packung aus, in der schichtweise alternierend einmal die Oktaederlücken (A, B, C) mit Se²⁻ und einmal die Tetraederlücken (α , β , γ) mit (F2)⁻ gefüllt sind. (F1)⁻ besetzt die trigonalplanaren Lücken innerhalb der M³⁺- Monoschichten

Abb. 75: M_2F_4Se (M = La – Nd): Blick auf die Elementarzelle in [110]-Richtung unter Hervorhebung von [SeM₆]-Oktaedern und [(F2)M₄]-Tetraedern

Abb. 76: M₂F₄Se: Kationenkoordinationspolyeder $[M(F1)_3(F2)_4Se_3]$ um M³⁺ in Form eines vierfach überkappten trigonalen Prismas

Abb. 77: M_2F_4Se : Anionenkoordinationspolyeder [SeM₆] (Oktaeder) um Se^{2–}, [(F1)M₃] (Dreieck) um (F1)[–] und [(F2)M₄] (Tetraeder) um (F2)[–]

3.5.2.4 Strukturdaten für die Fluoridselenide M₂F₄Se (M = Ce, Pr, Nd)

Tab. 65:Kristallographische Daten f
ür die Fluoridselenide M2F4Se

 $(M = Ce^{a})$, Pr, Nd) und deren Bestimmung

Kristallographische Daten	$Ce_2F_4Se^{a)}$	Pr ₂ F ₄ Se	Nd ₂ F ₄ Se
Kristallsystem:		trigonal	
Raumgruppe:		R 3 m (Nr. 166)	
Gitterkonstanten (a / pm): (c / pm):	414,4(2) 2309(3)	411,96(3) 2302,8(2)	409,42(3) 2287,7(2)
Zahl der Formeleinheiten (Z):		3	
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	6,31	6,429	6,652
molares Volumen ($V_m / cm^3 mol^{-1}$):	68,931	67,939	66,664
$\label{eq:messparameter} \textbf{Messparameter} ~(f \ddot{u} r ~ Pr_2 F_4 Se ~ und ~ Nd_2 F_4 Se ~ und ~$	F ₄ Se)		
Messgerät:		Einkristalldiffra	ktometer IPDS
verwendete Strahlung:		Mo-K α (Graphi chromator; $\lambda = 1$	tmono- 71,07 pm)
F(000):		564	570
Messbereich:		$-6 \le h \le 6$ $-6 \le k \le 6$	$-6 \le h \le 6$ $-6 \le k \le 6$
		$-34 \le 1 \le 34$	$-34 \le 1 \le 34$
Messgrenze ($2\Theta_{max}$ / grd):		65,54	65,63
Absorptionskoeffizient (μ / mm^{-1}):		29,35	31,36
Datenreduktion			
gemessene Reflexe:		1639	1623
davon symmetrieunabhängig:		191	194
Absorptionskorrektur:		Programm X-SHAPE [11]	
R_{int} ; R_{σ} :		0,063; 0,022	0,038; 0,013
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:		184	190
Strukturverfeinerung			
Strukturlösung und -verfeinerung:		Programmpaket SHELX-97 [13]	
R_1 (mit 4 σ -Schranke):		0,022 (0,021)	0,018 (0,018)
wR ₂ :		0,046	0,048
GooF:		1,217	1,109
Extinktion (g / 10^{-4}):		133(8)	91(7)
Elektronendichten: max.:		1,58	0,94
$(\rho(e^{-}) \ 10^{-6} \ pm^{-3})$ min.:		-2,71	-1,43

^{a)} Literaturdaten aus [69].

Atom	Lage	x / a	y / b	z / c
$Ce_2F_4Se^{a)}$				
Ce	(<i>6c</i>)	0	0	0,2436(8)
F1	(<i>6c</i>)	0	0	0,4305(9)
F2	(<i>6c</i>)	0	0	0,1384(8)
Se	<i>(3a)</i>	0	0	0
Pr ₂ F ₄ Se				
Pr	(<i>6c</i>)	0	0	0,24307(2)
F1	(<i>6c</i>)	0	0	0,4316(3)
F2	(<i>6c</i>)	0	0	0,1386(3)
Se	<i>(3a)</i>	0	0	0
Nd ₂ F ₄ Se				
Nd	(<i>6c</i>)	0	0	0,24301(2)
F1	(<i>6c</i>)	0	0	0,4314(3)
F2	(<i>6c</i>)	0	0	0,1388(3)
Se	<i>(3a)</i>	0	0	0

Tab. 66: Lageparameter für die Fluoridselenide M_2F_4Se (M = Ce^{a)}, Pr, Nd)

^{a)} Literaturdaten aus [69].

Tab. 67: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij} / pm^2) für dieFluoridselenide M2F4Se (M = Pr, Nd)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pr ₂ F ₄ Se						
Pr	61(2)	U11	124(3)	0	0	$\frac{1}{2} U_{11}$
F1	80(13)	U ₁₁	210(24)	0	0	$\frac{1}{2} U_{11}$
F2	144(16)	U ₁₁	140(21)	0	0	$\frac{1}{2} U_{11}$
Se	100(4)	U_{11}	108(5)	0	0	$\frac{1}{2} U_{11}$
Nd ₂ F ₄ Se						
Nd	95(2)	U11	111(3)	0	0	$\frac{1}{2} U_{11}$
F1	92(10)	U11	230(22)	0	0	$\frac{1}{2} U_{11}$
F2	147(12)	U ₁₁	140(18)	0	0	$\frac{1}{2} U_{11}$
Se	119(3)	U_{11}	106(4)	0	0	$\frac{1}{2} U_{11}$

Abständs		Ce ₂ F ₄ Se ^{a)}	Pr ₂ F ₄ Se	Nd ₂ F ₄ Se
Abstance		d / pm	d / pm	d / pm
M - F1	(3×)	239,9	238,6	237,0
M - F2	(1×)	242,9	240,6	238,4
M - F2'	(3×)	264,3	262,6	261,1
M – Se	(3×)	316,5	315,9	314,0
M - M	(6×)	414,4	412,0	409,4
Winkel		∢/ grd	∢/ grd	∢/ grd
M - F1 - M	(3×)	119,5	119,4	119,5
M - F2 - M	(3×)	103,2	103,3	103,3
$M-F2-M^{\prime }$	(3×)	115,2	115,1	115,1
M - Se - M	(6×)	81,8	81,4	81,4
M - Se - M'	(6×)	98,2	98,6	98,6
M - Se - M''	(3×)	180,0	180,0	180,0

Tab. 68:	Ausgewählte interatomare Abstände (d/pm) und Winkel (*/grd) in den
	Fluoridseleniden M ₂ F ₄ Se (M = Ce ^{a)} , Pr, Nd)

^{a)} Literaturdaten aus [69].

Tab. 69: Motive der gegenseitigen Zuordnung in der M_2F_4Se -Struktur

	F1	F2	Se	CN
М	3 / 3	4 / 4	3 / 6	10
CN	3	4	6	

3.6 Oxidfluoridselenide der Selten-Erd-Elemente

3.6.1 Vorbemerkungen

Im Laufe dieser Arbeit zeigte sich, dass sich die bei der Präparation von Selten-Erd-Fluoridsulfiden und den -Oxidfluoridsulfiden gesammelten Erfahrungen auch auf die Synthese von Selten-Erd-Fluoridseleniden und -Oxidfluoridseleniden übertragen lassen. Ebenso konnten aufgrund röntgenographischer Untersuchungen weitreichende strukturelle Gemeinsamkeiten zwischen den schwefelhaltigen und den selenhaltigen Verbindungen festgestellt werden, so dass nun auch Versuche der entsprechenden Synthesen von Selten-Erd-Oxidfluoridseleniden erfolgversprechend erschienen. Über die an diese Beobachtungen anschließenden Versuche, erstmals *gezielt* Selten-Erd-Oxidfluoridselenide zu synthetisieren und diese strukturell über Einkristallröntgenstrukturanalyse zu charakterisieren, wird im Folgenden berichtet.

3.6.2 Ein trigonales Oxidfluoridselenid des Lanthans: La₂OF₂Se im A-Typ

3.6.2.1 Vorbemerkungen

Bei Untersuchungen im System Lanthan, Sauerstoff, Fluor und Selen konnte neben dem in Kapitel 3.5.2.3 beschriebenen La₆O₂F₈Se₃ (hexagonal, P6₃/m; a = 1394,41(9) pm, c = 402,97(2) pm, Z = 2) im Ce₆O₂F₈S₃-Typ [29] auch ein Oxidfluoridselenid mit der Zusammensetzung La₂OF₂Se erhalten werden. Der entsprechend analoge Strukturtyp für ein Selten-Erd-Oxidfluoridsulfid M₂OF₂S war bisher noch nicht beschrieben. Dabei ist gerade bei der Lanthanverbindung La₂OF₂Se dieser Strukturtyp besonders vorteilhaft, da eine alternierende Abfolge von Schichten aus den Strukturen von La₂F₄Se (vgl. Kap. 3.5.2) und La₂O₂Se [71], also wohl bekannten Aufbaumotiven vorliegt. Die Synthesebedingungen und die Beschreibung der röntgenographisch ermittelten Kristallstruktur sollen im Anschluss geschildert werden.

3.6.2.2 Synthese von La₂OF₂Se

Gezielt lassen sich Einkristalle von La₂OF₂Se (A-Typ, über den B-Typ mit gleicher Zusammensetzung wird in Kapitel 3.6.3 berichtet) durch Umsetzung von Lanthan, Selen, LaF₃ und La₂O₃ im molaren Verhältnis von 2:3:2:1 innerhalb von sieben Tagen bei 850°C in verschweißten Tantalampullen unter Zugabe von äquimolaren Mengen an NaCl als Flussmittel erhalten:

$$2 \operatorname{La} + 2 \operatorname{LaF}_3 + \operatorname{La}_2 \operatorname{O}_3 + 3 \operatorname{Se} \longrightarrow 3 \operatorname{La}_2 \operatorname{OF}_2 \operatorname{Se}$$
(10)

Das luft- und wasserstabile Produkt lässt sich durch Waschen mit Wasser vom Flussmittel befreien, so dass weitgehend phasenreines La₂OF₂Se zurückbleibt. Die Verbindung kristallisiert in farblosen, plättchenförmigen Kristallen mit drei- oder sechseckigem Querschnitt, die sich für eine Röntgenstrukturuntersuchung eigneten.

3.6.2.3 Strukturbeschreibung von La₂OF₂Se im A-Typ

Die Kristallstruktur von La₂OF₂Se im A-Typ (trigonal, $R\overline{3}m$; a = 418,13(2) pm, c = 4478,3(4) pm, Z = 6) zeigt sowohl eine enge Verwandtschaft zum sauerstofffreien Fluoridselenid La₂F₄Se (trigonal, $R\overline{3}m$; a = 418,0(2) pm, c = 2327(1) pm, Z = 3; $d(La-F1) = 242 \text{ pm } (3\times), d(La-F2) = 242 \text{ pm } (3\times), d(La-F2') = 267 \text{ pm } (3\times),$ $d(La-Se) = 319 \text{ pm} (3\times)$ [64] als auch zum fluoridfreien Oxidselenid La₂O₂Se (trigonal, $P\overline{3}m1$; a = 408,28(4) pm, c = 717,19(7) pm, Z = 1; d(La-O) = 242 pm $(1\times)$, $d(\text{La-O'}) = 244 \text{ pm } (3\times), d(\text{La-Se}) = 313 \text{ pm } (3\times))$ [70]. Dies führt soweit, dass sich die La₂OF₂Se-Struktur vom A-Typ als geordnetes Intergrowth-Arrangement aus parallel (001) gestapelten, alternierenden La₂O₂Se- und La₂F₄Se-Schichten beschreiben lässt, was sich auch in der Quasi-Additivität der betreffenden molaren Volumina $(V_m(La_2O_2Se) = 62,3; V_m(La_2OF_2Se) = 68,1; V_m(La_2F_4Se) = 70,7 \text{ cm}^3/\text{mol})$ und in $(MAPLE(La_2O_2Se))$ Madelung-Anteilen der Gitterenergie [6] = 3220. MAPLE(La₂OF₂Se) = 2900, MAPLE(La₂F₄Se) = 2637 kcal/mol) äußert. (La1)³⁺ ist dabei in Abständen von 247 (3×) und 249 pm (1×) von vier O^{2-} sowie von drei Se²⁻ in je 317 pm Distanz als überkapptes trigonales Antiprisma (CN = 7) umgeben. Die zehn Liganden um (La2)³⁺ bilden ein vierfach überkapptes trigonales Prisma mit Abständen

von 242 (F1, 3×), 245 (F2, 1×), 267 (F2', 3×) und 321 pm (Se, 3×) zum Zentralteilchen. Selen (Se²⁻) ist oktaedrisch von Lanthan umgeben, wobei die Oktaeder über Kanten zu Schichten verknüpft vorliegen. Durch diese Schichten werden die von Leichtanionen zentrierten Tetraederschichten voneinander getrennt, in denen alternierend Fluoridbzw. Oxid-Anionen die Zentralteilchen bilden. Aus Gründen der Ladungsneutralität müssen jedoch in den fluoridhaltigen Schichten doppelt so viele Fluoridionen untergebracht werden wie in oxidhaltigen, so dass hier eine zusätzliche Besetzung von quasi-planaren trigonalen Lücken durch Fluorid erfolgt, wobei die Auslenkung von F1 aus der (La2)3-Ebene nur 18,2 pm beträgt. Die hier geführte Diskussion über die Positionierung der Leichtanionen (F⁻ bzw. O²⁻) auf die entsprechenden Punktlagen richtet sich zum Einen darauf, dass Fluorid durchaus bevorzugt trigonal koordiniert vorkommt und zum Anderen, dass Oxid in der Regel eine tetraedrische Koordination einnimmt. Dabei ist hier natürlich auch nicht völlig auszuschließen, dass Fluoridteilchen auch tetraedrisch koordinierte Positionen in den durch Sauerstoff zentrierten Lanthan-Schichten besetzen und umgekehrt Oxidionen in den durch Fluorid zentrierten Schichten vorliegen.

Abb. 78 La₂OF₂Se: Mit F^- (CN(F1) = 3; CN(F2) = 4) aufgefüllte Lanthan-Tetraederschicht (*oben*), sauerstoffzentrierte (CN(O) = 4) Lanthan-Tetraederschicht (*unten*)

Abb. 79 Blick auf die Elementarzellen von La₂O₂Se (*links*), La₂OF₂Se (*Mitte*) und La₂F₄Se (*rechts*) in [110]-Richtung

Abb. 80 Kationenkoordinationspolyeder in A-La₂OF₂Se: $[(La1)O_4Se_3]$ (*links*) und $[(La2)(F1)_3(F2)_4Se_3]$ (*rechts*)

Abb. 81 Anionenkoordinationspolyeder [SeLa₆], [OLa₄], [(F1)La₃] und [(F2)La₄] in A-La₂OF₂Se

3.6.2.4 Strukturdaten für La₂OF₂Se im A-Typ

Tab. 70:Kristallographische Daten für A-La2OF2Se und ihre Bestimmung

Kristallographische Daten	
Kristallsystem:	trigonal
Raumgruppe:	R 3 m (Nr. 166)
Gitterkonstanten: a / pm: c / pm:	418,13(3) pm 4478,2(4) pm
Zahl der Formeleinheiten (Z):	6
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	6,036
molares Volumen ($V_m / cm^3 mol^{-1}$):	68,053
Messparameter	
Messgerät:	Einkristalldiffraktometer IPDS
verwendete Strahlung:	Mo-K α (Graphitmonochromator; $\lambda = 71,07 \text{ pm}$)
F(000):	1044
Messbereich:	$-6 \le h \le 6$ $-6 \le k \le 6$ $-67 \le 1 \le 67$
Messgrenze ($2\Theta_{max} / \text{grd}$):	65,46
Absorptionskoeffizient (μ / mm^{-1}):	26,59
Datenreduktion	
gemessene Reflexe:	3248
davon symmetrieunabhängig:	383
Absorptionskorrektur:	Programm X-SHAPE [11]
R_{int} ; R_{σ} :	0,070; 0,027
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:	369
Strukturverfeinerung	
Strukturlösung und -verfeinerung:	Programmpaket SHELX-97 [13]
R ₁ (mit 4σ-Schranke); wR ₂ :	0,036 (0,034); 0,089
GooF:	1,076
Extinktion (g / 10^{-4}):	16(3)
Restelektronendichten $(\rho(e^{-}) \ 10^{-6} \ pm^{-3})$:	max.: 3,61 min.: -2,67

Atom	Lage	x / a	y / b	z /c
La1	(<i>6c</i>)	0	0	0,13311(1)
La2	(<i>6c</i>)	0	0	0,29336(1)
Ο	(<i>6c</i>)	0	0	0,1887(2)
F1	(<i>6c</i>)	0	0	0,0359(2)
F2	(<i>6c</i>)	0	0	0,3481(2)
Se	(6c)	0	0	0,42052(2)

Tab. 71:Lageparameter für A-La2OF2Se

Tab. 72: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für A-La2OF2Se

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Lal	232(3)	U ₁₁	155(4)	0	0	$^{1}/_{2}$ U ₁₁
La2	88(3)	U ₁₁	159(3)	0	0	$\frac{1}{2} U_{11}$
0	240(29)	U ₁₁	267(41)	0	0	$\frac{1}{2} U_{11}$
F1	127(18)	U ₁₁	279(34)	0	0	$\frac{1}{2} U_{11}$
F2	166(20)	U ₁₁	184(28)	0	0	$\frac{1}{2} U_{11}$
Se	126(4)	U ₁₁	162(5)	0	0	$\frac{1}{2} U_{11}$

Abstände		d / pm	Winkel		∢/ grd
La1 – O	(3×)	246,9	Lal – O – Lal	(3×)	102,1
Lal – O	(1×)	248,9	La1 – O – La1'	(3×)	115,8
La2 – F1	(3×)	242,1	La2 – F1 – La2	(3×)	119,4
La2 – F2	(1×)	245,1	La2 – F2 – La2	(3×)	103,4
La2 – F2'	(3×)	266,5	La2 – F2 – La2'	(3×)	115,1
La1 – Se	(3×)	317,1	La1–Se–La1	(3×)	82,5
La2 – Se	(3×)	320,9	La1–Se–La2	(6×)	98,1
La1 – La1	(3×)	385,5	La1–Se–La2'	(3×)	179,2
La1 – La1'	(6×)	418,1	La2 – Se – La2	(3×)	81,3
La1 – La2	(3×)	481,9			
La2 – La1	(3×)	481,9			
La2 – La2	(6×)	418,1			
La2 – La2	(3×)	431,8			

 Tab. 73:
 Ausgewählte interatomare Abstände (d/pm) und Winkel (∢/grd)

 in A-La2OF2Se

Tab. 74:Motive der gegenseitigen Zuordnung in A-La2OF2Se

	0	F1	F2	Se	CN
La1	4 / 4	0 / 0	0 / 0	3 / 3	7
La2	0 / 0	3 / 3	4 / 4	3 / 3	10
CN	4	3	4	6	

3.6.3 Hexagonale Selten-Erd(III)-Oxidfluoridselenide M₆O₂F₈Se₃ und B-M₂OF₂Se

3.6.3.1 Vorbemerkungen

Von den bei den Selten-Erd-Oxidfluoridsulfiden erhaltenen beiden hexagonalen Phasen der Zusammensetzungen $M_6O_2F_8S_3$ (M = La – Sm) und M_3OF_5S (M = Nd, Sm, Gd – Ho) konnten nur die isostrukturellen Selenverbindungen vom Formeltyp $M_6O_2F_8Se_3$ mit M = La und Nd erhalten werden. Versuche, für die Selten-Erd-Elemente mit kleineren Kationenradien ebenfalls Verbindungen mit der Zusammensetzung $M_6O_2F_8Se_3$ oder M_3OF_5Se zu erhalten, misslangen zwar, jedoch bildeten sich hierbei hexagonale Selten-Erd(III)-Oxidfluoridselenide mit der Zusammensetzung M_2OF_2Se (M = Gd und Ho), welche zwar eine sehr enge strukturelle Verwandtschaft zu den Oxidfluoridseleniden der Zusammensetzung $M_6O_2F_8Se_3$ aufweisen, sich strukturell jedoch stark von dem zuvor vorgestellten Lanthan-Oxidfluoridselenid der formelgleichen Zusammensetzung La_2OF_2Se (M = Gd, Ho) vom B-Typ bezeichnet werden.

3.6.3.2 Synthese der Oxidfluoridselenide M₆O₂F₈Se₃ (M = La, Nd) und B-M₂OF₂Se (M = Gd, Ho)

Wie die mit hexagonaler Struktur kristallisierenden Selten-Erd(III)-Oxidfluoridsulfide lassen sich auch die Selten-Erd(III)-Oxidfluoridselenide mit den Zusammensetzungen $M_6O_2F_8Se_3$ (M = La, Nd) und M_2OF_2Se (B-Typ; M = Gd, Ho) unter ganz ähnlichen Synthesebedingungen erhalten. Durch Umsetzung des entsprechenden Selten-Erd-Metalls (M) mit Metalltrifluorid (MF₃), Metallsesquioxid (M₂O₃) und Selen (Se) innerhalb von 7 d bei 850°C aus einer Natriumchloridschmelze sind die betreffenden Verbindungen leicht zu synthetisieren:

 $6 M + 8 MF_3 + 2 M_2O_3 + 9 Se \longrightarrow 3 M_6O_2F_8Se_3$ (11)

 $2 M + 2 MF_3 + M_2O_3 + 3 Se \longrightarrow 3 M_2OF_2Se$ (12)

Als Reaktionsbehälter eignen sich erneut evakuierte, gasdicht verschweißte und mit Kieselglas ummantelte Tantal- bzw. Niobampullen am besten. Nach dem Abkühlen der Ampullen lassen sich die luft- und wasserstabilen Verbindungen durch Waschen mit Wasser vom anhaftenden Flussmittel Natriumchlorid befreien. Die erhaltenen, fast farblosen Produkte zeigen einen stäbchenförmigen bis nadeligen Habitus. Je ein Kristall guter Qualität wurde pro Verbindung ausgewählt und auf dem IPDS vermessen. Die gesammelten Daten und die Ergebnisse der Strukturbestimmungen sind in den Tabellen unter 3.6.3.4 für die Verbindungen der Summenformel M₆O₂F₈Se₃ (M = La, Nd) und in den Tabellen unter 3.6.3.5 für die Verbindungen mit der Zusammensetzung M₂OF₂Se (M = Gd, Ho) im B-Typ zusammengefasst.

3.6.3.3 Strukturbeschreibung der Oxidfluoridselenide $M_6O_2F_8Se_3$ (M = La, Nd) und B-M₂OF₂Se (M = Gd, Ho)

Von den Selten-Erd(III)-Oxidfluoridseleniden mit der Zusammensetzung M₆O₂F₈Se₃ konnten erstmals die isotypen Verbindungen des Lanthans und des Neodyms erhalten werden, welche hexagonal in der Raumgruppe P6₃/m kristallisieren und Isotypie zu den schwefelanalogen Derivaten M₆O₂F₈S₃ (M = La – Nd, Sm) zeigen. Im Gegensatz zu den bei den Selten-Erd-Oxidfluoridsulfiden mit kleineren Kationenradien beobachteten Verbindungen mit den Zusammensetzungen M₃OF₅S (M = Nd, Sm, Gd – Ho) und M₃OF₃S₂ (M = Y, Ho – Yb) ließen sich die entsprechenden selenhaltigen isotypen Verbindungen unter den gewählten Reaktionsbedingungen *nicht* erhalten. Vielmehr bildeten sich hier bei den entsprechenden Randkonditionen zwar ebenfalls Phasen mit hexagonalen Strukturen, jedoch nunmehr mit der Zusammensetzung M₂OF₂Se (M = Gd, Ho) aus, die eine enge strukturelle Verwandtschaft zu den Selten-Erd-Oxidfluoridseleniden vom Typ M₆O₂F₈Se₃ zeigen, indem formal lediglich zwei Fluoriddurch ein Oxidteilchen ersetzt sind:

 $3 M_2 OF_2 Se + 2 F^- \equiv M_6 O_2 F_8 Se_3 + O^{2-}$

In Abbildung 83 sind die Projektionen der Elementarzellen beider Kristallstrukturtypen zum Vergleich nebeneinander gestellt. So fällt auf, dass lediglich eine in $M_6O_2F_8Se_3$ vorhandene, durch F⁻ besetzte Teilchenlage wegfällt. Ansonsten finden sich in beiden Kristallstrukturen nahezu identische Koordinationspolyeder wieder. Dabei sind die leicht verzerrt trigonal koordinierten (F2)-Anionen in $M_6O_2F_8Se_3$ um 83,4 pm (M = La) bzw. 79,2 pm (M = Nd) aus der von M³⁺ aufgespannten Ebene ausgelenkt, während in den Verbindungen vom B-M₂OF₂Se-Typ die Auslenkungen der (F1)-Anionen 74,8 pm (M = Gd) bzw. 83,0 pm (M = Ho) betragen. In Abbildung 82 sind die Gitterkonstanten der Verbindungen der beiden Strukturtypen in einem Diagramm aufgetragen. Dabei zeigt sich ein nahezu kontinuierlich abnehmender Verlauf der Gitterparameter, der sich erwartungsgemäß aus der Lanthaniden-Kontraktion ergibt.

Abb. 82: Vergleichende Auftragung der Gitterkonstanten (a/pm und c/pm) für die Oxidfluoridselenide vom Formeltyp $M_6O_2F_8Se_3$ (M = La, Nd) und B-M₂OF₂Se (M = Gd, Ho) gegen die Ionenradien (r_i/pm) [32] der M³⁺-Kationen (CN = 9)

Abb. 83: Blick auf die Projektionen der Kristallstrukturen der Oxidfluoridselenide $M_6O_2F_8Se_3$ (*oben*) und B-M₂OF₂Se (*unten*) in [001]-Richtung; die Teilchen in $^{z}/_{c} = ^{1}/_{4}$ und $^{z}/_{c} = ^{3}/_{4}$ unterscheiden sich in ihren Graustufen

Abb. 84: Projektion von jeweils vier Elementarzellen der Oxidfluoridselenide M₆O₂F₈Se₃ (*oben*) und B-M₂OF₂Se (*unten*) auf die (001)-Ebene; es sind nur die gemischten Sauerstoff-Fluor-Lagen (O/F) und die Selten-Erd-Metallkationen (M) eingezeichnet

Abb. 85: Strukturvergleich der Oxidfluoridselenide M₆O₂F₈Se₃ (*oben*) und B-M₂OF₂Se (*unten*) durch (001)-Projektion von jeweils neun Elementarzellen. Dabei fallen in der unteren Abbildung die größeren, mit Selen gefüllten "Dreiecke" auf, welche aufgrund der Absenkung der Koordinationszahl der Selten-Erd-Kationen durch Wegfall einer Leichtanionenlage entstehen

Abb. 86: $M_6O_2F_8Se_3$: (O²⁻/F⁻)-zentrierte M³⁺-Tetraeder, die über Kanten zu einem eindimensionalen Band längs [001] verknüpft sind

Abb. 87: Vergleich der Kationenkoordinationspolyeder in den Oxidfluoridseleniden M₆O₂F₈Se₃ (*links*) und B-M₂OF₂Se (*rechts*)

Abb. 88: Vergleich der Anionenkoordinationspolyeder in den Oxidfluoridseleniden $M_6O_2F_8Se_3$ (*links*) und B-M₂OF₂Se (*rechts*)

3.6.3.4 Strukturdaten für die Oxidfluoridselenide M₆O₂F₈Se₃ (M = La, Nd)

Tab. 75:	Kristallographische Daten	n für die Oxidfluoridselenide M ₆ O ₂ F ₈ Se ₃
----------	---------------------------	--

Kristallographische Daten	La ₆ O ₂ F ₈ Se ₃	Nd ₆ O ₂ F ₈ Se ₃
Kristallsystem:	hexagonal	
Raumgruppe:	P6 ₃ /m (Nr. 1	.76)
Gitterkonstanten (a / pm): (c / pm):	1394,41(9) 402,97(2)	1372,50(9) 391,36(2)
Zahl der Formeleinheiten (Z):	2	
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	6,139	6,691
molares Volumen ($V_m / cm^3 mol^{-1}$):	204,314	192,241
Messparameter		
Messgerät:	к-CCD (Fa.	Nonius)
verwendete Strahlung:	Mo-K α (λ =	= 71,07 pm)
F(000):	1064	1100
Messbereich:	$-19 \le h \le 19$ $-19 \le k \le 19$ $-5 \le 1 \le 5$	$-20 \le h \le 20$ $-20 \le k \le 20$ $-5 \le 1 \le 5$
Messgrenze ($2\Theta_{max}$ / grd):	60,37	65,45
Absorptionskoeffizient (μ / mm^{-1}):	26,59	32,58
Datenreduktion		
gemessene Reflexe:	7609	9048
davon symmetrieunabhängig:	692	842
Absorptionskorrektur:	Programm X	K-SHAPE [11]
R_{int} ; R_{σ} :	0,091; 0,049	0,092; 0,078
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:	529	538
Strukturverfeinerung		
Strukturlösung und -verfeinerung:	Programmpake	t SHELX-97 [13]
R_1 (mit 4 σ -Schranke); w R_2 :	0,052 (0,038); 0,086	0,097 (0,050); 0,088
GooF:	0,953	1,052
Extinktion (g / 10^{-4}):	3(2)	219(10)
Elektronendichten max.: ($\rho(e^{-})$ in 10 ⁻⁶ pm ⁻³) min.:	2,84 -2,13	2,00 -2,02

(M = La, Nd) und deren Bestimmung

Atom	Lage	x / a	y / b	z / c
La ₆ O ₂ F ₈ Se ₃				
La1	(6h)	0,13173(5)	0,52040(5)	¹ / ₄
La2	(6h)	0,23145(5)	0,28131(5)	¹ / ₄
F1	(<i>6h</i>)	¹ / ₃	² / ₃	¹ / ₄
F2	(2 <i>d</i>)	0,1948(6)	0,0913(6)	¹ / ₄
F3	(<i>6h</i>)	0,0703(6)	0,3172(6)	$^{1}/_{4}$
F4/O ^{a)}	(6h)	0,4349(5)	0,4138(5)	¹ / ₄
Se	(<i>6h</i>)	0,47568(8)	0,19390(8)	¹ / ₄
Nd ₆ O ₂ F ₈ Se ₃				
Nd1	(6h)	0,12821(8)	0,51830(8)	¹ / ₄
Nd2	(6h)	0,23004(8)	0,28357(8)	¹ / ₄
F1	(6h)	¹ / ₃	² / ₃	¹ / ₄
F2	(2 <i>d</i>)	0,1975(9)	0,0985(9)	¹ / ₄
F3	(6h)	0,0689(8)	0,3201(8)	¹ / ₄
F4/O ^{a)}	(6h)	0,4351(9)	0,4142(9)	¹ / ₄
Se	(6h)	0,48113(14)	0,19845(14)	$^{1}/_{4}$

Tab. 76:Lageparameter für die Oxidfluoridselenide $M_6O_2F_8Se_3$ (M = La, Nd)

^{a)} fixiertes Besetzungsverhältnis: F : O = 1 : 2.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
La ₆ O ₂ F ₈ Se ₃						
Lal	178(3)	152(3)	148(4)	0	0	109(3)
La2	196(4)	103(3)	103(4)	0	0	86(3)
F1	372(51)	U ₁₁	454(106)	0	0	$^{1}/_{2}$ U ₁₁
F2	386(44)	197(35)	289(52)	0	0	195(32)
F3	168(30)	137(30)	168(41)	0	0	79(25)
F4/O ^{a)}	66(28)	83(29)	80(37)	0	0	28(25)
Se	133(5)	106(5)	143(7)	0	0	73(4)
Nd ₆ O ₂ F ₈ S ₃						
Nd1	300(5)	311(5)	275(6)	0	0	164(4)
Nd2	297(5)	261(4)	252(6)	0	0	134(4)
F1	240(46)	U ₁₁	591(142)	0	0	$^{1}/_{2}$ U ₁₁
F2	370(52)	326(49)	297(71)	0	0	92(43)
F3	196(37)	169(35)	214(56)	0	0	79(30)
F4/O ^{*)}	388(60)	386(58)	255(69)	0	0	296(53)
Se	284(8)	285(8)	259(10)	0	0	155(7)

Tab. 77: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij} / pm^2) für die
Oxidfluoridselenide M₆O₂F₈Se₃ (M = La, Nd)

^{a)} fixiertes Besetzungsverhältnis: F : O = 1 : 2.

Abatända		La ₆ O ₂ F ₈ Se ₃	Nd ₆ O ₂ F ₈ Se ₃
Abstance		d / pm	d / pm
M1 – F1	(1×)	251,6	251,8
M1 – F3	(1×)	251,7	241,8
M1 – F4/O	(2×)	245,4	237,1
M1 – F4/O'	(1×)	250,2	243,0
M1 – Se	(2×)	316,7	309,7
M1 – Se'	(2×)	318,3	310,8
M2 - F2	(1×)	243,5	234,8
M2 – F2'	(2×)	255,8	251,7
M2 – F3	(2×)	250,9	247,1
M2 – F3'	(1×)	253,5	250,0
M2 - F4/O	(1×)	249,4	246,8
M2 – Se	(2×)	316,2	312,2
M1 – M1	(2×)	397,4	383,4
M1 – M1'	(2×)	403,0	391,4
M1 – M1"	(2×)	435,7	436,1
M1 – M2	(2×)	406,2	397,9
M1 – M2'	(1×)	415,1	406,5
M1 – M2"	(1×)	420,5	410,3
M2 – M1	(2×)	406,2	397,9
M1 – M1'	(1×)	415,1	406,5
M1 – M1"	(1×)	420,5	410,3
M2 - M2	(2×)	403,0	391,4
M2 – M2'	(4×)	414,8	408,1
Winkel		∢/ grd	∢/ grd
M1 – F1 –M1	(3×)	120,0	120,0
M2 - F2 - M2	(1×)	103,9	102,1
M2 - F2 - M2'	(2×)	112,3	114,0
M1 - F3 - M2	(2×)	107,9	109,0
M1 - F3 - M2'	(1×)	112,7	113,1
M2 - F3 - M2	(1×)	106,9	104,8
M2 - F3 - M2'	(2×)	110,7	110,4
M1 - F4/O - M1	(2×)	106,6	106,0
M1 - F4/O - M1'	(2×)	110,4	110,6
M1 - F4/O - M2	(2×)	110,4	111,3
M1 - F4/O - M2'	(1×)	112,4	112,2

Tab. 78: Ausgewählte interatomare Abstände (d / pm) und Winkel (</ grd) in denOxidfluoridseleniden M₆O₂F₈Se₃ (M = La, Nd)

	F1	F2	F3	F4/O	Se	CN
M1	1 / 3	0 / 0	1 / 1	3 / 3	4 / 4	9
M2	0 / 0	3 / 3	3 / 3	1 / 1	2 / 2	9
CN	3	3	4	4	6	

Tab. 79: Motive der gegenseitigen Zuordnung in den Oxidfluoridseleniden $M_6O_2F_8Se_3$ (M = La, Nd)

3.6.3.5 Strukturdaten für die Oxidfluoridselenide B-M₂OF₂Se (M = Gd, Ho)

Tab. 80:	Kristallographische Daten für die Oxidfluoridselenide B-M ₂ OF ₂ Se
	(M = Gd, Ho) und deren Bestimmung

Kristallographische Daten	Gd ₂ OF ₂ Se	Ho ₂ OF ₂ Se	
Kristallsystem:		hexagonal	
Raumgruppe:		P6 ₃ /m (Nr. 176)	
Gitterkonstanten (a / pm): (c / pm):	1349,24(9) 379,31(2)	1331,32(9) 372,13(2)	
Zahl der Formeleinheiten (Z):		6	
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	7,455	8,073	
molares Volumen ($V_m / cm^3 mol^{-1}$):	60,020	57,330	
Messparameter			
Messgerät:		κ-CCD (Fa. Nonius)	
verwendete Strahlung:		Mo-K α (λ = 71,07 pm)	
F(000):	1128	1164	
Messbereich:	$-20 \le h \le 20$ $-20 \le k \le 20$ $-5 \le 1 \le 5$	$-20 \le h \le 20$ $-19 \le k \le 20$ $-5 \le 1 \le 5$	
Messgrenze ($2\Theta_{max}$ / grd):	65,74	65,37	
Absorptionskoeffizient (μ / mm^{-1}):	41,99	50,68	
Datenreduktion			
gemessene Reflexe:	8728	8143	
davon symmetrieunabhängig:	791	765	
Absorptionskorrektur:	Programm X-SHAPE [11]		
R_{int} ; R_{σ} :	0,083; 0,055	0,074; 0,045	
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:	592	634	
Strukturverfeinerung			
Strukturlösung und -verfeinerung:	Progra	mmpaket SHELX-97 [13]	
R_1 (mit 4 σ -Schranke); w R_2 :	0,066 (0,048) 0,106	; 0,045 (0,033); 0,075	
GooF:	0,990	1,006	
Extinktion (g / 10^{-4}):	18(4)	20(3)	
Elektronendichten: max.: $(\rho(e^{-}) \text{ in } 10^{-6} \text{ pm}^{-3})$ min.:	1,92 -1,73	3,31 -3,03	

Atom	Lage	x / a	y / b	z / c
B-Gd ₂ OF ₂ Se				
Gd1	(6h)	0,12186(7)	0,51429(7)	$^{1}/_{4}$
Gd2	(6h)	0,23168(7)	0,28644(7)	$^{1}/_{4}$
F1	(6h)	0,2029(9)	0,1005(9)	$^{1}/_{4}$
F2	(6h)	0,0684(8)	0,3164(8)	$^{1}/_{4}$
0	(6h)	0,4347(9)	0,4155(9)	$^{1}/_{4}$
Se	(6h)	0,48730(3)	0,20428(3)	$^{1}/_{4}$
B-Ho ₂ OF ₂ Se				
Ho1	(6h)	0,12027(4)	0,51297(4)	$^{1}/_{4}$
Ho2	(6h)	0,23243(4)	0,28756(4)	$^{1}/_{4}$
F1	(6h)	0,1961(9)	0,0956(6)	$^{1}/_{4}$
F2	(6h)	0,0650(6)	0,3152(6)	$^{1}/_{4}$
0	(6h)	0,4300(6)	0,4153(6)	$^{1}/_{4}$
Se	(6h)	0,48821(9)	0,20543(9)	$^{1}/_{4}$

Tab. 82: Koeffizienten der anisotropen Temperaturfaktoren (U_{ij}/pm^2) für die
Oxidfluoridselenide B-M2OF2Se (M = Gd, Ho)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
B-Gd ₂ OF ₂ Se						
Gd1	299(4)	315(4)	274(5)	0	0	155(3)
Gd2	351(4)	316(4)	276(5)	0	0	178(3)
F1	319(46)	397(51)	276(62)	0	0	166(40)
F2	186(34)	262(37)	289(54)	0	0	119(30)
0	258(45)	289(46)	100(51)	0	0	134(38)
Se	291(7)	288(7)	256(9)	0	0	148(6)
B-Ho ₂ OF ₂ Se						
Ho1	120(2)	144(2)	171(3)	0	0	67(2)
Ho2	201(3)	138(2)	196(4)	0	0	87(2)
F1	200(30)	156(28)	205(46)	0	0	99(24)
F2	135(28)	159(28)	238(49)	0	0	59(23)
0	80(28)	87(28)	108(45)	0	0	33(23)
Se	125(4)	108(4)	165(7)	0	0	64(3)

Abstände		B-Gd ₂ OF ₂ Se	B-Ho ₂ OF ₂ Se
Austaliuc		d / pm	d / pm
M1 – O	(2×)	227,6	225,9
M1 – O'	(1×)	232,5	227,4
M1 – F2	(2×)	239,2	235,3
M1 – Se	(2×)	304,1	299,4
M1 – Se'	(2×)	304,5	301,0
M2 – O	(1×)	240,1	231,0
M2 - F1	(1×)	233,9	235,1
M2 – F1'	(2×)	243,8	242,7
M2 - F2	(2×)	240,1	233,9
M2 - F2'	(1×)	243,1	243,4
M2 – Se	(2×)	308,9	304,2
M1 – M1	(2×)	364,6	356,8
M1 – M1'	(2×)	379,3	372,1
M1 – M1"	(2×)	441,7	439,2
M1 – M2	(2×)	383,8	376,1
M1 – M2'	(1×)	395,9	389,6
M1 – M2"	(1×)	402,5	396,4
M2 - M1	(2×)	383,8	376,1
M2 – M1'	(1×)	395,9	389,6
M2 – M1"	(1×)	402,5	396,4
M2 - M2	(2×)	379,3	372,1
M2 – M2'	(4×)	402,8	398,1
Winkel		∢/ grd	∢/ grd
M2 - F1 - M2	(2×)	114,9	112,8
M2 - F1 - M2'	(1×)	102,1	100,1
M1-F2-M2	(2×)	106,4	106,5
M1 - F2 - M2'	(1×)	113,2	111,8
M2 - F2 - M2	(1×)	104,4	105,4
M1 - F2 - M2'	(2×)	113,0	113,0
M1 - O - M1	(2×)	104,8	103,8
M1 - O - M1'	(1×)	112,9	110,9
M1 - O - M2	(2×)	110,2	110,8
M1 - O - M2'	(1×)	113,8	116,4

Tab. 83:	Ausgewählte interatomare Abstände (d/pm) und Winkel (*/grd) in den
	Oxidfluoridseleniden $B-M_2OF_2Se$ (M = Gd, Ho)

	F1	F2	О	Se	CN
M1	0 / 0	1 / 1	3 / 3	4 / 4	8
M2	3 / 3	3 / 3	1 / 1	2 / 2	9
CN	3	4	4	6	

Tab. 84:Motive der gegenseitigen Zuordnung in den Oxidfluoridseleniden $B-M_2OF_2Se (M = Gd, Ho)$

3.7 Fluoridselenid-Oxotantalate(V) der Selten-Erd-Elemente

3.7.1 Vorbemerkungen

Die bei den Synthesen von Selten-Erd(III)-Oxidfluoridsulfiden und -Oxidfluoridseleniden gesammelten Erfahrungen im Umgang mit fluoridhaltigen Verbindungen durch die Wahl geeigneter Ampullenmaterialien und den Einsatz von Alkalihalogenidschmelzen als Flussmittel zur Absenkung der Reaktions- und Kristallisationstemperatur lassen sich auf die Synthese von Fluoridselenid-Oxotantalaten(V) vom Formeltyp $M_2FSeTaO_4$ (M = La) und $M_3F_2Se_2TaO_4$ (M = La, Nd) übertragen. Gleichzeitig sollte damit die Einwirkung der Edukte bei der Synthese Fluorid-Oxidfluorid-Chalkogeniden auf oxidisch und kontaminierte von Tantalampullenwände simuliert werden. Das dabei erhaltene, bisher unbekannte La₃F₂Se₂TaO₄ kristallisiert isotyp zur zufällig entdeckten, formal gleichen Niobverbindung La₃F₂Se₂NbO₄ [72]. Ferner existient auch eine strukturell eng verwandte Verbindung mit der Zusammensetzung La₂FSeTaO₄, die bei 850°C aus einer Natriumchlorid-Schmelze entsteht, wenn formal entsprechend weniger LaFSe zugegeben wird. Beide Strukturtypen ähneln sich sehr in ihrem Aufbau. Es ist damit erstmals die gezielte Synthese von Selten-Erd-Oxotantalaten(V) gelungen, die zusätzlich noch Fluor und Selen enthalten.

3.7.2 Synthese der Fluoridselenid-Oxotantalate(V) M₂FSeTaO₄ und M₃F₂Se₂TaO₄

Die Verbindungen mit den Zusammensetzungen $M_2FSeTaO_4$ (M = La) und $M_3TaO_4F_2Se_2$ (M = La, Nd) lassen sich durch Umsetzung des entsprechenden Metalls (M = La bzw. Nd) mit Metalltrifluorid (MF₃), -sesquioxid (M₂O₃), Selen (Se) und Tantaloxid (Ta₂O₅) in den jeweiligen stöchiometrischen Mengen unter Zugabe von Natriumchlorid als Flussmittel erhalten:

$$4 M + 2 MF_3 + 3 M_2O_3 + 6 Se + 3 Ta_2O_5 \longrightarrow 6 M_2FSeTaO_4$$
 (13)

$$8 M + 4 MF_3 + 3 M_2O_3 + 12 Se + 3 Ta_2O_5 \longrightarrow 6 M_3F_2Se_2TaO_4$$
(14)

Als Reaktionsbehälter eignen sich quarzglasummantelte, evakuierte Tantalampullen, die unter Schutzgas befüllt und anschließend mit einer Lichtbogenschweißanlage gasdicht verschlossen werden. Die Reaktionen laufen bei 850°C innerhalb von 7 Tagen quantitativ ab. Bei allen drei Verbindungen fallen nahezu farblose, nadelförmige Kristalle an, die sich für eine Einkristallröntgenstrukturuntersuchung anbieten. Die gesammelten Daten sind in den Kapiteln 3.7.4 und 3.7.5 angegeben.

3.7.3 Kristallstrukturen der Fluoridselenid-Oxotantalate(V) M₂FSeTaO₄ (M = La) und M₃F₂Se₂TaO₄ (M = La, Nd)

In den beiden verwandten Kristallstrukturen von La₂FSeTaO₄ und $M_3F_2Se_2TaO_4$ (M = La, Nd) sind verzerrte [TaO₅Se]-Oktaeder enthalten, welche über gemeinsame, transständige Sauerstoffteilchen zu eindimensionalen Ketten entlang der b-Achse verknüpft sind. Dabei weisen sämtliche Se²⁻-Liganden eine isotaktische Orientierung auf (Abb. 95) In $M_3F_2Se_2TaO_4$ (M = La, Nd) liegen drei unterschiedlich koordinierte Selten-Erd(III)-Kationen in Form zweier dreifach überkappter trigonaler Prismen [(M1)O₅FSe- $_{3}$] und [(M2)O₂F₅Se₃] und eines einfach überkappten quadratischen Antiprismas [(M3)O₃FSe₅] vor (vgl. Abb. 94). M1 ist von drei Selen-, einem Fluor- und fünf Sauerstoffatomen koordiniert, M2 wird von zwei Selen-, fünf Fluor- und zwei Sauerstoffatomen umgeben. M3 besitzt eine durch ein Fluor- und drei Sauerstoffatome gebildete Prismengrundfläche und eine aus vier Selen-Teilchen gebildeten Deckfläche, welche von einem weiteren Selen-Teilchen überkappt ist. Abbildung 94 zeigt die einzelnen Koordinationsfiguren und beim Vergleich mit der MFSe-ärmeren Verbindung M₂FSeTaO₄ fällt auf. dass dort nur zwei unterschiedliche Kationen-Koordinationsfiguren (M1 und M2) auftreten, wobei das Koordinationspolyeder um M3 vollständig wegfällt. Zudem verfügt M2 in der fluoridärmeren Verbindungsklasse M₂FSeTaO₄ nicht mehr über fünf benachbarte Fluoratome, sondern nur noch über zwei, wobei die wegfallenden jeweils durch Sauerstoff ersetzt werden. Weitere Strukturelemente bilden die mit Se^{2–}-Anionen zentrierten quadratischen Pyramiden aus M³⁺-Kationen, welche über Kanten zu Ketten verknüpft sind, die ebenfalls parallel zur b-Richtung verlaufen. In La₂FSeTaO₄ sind zwei, in La₂FSeTaO₄ vier dieser Ketten über Kanten zu Bändern verknüpft (siehe Abb. 90 und 92). Aufgrund nahezu gleichgroßer Kationenradien [32] von rund 64 pm für Nb5+ und Ta5+ unterscheidet sich die

Elementarzellabmessung der tantalhaltigen Verbindung La₃F₂Se₂TaO₄ (a = 1132,7; b = 399,8 und c = 1811,7 pm) erwartungsgemäß nur in geringem Maße von den Gitterparametern der niobhaltigen La₃F₂Se₂NbO₄ (a = 1129,0; b = 400,1 und c = 1806,2 pm) [72]. Neben dem Wegfall einer Selten-Erd-Kationen- und einer Selen-Anionen-Position trägt auch der Wegfall einer Fluorid-Lage in La₂FSeTaO₄ zu einer Verkleinerung gegenüber der formal um eine Formeleinheit an LaFSe reicheren Verbindungen La₃F₂Se₂TaO₄ bei. In La₂FSeTaO₄ liegt deshalb unter Verlust der tetraedrisch koordinierten Fluorid-Position nur noch ein leicht aus der Ebene ausgelenktes (45,3 pm in La₂FSeTaO₄, 48,3 pm in La₃F₂Se₂TaO₄ und 44,6 pm in Nd₃F₂Se₂TaO₄), trigonal durch Selten-Erd-Kationen koordiniertes Fluorid-Teilchen vor (Abb. 97).

Abb. 89: M₂FSeTaO₄: Blick auf die Elementarzelle entlang [010]

Abb. 90: M₂FSeTaO₄: Blick auf einen Doppelstrang kantenverknüpfter selenzentrierter quadratischer Pyramiden aus M³⁺-Kationen

Abb. 91: M₃F₂Se₂TaO₄: Blick auf die Elementarzelle entlang [010]

Abb. 92: Blick auf einen Vierfachstrang kantenverknüpfter selenzentrierter quadratischer Pyramiden aus M³⁺-Kationen

Abb. 93: Vergleich der Kristallstrukturen von M₂FSeTaO₄ (M = La) *(oben)* und M₃F₂Se₂TaO₄ (M = La, Nd) *(unten)* als (010)-Projektionen

Abb. 94: Vergleich der M^{3+} -Koordinationspolyeder in M₂FSeTaO₄ (M = La) *(links)* und M₃F₂Se₂TaO₄ (M = La, Nd) *(rechts)*

Abb. 95: M₂FSeTaO₄ und M₃F₂Se₂TaO₄: Koordination von Tantal in der Form sauerstoffverbrückter [TaO₅Se]-Oktaeder

Abb. 96: Vergleich der Se^{2–}-Koordinationspolyeder in M₂FSeTaO₄ (M = La) *(links)* und M₃F₂Se₂TaO₄ (M = La, Nd) *(rechts)*

Abb. 97: Vergleich der F⁻-Koordinationspolyeder in $M_2FSeTaO_4$ (M = La) *(links)* und $M_3F_2Se_2TaO_4$ (M = La, Nd) *(rechts)*

3.7.4 Strukturdaten für La₂FSeTaO₄

Tab. 85:Kristallographische Daten f
ür La2FSeTaO4 und deren Bestimmung

Kristallographische Daten	
Kristallsystem:	orthorhombisch
Raumgruppe:	Pnma (Nr. 62)
Gitterkonstanten (in pm):	a = 1146,51(6)
	b = -394,97(2) c = 1281 16(7)
Zahl der Formeleinheiten (Z):	4
berechnete Dichte $(D_x / g \text{ cm}^{-3})$:	7,107
molares Volumen ($V_m / cm^3 mol^{-1}$):	87,343
Messparameter	
Messgerät:	Einkristalldiffraktometer IPDS
verwendete Strahlung:	Mo-K α (Graphitmonochromator; $\lambda = 71,07$ pm)
F(000):	1048
Messbereich:	$-17 \le h \le 17$
	$-5 \le k \le 5$
Messarenze (20 / ard):	$-19 \le 1 \le 19$ 65.73
Absorptionskoaffizient (μ / mm^{-1}):	30.50
Absorptionskoemzient (μ / mm ⁻).	59,50
Datenreduktion	
gemessene Reflexe:	8369
davon symmetrieunabhängig:	1127
Absorptionskorrektur:	Programm X-SHAPE [11]
R_{int} ; R_{σ} :	0,083; 0,068
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:	860
Strukturverfeinerung	
Strukturlösung und -verfeinerung:	Programmpaket SHELX-97 [13]
R ₁ (mit 4σ-Schranke); wR ₂ :	0,060 (0,039); 0,078
GooF:	0,962
Extinktion (g / 10^{-4}):	13(2)
Restelektronendichten max:	2,61
$(\rho(e^{-}) \text{ in } 10^{-6} \text{ pm}^{-3}) \text{ min:}$	-2,85

Atom	Lage	x / a	y / b	z / c
Lal	(<i>4c</i>)	0,43145(7)	¹ / ₄	0,33783(6)
La2	(<i>4c</i>)	0,13818(7)	$^{1}/_{4}$	0,55757(6)
F	(<i>4c</i>)	0,4261(7)	¹ / ₄	0,1534(6)
Se	(<i>4c</i>)	0,1512(1)	¹ / ₄	0,0116(1)
Ta	(<i>4c</i>)	0,32931(5)	¹ / ₄	0,82284(4)
01	(<i>4c</i>)	0,4378(8)	¹ / ₄	0,7180(7)
O2	(<i>4c</i>)	0,1780(8)	¹ / ₄	0,7578(7)
O3	(<i>4c</i>)	0,4227(8)	¹ / ₄	0,9500(7)
O4	(<i>4c</i>)	0,1948(8)	¹ / ₄	0,3496(7)

Tab. 86:Lageparameter für La2FSeTaO4

Tab. 87:Koeffizienten der anisotropen Temperaturfaktoren für La2FSeTaO4

Atom	U11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Lal	66(3)	42(4)	77(3)	0	-2(2)	0
La2	64(3)	34(4)	84(3)	0	1(2)	0
F	114(37)	77(47)	42(31)	0	4(26)	0
Se	85(6)	61(8)	105(6)	0	3(4)	0
Та	43(2)	27(3)	64(2)	0	-1(2)	0
01	59(39)	91(59)	61(40)	0	-13(30)	0
02	83(40)	76(60)	112(44)	0	-67(35)	0
03	54(40)	97(56)	82(43)	0	-5(31)	0
O4	79(41)	69(56)	105(45)	0	-22(34)	0

 $La_2FSeTaO_4$

Abstände		d / pm	Winkel		∢/ grd
La1 – F	(1×)	236,4	La1 – F – La2	(2×)	120,7
La1 – O1	(2×)	258,0	La2 – F – La2	(1×)	108,1
La1 – O2	(2×)	255,5	La1 – Se – La1	(1×)	78,5
La1 – O4	(1×)	271,7	La1 – Se – La1'	(2×)	101,1
La1 – Se	(2×)	312,3	La1 – Se – La2	(2×)	88,3
La1 – Se'	(1×)	317,3	La1 – Se – La2'	(2×)	119,4
La2 - F	(2×)	243,9	La1 – Se – La2"	(2×)	139,1
La2 - O2	(1×)	260,6	La2 – Se – La2	(1×)	76,9
La2 – O3	(1×)	247,2	La1 – Se – Ta	(2×)	69,6
La2 – O3'	(2×)	250,7	La1' – Se – Ta	(1×)	167,6
La2 - O4	(1×)	274,2	La2 – Se – Ta	(2×)	69,6
La2 – Se	(2×)	317,7	La1 – O1 – La1	(1×)	99,9
Ta – Se	(1×)	316,5	La1 – O1 – Ta	(2×)	126,7
Ta – O1	(1×)	183,1	La1 – O2 – La1	(1×)	101,3
Ta - O2	(1×)	192,5	La1 – O2 – La2	(2×)	108,0
Ta - O3	(1×)	194,9	La1 – O2 – Ta	(2×)	105,6
Ta – O4	(2×)	202,3	La2 - O2 - Ta	(1×)	125,8
La1 – La1	(2×)	395,0	La2 - O3 - La2	(1×)	103,9
La1 – La2	(2×)	417,5	La2 – O3 – La2'	(2×)	107,4
La1 – Ta	(2×)	358,8	La2 – O3 – La2"	(2×)	107,8
La1 – Ta'	(2×)	395,7	La2 - O3 - Ta	(1×)	121,1
La2 – La1	(2×)	317,5	La1 – O4 – La2	(1×)	106,9
La2 – La2	(2×)	395,0	La1 – O4 – Ta	(2×)	97,3
La2 – Ta	(2×)	316,7	La2 - O4 - Ta	(2×)	97,6
La2 – Ta'	(1×)	385,9	Ta – O4 – Ta	(2×)	154,9

 Tab. 88:
 Ausgewählte interatomare Abstände (d/pm) und Winkel (*/grd) in

Tab. 89: Motive der gegenseitigen Zuordnung in La2FSeTaO4

	Se	F	01	02	03	O4	CN
Lal	3 / 3	1 / 1	2 / 2	2 / 2	0 / 0	1 / 1	9
La2	2 / 2	2 / 2	0 / 0	1 / 1	3 / 3	1 / 1	9
Та	1 / 1	0 / 0	1 / 1	1 / 1	1 / 1	2 / 2	6
CN	6	3	3	4	4	4	

3.7.5 Strukturdaten für La₃F₂Se₂TaO₄ und Nd₃F₂Se₂TaO₄

Tab. 90:KristallographischeDatenfürdieFluoridselenid-Oxotantalate(V) $M_3F_2Se_2TaO_4$ (M = La, Nd) und deren Bestimmung

Kristallographische Daten	La ₃ F ₂ Se ₂ TaO ₄	Nd ₃ F ₂ Se ₂ TaO ₄	
Kristallsystem:	orthorhombisch		
Raumgruppe:	Pnma (Nr. 62)		
Gitterkonstanten (in pm):	a = 1132,65(6) b = 399,84(2) c = 1811.66(9)	a = 1116,53(6) b = 393,24(2) c = 1742,21(9)	
Zahl der Formeleinheiten (Z):	4		
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):	6,943	7,586	
molares Volumen ($V_m / cm^3 mol^{-1}$):	123,522	115,163	
Messparameter			
Messgerät:	Einkristalldiffr	aktometer IPDS	
verwendete Strahlung:	Mo-Kα (Graphitmonocl	nromator; $\lambda = 71,07 \text{ pm}$)	
F(000):	1448	1484	
Messbereich:	$-14 \le h \le 14$ $-5 \le k \le 5$	$-14 \le h \le 14$ $-5 \le k \le 5$	
	$-23 \le 1 \le 23$	$-23 \le 1 \le 23$	
Messgrenze ($2\Theta_{max}$ / grd):	54,89	55,75	
Absorptionskoeffizient (μ / mm^{-1}):	37,47	43,80	
Datenreduktion			
gemessene Reflexe:	14053	13384	
davon symmetrieunabhängig:	1064	1003	
Absorptionskorrektur:	Programm X	-SHAPE [11]	
R_{int} ; R_{σ} :	0,069; 0,023	0,087; 0,056	
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$:	1016	859	
Strukturverfeinerung			
Strukturlösung und -verfeinerung:	Programmpaket	SHELX-97 [13]	
R ₁ (mit 4σ-Schranke); wR ₂ :	0,028 (0,026); 0,063	0,050 (0,040); 0,069	
GooF:	1,106	1,065	
Extinktion (g / 10^{-4}):	4(1)	7(1)	
Restelektronendichten : max.: $(\rho(e^{-}) \text{ in } 10^{-6} \text{ pm}^{-3})$ min.:	2,31 -2.24	2,21 -1,98	

Atom	Lage	x / a	y / b	z / c
La ₃ F ₂ Se ₂ TaO ₄				
La1	<i>(4c)</i>	0,06964(5)	$^{1}/_{4}$	0,80062(3)
La2	(4c)	0,00332(5)	$^{1}/_{4}$	0,39302(3)
La3	(4c)	0,29418(5)	$^{1}/_{4}$	0,53090(3)
F1	(4 <i>c</i>)	0,0637(5)	$^{1}/_{4}$	0,6685(3)
F2	(4 <i>c</i>)	0,0701(5)	$^{1}/_{4}$	0,5260(3)
Se1	(4c)	0,00796(8)	$^{1}/_{4}$	0,08046(5)
Se2	(4 <i>c</i>)	0,28475(8)	$^{1}/_{4}$	0,90838(5)
Та	(4c)	0,19075(3)	$^{1}/_{4}$	0,19417(2)
01	<i>(4c)</i>	0,3121(6)	$^{1}/_{4}$	0,2598(4)
02	(4 <i>c</i>)	0,0530(6)	$^{1}/_{4}$	0,2534(4)
O3	<i>(4c)</i>	0,2807(6)	$^{1}/_{4}$	0,0995(4)
O4	<i>(4c)</i>	0,3284(6)	$^{1}/_{4}$	0,6796(4)
Nd ₃ F ₂ Se ₂ TaO ₄				
Nd1	(4 <i>c</i>)	0,06487(8)	$^{1}/_{4}$	0,80096(6)
Nd2	(4c)	0,00433(8)	$^{1}/_{4}$	0,39324(6)
Nd3	<i>(4c)</i>	0,29168(8)	$^{1}/_{4}$	0,53046(6)
F1	(4 <i>c</i>)	0,059(1)	$^{1}/_{4}$	0,6709(7)
F2	<i>(4c)</i>	0,069(1)	$^{1}/_{4}$	0,5240(7)
Se1	<i>(4c)</i>	0,0093(2)	$^{1}/_{4}$	0,0795(1)
Se2	<i>(4c)</i>	0,2829(2)	$^{1}/_{4}$	0,9072(1)
Та	(4 <i>c</i>)	0,19484(6)	$^{1}/_{4}$	0,19515(4)
01	<i>(4c)</i>	0,315(1)	$^{1}/_{4}$	0,2614(7)
02	(<i>4c</i>)	0,056(1)	¹ / ₄	0,2562(7)
03	(<i>4c</i>)	0,287(1)	¹ / ₄	0,0976(7)
O4	(4c)	0,324(1)	$^{1}/_{4}$	0,6782(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
La ₃ F ₂ Se ₂ TaO ₄						
Lal	93(3)	72(3)	105(3)	0	4(2)	0
La2	92(3)	71(3)	115(3)	0	-6(2)	0
La3	92(3)	69(3)	114(3)	0	-6(2)	0
F1	134(25)	143(26)	144(26)	0	-29(22)	0
F2	81(23)	121(25)	133(25)	0	-46(19)	0
Sel	95(4)	96(4)	123(5)	0	-6(3)	0
Se2	98(4)	96(4)	130(4)	0	-4(3)	0
Та	65(2)	64(2)	92(2)	0	1(1)	0
01	143(32)	112(31)	125(31)	0	-50(24)	0
02	125(31)	93(30)	120(30)	0	19(25)	0
O3	71(27)	62(30)	142(31)	0	-45(23)	0
O4	125(30)	43(29)	124(28)	0	2(24)	0
Nd ₃ F ₂ Se ₂ TaO ₄						
Nd1	284(4)	264(5)	280(5)	0	2(4)	0
Nd2	293(5)	258(5)	265(5)	0	12(3)	0
Nd3	267(4)	283(5)	289(5)	0	4(3)	0
F1	378(53)	240(53)	299(51)	0	124(42)	0
F2	470(69)	342(73)	310(61)	0	-52(53)	0
Se1	290(8)	305(10)	262(8)	0	-18(6)	0
Se2	295(8)	307(10)	283(9)	0	-5(7)	0
Та	267(3)	256(4)	247(3)	0	4(3)	0
01	198(52)	365(73)	329(67)	0	16(46)	0
02	297(61)	291(70)	445(76)	0	-152(56)	0
03	471(74)	240(67)	285(67)	0	-39(57)	0
O4	361(65)	215(61)	284(66)	0	88(50)	0

Tab. 92:Koeffizienten der anisotropen Temperaturfaktoren für $La_3F_2Se_2TaO_4$ und
 $Nd_3F_2Se_2TaO_4$

Abatända		M = La	M = Nd	Winkal		$\mathbf{M} = \mathbf{L}\mathbf{a}$	$\mathbf{M} = \mathbf{N}\mathbf{d}$
Abstance		d / pm	d / pm	winkei		∢/ grd	∢/ grd
M1 – F1	(1×)	239,5	226,7	M1-F1-M2	(2×)	118,1	118,6
M1 – O1	(2×)	251,8	247,5	M2 - F1 - M2	(1×)	112,0	112,0
M1 – O2	(2×)	262,4	258,6	M2 - F2 - M2	(2×)	116,1	116,0
M1 – O4	(1×)	275,6	271,2	M2 - F2 - M2'	(1×)	99,7	99,7
M1 - Se1	(2×)	306,8	298,1	M2 - F2 - M3	(2×)	107,4	107,0
M1 – Se2	(1×)	312,2	305,8	M2 - F2 - M3'	(1×)	109,4	110,2
M2 - F1	(2×)	241,1	237,1	M1 - Se1 - M1	(1×)	81,3	82,5
M2 - F2	(1×)	252,5	239,0	M1 - Se1 - M3	(2×)	89,5	88,5
M2 – F2'	(2×)	261,5	257,2	M1 – Se1 – M3'	(2×)	103,3	102,4
M2 – O2	(1×)	259,1	245,7	M1 – Se1 – M3"	(2×)	145,3	144,4
M2 – O3	(1×)	252,5	243,1	M3 – Se1 – M3	(1×)	79,3	79,1
M2 – Se2	(2×)	313,6	309,3	M3 – Se1 – M3'	(2×)	111,5	113,2
M3 – F2	(1×)	254,0	248,9	M1 – Se1 – Ta	(2×)	73,0	73,3
M3 – O3	(2×)	250,2	245,1	M3 – Se1 – Ta	(2×)	72,3	71,2
M3 – O4	(1×)	272,2	259,9	M3 - Se1 - Ta'	(1×)	174,9	174,1
M3 – Se1	(2×)	313,5	308,8	M1 - Se2 - M2	(2×)	122,8	124,3
M3 – Se1'	(1×)	315,2	309,4	M1 - Se2 - M3	(2×)	102,8	102,1
M3 – Se2	(2×)	311,8	302,8	M2 - Se2 - M2	(1×)	79,2	78,9
Ta – O1	(1×)	181,7	177,4	M2 - Se2 - M3	(2×)	82,8	81,6
Ta – O2	(1×)	189,4	187,8	M2 - Se2 - M3'	(2×)	133,7	132,8
Ta – O3	(1×)	199,5	198,7	M3 – Se2 – M3	(1×)	79,8	81,0
Ta – O4	(2×)	202,8	200,0	M1 - O1 - M1	(1×)	105,1	105,2
Ta – Sel	(1×)	292,1	289,0	M1 – O1 – Ta	(2×)	126,5	126,2
Ta – M1	(2×)	356,4	350,4	M1 - O2 - M1	(1×)	99,3	99,0
Ta – M2	(1×)	387,7	378,3	M1 - O2 - M2	(2×)	104,4	104,5
Ta – M3	(2×)	357,4	348,2	M1 – O2 – Ta	(2×)	103,0	102,3
Ta – Ta	(2×)	399,8	393,2	M2 – O2 – Ta	(1×)	137,1	138,1
M1 – M1	(2×)	399,8	393,2	M2 - O3 - M3	(2×)	111,4	112,9
M1 – M2	(2×)	412,2	398,9	M3 - O3 - M3	(1×)	106,1	106,7
M1 – M3	(1×)	436,5	423,4	M2 – O3 – Ta	(1×)	117,6	117,5
M2 - M2	(2×)	399,8	393,2	M3 – O3 – Ta	(2×)	104,7	102,8
M2 – M3	(2×)	413,4	400,1	M1 - O4 - M3	(1×)	105,7	105,7
M3 – M3	(2×)	399,8	393,2	M1 – O4 – Ta	(2×)	95,1	94,9
				M3 – O4 – Ta	(2×)	96,5	97,6
				Ta – O4 – Ta	(1×)	160,6	159,0

 Tab. 93:
 Ausgewählte interatomare Abstände (d/pm) und Winkel (*/grd) in

	Se1	Se2	F1	F2	01	02	O3	O4	CN
M1	2 / 2	1 / 1	1 / 1	0 / 0	2 / 2	2 / 2	0 / 0	1 / 1	9
M2	0 / 0	2 / 2	2 / 2	3 / 3	0 / 0	1 / 1	1 / 1	0 / 0	9
M3	3 / 3	2 / 2	0 / 0	1 / 1	0 / 0	0 / 0	2 / 2	1 / 1	9
Та	1 / 1	0 / 0	0 / 0	0 / 0	1 / 1	1 / 1	1 / 1	2 / 2	6
CN	6	5	3	3	3	4	4	4	

Tab. 94:Motive der gegenseitigen Zuordnung in den Fluoridselenid-Oxotantalaten
vom Typ $M_3F_2Se_2TaO_4$

3.8 Die Kupfer(I)-Selten-Erd(II)-Fluoridchalkogenide: CuEuFS und CuSmFSe

3.8.1 Vorbemerkungen

Die zu Beginn dieser Arbeit durchgeführten Umsetzungen von Selten-Erd-Metall, Selten-Erd-Trifluorid und Schwefel zu Selten-Erd(III)-Fluoridsulfiden (MFS; M = Sc, Y, La; Ce – Lu) haben gezeigt, dass sich auch zweiwertige Kationen in einer Matrix aus F⁻- und S²⁻-Anionen stabilisieren lassen, wie z. B. im Formeltyp $M_3F_4S_2$ (M = Sm, Eu, Yb) [5]. Mit der Kenntnis, dass die Barium-Verbindungen BaCuFCh (Ch = S, Se) [73] leicht zugänglich sind, lagen Versuche zur Synthese von CuEuFS nahe, zudem man mit CuMOS (M = Pr) [74] eine weitere Verbindungsklasse kennt, in der eine aufgefüllte PbFCl-Struktur realisiert ist, welche auch für CuEuFS zu erwarten stand. Ebenfalls konnte mit CuSmFSe eine strukturanaloge Selenverbindung erhalten werden.

3.8.2 Synthese von CuEuFS und CuSmFSe

Durch Umsetzung von Selten-Erd-Metall (Eu, Sm), Selten-Erd-Trifluorid (EuF₃, SmF₃), Kupfer (Cu) und Schwefel (S) bzw. Selen (Se) im molaren Verhältnis von 2 : 1 : 3 : 3 in verschweißten Platinampullen werden unter Verwendung von Natriumchlorid (NaCl) als Flussmittel innerhalb von sieben Tagen bei 850°C smaragdgrüne, plättchenförmige Einkristalle von CuEuFS und CuSmFSe mit quadratischer Grundfläche erhalten.

$$2 \operatorname{Eu} + \operatorname{EuF}_3 + 3 \operatorname{Cu} + 3 \operatorname{S} \longrightarrow 3 \operatorname{CuEuFS}$$
(15)
$$2 \operatorname{Sm} + \operatorname{SmF}_3 + 3 \operatorname{Cu} + 3 \operatorname{Se} \longrightarrow 3 \operatorname{SmEuFSe}$$
(16)

Anhand der erhaltenen, luft- und feuchtigkeitsunempfindlichen Kristalle wurde jeweils eine Einkristallröntgenstrukturuntersuchung durchgeführt. Die dabei erhaltenen Ergebnisse sind in Kapitel 3.8.4 angegeben.

3.8.3 Strukturbeschreibung von CuEuFS und CuSmFSe

Die beiden Kupfer(I)-Selten-Erd(II)-Fluoridchalkogenide CuEuFS und CuSmFSe lassen sich als tetragonale Verbindungen in der Raumgruppe P4/nmm (Nr. 129) beschreiben, die analog CuBaFS [73] im aufgefüllten PbFCl-Typ kristallisieren. Es liegt demnach eine anionische Teilstruktur gemäß $_{\infty}^{2}$ {[EuF_{4/4}S_{4/4}]⁻} mit Eu²⁺ in quadratisch-antiprismatischer Koordination von je vier F⁻- und S²⁻-Anionen vor (d(Eu–F) = 247 pm, d(Eu–S) = 313 pm). Zum Ladungsausgleich sind Cu⁺-Kationen in die Tetraederlücken zwischen den S²⁻-Doppelschichten eingelagert (d(Cu–S) = 243 pm). CuEuFS lässt sich auch als Schichtstruktur auffassen, in der anionische Schichten $_{\infty}^{2}$ {[CuS_{4/4}]} mit analogen kationischen der Art $_{\infty}^{2}$ {[FEu_{4/4}]⁺} entlang (001) alternierend gestapelt sind, die aus [CuS₄]- bzw. [FEu₄]-Tetraedern mit jeweils vier verknüpfenden Kanten bestehen. Vergleichbare Verhältnisse liegen auch in der isotypen selenhaltigen Verbindung CuSmFSe vor, mit Abständen von 247 pm (d(Sm–F)), 327 pm (d(Sm–Se)) und 253 pm (d(Cu–Se)).

Abb. 98 Perspektivische Ansicht einer Elementarzelle der tetragonalen Kristallstruktur von CuEuFS. Die anionischen Koordinationen von Cu⁺ und Eu²⁺ sind für einen besseren Überblick hervorgehoben.

Abb. 99 Kationenkoordinationspolyeder in CuEuFS: Cu⁺ ist tetraedrisch von vier S²⁻-Anionen umgeben, Eu²⁺ ist quadratisch-antiprismatisch von vier F⁻ und vier S²⁻ umgeben.

Abb. 100 Anionenkoordinationspolyeder in CuEuFS: F⁻ ist tetraedrisch von vier Eu²⁺-Kationen umgeben, S²⁻ quadratisch-antiprismatisch von je vier Cu⁺und Eu²⁺-Kationen.

3.8.4 Strukturdaten für CuEuFS und CuSmFSe

Tab. 95:Kristallographische Daten und deren Bestimmung für CuEuFS und
CuSmFSe

· · · · · · · · · · · · · · · · · · ·					
Kristallographische Daten		CuEuFS	CuSmFSe		
Kristallsystem:		tetragonal			
Raumgruppe:		P4/nmm (Nr. 129)		
Gitterkonstanten (a / pm): (c / pm):		394,74(3) 864,25(6)	405,81(3) 881,32(7)		
Zahl der Formeleinheiten (Z):		2			
berechnete Dichte ($D_x / g \text{ cm}^{-3}$):		6,574	7,136		
molares Volumen $(V_m / cm^3 mol^{-1})$	¹):	134,667	145,137		
Messparameter					
Messgerät:		к-CCD (I	Fa. Nonius)		
verwendete Strahlung:		Μο-Κα ($\lambda = 71,07 \text{ pm}$)		
F(000):		234	268		
Messbereich:		$-7 \le h \le 7$ $-7 \le k \le 5$ $-15 \le 1 \le 15$	$-8 \le h \le 8$ $-8 \le k \le 8$ $-19 \le l \le 19$		
Messgrenze ($2\Theta_{max}$ / grd):		80,25	100,27		
Absorptionskoeffizient (μ / mm^{-1})):	31,43	39,61		
Datenreduktion					
gemessene Reflexe:		4273	5713		
davon symmetrieunabhängig:		295	504		
Absorptionskorrektur:		Programm X-SHAPE [11]			
R_{int} ; R_{σ} :		0,081; (0,025)	0,069; (0,027)		
Zahl der Reflexe mit $ F_o \ge 4\sigma(F_o)$):	287	424		
Strukturverfeinerung					
Strukturlösung und -verfeinerung:		Programmpaket	SHELX-97 [13]		
R ₁ (mit 4σ-Schranke):		0,023 (0,022)	0,043 (0,035)		
wR ₂ :		0,056	0,091		
GooF:		1,141	1,098		
Extinktion (g / 10^{-4}):		5955(261)	669(51)		
Restelektronendichten : $(\rho(e^{-}) \text{ in } 10^{-6} \text{ pm}^{-3})$	max.: min.:	1,87 -1,73	2,83 -2,68		

 Atom	Lage	x / a	y / b	z / c
 CuEuFS				
Cu	(<i>2b</i>)	3/4	$^{1}/_{4}$	¹ / ₂
Eu	(2c)	$^{1}/_{4}$	$^{1}/_{4}$	0,17192(2)
F	(2 <i>a</i>)	3/4	$^{1}/_{4}$	0
S	(2 <i>c</i>)	1/4	$^{1}/_{4}$	0,66466(11)
 CuSmFSe				
Cu	<i>(2b)</i>	³ / ₄	$^{1}/_{4}$	¹ / ₂
Sm	(2 <i>c</i>)	$^{1}/_{4}$	$^{1}/_{4}$	0,16395(4)
F	(2 <i>a</i>)	³ / ₄	$^{1}/_{4}$	0
Se	(2 <i>c</i>)	$^{1}/_{4}$	$^{1}/_{4}$	0,67113(10)

Tab. 96:Lageparameter für CuEuFS und CuSmFSe

Tab. 97:Koeffizienten der anisotropen thermischen Auslenkungsparameter
 $(U_{ij} in pm^2)$ für CuEuFS und CuSmFSe

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
CuEuFS						
Cu	200(2)	U ₁₁	200(3)	0	0	0
Eu	97(2)	U ₁₁	131(2)	0	0	0
F	97(7)	U ₁₁	149(10)	0	0	0
S	95(4)	U ₁₁	130(5)	0	0	0
CuSmFSe						
Cu	240(3)	U ₁₁	235(4)	0	0	0
Sm	116(2)	U ₁₁	174(2)	0	0	0
F	136(10)	U ₁₁	139(13)	0	0	0
Se	122(2)	U ₁₁	172(3)	0	0	0

Abstände		CuEuFS CuSmFSe d/pm d/pm		Winkel		CuEuFS	CuSmFSe
						∢/ grd	∢/ grd
Cu - Ch	(4×)	243,3	252,8	Ch - Cu - Ch	(4×)	110,0	110,9
Cu – Cu	(4×)	279,1	287,0	Ch – Cu – Ch'	(2×)	108,4	106,8
Cu – M	(4×)	345,5	359,0	Cu – Ch – Cu	(4×)	70,0	69,2
M - F	(4×)	247,0	249,1	Cu – Ch – M	(8×)	75,6	76,3
M - Ch	(4×)	312,8	327,0	F - M - F	(4×)	68,8	70,3
M - M	(2×)	394,7	405,8	F - M - F'	(2×)	106,1	109,1
M - M'	(4×)	407,7	407,3	Ch - M - F	(8×)	76,6	75,4
$\mathbf{F} - \mathbf{F}$	(4×)	279,1	287,0	Ch - M - F'	(8×)	140,9	140,9
F - F'	(2×)	394,7	405,8	Ch - M - Ch	(4×)	78,2	78,2
F - Ch	(6×)	350,6	358,4	Ch - M - Ch'	(2×)	126,3	126,3
Ch - Ch	(4×)	398,7	416,3	M - F - M	(4×)	111,2	109,7
Ch - Ch'	(2×)	394,7	405,8	M - F - M'	(2×)	106,1	109,9

Tab. 98: Ausgewählte interatomare Abstände (d/pm) und Winkel (∢/grd) für CuEuFS und CuSmFSe (Ch = S, Se; M = Eu, Sm)

Tab. 99:Motive der gegenseitigen Zuordnung in CuEuFS und CuSmFSe

	F	S / Se	CN
Cu	0 / 0	4 / 4	4
Eu / Sm	4 / 4	4 / 4	8
CN	4	8	