
A COMMON APPROACH TO TEST GENERATION AND HARDWARE
VERIFICATION BASED ON TEMPORAL LOGIC

Thomas Kropf, Hans-Joachim Wunderlich
University of Karlsruhe, Institute of Computer Design and Fault Tolerance

p.o. Box 6980, 7500 Karlsruhe, Germany

Hardware verification and sequemio/ leSI genera/ion are
aspects of the same problem. namely /0 prove the equal
behavior determined by two circuit descriptions. During
test generatjon, this altempi succeeds for the faulty and
fault free circuil if redundancy exisis, and during
verification it succeeds. if the implemenlofion is correct
with regard to ils specification. This observation can be
used 10 cross{erli/ize both areas, which hnvc been treated
separately up 10 now. In this paper, a common jorl1UJl
framework/or hardware verification and sequential/est pat
tern generalion is presented. which is based on modeling
Ihe circuil behavior wilh temporal/ogic. In addition, a new
approach 10 cope wilh non reselable flip flops in sequential
lest generation is proposed, which is nol reslricled to
sluck·at faults. Based on this verification view, it is pass;·
ble to provide the designer with one tool for checking cir·
cuit correctness and generating test patterns. Its first
implementation WId application is olso described.

I. INTRODUCTION

The increased use of VLSI especially in safety criLicaI sys·
lems demands a high confidence in the correct functioning
of these sySlems. Thus, it has to be ensured that circuits
contain neither design errors nor fabricaLion faults.

Hardware verification copes with errors, which occur in
the circuit during the design process. Verification is per·
fonned by fonnally proving that an implementation meets
the specilicaLion, i.e. the behavioral requirements. Usually
this is done by modeling the fun ctional behavior in terms
of logic and using a thcorem proving tool to suppon the
proof process (e.g. [11. (2), [3]).

Test gencraLion on the oilier hand addrcssc,.<; the problem
of finding input stimuli for a circuit in such a way that
fabrication defects are found. Generally, !.his is accom~
plished by injecting faults given by an appropriate fault
model into the descripLion of the correct circuit and com·
paring the behavior of the resultant faulty circuit and the
correcL circuit to find input sequences such that the output
values of the two circuits eventually differ. Most of !.he
algorithms for test generaLion perfonn the behavioral

reasoning mainly on the given structural circuit infonna
Lion (e.g. [4], [5]. (6). [7]). Sequential test generation is
known to need exponential worst case effort, which is
reduced by design modifications like a complete scan path
([8), [9)). a panial scan path ({ 10], [II], [12]). a pseudo·
exhausLive technique [13) or an appropriate synthesis [141.
Sometimes such design modifications arc not feasible due
to area and speed restrictions and test generation has to be
done for the original circuit, or the modifications only
reduce the complexity of the sequential test generation
process.

Although hardware verificaLion and lcsLing are nceded to
achieve fault free syslcms, both have been treated in isola
tior! up to now. Since both have to cope with propositions
about the behavioral equivalence of circuit descriptions, it
is possible to combine test generation and verification
which results in appropriate benefits for both.

In this paper temporal logic is used to capture the cir
cuit behav ior. This logic is often used for hardware
verificaLion, since circuit specifications may be described
naturally and more complex propcrLies may be expressed
than in nonnal FSM verification approaches ([15J, [16J,
[17]). AddiLionally, using temporal logic, the behavior of
arbitrary faults at gate level may be easily modelled.
Moreover, using a fonnallogic leads LO a reduction of the
hardware verificaLion and lcstpattcm generation problem to
a satisfiability and validity problem and hence new and
different approaches arc possible. which are based on a
separaLion between problem formulation and soluLion
methods [18J.

Our approach leads to a tool which supports the
designer at two stages of the design process. When crcaLing
a circuit implemenlation, he ensures design correctness by
describing his dcsign in terms of lemporallogic and verify·
ing it against a givcn specification. The very same circuit
description and tool is then used to generate test pattern
sequences. Moreover, as a spin-off, design for lcstability is
automaLically supponed. since a verifiable implementaLion
leads automatically to better testable designs.

A rel:l.IM approach has been pre.'\Cnted by Cho. Somcnzi
Cl al. which relics on similar implementation principles
(1l91.l20J). However. it is directly based on FSM equiva·

INTERNATIONAL TEST CONFERENCE 1991

CH3032-0/91/0000-0057$01 .00 Cl 1991 IEEE

Paper 3.1

57

Icnce checking and is not able to cope with circuits wilh
OUI reset line.

The pnper is organized as follows: In section 2 some
fundamentals of temporal logic arc introduced. The next
section shows how to model hardware behavior using lhis
formal language. In chapler 4 an approach for hardware
verification with temporal logic is presented. Then the
verification problem is extended to sequential ATPG.
Chapter 6 points out some optimizalions which accelerate
lhe approach. The paper ends with experimental results and
a conclusion.

2. TEMPORAL LOGIC

Propositional temporal logic is frequently used in hardware
verification ([16], [211, [17]). Traditional propositional
logic is extended by temporal operators, which allow the
expression of time varyi ng properties as the sequential
behavior of digiLlI circui ts . Moreover, propositionaltem
paral logic is decidable, and there are constructive, fully
automated decision procedures available, which arc lhe
main advantages compared to approaches based on first or
higher order logics ([2], [3]). There, mechanized theorem
proving is slower and often rc<juircs user guidance.

Two approaches to temporal logic theorem proving are
mainly used - Computation Tree Logic (CTL) and
Propositional Temporal Logic (PTL). CTL is a proposi
tional, branching time logic, i.e. in the future many com
putation paths are possible [221. A specification is given
by CTL fommlas and the implementation of lhe system to
be veri fi ed is given by a state graph [17). PTL is based on
a linear sequence of discrete time points. In contrast \0
CTL, no explic it s tate graph is given and both,
spcci fi calion and implementation arc described in PTL. It
has been proposed by Manna and Pnueli as a means fo r
verifying concurrent programs [231 and il~ usefu lness for
describing and verifying hardware has also been established
([24], [25], [16]).

Since o ur approach is based on PTL, its operators as
well as the underlying decision procedure are explained in
the following.

Formulas in P'TL arc constructed in the usual way of
the propositional calculus. The semantics of PTL is
explained based on the proposilional operators.., and ~,
but other logiC:lJ eonn(!cli ve~ :tre Il!:ed :IS abbrcvi!ll.ioM (.... ,
v, H, <II as and, or, equivalence and exclusive-or respec
tively). A fonnula F is buill from a SCt A of variables and
it is called atomic, if F E A or F'=- ..,p with pE A. In
addition to the propositional connecti ves, tem poral rela
tionships arc expressed by three operators. The form ula
Op indicates, that formula p holds in the next time
instance, Op means, that p is true in this and all follow
ing time points and Op means lhat p is true in this or one

Paper 3 . 1
58

of the fo llowing lime points. The until operator is omit
ted, since it is not used in this context

P1L fonnulas arc defined as follows [23].

Definition I:
a) An atomic proposition is a PTI.. fonnula .
b) If F and G are PlL fonnulas, then -,1', F ~ G, OF,

OF and <) F arc PTL fonnulas.

In the following, small letters denote atomic propositions
(e.g. p) and capitallctters dcnote compound P1L fonnulas
(e.g. F, UCj.

A formula F is called elementary, if it is atom ic or F=
OG, i.e. F contai ns the next operator as i ts outcrmost
connective.

Definition 2: Let CT:= (SO, SI, S2, ...) be a sequence of
truth assignments s;: A ~ {O, 1), and be a j := (Si,
Sj+ 1, ...) lhe ith truncated suffi x of eJ. We call rJ a
model of a fonnula H or H is true under a(denol.ed as rJ
F= I-/) according lO the following rules:
CT F= p iff sO(P)= l whenpe A
a)= ..,F iff CT t,iF
rJFF~G iff al;i For eJl= G
(7 l= OF iff at l= F
rJ):: OF iff Vi,ie N o.ail= F
eJ F OF iff 3 i ,ie NO. (7;):: F

Defi nition 3: A formula is satisfiable if there exists a
model for il. A set of fonnulas is called satisfiable, if
every formula from this set is satisfiable. A formula F
is called valid (or lautology, denoted by 1= F) if G F F
holds fo r every G.

Automated theorem proving can be done based on tableau
melhods in a sim ilar way as they are used for the proposi
tional calculus [261. A property of proving procedures
required for test generation is their constructiveness, i.e.
lhe ability to explicilly generate models for a salisfiable
formula and counterexamples if a tautology check for a
given formula fails.

However. for the problems treated in this paper nOlthe
wholc expressiveness of tcmporallogic is needed. Hence
methods known from FSM equivalence checking ([27],
119], 128J) may be used to faslen the temporal logic prov
ing process sim ilar to suggestions of Burc h, Clarke,
McMillan and Dill ([171. [29]). This is described in more
detail in chapter 6.3.

3. HARDWARE MODELING

To describe hardware with PTL. thc mOOe1 of discrete lime
points is mapped onto real lime events. Two approaches
are conceivable. Eilher every discre\C lime point is defined
by a fixed time schedule or \.he time points mark the clock
licks of a synchronous syslem . Although the fonner pos-

sibility allows the expression of asynchronous behavior, it
complicates the circuit descriptions and limits ilS usc to
small circuilS. In !his paper, the laner melhod is used. The
"next"-operator indicates the values of eircuil variables
after the next clock signal. This modeling is not restricted
to single clock systems, complex e10cking schemes arc
allowed provided lhal clock transitions only occur at time
points describable with PTL.

A simple example of a single clock circuit is shown in
figure 1 [30].

. --=EfB1-0UI on

Figure I: Example Circuit

lIS behavior is described by the following set of fonnulas:

o (m H ..., (in A out))
o (OoutHm)

The "always"-opcrator indicates, that the functional rela
tionship between the input and output of the elements
must hold forcver. For better readability the AND-operator
is omitted between lhe subfonnulas.

A nellist description of a circuit is translated into tem
porallogic in linear time, the PTL formulas to model the
behavior of basic cells have to be stored in a library.

4. HARDWARE VERIFICATION

For performing hardware verification, both circuit specifi.
cation and circuit implementation can be described as indi
cated in the last section. If a specification 5 of only certain
circuit properties, i.e. a partial specification, as well as an
implcmentation J arc given in temporal logic, the formula

F(J->.5) (I)

must be proven {I5]. Often the specification describes lhe
complelC behavior of lhe circuit. In that case, the behav
ioral equivalence of two circuit descriptions Sand J must
be shown

(2)

The behavioral equivalcnce of two circuil implementations
jI and jl has to be checked, if a design has been modified,
e.g. by minimi7,.ation. The necessary verification can also
be performed with formula (2), but for an casier processing
with a temporal proof system , a slig htly different
approach, based on the definition of behavioral equivalence
(see e.g. [3 J n is used.

Definition 4: Two circuits arc behaviorally equivalent, if
for arbitrary input values the correspondent primary

outputs carry the same values for all time points,
provided that both circuiL<; have been initialized
correctly.

If the variables Ojl (j = I, . .. , no) denote the primary out
puts of lhe first circuit and Oj2 denote the correspondent
outputs of the second circuit, the property P as defined in
formula (3) states behavioral equivalence directly in terms
of temporal logic (/\ denotes a conjunction of its
arguments).

'" P:= 0 . /\ (Oil H Oi2)
I = 1

(3)

The equivalence ...,Ox H O...,X leads to the following
uncover condition UC (V denotes a disjunction of its
arguments), which, if satisfiable, indicates a different cir
cuit behavior.

'" UC:=O.V (Oi l cB oP)
I = I

(4)

Since the two circuits to be verified must be in the same
st.arting state at the beginning of the verification process.
there must be a unique reachable initial state, which is
guaranteed, if all IJipfiops are resctable. This is expressed
by lhe following PTL initiali:t..ation condition IC, where
djl and di2 denote the state variables of both circuits.

fldl R({1
JC~ /\ (~dil), /\ (~di2) (5)

i = I j = I

The correspondence between satisfiability in temporal
logic and circuit equivalence is stated in lemma I, which is
an immediate consequence of definition 4 and the definition
of satisfiability in PTL.

Lemma I : Let JI and J2 be two circuits, let UC be an
uncover condition according to (4) and IC an initializa·
tion condition according to (5) in PTL. If the conjunc
tion JI A J2 A IC A UC is not satisfiable, then the two
circuits have identical behavior.

This lemma reduces verification to lheorem proving,
moreover, as the proof system is constructive, an input
sequence is generated automatically. which uncovers the
different behavior. This input sequence may be used by the
circuit designer as a hint to identify and eliminate thc
design errors.

5. TEST GENERATION

Test generation is performed by injecting faults given by
an appropriate fault model into the description J o f the
correct circuilto get a faulty dcscription fl. The behavior

Paper 3.1
59

of J and JC is then compared to find input sequences so
that the output values of both descriptions eventually
differ.

The fo llowing approach is not restricted to stuck-at
faul ts. an arbitrJ.ry erroneous behavior can be handled, if it
is describable in PTL. This includes for instance stuck
open fa ults (see figure 2).

x J-r-----'

x,+r"'1 y

Behavior of the corroct circuit

0«-,X\A-,X2)-+ y)
O(XI -+ --.y)
o «(-,X\ A X2) -+ (y HSIQIC»
0(0 slate H y)

Behavior of the faulty circuit

Figure 2: NOR-gate with stuck-open fault

More effort is required for considering the impact of
hazards and charge-storing on transition faults. These
mechanisms and delay fa ul ts can be handled by refining the
grid of the time points ofPTL and by adding timing spcd·
fi cations to the libr-ill)' clements. Overall this leads 10 a
considerable increase of complexity and is not incorporated
in our fi rst implementation. Moreovcr. for conciseness and
comparability with other approaches [32]. we restrict our·
selves in the following to the Sluck-at fault moocl.

Unlike verification, the test generation must not be
based on the assumption of a reset state, since an initiali·
zation sequence may be altered by the fault, the reset line
may be affected or there exists a stuck-open faul t with
unknown staning value. Hence one must be able to deal
with unknown values of storage clements althe beginning
of the tes t generation process. For easier understanding. the
case that the faulty circuit still has a reset sute is discussed
first, and then the general case is treated.

5.1 Circuits with Reset State

The uncover condition (4) and the initiali7A1tion condition
(5) defined in the former section sti ll hold for the fau lty
and fault free circuit. A lesl pal/ern sequ.ence is a truth
assignment for the primary input variables so that at least
one of the OUlputs of the correct and faulty circuit eventu·
ally carries a differcnt value. If such an assignment does
nol exist, the fault is called u.ndetectable.

As an immediate consequence of lemma I the following
fact is proven:

Paper 3. 1
60

Lemma 2: Let J be a correct circuit and let Ji- be a fau lty
circuit. let UC be an uncover condi tion according to (4)
and leI IC be accord ing 10 (5). A satisfying variable
sequence TE for the conjunction J A Ji- A UC A lC is a
!Cst paucm sequence for the fault

Example: The modeling of the correct and faulty circuit
behavior is demonstrated by the circuit, given in figure 3.

d

clOCK

Figure 3: Example circui t 1.aken from t33)

Given a sLuck·at-O fault at the output RS' the beha vior of
the correct circuit J and faulty circuit y, is modelled by the
P1L fonnulas, depicted in figure4.

O(gl ~ -, d) O(gl£H-,d)
0(g2 H (-' 00 A d) 0(g2£H (-, <jQ£ A d)
0(g3 H (00 Ag\Aql» 0(g3£H (<jQ£AgI£"qt£)
0(g4 H(dA-,r,uAql» O(g4£H(d,,-,00£" <1\ £)
O(gS H (00 A -, qt» O(gs£ H 0)
0(g6 H (83 v 84 v gs» 0(g6£ H (83£ V g4£ v gst»
0(0"' ,,) 0(0"" ",)
O(Oq\ H86) O(Ol1J t Hg6£)

Figure 4:Behavior of the circuit Jand Ji-

The uncover condition UC is as follows:

O«qO e qO') v (qJ e "'))
Since all HipnojlS are resetable. the following ini tiali7.a·
tion condition holds

IC:=""""'lO A""""'ll A-qrf A""""'l IE

The formu las from figure 4 a) and b) as well as the
uncover and initialization condition arc now input to a
temporal proof system to perfonn a satisfiability check,
i.e. a variable sequence for the conjunction

J/\!fo/\IC/\UC

has to be found. In Ihe example, Ihe proof system will find
Ihe following solution

Tt:= d /\ O~/\OO~.

This fonnula corresponds to a test pattern sequence (d, -.d,
-d) (end of example).

S.2 General Case

A test pattern sequence 'It is called generally valid (denoted
as Tfy), if it is a trulh assignment for Ihe primary input
variables so that at least one of the outputs of the correel
and faulty circuit carries eventually a different value for
arbitrary initial values of Ihc storage clements of the cir
cuit.

Cho and Bryant gcnerated such sequences by introducing
a Ihird value X to assign an "unknown" Signal value to the
f1ipflops [30). Since efficient multiple-valued logic theo
rem tools arc not generally available. an encoding of every
threc·valued variable by two two-valued variables is
required and leads to a significanlly larger search space.
Moreover, Ihis approach leads to test pauern sequences
which are often not minimal. Even worse, approaches
based on such a representation of unknown values are
inherenlly incomplete, since information may get lost
[331 .

The approach. presented in the fo llowing avoids an
explicit representation of unknown signal values and hence
this drawback of incompleteness. It is based on the trivial
observation, that if a test pauern sequence is generally
valid. it is also a test pattern sequence for a circuit with
resetablc flipflops . Vice versa, in many cases the deter
mined sequence for circuits with reset state is also a valid
sequence for arbitrary initial values of the Jlipflops . This
property is fonnally provable by using the following
lemma, which states directly general validity .

Lemma 3: Let J and JC be the PTI... descriptions of a fault
free and faulty circuit, let UC be an uncover condition
according to (4) and It a PTI.. fonnula describing a test
pattern seq uence. The sequence is generally valid, if
form ula (6) holds.

1= (J/\ JC /\ TE) -+ U C (6)

The following algorithm starts by generating a sequence
for an arbitrary initial state. If a sequence T£ has been
found which is not generally valid. the test generation pro
cess is restarted to capture "missing" initial states by
extending the !ieQl.ICtICC.

The function isce returns a formula describing the values
of aU state variables of the counterexample at the first time
point.

Note. that the spliuing into the two funct ions
check_s at and sat_seq has been chosen only for
clarification. When using a temporal proof system, both
results are achieved by one pass of the system due to its
constructiveness. This also holds for check val and
isce.

function atpg(J, :;e, UC);

{UC is determined according to (4 »)

begin
valid : - false;
IC ;- 1; (first init. state arbitrary
while not val do

begin
sat : - check_sat (J /\)£ /\ Ie /\ UC);

{check satisfiability)
if sat then

T£ ; - sat_seq(J /\ JC /\ IC /\ UC)

(satisfying sequence
else

return {"fault undetectable!");
val : - check_val {(J /\)£ /\ TE) --+ UC)

{check validity)
if not val then

begi n
ISCE : - isce ((J /\ 7- /\ T£) -+ Uc) ;

(initial state of counterexample)
IC :- ISCE /\ T£

end
else

return (TE) :

end;
end.

Theorem: The algorithm atpg finds a test pattern
sequence, which is generally valid, if one exists.

frQ.Qf: The correctness of atpg follows immediately from
lemma 3, since this property is explicitly proven in the
algori thm. For proving completeness, the termination
condition must be checked. The algorithm stops, if no fur
ther test sequence with the given initialization condition
IC is found. At the beginning, IC leads to a sequence for
an arbitr.uy, but fixed starting state. If no such sequence is
found, trivially no generally valid sequence exists. In the
second and further iterations of the algorithm, the general
validity property is chcck.ed. If a sequence is nOl generally
valid, a counterexample is generated. The values of the
state variables at the first time point indicate an initial

Paper 3 .1
61

state for which the determined sequence 1'(is unable to un
cover the fault. The proof process is restarted with this
state and the already generated test sequence as an additional
constraint. Therefore, a new sequence is generated whieh
extends the o ld sequence to uncover the fault for this new
state. The algorithm only fai ls, if the sequence is not
extendable to comprise all possible initial stales. However,
thi s is only the case, if it is impossible to find a subse·
quence beginning at the ends/ate of the circuil after apply
ing lhe already generated sequence, which uncovers the
fault. Hence if the circuit would have been in this endstate
at the beginning of the generat ion process, no sequence
would have been possible either. Therefore no generally
valid test pattern sequence exists. •

Example: If the algori thm is applied to the example circuit
from figure 3, with the new condition lC:= (...,qo A ...,q l A

-'Ql£), the result of table J is achieved. The flipflop qO£
can be omitted, since the fault may nOl propagate to that
flipflop. "Chosen state" indicates the state, which has been
chosen for test generation according to lC. The remaining
initial states indicate the states for which T£ is not a valid
teSt pattern sequence.

Table 1: Variable Assignments for Example Circuit

Ie chosen stme Te remaining
initial states

I q 1 £...,ql--.<Kl -,d q lEq} v

....,q1E-.q1

q\[q1 v -.q\E-,q1 qo --d A Od q}t: ql v

....,qlt:,q1,qlr.....ql-.qo

q]Eql v -41 F.""U-40 --dAOdA qlEql qo
--(II £...,q 1--.QO 02d" 03d

q lC q lqO ql£q1 qO --d" ad" 0

02d" 03d

" 0 4- 11'1"
0'-<1

Thus a generally valid test pattern sequence is found (Oi
abbreviates i consecutive O-operators)

IT:,., ", ...,d " Od" 02d" 03d " 04...,d " OS--d

If the sequence (--.d , d, d , d, --d, -.d) is applied to the cir·
cuit, a SlUck·at-O fault at (he output gS for arbitrary initial
values of the flipflops is uncovered (end of example).

Paper 3. 1
62

6. OPTIM IZA nONS

The temporal proving process has an exponential worst
case complexity with regard to the number of state vari
ables. Optimizing the proving system, avoiding unneces
sary proof runs and reducing the problem size are therefore
crucial to obtain feasible runtimes.

6.1 Avoid ing Un necessa ry Proof R u ns

[n case of circuits without reset state, the number and
length of the proof runs are reduced by t.1king advantage
from the degrees of freedom in the initial condition I e:
Especially when starting the algori thm , no constraints are
imposed on the initial state. Hence, it is first checked, jf
there exists directly a state, which satisfies the given
uncover condition. Thus is is always tried to extend the
generated sequence by only one test veclOT. A real proof
run is only perfonned, if IC forces it. Moreover, after each
proof run a fault simulation is pcrfonned by a commercial
fault simulalOr [341 to reduce the number of faul ts to be
processed b)' dropping all faults, which have been also
detected by the determined test pattern sequences. For this
purpose, the test pattern sequences for all fau lts already
processed are conca tenated in case of not resetable
flipflops. Due to the completeness of the presented ap
proach, the fault simulalOr is only used for speed im
provements and is not required for val idating the test
pattern 5e{juences.

6.2 Reducing the Problem Size

There are situations in case of circuil<; without reset state
as well as in case of circuits with reset state in which not
all pans of the circuil have to be described by P1L formu
las. Hence, the input to the proof system is reduced by per
fonning a partial modeling of the correct and faulty circuit.

Ci rcui t parts which will nOt propagate ilie fault to
primary outputs can be elim inated in J and in JE. When
modeling the circuit by a directed graph, this elimination
affects the predecessor nodes of all primary output nodes
which are not successors of the faulty node. Furthennore,
circuit parts, which arc not affected by the fault can be
modelled only once for Jand 7- (nodes which are not suc
cessors of the faulty node). F inally, when dealing with
stUCK-at faulLS, all those nodes can be eliminated, which
would have been only necessary to compute the value of
the faully node.

lllese optimi7.ations lead to considef"dble savings . When
dealing e.g. with a stuck·at fault at a primary output, it is
not necessary to model the faulty circuit as in iliat case the
uncover condition on l)' denotes, that the! correspondent
output of the correct circuit must eventually carry the
proper logical val ue (e.g. 0 for a stuck-at-l fault),

Moreover, only the predecessor nodes of that output mUSt
bcmodclled.

A temporal logic based approach is well sui ted for
incorporating user guidance. It is easily possible to add to
the circuit description ini tializing values (e.g. a reset sig
nal) or sequences, the designer knows 10 put the circuit
into a state, suited for a given faul t by providing additional
temporal fonnulas 10 the proving procedure.

6.3 Optimizations of the Proving System

The proving procedure can be optimized by reducing the
number of nodes represented by a tableau and by imple
menting more efficient lIansition conditions than the
tableau rules, originally used [261. Both approaches can be
combined.

Fujita and Fujisawa have shown, that it is possiblc 10

represent the lIansition cond itions of the tableau with
binary decision diagrams (BO~s) to reduce the representa
tion overhead [16J . However, an explicit enumeration of
all reachable nodes in the large space of the power set of
all subformulas is still required ([23], [26]. [21]). This
large space can be reduced when using tcmporallogic only
for representing and analyzing the behavior of digital cir
cuits. In that ease, it is possible to represent the states of
the digital system with propositional state variables and
the nodes of the tableau can be also encoded by a vector of
stale variab les, which can be implemented more
efficientl y, compared to a eharacteri7.ation of states with an
elementary fonnula labelling. Moreover. the model can be
represented symbolically by a transition re lation and sets
of states with characteristic functions.

Coudcrt et a l. presented a memod for sequential circuit
verificat ion, which lIaverses the FSMs by symbolic
manipulations of Boolean functions, represented as BO~s,
which avoids the state explosion drawback ([351, [27],
[36j). This approach has proven succcssful and has been
refined immediately ({19J, [28]). Burch e1 al. have shown,
that the basic mechanisms are well suited for implement
ing model checkers for temporal logic ([17], [29]). Our
own implementation is based on these approaches using
the BOD-package of Brace e t al. [37J. The construction
process is stopped after lhe first satisfying variable se
quence is found. so that the whole tableau of a PTL
fonnula has to be constructed only if no solution exists.

7. EXPERIMENTAL RESULTS

The presented approach has been validated on a variety of
sequential circuits. In the following, we prescnt the results
ach ieved on the ISCAS '89 s-benchmark set [32]. All
runti mes arc given in sco:;:onds and have been achieved on II.
SUN 4/65 workstation. Table 2 shows the results of
verification runs, according to lemma 1. The compared

circuits arc known to have identical behavior. '·Depth"
indicates the maximal length of an input sequence which
may be applied to the circuit before a same state is encoun
tered again . The runtime.. .. give a worst case estimation of
me time effort nceded in case of undetcclable faults for cir
cuits with reset state, if lhe circuit modeling has not been
optimized as indicated in section VI. A undetectable fault
requires at worst the same exploration of the complete
state spacc. Hence, if Ihe designer succeeds in the verifica
tion step he can also be sure that for each stuck-at fault a
test sequence can be generated with similar computing
time. Aboncd faults are avoided this way.

Table 2' Verification results

circuits depth time in seconds

s344 H s349 7 59.2

s382 H s400 151 213.7

s526 H s526n 151 127.6
s820 H s832 II 1.5

51488 H sl494 22 3.8

Table 3: Test Generation Results (resetable flipllops)

circuit .n~ Itundct ItlCs1 avg. total
faults vectors ATPG time in

~
.i. e/fl . seconds

" 0 16 0.01
,208 215 65 135 1.4
,298 308 36 m
,344 342 5 98 31.9 837.7
,349 350 7 101 32.4 944.0

I s4()()

399 20 1858 43.4 2405.
70 162 0.5 74.5

424 ,. 1815 46.' 2868.7
s420 430 22

~
263.

s444 3 60.3 14103.7
,510 564 .3 33.7

~
555 Pi 58.' 7745.3

58.'

~ 850

~
870 785 269.

S 138 4.7 12725.6
1242 330 2.8 648.2

, 1238 1355

~
133 1.4

,1488
~ ,1494 1506

In table 3 and 4, Ihe close relation of verifiabi lity and
testability is obvious. Test generation time fo r circu its
wilh reset state is high for all circuits, which have shown

Paper 3. 1
63

to be hard to verify. With our first implementation we
were able to generate generally valid test patterns for those
circuits without reset state, which had small verification
times. It is apparent that the sequential depth directly
influences test pattern length and runtimes especially in
the case of c ircuits with non reseLable flipflops. Since the
system is based on a breadth-first traversal of the circuits,
always minimal length test pattern are generated in case of
circuits wi th reset slate. If a fault is undetectable, accept
able runtimes arc generall y preserved, since in that case a
complete exploration of the whole state space has to be
perfonned, which is a strength of the verification oriented
approach. By using "cheaper" methods like random-pat
terns before applying verification based techniques a con
siderable speed- up may be achieved for test generation [20].
However, since we want to emphasi7.e in this paper the
similarities between test and verification we renounced to
elaborate these possibilities.

Table 4: Test Generation Results (non resctable flipfiops)

circuit .n~ #undet #test avg. tOlat
faults vectors ATPG time in

time/flt =0<1s
m 32 0 t4 O. t 0.7

s208 215 65 208 0.5 72.2
s298 308 35 356 20.1 1238 .2
s386 384 70 t85 0.8 85.5
s420 430 226 252 6.2 1692.7
s820 850 35 977 1.8 2057.7
s832 870 51 977 1.8 2063.7
s1488 1486 40 1107 5.1 1849.5
s1494 1506 51 1034 5.5 1586.7

8. CONCLUSIONS AND FUTURE WORK

Using temporal logic it is possible to generate test pattern
sequences by performing a constructive proof of the for
mally stated lCSting problcm. Follow ing this approach, a
method has been presented which allows test gencration for
arbilrary fault models and leads to a novel approach for
not resetable flipflops, which avoids many drawbacks of
other approaches. Thus we arc able to provide onc tool,
which can be usc.d for both, tes t generation and hardware

verification.
With our prototype implementation of this design tool,

we arc currently able to process the small and medium
sized circuits from the ISCAS '89 benchmark sel. This is
nOt a fundamental drawback since we have shown, that it
is possible to reduce test generation to a satisfiability
problem in fonnallogic as it ha~ been done previously for
hardware verification. Temporal log ic model checking

Paper 3. 1
64

algorithms are subject to constant improvements so that
the si7..e of manageable circuits will further increase [381.
Moreover, it is possible to extcnd the approach to hierar
chical circui ts since hierarchy is one of the key issues of
verification and many useful approaches have alrcady been
published, which can also be applied to testing ([II. [39)).

ACKl'iOWLEDGEMENTS

We would like 10 thank Karl Brace, who provided us with
their BOD-package, which considerably eased the imple
mentation of oUI proof system [37]. The email correspon
dence with Ken McMillan revealed some useful implemen
tation hints to us. Withou t the continuous assiSl.:mce of
Oliver Seitz, the whole implementation would not have
been possible.

REFERENCES

M. J. C. Gordon: Why High-Order Logic is a good
Fonnalism for Specifying and Verify ing Hardware;
Milne/Subrahmanyam (Eds.), Fo rmal Aspects of
VLSI Design, Proc. Edinburgh Workshop on VLSI
1985, North- Holland 1986, pp. 153- 178.

2 V. Stavridou. H. Barringer, D.A. Edwards: Fonnal
Specification and Verificatio n of Hardware: A
Comparati ve Case Study; Proc. 25th Design
Automation Conference (DAC 88), 1988, pp. 197·
204.

3 K. Schneider, R. Kumar, T. Kropf: Structuring
Hardware Proofs: First steps towards AutOmation in a
Higher-Order Environment; Proc. International
Conference on Very Large Scale Integration, A.
Halaas, P.B. Denyer (Eds.), 1991, North-Holland.

4 R. Marlett An Emcient Test Generation System for
Sequential Circuits; Proc. 23rd Design Automation
Conference, June 1986, pp. 250-256.

5 M. Schulz, E. Trischlcr, T. Safert: SOCRATES: A
Highly Efficient Automatic Test Pattern Generation
System; IEEE Transactions on CAD, Vol. 7, No. I ,
January 1988, pp. 126-137.

6 W.T. Cheng: Thc BACK Algorithm for Sequential
Test Generation; Proc. Inte rnational Conference on

Computer Design (ICCD 88).1988, pp. 66-69.

7 M.H. Schulz, E. Auth: ESSENTIAL: An Efficient
Self-Learning Test Pattern Generation Algorithm for
Sequential Circuits; Proc. Inti. Test Conference (ITC
89), 1989, pp. 28-37.

8 MJ. Y. Williams, J.B. Angell: Enhancing Testability
of Large-Scale Integrated Circuits via Test Points and

Additional Logic; IEEE Transactions on Computers.
vol. C-22. PI). 46-60. 1973.

9 E.B. Eichelberger. T.W. Williams: A Logic Design
Struc ture fo r LS I Testability; Proc. Design
Automation Conference 1977. pp.462-468.

10 K.4T. Cheng, V.D. Agrawal: An Economical Scan
Design for Sequential Logic Test Generation; Proc.
19th Interna tional Symposium on Fault-Tolerant
Computing. pp. 28435. 1989.

II Hans4Joachim Wunderlich: The Design of Random4

Testable Sequcntial Circuits; Proc. 19th lnt. Symp.
Fauh4Toieran t Computing. pp. 1104117, 1989.

12 A. Kunzmann, H.4J. Wunderlich: An Analytical
Approach to the Partial Scan Problem; Journal of
Electronic Testing: Theory and Applications, vol. 1,
pp. 163-174, 1990.

13 H.-J. Wundcrlic h, S. Hellebrand: The Pseudo
Exhausti ve Test of Sequenlial Circuits; Proc.
International Test Conference, 1989.

14 S. Devadas, H.4K. T. Ma , A. R. Newton, A.
Sangiovanni. Vincentel li : Irrcdundant Sequential
Machines Via Optimal Logic Synthesis; IEEE Trans.
on Computer-Aided Design, vol. CAD-9, pp. 8-18,
1990.

IS Paolo Camurati. Paolo Prinetto: Fonnal Verification
of Hardware Correctness: IntrOduction and Survey of
Current Research; Computer" July 1988, pp. 8-19.

16 M. Fujita, H. Fujisawa: Specification. Verification
and Synthesis of Control Circuits with Propositional
Temporal Logic; Computer Hardware Description
Languages and their Applications (CHDL 89), lA.
Darringer and FJ. Rammig (Eels.). Elsevier Science
Publishers, Nonh-Holland, 1989, pp. 265 ·279.

17 J.R. Burch , E.M. Clarke, K.L. McMillan, DL Dill:
Sequential Circuit Verification Using Symbolic Model
Checking; Proc. 27th Design Automation Conference
(DAC 90),1990, pp. 46-51.

18 B. Krishnamunhy: Hierarchical Test Generation: Can
AI Help?; Proc. International Test Conference (ITC
87), 1987 , pp. 694-700.

19 H. Cho, G. Hach tcJ, S.-W. Jeong, B. Plessier, E.
Schwarz, F. Somenzi: ATPG Aspects of FSM
Verification; ?roc. International Comference on CAD
(ICCAD 90).1990, pp. 134-137.

20 F. Somenzi. H. Cho. G.D.Hachtel; Fast Sequential
ATPG Based on Implicit Slate Enumeration; ?roc.
International Test Conference (ITC 91), 1991.

21 G.L.J. M. Janssen: Hardware Verification using
Temporal Logic: A Practical View; Proc. Workshop
Applied Formal Methods fo r Correct VLS I Design,
Leuven, Belgium, 1989, pp. 291·300.

22 E. M. Clarke. E. A. Emerson. A. P. Sistla:
Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications; ACM
Transactions on Programming Languages and
Systems, Vol. 8. No.2, April 1986, pp. 244-263.

23 Z. Manna, A. Pnueli: Verification of Concurren!
Programs: The Tem poral Framework; in "The
Correctness Problem in Computer Science\ R.S.
Boyer and J.S . Moore (eds.), Academic Press, 1981,
pp.215-273.

24 Gregor V. Bochmann: Hardware Specification with
Temporal Logic: An Example; IEEE Transactions on
Computers, Vol. C·31, No.3, March 1982. pp. 223·
23 1.

25 S. Bapa!. G. Venkatesh: Reasoning About Digital
Systems Using Temporal Logic; Proc. 23rd Design
Automation Conference (DAC 86), 1986, pp. 215-
219.

26 P. Wolper: Temporal Logic Can Be More Expressive;
Proc. 22nd Annual Symposium on Foundation of
Computer Science. 1981, pp. 340-348.

27 O. Couder!, C. Berthet, J.C.Madre: Verification of
Sequential Machines Using Boolean Functional
Vcctors; ?roc. Workshop Applied Fonnal Methods for
Correct VLSI Design, Leuven, Belgium, 1989,
pp.lll · 128 .

28 H.1 . Touati, H. Savoj, B. Lin , R.S. Brayton, A.
Sangiovanni- Vincentelli: Implicit Stale Enumeration
of Finite State Machines using BDD's; Proc.
International Conference on CAD (ICCAD 90), 1990,
pp. 130-133.

29 l.R. Burch, E.M. Clarke, K.L. McMillan , D.L. Dill,
LJ. Hwang: Symbolic Model Checking: 10"20 States
and Beyond; Proc. 5th Annual Symposium on Logic
in Computer Science. 1990.

30 K. Cho, R.E. Bryant: Test Pattern Generation for
Sequential MOS Circuits by Symbolic Faull
Simu lation; Proc. 26th Design Automation
Conference (DAC 89), 1989. pp. 418-423.

31 Z. Kohavi: Switching and Finite Automata Theory;
McGraw-Hili Computer Science Series, 1970.

32 P. nrglM, D. Dryon, K. Koz.minski: Combiruu ionai
Profiles of Sequential Benchmark Circuits; Proc.

Paper 3.1
.5

International Symposium on Circuits and Systems
(ISeAS 89), Portland, Oregon, May 9-11,1989, pp.
1929-1934.

33 A. Miczo: The Sequential A TPG: A Theoretical
Limit; Proc. International Test Conference. 1983. pp.
143-147.

34 GenRad Inc.: System HILO. System Reference
Manual; Doc. No. 2523-0101, United Kingdom,
1988.

35 O. Coudert, C. Bcrthet, 1.c. M:J.dre: Verification of
Synchronous Sequential Machines Based on Symbolic
Execution; Proc. Workshop on Automatic Verification
Methods for Finite State Systems. Grenoble, June
1989.

Papar 3.1
66

36 Randal E. Bryant: Graph-Based Algorithm s fo r
Boolean Function Manipulation; JEEE Transactions
on Computers, Vol. C-35, No.8, August 1986,
pp.677-691.

37 K.S. Brace, R.L. Rudell, R.E. Bryant: Efficient
JmpJcmem.:l.lion of a BOD Package; Proc. 27th Design
Automation Conference (DAC 90), 1990. pp. 40-45.

38 J.R. Burch, E.M . Clarke, D.E. Long: Representing
Circuits More Efficiently in Symbol ic Mode l
Checking; Proc. 28th Design Automation Conference
(DAC 91),1991, pp. 403-407.

39 T.E. Mel ham: Abstraction Mechanisms for Hardware
Veri fi cation; VLS I Specification, Verification ~nc1
Synthesis. G. Bir\wistle, P.A. Subrahmanyam (cds.),
Kluwer Academic Press, 1988, pp. 267·291 .

