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Abstract

Usually in complex circuits the test execution is divided
into a number of subtasks, each producing a signature in
a self-test register. These signatures influence one another.
In this paper it is shown how test schedules can be con-
structed, in order to minimize the number of signatures to
be evaluated. The error masking probabilities decrease,
when the subiasks of the test execution are repeated in an
appropriate order, and an equilibrium situation is reached
where the error masking probabilities are minimal.

A method is presented for constructing test schedules such
that only the signatures at the primary outputs must be
evaluated to get a sufficient fault coverage. Then no inter-
nal scan path is required, only few signatures have to be
evaluated at the end of the test execution, and the test con-
trol at chip and board level is simplified. The amount of
hardware to implement a buili-in self-test is reduced
significantly.

KEYWORDS: Aliasing, built-in self-test, signature

analysis, test scheduling.

1. Introduction
In order to implement a built-in self-test often some
system registers are augmented to multi-mode self-test
registers (STRs) like the well-known BILBO (built-in
logic block observer [17]), GURT (generator of
unequiprobable random tests [23]), or additive cellular
automata [12]. In the test mode, STRs generate patterns or
perform signature analysis. By an appropriate placement
of the STRs, in the test mode all global feedback loops
are cut, and the circuit is subdivided into segments (rest
units) that are completely bounded by STRs (e.g. [4, 18]).

A test unit can be tested independently from the rest of the
circuit. It contains a set of STRs that generate pseudoran-
dom or (pseudo-)exhaustive test patterns for the block
under test and one STR that is configured as a multiple
input signature register (MISR) to evaluate the test re-
sponses, when the test unit is processed. If the obtained
signature differs from the correct signature, the block is
faulty. However, even false test responses may result in
the correct signature. This is called error masking or
aliasing.
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The test of the whole circuit consists of processing all the
test units. To reduce the test execution time, one tries o
process many test units concurrently. The problem of test
scheduling is to organize the execution of all the single
test units so that the available resources are optimally
utilized. In order to obtain a completely self-testable
circuit, the test schedule must be implemented by a test
control unit (e.g. [11]).

Known algorithms for test scheduling reduce the problem
to finding a minimum coloring of a graph [4, 18] (see
section 2). Others aim at systems with pipeline structures
and apply techniques similar to pipeline optimization
techniques [1] or use special heuristics [20]. All of them
try to minimize the overall test length. But with a built-in
self-test (BIST), it is often more desirable to minimize the
silicon area required for BIST structures. In this paper
a scheduling method is presented that aims at reducing the
amount of additional test hardware.

In [22] it is shown that the effects of a fault, namely
faulty signatures, can propagate through the circuit, if the
signatures are retained and the test registers are not reini-
tialized during the test execution. When the test units are
processed in an appropriate order, it is sufficient to scan
and evaluate only a subset of the signatures, which must
include all the STRs at the primary outputs, because their
signatures cannot propagate anywhere else. In this paper
an algorithm is presented for constructing test schedules
such that this minimal subset is sufficient for achieving a
high fault coverage. This yields important advantages for
testing at chip and board level:
* Only few signatures to evaluate
® No scan path for internal STRs
« Simplified BIST control unit
» Implementation of internal STRs with less hardware
» Simplified boundary-scan control:
smaller number of test data registers to control by the
TAP [13] (a test data register containing the internal
STRs is not required)
» Simplified high level control:
smaller number of instructions to send to the chip
under test, smaller number of responses from the chip
under test



Of course it must be ensured, that the fault coverage is
unaffected by these hardware savings. Let E(N) be the
expectation value of a random variable N, and let M be the
set of modeled faults. The fault coverage FC is defined by

FC := oo E(¥faults detected by evaluated signatures).

The fault coverage depends on the test schedule and the
aliasing probabilities of the signature registers. The ali-
asing probabilities for single signature registers have been
widely investigated, e.g. [5, 6, 14, 15, 19]. With in-
creasing test lengths the aliasing probability asymptoti-
cally converges to the value 2K if the signature register
is based on an LFSR or a linear cellular automaton with
an irreducible characteristic polynomial of degree k [6].
Several approaches are known to decrease the fault
masking probability and thus increase the probability of
faulty signatures in single test units [3, 25]. But they lead
to a longer signature or more signatures or require more
hardware for the signature collecting structures. In systems
with multiple signature registers the method of [22] can
be used to compute the expected fault coverage, when only
a subset of signatures is evaluated at the end of the test
execution.

The paper is organized as follows. Section 2 presents
a model that can be used as a basis for test scheduling
procedures. In section 3, it is shown, how faulty signa-
tures influence one another, and how this can be utilized
to increase the fault coverage in circuits where only few
signatures are evaluated. Section 4 proves that the repeated
processing of test units leads o an equilibrium situation
where the probabilities of fault signatures in the STRs are
maximal. The problem of scheduling the test execution,
such that the maximal probabilities of the equilibrium are
reached, is stated formally in section 5, and an algorithm
for its solution is presented. Section 6 demonstrates the
test scheduling methods with examples and gives a short
discussion. A summary in section 7 concludes the paper.

2. Modeling and Formal Description
There is a one-to-one correspondence between the test
units and the STRs that can be used as signature registers.
Each test unit u; comprises exactly one STR T; that is
configured as a signature register, and each STR T;, that
can be used as a signature register, is used in exactly one
test unit u; for signature analysis. This correspondence is
indicated by the same indices (see table 1),

The effects of a fault can only propagate in the direction of
the data flow, and thus the propagation depends on the cir-
cuit structure. The circuit is modeled by the rest register
graph Gt := (T, Ey). Each node Tje T represents an STR.
The test register graph contains an edge (Tg, Tj) €Er for
every STR Ty that generates patterns in test unit u; and
thus influences the signature register T;. The test register
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graph is independent from the test schedule. The paths of
Gy describe how the effects of a fault, namely faulty sig-
natures, can propagate (propagation paths), provided an
appropriate test schedule is executed. If a fault F is located
in the test unit u;, only the STR T; and the set s(T;) of its
successors can get contents that differ from the fault-free
circuit.

In the following we explain all the concepts of this paper
with the help of the simple example circuit of figure 1.
The corresponding test register graph is shown in figure 2.
The fault F is located in the test units uy, u?, and u3, and
can cause faulty signatures in the STRs Ty, Tz, T3, T4.

Figure I: Circuit for matrix multiplication with built-in
self-test registers Tj
When the circuit is tested, some test units can be pro-
cessed in parallel. These test units are called compatible.
On the other hand, two test units are incompatible, if their
test hardware requirements are contradictory. For example
two test units are not allowed to simultaneously send data
on the same bus lines. The contents of a test register that
is used as an MISR in one test unit must not be used at
the same time as test patterns for another test unit (see
below). These and other restrictions due to the limited test
resources are modeled by the test incompatibility graph
G; = (U, Ey) [4]. The nodes uje U of this graph represent
the test units. The test incompatibility graph contains an
edge (uj, up€E; if and only if the test units u; and uj are
incompatible. Figure 2 shows the test incompatibility

graph for the circuit of figure 1.
Ts
T
4
T T

Figure 2: Test register graph (left) and test incompatibility
graph (right) for the circuit of figure 1



The graph coloring approach of [4] tries to color the nodes
of the test incompatibility graph with a minimal number
of colors, such that no two nodes that are connected by an
edge get the same color. Then all test units that
correspond to nodes with the same color can be processed
in parallel without violating any compatibility
constraints. This directly corresponds to a test schedule
represented by a sequence of test sessions S := (Sp, S1,
vy Sd-1). A test session S; is a subset of pairwise
compatible test units which are processed in parallel. The
test unit with the largest test length determines the test
length of the test session. A test schedule for the circuil of
figure 1is ({uy, up, uz}, (ug}). The authors of [4] call
this the "nonpartitioned testing" method. Compared with
other, more flexible test scheduling methods discussed by
these authors, the test session method needs less hardware
for implementing a BIST control unit.

In the subsequent sections we make the following

assumplions:

a) All STRs are initialized correctly before test execution

begins. (The extension to the general case is straight-

forward.)

Signatures are read out only at the end of the test

execution.

When an STR is operating in pattern generation mode,

it produces pseudorandom or pseudo-exhaustive

patterns, and its contents are not affected by the

incoming data sequence.

When an STR is operating in signature analysis mode,

its contents are not at the same time used as test

patierns.

The test lengths for each test unit are long enough 10

reach the stationary aliasing probabilities of the signa-

ture register.

f) When the processing of a test unit is repeated, the
resulting signatures are statistically independent.

The effects of a fault can propagate through the circuit if
the signatures are scanned only at the end, and if the STRs
are not clocked in the normal mode or reinitialized after
signature analysis. The conditions c) and d) ensure that the
generated patterns do not depend on the circuit function
and are really pseudorandom or psecudo-exhaustive. In
some cases sufficient fault coverage may be obtained
without these assumptions [7, 16], but the known
methods for computing aliasing probabilities [5, 6, 14] do
not hold if an STR is part of a feedback loop. Generally
condition ¢) holds as the test lengths increase with the
reciprocal of the lowest detection probability [21, 24]. The
calculations and the simulation results of [6, 14] show,
that the aliasing probability converges fast to its
stationary value, when a lincar feedback shift register
(LFSR} with a primitive feedback polynomial is used. In
the stationary situation all states of the MISR (width k)

b)

c)

€
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occur with the same probability Z'k, and this is
independent from the initial state of the MISR. The
assumption f) holds if the starting values of the
pseudorandom or pseudo-exhaustive patiern generators are
statistically independent.

3. Mutual Influence of Faulty Signatures
In circuits with multiple signature registers, the signatures
can influence one another. Figure 3 and 4 illustrate this
with an example. The circuit is segmented into two test
units (table l}r.

Figure 3: Propagation of faulty signatures

T4 5

T ]
T, L]

Figure4: Test register graph (left) and test incompatibility
graph (right) of the circuit of figure 3

u

Test unit | pattern generating| blocks signature
lest registers under test | register
Uy Ta Ts BBy | T (widthk;)
L] Ty, Ts B, Bs T (width k)
Table 1: Test units for the circuit of figure 1

The combinational logic block By contains a detectable
fault (fault detection probability 1). The test schedule is
({u1}, (u2)). Provided that error masking does not occur,
Ty will contain a faulty signature after the test unit uj
was processed. The STRs are not initialized again. Due to
the incorrect starting value, the test pattern sequence pro-
duced by T during the processing of the test unit up will
not be the same as in the fault-free case, and with a high
probability the signature in Ty will also get faulty. The
probabilities of a faulty signature in Ty and T at test end
are 1-2%1 and (1-27%1).(1-27%2), respectively. Generally
a decreasing probability of faulty signatures is observed in
the STRs along the propagation paths of faulty
signatures.

In this way a faulty signature, that occurs during the test
execution, may cause further faulty signatures, even in
parts of the circuit that themselves are fault-free. The pro-
pagation of faulty signatures depends on the order in that
the test units are processed. A correctly initialized STR
can get an incorrect signature, only if it is operating as
a signature register and the processed test unit contains




a detectable fault, or if at least one of the involved pattern
generating STRs has got an incorrect starting value and
consequently produces a different pattern sequence. Any
difference between the actual contents of an STR and the
contents corresponding to the fault-free circuit will remain
unchanged in the pattern generation mode.

Since in the presented approach the signatures are read
only at the end of the test execution, processing test units
repeatedly can also increase the probabilities of faulty sig-
natures. The effect of repeating test units is modeled by
boolean variables:

biﬁ): STR Tj contains a faulty signature after the j-th
_ repetition
ci“): there is no aliasing in T; during the j-th repetition

Let O:= (Tj, .., Tj,) be the set of STRs whose signa-
ture is evaluated (set of the STRs at the primary outputs).
Then P(bi,“') Vi bim(’)J is the probability that at
least one of these STRs contains a faulty signature. The
term can be computed exactly as shown in [22].

For the example of figure 3 and the repeated processing of
the test units uy and us, the propagation can be described
by the boolean equations ) ) .
b®=¢,? and b0 =, A, v (<t @A b0,
The second term is responsible for the increasing proba-
bilities of a faulty signature in Ty. Table 2 demonstrates
this effect. ({uy},(u2))" is used as a short hand notation
for the test schedule where ({u),{u2}) is concatenated r
times, e.g. ({u1),(u2))? = ((u1),{u2}, {u1),(u2)). Each
repetition increases the probability of a faulty signature. If
the STRs T; and T; are 8 bit wide, the maximum
probability for a faulty signature in T2 is (almost exactly)
reached after 3 repetitions. With 16 bit wide STRs only 2
repetitions are needed. A detailed analysis of the maximum
probabilities, that can be obtained in the general case,
follows in the next section.

probability of a faulty signature
Test schedule in STR T, at test end
8 bit STRs 16 bit STRs
(g}, (ua)) 0.992203 0.999970
(fug ), (u)? 0.996079 0.999985
([!.11].[|.|r2])3 0.996094 0.999985
() fup))= 0.996094 0.999985
Table 2:  Probabilities of faulty signatures

4. The Equilibrium Distribution for the
Probabilities of Faulty Signatures

In this section it is shown that after a number of repeti-

tions a stationary equilibrium situation is reached where

the probabilities that an STR contains a faulty signature

are maximum. It is assumed that the test schedule (Sp,

S1, .« S4-1. S0, S1, - Sd-1, -.) is a periodically
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repeated fixed sequence of d test sessions, that contain each
test unit at least once.
The contents of an STR Tj with width k; can be described
by a bit vector b = (bx;-1, ... bo), bje (0, 1] for j=0,
1, ..., k-1. Since signature analysis is a linear operation,
only the error vector e = b'®b, the difference of the cor-
rect contents b' (corresponding to the fault-free circuit) and
the actual contents b, has to be considered in order to
determine aliasing [6]. @ is the sum in GF(2) for each
component of the vector. To simplify the notation, the
values of this error vector e are coded by the integers 0,
Zki -1, where the integer 0 corresponds to the vector
0, that indicates the correct signature.
The error vectors of all STRs describe the faulty
signatures in the circuit. The propagation process can be
described by a Markov chain MC:
State: z(r) := (z1(1), 22(1), ..., Zn(1))
The component zj(r) codes the error
vector e of the STR T; after the r-th
repetition of the test session
sequence, i=1, .., n
Z:={0,1,.., 2% -1} x..x {0, 1,
21}
where n:
k;:

State space:

# STRs

width of STR Tj,
i=1,2

Change during one repetition of the
test session sequence

z(0) =0

(all STRs initialized correctly)

State transition:
Initial distribution:

Theorem:

If the test schedule is a periodically repeated fixed sequence
of test sessions, that contain each test unit at least once,
the probability that an STR T; contains a faulty signature
after a large number r of repetitions of the test session
sequence is

if Tije Tpw s(Tg)

i 0
lim P(zin)#0) = { B
T—ee 1-27 if Tie Tpu s(Tg)
where  k;: width of the STR Tj
TrcT: setof STRs that are used as signature
registers in the test units where the
fault F is located
s(Tg): set of successors of the nodes of Tg in
the test register graph
Proof:

The Markov chain MC is homogeneous for any given
fault. For a specific fault F in test unit u; not all states
ze Z are possible, since faulty signatures can influence

other signatures only in the direction of the data flow,
Only those components zj(r) of z(r) can change where



Tje TFus(TE). All the other components zi(r) are always
0, P (zj(r) #0) = 0.

Using T := Tpu s(Tg) = {Ti;, Ti,s - Tiyp}, n'<nm,
only the reduced state zg(r) := (z;,(r), zj,(1), -, 2 (D)
and the corresponding transition probability matrix PF are
of interest. Every state of the reduced state space Zp :=
{0, 1, ..., 21 .1} x .. x {0, 1, ..., 259" -1} can be
reached from every other state. Starting from an arbitrary
state, the system can go to a state where all STRs of the
set T' contain a faulty signature. In this situation bit
errors can occur at the inputs of every signature register of
T', and the signatures can get arbitrary values. Hence the
Markov chain MCp with state space Zg and transition
probability matrix P is irreducible. Since every repetition
of the test session sequence can leave the state unchanged,
MCE is also aperiodic. Consequently MCF is ergodic [8]
and for r—eo a unique equilibrium distribution exists [9],
that is stationary, too.

Let xe Zf be the starting state of one repetition, and let
d;(x) be the probability that there are bit errors at the
inputs of the STR T; during the repetition. d;(x) does not
depend on r. In the case of bit errors, all contents of the
STR Tj have the same probability 27,

The probability that the actual contents z;(r) of an STR T;
differ from the fault-free case by x; is

E(Zi(f)ﬂi) = [1 - di(a(r-1)))P(zi(r-1)=xj) + di(z(r-1))-2°

and in the equilibrium case
P@zi=xi) = [1- di(@)}P(zi=x;)) + di(2) 2™ ,
hence di(z)P(z=x;) = di(z)2’% .

If T;j¢ T, then z(r) =0, P(z#0) =0. If TjeT, then
after some initial repetitions dj(z) # 0, and consequently
P(zi=x) =25,  P(zwxj) =1-25 N

For long test lengths the probability of a faulty signature
in each STR T; approaches a maximum value, that is
determined only by the width k; of the STR. It depends
neither on the length of the propagation path from the
location of the fault to the STR Tj, nor on the character-
istic features of other STRs involved in the propagation
process.

Since the information in all nonredundant parts of the cir-
cuit eventually affects the outputs of the circuit, all faults
can cause faulty signatures in the STRs at the primary
outputs. Thus it is sufficient to evaluate the signatures in
the STRs at the primary outputs only, if these are not
extremely small. The results in section 6 will show that
the test session sequence must be repeated only few times
in order to practically reach the maximum probabilities of
faulty signatures given by the theorem.

5. Test Scheduling
In order to get an inexpensive implementation of the BIST
control unit, the test schedule should be composed of
a short sequence of test sessions, that is concatenated
repeatedly. Then only the few test sessions of the short se-
quence must be stored, the repetitions can be implemented
simply by a small counter circuit. For a given circuit and
a fault set M, the fault coverage FC(O,S) obtained by
evaluating the signatures in the subset O of STRs at the
test end, depends on O and the test schedule S. In this
context the test scheduling problem can be stated as
follows.
Problem Test Scheduling
Given: e Testregister graph Gr= (T, Er)
e Subset OcT of test registers for signature
evaluation
* Test incompatibility graph G;= (U, Ep)
* Set M of faults
* Required fault coverage FCy
A test schedule S := (S, S1, ... Srd-1)
where S;cU and i=jmodd - §;=§;
forall i,je {0,1,..,rd-1)
(d test sessions are repeated r times),
such that
1) forall ug,uneU, S;e (So, S1, -y Srd-1]):
ug € Si A upe Si = (ug,up) e Ep
2) FC(0,S) 2 FCy
3) d is minimal
4) ris as small as possible for minimal d
The decision problem corresponding to this optimization
problem is NP-hard. It contains the graph K-colorability

problem [10] as a special case. For O=T and a sufficiently
high required fault coverage FCp, all test units must be
processed once (r=1). They have to be scheduled in

a minimal number of test sessions. This is equivalent to
coloring the nodes of the graph G; using a minimal

number of colors, each color corresponds to a test session.

The schedule must guarantee that all (nonredundant) faults
can influence the signatures in the subset O of STRs.
Each fault located in a test unit v;, can cause a faulty

signature in the corresponding signature register Tj,.
When this STR T, is used afterwards to generate patterns
for a test unit uj,, the signature in STR Tj, can also
become faulty. The propagation of a faulty signature
corresponds to travelling along a propagation path (T,
Ti;s - Tj,) in the test register graph Gr. This
propagation is possible only if the corresponding test
units  uj,, Uj,, .., Uj, are processed in the same order.

The test schedule must contain a test session comprising
the test unit uj,, then a test session comprising uj,, and

Find:



so on. Other test sessions are allowed between these test
sessions. Hence the test schedule must look like

[(QUOPRY | PR VRN (") (PG | P O, 1

A test schedule can be constructed in two steps:

i) A set of propagation paths is created that coniains at
least one path from each STR used as a signature
register to an STR of O.

ii) The test sessions are built such that for each
propagation path of this set the corresponding test
units appear in the sequence of test sessions in the
same order,

Heuristics help to choose an efficient set of propagation
paths. From each signature register a shortest propagation
path to each STR of O is selected. On the shortest
propagation path the smallest number of signature
registers is involved. As in each of them fault masking is
possible, the fault masking probability is often lowest on
the shortest path. The shortest paths also contribute to
arelatively short overall test length, since in order to
propagate a faulty signature along the shortest path the
smallest number of test sessions is required.

Propagation paths to all the STRs of O that can be
reached are selected, since for all subsets 0"cO'cO of
STRs the inequation
P (faulty signature in at least one STR of O")

< P (faulty signature in at least one STR of O")
holds. The set of propagation paths determined in step i)
can be reduced, since a path (Tip i Tij- v T{)

implies also the propagation along the path ('I‘ij. I 1) 8
Hence only the propagation path (T;,, ..., T;) needs to
be considered, when the test sessions are constructed.

The last test session is constructed first, the scheduling is
done backwards. As all propagation paths end at the STRs
of O, many paths have a common subpath at the end.
When the last nodes of the propagation paths are
considered first, these common subpaths can be treated
together, the corresponding test units must be scheduled
only once, and conflicts during the scheduling process are
avoided.

The set of propagation paths contains paths of different
lengths. The test units that contribute to the propagation
along the paths with a larger number of nodes are treated
with higher priority, since these propagation paths have
greater influence on the resulting overall test length than
paths with a smaller number of nodes. This heuristic is
not necessary to get a minimal number d of different test
sessions, but it helps to avoid excessively large test
lengths.

These heuristics are applied in the algorithm STS ("Self-

Test Scheduling”) of figure 5. The inputs are the test reg-
ister graph Gr, the subset O of STRs whose signatures are
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evaluated, the test incompatibility graph Gy, and the
required number dypi, Of test sessions. The set O can be an
arbitrary subset of STRs, but the most interesting case is
1o include only the STRs at the primary outputs. The
algorithm STS first tries to construct a sequence of
d=dmin test sessions. This is impossible, if dp;p is less
than the chromatic number ¥(G) of the test incompatibi-
lity graph Gy. If the algorithm does not find such
a sequence, the parameter d is incremented until the con-
struction is successful. The output is the number d and the
test session sequence S = (Sp, S1, ..., S4-1). If the
sequence S does not give sufficient fault coverage, the
fault masking probabilities along the propagation paths
are reduced by repeating the sequence. The required number
r of repetitions can be determined by computing the fault
coverage values for some small numbers of repetitions.
The complete test schedule is (Sg, S1, ..., Sd-1 - Std-d»

Srd-d+1s - Srd-1), Where Sj = Sd4i = ...=S(r-1)d+i for
i=01,.. d-l.

Procedure STS (Gy, O, Gy, dpypy d, S);

/* M: set of propagation paths,  d: # test sessions */
/* j:  index of currently constructed test session *

d:=dy,-1; M:=0@;
for each STR T;e T that is used as a signature register:
for each STR T, O that can be reached:
[ determine a shortest path @(T;, T,) in Gy;
M = Mu (o(T;, To))

)
remove all paths from M that are contained in other paths

of M;
do (for j:=0,1,..d:
SJ = 9:
j = d; d = d+1;
do [M':=0;
do [ L:=(ueU|w(T,T;) is apath of M with
maximum number of nodes};

/¥ set of candidates */
choose a maximal subset L'c L, such that all
test units of L' are compatible to each other
and to all test units of Sj;

SJ' = SjU L':
for all paths aT;,T;)e M where weL:
(if uye L delete the last node of ;
/* shorter propagation path */
M:=Mulw); M:=M\|o)
]
)} while (M =@);
M:=M; j = (-1) mod d;
remove all paths from M that are contained in

other paths of M
) while (M#@ and during the last d loops at least
one path has been shortened)
} while (M=)

Figure5: Algorithm STS



The algorithm STS is demonstrated using the circuit of
figure 1 and the corresponding test register graph Gt =
(T, ET) of figure 2. Only the signature of the STR Tj is
evaluated, O = [T3). This is advantageous, since the STR
Tj is located at the primary outputs and can be read using
the boundary scan chain. The set of shortest paths in Gt
from a signature register to the STR of O is M := {(Ty,
T4, T3), (T2, T4, T3), (T4, T3), (T3)}. The STR Ts is
not considered, since it is not used for signature analysis.
All propagation paths that are contained in other paths of
M can be removed, M := {(Ty, T4, T3), (T2, T4, T3) }.
i) For dmin =2 the constructed test session sequence is
({u4), {u, u2, u3}) with d=2, This is a sequence of
minimal length, since %(Gy) = 2. The sequence must
be repeated in order to make the propagation from all
signature registers to the STR of O possible. The final
test schedule is ({u4}, {u1, uz, u3}, (ug}, {uy, vz,
u3}).

For dmin =3 the constructed test schedule is ({uj,
u), {(ug), {u3)) with d=3.

In case ii) one more test session must be stored in the
BIST control unit, but the overall test length is shorter.
Generally, larger values for dmip lead to a larger number
of test sessions to be stored, but decrease the test length.
So there is a tradeoff between a smaller test hardware
overhead and a shorter test length. The presented
algorithm to solve the NP-hard scheduling problem cannot
guarantee, that in all cases an optimal solution is found.
But the constructed schedules are very close to optimal
schedules as the results show.

ii)

6. Results

In this section the results of the algorithm STS are com-
pared with the results of the "nonpartitioned testing" algo-
rithm (NT) of [4], that uses the graph coloring approach
and aims at a minimal overall test length, First we discuss
two examples in more detail, after that we present results
obtained with the ISCAS'89 benchmark circuits [2]. The
first example E1 is the circuit of figure 1 with 20-bit-
STRs, the second example E2 is the same structure but
with 8-bit-STRs.

In table 3 the schedules obtained by the graph coloring
algorithm of [4] and by our approach are compared. The
number of repetitions is chosen such that in all cases the
fault coverage is the same for both scheduling methods.
For E1 the error masking probabilities are very low and
can be neglected, when the algorithm STS is applied. At
the end of the test execution the probability of a faulty
signature in the STR T3 differs from the equilibrium
value by less than 2:10-6. This means, the probability
that a faulty signature is masked during the propagation to
Tj is less than 2-10°5. If the STRs are 8 bit wide (E2),
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the probability of a faulty signature decreases along the
propagation paths by an amount that cannot be neglected.
This must be compensated by repeating the test session
sequence once more.

circuit #1est sessions total lengthof signatures
NT STS NT STS
El 2 2x2 80 bit 20 bit
E2 2 3x2 32 bit 8 bit
Table 3:  Test schedules for the example circuits

In the schedules constructed by the algorithm STS, the
test lengths are increased by a factor of 2 and 3, respec-
tively, compared to the "nonpartitioned testing” schedule.
But the advantage is that for E1 and E2 only the signature
in the STR T3 at the primary outputs must be evaluated
at the end of the test, whereas with the "nonpartitioned
testing” schedule all the signatures of Ty, T2, T3, and T4
must be scanned and evaluated. There is no need for an
internal scan path, the wiring required to interconnect all
the test registers can be saved. The BIST control unit does
not have to scan the signatures in the internal STRs and
can be simplified. The control unit of the boundary-scan
architecture does not need any instructions to control an
internal test data register. The comparison of signatures
requires less effort. Altogether the amount of test hardware
is reduced significantly, the savings are quantified in table
3. Here the number of bits of the signatures derived by the
graph coloring algorithm and by STS are listed. The sig-
natures of the STS method are significantly shorter with-
out any loss of fault coverage.

The large ISCAS'89 benchmark circuits [2] were also
investigated. At all primary inputs and primary outputs,
boundary scan cells were added. Then test registers were
built in, such that all global feedback loops of the circuits
were cut by at least two test registers. In some cases this
required additional flipflops. Table 4 shows the test
scheduling results.

circuit | #gates #STRs | #test sessions| total length of
signatures (bit)
NI | STS STS
s5378 | 2779 8 7 10 143 49
s9234 | 5597 4 4 6 335 22
s13207| 7951 5 5 6 821 121
s15850] 9772 3 3 ] 979 87
$35932|16065 5 ] 6 1017 320
s38417|22179 4 4 7 2262 106
s3R584[19253 6 6 9 2567 278
Table 4: Results for ISCAS'89 benchmark circuits

Generally the schedules obtained by the algorithm STS are
longer than schedules, that aim at a minimal test
execution time. But the advantages of the presented
approach are the hardware savings at many points when
a built-in self-test is implemented. If some internal STRs
are very small (e.g. less than 6 bit), then propagation
paths that contain these STRs have to be repeated many



times. This can lead to a long overall test time. Very
small STRs at the primary outputs can also cause
problems to get a sufficient fault coverage. But in most
circuits the STRs are sufficiently wide and do not cause
any trouble. In most cases 2 to 4 repetitions are sufficient
to reach the equilibrium and the maximum fault coverage.
The detailed investigation of the tradeoff between fault
coverage, test length, and amount of additional test
hardware will be a subject of further research,

7. Conclusions

In large circuits with multiple signature registers, the
signatures influence one another and can propagate
through the circuit. The probabilities of a faulty signature
decrease along the propagation path, but the repeated
processing of test units can counteract this effect. After
a number of repetitions a stationary equilibrium situation
is reached, where for each self-test register the probability
of a faulty signature is maximum and depends only on the
width of this self-test register.

A method was presented to construct schedules, such that
this equilibrium situation is reached and only the
signatures in the self-test registers at the primary outputs
must be evaluated to get a low error masking probability
and sufficient fault coverage. Then a built-in self-test can
be implemented with a substantially reduced amount of
hardware. Only a small number of signatures must be
evaluated, the internal self-test registers do not have to be
integrated into an internal scan path, and the BIST control
unit and the boundary-scan controller can be simplified.
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